JP2011241464A - Super-hard composite material and method for producing the same - Google Patents

Super-hard composite material and method for producing the same Download PDF

Info

Publication number
JP2011241464A
JP2011241464A JP2010116823A JP2010116823A JP2011241464A JP 2011241464 A JP2011241464 A JP 2011241464A JP 2010116823 A JP2010116823 A JP 2010116823A JP 2010116823 A JP2010116823 A JP 2010116823A JP 2011241464 A JP2011241464 A JP 2011241464A
Authority
JP
Japan
Prior art keywords
diamond
hard
composite material
diamond particles
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010116823A
Other languages
Japanese (ja)
Inventor
Salvatore Grasso
サルバトーレ グラッソ
Chunfeng Hu
ショーフェン フ
Yoshio Sakka
義雄 目
Giovanni Maizza
ジョバンニ マイッツア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010116823A priority Critical patent/JP2011241464A/en
Publication of JP2011241464A publication Critical patent/JP2011241464A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a diamond-containing super-hard composite material which has a sufficiently high density and uniform structure and is produced without using an ultra-high pressure vessel.SOLUTION: The super-hard composite material having a relative density of ≥85% is obtained by mixing hard powder of a carbide, a nitride or the like, 0-10 wt.% of an iron group metal, and diamond particles having an average particle diameter of 10-1,000 μm, and then sintering the resulting mixture by electrically heating the mixture at a heating speed of 100-10,000 °C/min in the temperature range of ≥900°C and keeping temperature for <30 s at a temperature not higher than 1,900°C, under a pressure within the range of 0-200 MPa.

Description

本発明はタングステンカーバイド(バインダはあってもなくても良い)あるいはそれに類するものとその中に分散して複合材を形成するダイヤモンド粒子との焼結体を含む超硬質複合材(superhard composite material)料及びその製造方法に関する。   The present invention relates to a superhard composite material comprising a sintered body of tungsten carbide (with or without a binder) or the like and diamond particles dispersed therein to form a composite material. The present invention relates to a material and a manufacturing method thereof.

ダイヤモンドは非常に硬度が高いことから、耐摩耗性材料の要素として大きな関心を集めてきた。タイヤモンドをマトリクス中に取り入れて緻密な材料を得るため多くの技術が試された。しかしながら、大きな問題は、高温かつ常圧においてダイヤモンドの熱安定性が不十分なことである。良好な結果を得るためには高圧による方法が必要であると今まで考えられてきた。特許文献6、7、8及び10に開示された諸方法では、高圧高温の装置が必要とされる。超高圧容器を使用して、1400℃〜2400℃で5.5GPa〜10GPaという高温かつ高圧の条件で人造ダイヤモンドが開発された。その結果、地球上でもっとも硬い材料として超硬合金(cemented carbide)よりも良好な耐摩耗性を持つダイヤモンド成形体(diamond compact)が開発された。しかしながら、これらのダイヤモンド材料を製造するには、超高圧容器のような高価な設備が必要となる。   Diamond has attracted great interest as an element of wear-resistant materials because of its very high hardness. Many techniques have been tried to incorporate tiremonds into the matrix to obtain a dense material. However, a major problem is that the thermal stability of diamond is insufficient at high temperatures and normal pressures. Up to now it has been thought that high pressure methods are necessary to obtain good results. In the methods disclosed in Patent Documents 6, 7, 8, and 10, a high-pressure and high-temperature apparatus is required. Using an ultra-high pressure vessel, artificial diamond was developed under conditions of high temperature and high pressure of 5.5 GPa to 10 GPa at 1400 ° C to 2400 ° C. As a result, a diamond compact with better wear resistance than cemented carbide has been developed as the hardest material on earth. However, in order to manufacture these diamond materials, expensive equipment such as an ultrahigh pressure vessel is required.

多くの特許に、固相のダイヤモンドにとって熱力学的に不安定な圧力及び温度条件下で材料を焼結して、これによって超高圧容器を採用することなくダイヤモンド複合部材を作製する技術が開示されている。   Many patents disclose techniques for sintering diamond materials under pressure and temperature conditions that are thermodynamically unstable for solid phase diamond, thereby producing a diamond composite without employing an ultra-high pressure vessel. ing.

超硬合金マトリクス中に入っている被覆されていないダイヤモンドからなる材料が多数の過去の特許に開示されている。例えば、特許文献2には1体積分量のダイヤモンド粒子を、Co(コバルト)含有量が3%〜25%のタングステンカーバイド−コバルト3〜4体積分量に埋め込んだ材料が開示されている。特許文献4には、焼結組成に加熱と加圧を同時に行うことによって、すなわちホットプレス法により、物品を製造する方法が開示されている。   A number of previous patents have disclosed materials consisting of uncoated diamond in a cemented carbide matrix. For example, Patent Document 2 discloses a material in which one volume fraction of diamond particles is embedded in a tungsten carbide-cobalt 3-4 volume fraction having a Co (cobalt) content of 3% to 25%. Patent Document 4 discloses a method of manufacturing an article by simultaneously heating and pressing a sintered composition, that is, by a hot press method.

特許文献5では、ダイヤモンド超硬合金混合物を抵抗法によって、すなわち混合物への通電を高周波電流によるプレス型の加熱と同時に行うことによって、1800℃までの焼結温度まで3000℃〜10000℃/分のレートで加熱する。一方、特許文献9では、浸潤により、バインダ相中に金属被覆されたダイヤモンドあるいはCBN(立方晶窒化ホウ素)の超硬粒子を含む複合部材を作製する技術が開示されている。   In Patent Document 5, the diamond cemented carbide mixture is subjected to the resistance method, that is, the energization of the mixture is performed simultaneously with the heating of the press die by the high-frequency current, so that the sintering temperature up to 1800 ° C. is 3000 ° C. to 10,000 ° C./min. Heat at a rate. On the other hand, Patent Document 9 discloses a technique for producing a composite member containing diamond or CBN (cubic boron nitride) carbide particles coated with metal in a binder phase by infiltration.

更には、特許文献11では、ダイヤモンド・タングステンカーバイド−コバルト複合材が、直接抵抗加熱及び加圧焼結によって得られる。ここで焼結は液相で行われて短時間の加熱で作製され、またコバルト成分は10体積%よりも多い。特許文献11に示される従来技術は、本発明とは異なり、ダイヤモンド複合体を志向していない、つまりバインダなしのダイヤモンド・タングステンカーバイド複合体の製造でも低コバルト含有量超硬質複合材料の製造でもない。従来技術である特許文献11とは反対に、本発明ではダイヤモンドのグラファイト化を防止し粉末の密度を高くするためのダイヤモンドへの被覆は何も必要とされない。   Furthermore, in Patent Document 11, a diamond / tungsten carbide-cobalt composite is obtained by direct resistance heating and pressure sintering. Here, the sintering is performed in a liquid phase and is produced by heating in a short time, and the cobalt component is more than 10% by volume. Unlike the present invention, the prior art disclosed in Patent Document 11 is not intended for a diamond composite, that is, neither a diamond-tungsten carbide composite without a binder nor a super-hard composite material with a low cobalt content. . Contrary to Patent Document 11 which is the prior art, the present invention does not require any diamond coating to prevent the graphitization of diamond and increase the density of the powder.

本発明の課題は、超高圧容器を使用せずに製造できる充分に緻密かつ一様な構造を有する超硬質複合材料及びそのような材料を製造するための方法を提供することである。   It is an object of the present invention to provide an ultra-hard composite material having a sufficiently dense and uniform structure that can be produced without the use of an ultra-high pressure vessel and a method for producing such a material.

本発明の一側面によれば、以下の(ア)及び(イ)を含み、(ウ)から(オ)の条件を満たす超硬質材料が与えられる。
(ア)WC、TiC、TiN、SiC及びTi(C,N)からなる群から選択された少なくとも一つの要素を含む材料からなる硬質相。
(イ)前記硬質相を含む構造中に分散された複数のダイヤモンド粒子。
(ウ)前記硬質相及び前記ダイヤモンド粒子は、ダイヤモンドが熱力学的に準安定でありダイヤモンドが全くまたはごくわずかしか黒鉛化を被らない条件下で直接抵抗加熱及び加圧焼結によって焼結される。
(エ)ダイヤモンドはマトリクスと強固な結合をなす。
(オ)前記複合材料は85%よりも大きな相対密度を有する。
According to one aspect of the present invention, an ultrahard material that includes the following (a) and (a) and satisfies the conditions (c) to (e) is provided.
(A) A hard phase made of a material containing at least one element selected from the group consisting of WC, TiC, TiN, SiC, and Ti (C, N).
(A) A plurality of diamond particles dispersed in a structure containing the hard phase.
(C) The hard phase and the diamond particles are sintered by direct resistance heating and pressure sintering under conditions where diamond is thermodynamically metastable and diamond undergoes no or very little graphitization. The
(D) Diamond has a strong bond with the matrix.
(E) The composite material has a relative density greater than 85%.

前記超硬質複合材料は主に主結晶系としてfcc構造を有するCo等の鉄族の金属からなる0重量%〜10重量%の金属バインダ相を含み、前記金属バインダ相は前記硬質相及び前記ダイヤモンド粒子とともに焼結され、前記構造は更に前記金属バインダ相を含んでよい。   The ultra-hard composite material includes a metal binder phase of 0 wt% to 10 wt% mainly composed of an iron group metal such as Co having an fcc structure as a main crystal system, and the metal binder phase includes the hard phase and the diamond. Sintered with the particles, the structure may further comprise the metal binder phase.

前記ダイヤモンド粒子は10μm〜1000μmの範囲の平均粒子サイズを有し、前記ダイヤモンド粒子の含有量は5体積%〜50体積%であってよい。   The diamond particles may have an average particle size ranging from 10 μm to 1000 μm, and the content of the diamond particles may be 5% by volume to 50% by volume.

前記超硬質複合材料は立方晶窒化ホウ素とウルツァイト窒化ホウ素の少なくとも一方を更に含んでよい。   The ultra-hard composite material may further include at least one of cubic boron nitride and wurtzite boron nitride.

本発明の他の側面によれば、以下の(ア)から(ウ)のステップを設けた、超硬質複合材料の製造方法が与えられる。
(ア)ダイヤモンド粒子及び硬質合金マトリクス材料の混合物を、前記ダイヤモンド粒子が前記硬質合金マトリクス材料全体に均等に分散するようにしてプレス型に充填する。
(イ)前記混合物を、0〜200MPaの圧力を印加しながら、それと同時に電流を前記混合物に流すことによって、900〜1200℃から開始して100〜10000℃/分の加熱レートで加熱する。
(ウ)前記混合物を、0〜200MPaの圧力下で、1900℃を超えない焼結温度に30秒未満保持する。
According to the other aspect of this invention, the manufacturing method of a super-hard composite material provided with the following steps (a) to (c) is provided.
(A) A mixture of diamond particles and a hard alloy matrix material is filled into a press die so that the diamond particles are uniformly dispersed throughout the hard alloy matrix material.
(A) The mixture is heated at a heating rate of 100 to 10000 ° C./min, starting from 900 to 1200 ° C., while simultaneously applying a pressure of 0 to 200 MPa while passing a current through the mixture.
(C) The mixture is kept under a pressure of 0 to 200 MPa at a sintering temperature not exceeding 1900 ° C. for less than 30 seconds.

前記プレス型は前記プレス型の周囲の熱源によって加熱してよい。   The press die may be heated by a heat source around the press die.

上記した本発明によれば、十分に高密度でありまた一様な構造を有する新規な超硬質複合材料が得られる。更に、この超硬質複合材料は、非常に短時間でまた超高圧容器を使用せずに製造可能とする新規な方法によって得られる。   According to the present invention described above, a novel ultra-hard composite material having a sufficiently high density and a uniform structure can be obtained. Furthermore, this ultra-hard composite material can be obtained by a novel process that can be produced in a very short time and without the use of ultra-high pressure vessels.

本発明の実施例による焼結プロセスの電圧/温度/変位プロファイル。FIG. 3 is a voltage / temperature / displacement profile of a sintering process according to an embodiment of the present invention. 本発明の実施例による焼結複合体の破断面の低倍率(a)及び高倍率(b)で得られたSEM像。The SEM image obtained by the low magnification (a) and the high magnification (b) of the fracture surface of the sintered composite by the Example of this invention. SiCボールを3×10回回転させた後の本発明の複合体の実施例による焼結体表面の低倍率SEM像。The low magnification SEM image of the surface of the sintered compact by the Example of the composite_body | complex of this invention after rotating a SiC ball | bowl 3 * 10 4 times. SiCボールを3×10回回転させた後の本発明の複合体の実施例による焼結体表面の高倍率SEM像。The high magnification SEM image of the sintered compact surface by the Example of the composite_body | complex of this invention after rotating a SiC ball | bowl 3 * 10 4 times. SiCボールを3×10回回転させた後のWCバインダなし表面の光学像。The optical image of the surface without a WC binder after rotating a SiC ball 3 × 10 4 times.

本発明によれば、高密度で耐研磨性の成形体材料を作製する方法は以下のステップを含む。
(a)結合材粉体とダイヤモンド粒子との導電性混合物を提供する。
(b)この導電性混合物を圧縮する。
(c)この圧縮された導電性混合物に放電焼結を施して、成形体を形成する。
In accordance with the present invention, a method of making a dense, abrasive-resistant molded material includes the following steps.
(A) providing a conductive mixture of binder powder and diamond particles;
(B) Compress this conductive mixture.
(C) The compacted conductive mixture is subjected to discharge sintering to form a compact.

この複合体はWC、TiC、TiN及びTi(C,N)のうちから少なくとも一種類の硬質相とダイヤモンド粒子とを含む。この複合体はまた鉄族の金属のバインダ相を含んでも良い。換言すれば、本発明の複合材は焼結体であって、バインダ入りまたはバインダ無しのタングステンカーバイドマトリクス中にダイヤモンド粒子を保持し、この焼結体は直接抵抗加熱加圧焼結(direct resistance heating and pressurized sintering)によって得られる。バインダ相は、好ましくはCo、Ni、CrまたはFeのような鉄族の金属から作られる。   The composite includes at least one hard phase selected from WC, TiC, TiN, and Ti (C, N) and diamond particles. The composite may also include an iron group metal binder phase. In other words, the composite of the present invention is a sintered body that retains diamond particles in a tungsten carbide matrix with or without a binder, the sintered body being a direct resistance heating and sintering. and reduced)). The binder phase is preferably made from an iron group metal such as Co, Ni, Cr or Fe.

直接抵抗加熱加圧焼結は10分以内の短時間で完了させることができる。それは、抵抗加熱により、焼結される材料を急速に加熱し、加圧し、そして冷却できるからである。従って、焼結される材料を高温に晒す時間を低減でき、その結果、ダイヤモンドからグラファイトへの転換を起こすことなく焼結を終了することができる。   Direct resistance heating and pressure sintering can be completed in a short time within 10 minutes. This is because resistance heating can rapidly heat, pressurize and cool the material being sintered. Therefore, the time for exposing the material to be sintered to a high temperature can be reduced, and as a result, the sintering can be completed without causing the conversion from diamond to graphite.

上述した条件に加えて、本発明の複合部材は、好ましくは、以下の追加の条件を互いに独立してあるいは組み合わせた形で満たす。
(1)抵抗加熱加圧焼結は、液相が現れても現れなくても良い、ダイヤモンドが熱力学的に準安定な条件下で行われる。
(2)バインダ相はCoを含み、このCoの主結晶系はfccである。
(3)超硬合金を含むマトリクスの場合、焼結の間に液相が現れても現れなくても良い。本発明による直接抵抗加熱加圧焼結により急速な昇温と短時間の焼結が可能となり、これによりダイヤモンドがグラファイトへ転換するのを抑制しつつ、卓越した複合部材を製造することができる。
(4)ダイヤモンド粒子の各々は外側のコーティングを持たない。
(5)WCの平均粒子サイズは0.05〜100μmである。
(6)ダイヤモンド粒子の平均粒子サイズは10〜1000μmである。
(7)ダイヤモンド粒子の含有量は5〜50体積%である。
(8)バインダ相含有量は0〜50体積%である。
(9)ダイヤモンド粒子の少なくとも一部が立方晶窒化ホウ素あるいはウルツァイト窒化ホウ素で置換される。
(10)WC粉末の少なくとも一部がTiC、TiN、及びTi(C,N)のうちの一つで置換される。
In addition to the conditions described above, the composite member of the present invention preferably satisfies the following additional conditions independently or in combination.
(1) Resistance heating and pressure sintering is performed under the condition that diamond is thermodynamically metastable, which may or may not appear as a liquid phase.
(2) The binder phase contains Co, and the main crystal system of Co is fcc.
(3) In the case of a matrix containing cemented carbide, a liquid phase may or may not appear during sintering. The direct resistance heating and pressure sintering according to the present invention enables rapid temperature increase and short-time sintering, thereby making it possible to manufacture an excellent composite member while suppressing the conversion of diamond into graphite.
(4) Each diamond particle has no outer coating.
(5) The average particle size of WC is 0.05 to 100 μm.
(6) The average particle size of the diamond particles is 10 to 1000 μm.
(7) The content of diamond particles is 5 to 50% by volume.
(8) The binder phase content is 0 to 50% by volume.
(9) At least a part of the diamond particles is replaced with cubic boron nitride or wurtzite boron nitride.
(10) At least a part of the WC powder is replaced with one of TiC, TiN, and Ti (C, N).

粒子サイズが0.1μm未満の市販のWCを粒子サイズが約60μmのダイヤモンド粒子と混合した。22体積%のダイヤモンドとWC粉末の混合物を水平ミル中で24時間乾式混合した。この粉末混合物を円筒状で中空のグラファイト製の型に満たした。実験は電流制御モード(CCm)で動作させた100kN SPS−1050装置(SPSシンテックス株式会社)で行われた。型表面温度が1575℃のときに電流を停止した。焼結プロセスは2ステップで行った。最初のステップでは1000Aの電流を印加し、次いで、温度が900℃に到達したとき電流を急に4000Aに上昇させ、30秒間一定に維持した。120MPaの一定の圧力を焼結プロセスの全期間印加した。焼結条件を図1に示す。   Commercially available WC having a particle size of less than 0.1 μm was mixed with diamond particles having a particle size of about 60 μm. A mixture of 22% by volume diamond and WC powder was dry mixed in a horizontal mill for 24 hours. The powder mixture was filled into a cylindrical and hollow graphite mold. The experiment was performed with a 100 kN SPS-1050 apparatus (SPS Syntex Corporation) operated in current control mode (CCm). The current was stopped when the mold surface temperature was 1575 ° C. The sintering process was performed in two steps. In the first step, a current of 1000 A was applied, and then when the temperature reached 900 ° C., the current was suddenly raised to 4000 A and kept constant for 30 seconds. A constant pressure of 120 MPa was applied throughout the sintering process. The sintering conditions are shown in FIG.

焼結体の相対密度は94%に達した。X線回折(XRD)及びマイクロラマン分光計によって解析した研磨された表面はグラファイトの徴候を全く示さなかった。図2は焼結複合体破断面の小倍率(a)及び大倍率(b)でのSEM像を示す。ダイヤモンド粒子はマトリクスに強く結合されている。なぜなら、どのダイヤモンド粒子もマトリクスから剥れていないが粒子は全て破断面上で結晶を横切るようにして切り裂かれているからである。   The relative density of the sintered body reached 94%. The polished surface analyzed by X-ray diffraction (XRD) and micro-Raman spectrometer showed no signs of graphite. FIG. 2 shows SEM images of the sintered composite fracture surface at a small magnification (a) and a large magnification (b). Diamond particles are strongly bonded to the matrix. This is because none of the diamond particles have peeled off the matrix, but all of the particles have been cut across the crystal on the fracture surface.

上述したように製造された超硬質複合材料(以下、WCダイヤモンド材料と称する)の耐摩耗性を調べるため、上述の材料、更には比較の目的で従来技術によるWCバインダ無し材料についても耐摩耗性試験を行った。   In order to examine the wear resistance of the ultra-hard composite material (hereinafter referred to as WC diamond material) manufactured as described above, the wear resistance of the above-mentioned materials and also the WC binder-free material according to the prior art for the purpose of comparison. A test was conducted.

具体的には、乾燥条件下でのこれらのサンプルの摩擦学的挙動を、JIS R 1613磨耗試験規格に従って、CSM Instrument SA(スイス)製のボール・オン・ディスク構成摩擦計(ball on disc configuration tribometer)を使用して評価した。本試験は6mmSiCボールを磨き上げたサンプルに対して10Nの負荷をかけながら0.10m/sの一定の線速度で摺動させることにより行った。試験痕の半径は3mmであり、本試験は30000回転(565m)行った。全ての試験は25℃、ほぼ22%の相対湿度の下で行った。ボール・オン・ディスク実験の後、バルクサンプルの摺動磨耗率を磨耗トラック領域の計測結果から計算した。   Specifically, the tribological behavior of these samples under dry conditions is determined according to JIS R 1613 abrasion test standard by ball on disc configuration tribometer from CSM Instrument SA (Switzerland). ). This test was carried out by sliding a 6 mm SiC ball polished sample at a constant linear velocity of 0.10 m / s while applying a load of 10 N. The radius of the test mark was 3 mm, and this test was performed 30000 revolutions (565 m). All tests were performed at 25 ° C. and approximately 22% relative humidity. After the ball-on-disk experiment, the sliding wear rate of the bulk sample was calculated from the measurement results of the worn track area.

図3は30000回転後のWCダイヤモンド材料表面のSEM像を示し、図4は図3中の白い長方形で示される領域の拡大像である。図4の拡大像においてさえも、ごくわずかの擦り傷しか観察されない。これはWCダイヤモンドと同じ条件の試験の後のWCダイヤモンド材料表面の、SiCボールの多数のくっきりしたトラックが刻まれている光学像とは対照的である。上述の磨耗試験の数値上の結果を以下の表1から表3に示す。   FIG. 3 shows an SEM image of the surface of the WC diamond material after 30000 rotations, and FIG. 4 is an enlarged image of a region indicated by a white rectangle in FIG. Even in the magnified image of FIG. 4, very few scratches are observed. This is in contrast to an optical image in which a number of sharp tracks of SiC balls are engraved on the surface of a WC diamond material after testing under the same conditions as WC diamond. The numerical results of the above wear test are shown in Tables 1 to 3 below.

表1
比磨耗量(m(N m)−1
WCバインダ無し材料 7.470×10−17
WCダイヤモンド材料 測定不能(小さすぎて測定できず)
Table 1
Specific wear (m 3 (N m) −1 )
Material without WC binder 7.470 × 10 −17
WC diamond material cannot be measured (it is too small to be measured)

表2
比磨耗量 SiCボール(m(N m)−1)側
WCバインダ無し材料 1.16×10−15
WCダイヤモンド材料 43.73×10−15
Table 2
Specific wear amount SiC ball (m 3 (N m) −1 ) side WC binderless material 1.16 × 10 −15
WC diamond material 43.73 × 10 −15

表3
摩擦係数
WCバインダ無し材料 0.328±0.022
WCダイヤモンド材料 0.117±0.019
Table 3
Friction coefficient WC binderless material 0.328 ± 0.022
WC diamond material 0.117 ± 0.019

非常に硬度及び耐磨耗性が高いことにより、製造に当たっての要件が比較的緩やかであることとあいまって、本発明の超硬質材料が既存の材料の代替として切削工具及び類似の用途に使用できることが期待される。   Due to the very high hardness and wear resistance, the super hard material of the present invention can be used in cutting tools and similar applications as an alternative to existing materials, coupled with relatively relaxed manufacturing requirements There is expected.

米国特許第1904049号U.S. Patent No. 1904049 米国特許第1996598号US Patent No. 1996598 米国特許第2074038号US Patent No. 2074038 米国特許第2712988号U.S. Pat. No. 2,712,988 米国特許第4097274号U.S. Pat. No. 4,097,274 米国特許第4370149号U.S. Pat.No. 4,370,149 米国特許第4505746号U.S. Pat. No. 4,505,746 米国特許第5045092号U.S. Pat. 米国特許第5096465号US Pat. No. 5,096,465 米国特許第5585175号US Pat. No. 5,585,175 米国特許第5889219号US Pat. No. 5,889,219 米国公開特許第2008/0168718号US Published Patent No. 2008/0168718

Moriguchi et al., "Sintering behavior and properties of diamond/cemented carbides", Int, Journal of Refractory Metals & Hard Materials, 25 237-243 (2007).Moriguchi et al., "Sintering behavior and properties of diamond / cemented carbides", Int, Journal of Refractory Metals & Hard Materials, 25 237-243 (2007). Michalski et al., "Sintering Diamond/Cemented Carbides by the Pulse Plasma Sintering Method", J. Am. Ceram. Soc., 91 3560-3565 (2008).Michalski et al., "Sintering Diamond / Cemented Carbides by the Pulse Plasma Sintering Method", J. Am. Ceram. Soc., 91 3560-3565 (2008). Shi et al., "The effect of tungsten buffer layer on the stability of diamond with tungsten carbide-cobalt nanocomposite powder during spark plasma sintering", Diamond & Related Materials, 15 1643-1649 (2006).Shi et al., "The effect of tungsten buffer layer on the stability of diamond with tungsten carbide-cobalt nanocomposite powder during spark plasma sintering", Diamond & Related Materials, 15 1643-1649 (2006).

Claims (6)

以下の(ア)及び(イ)を含み、(ウ)から(オ)の条件を満たす超硬質材料。
(ア)WC、TiC、TiN、SiC及びTi(C,N)からなる群から選択された少なくとも一つの要素を含む材料からなる硬質相。
(イ)前記硬質相を含む構造中に分散された複数のダイヤモンド粒子。
(ウ)前記硬質相及び前記ダイヤモンド粒子は、ダイヤモンドが熱力学的に準安定でありダイヤモンドが全くまたはごくわずかしか黒鉛化を被らない条件下で直接抵抗加熱及び加圧焼結によって焼結される。
(エ)ダイヤモンドはマトリクスと強固な結合をなす。
(オ)前記複合材料は85%よりも大きな相対密度を有する。
An ultra-hard material that includes the following (A) and (I) and satisfies the conditions (C) to (E).
(A) A hard phase made of a material containing at least one element selected from the group consisting of WC, TiC, TiN, SiC, and Ti (C, N).
(A) A plurality of diamond particles dispersed in a structure containing the hard phase.
(C) The hard phase and the diamond particles are sintered by direct resistance heating and pressure sintering under conditions where diamond is thermodynamically metastable and diamond undergoes no or very little graphitization. The
(D) Diamond has a strong bond with the matrix.
(E) The composite material has a relative density greater than 85%.
主に主結晶系としてfcc構造を有するCo等の鉄族の金属からなる0重量%〜10重量%の金属バインダ相を含み、前記金属バインダ相は前記硬質相及び前記ダイヤモンド粒子とともに焼結され、
前記構造は更に前記金属バインダ相を含む、
請求項1に記載の超硬質複合材料。
Including 0 wt% to 10 wt% of a metal binder phase mainly composed of an iron group metal such as Co having an fcc structure as a main crystal system, the metal binder phase being sintered together with the hard phase and the diamond particles;
The structure further includes the metal binder phase;
The super-hard composite material according to claim 1.
前記ダイヤモンド粒子は10μm〜1000μmの範囲の平均粒子サイズを有し、前記ダイヤモンド粒子の含有量は5体積%〜50体積%である、請求項1に記載の超硬質複合材料。   The ultra-hard composite material according to claim 1, wherein the diamond particles have an average particle size in a range of 10 µm to 1000 µm, and a content of the diamond particles is 5 vol% to 50 vol%. 立方晶窒化ホウ素とウルツァイト窒化ホウ素の少なくとも一方を更に含む、請求項1に記載の超硬質複合材料。   The ultra-hard composite material according to claim 1, further comprising at least one of cubic boron nitride and wurzeite boron nitride. 以下の(ア)から(ウ)のステップを設けた、超硬質複合材料の製造方法。
(ア)ダイヤモンド粒子及び硬質合金マトリクス材料の混合物を、前記ダイヤモンド粒子が前記硬質合金マトリクス材料全体に均等に分散するようにしてプレス型に充填する。
(イ)前記混合物を、0〜200MPaの圧力を印加しながら同時に電流を前記混合物に流すことによって、900〜1200℃から開始して100〜10000℃/分の加熱レートで加熱する。
(ウ)前記混合物を、0〜200MPaの圧力下で、1900℃を超えない焼結温度に30秒未満保持する。
A method for producing an ultra-hard composite material, comprising the following steps (a) to (c).
(A) A mixture of diamond particles and a hard alloy matrix material is filled into a press die so that the diamond particles are uniformly dispersed throughout the hard alloy matrix material.
(A) The mixture is heated at a heating rate of 100 to 10000 ° C./min, starting from 900 to 1200 ° C. by simultaneously passing a current through the mixture while applying a pressure of 0 to 200 MPa.
(C) The mixture is kept under a pressure of 0 to 200 MPa at a sintering temperature not exceeding 1900 ° C. for less than 30 seconds.
前記プレス型は前記プレス型の周囲の熱源によって加熱される、請求項5に記載の超硬質複合材料の製造方法。
The method for producing an ultra-hard composite material according to claim 5, wherein the press die is heated by a heat source around the press die.
JP2010116823A 2010-05-21 2010-05-21 Super-hard composite material and method for producing the same Pending JP2011241464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010116823A JP2011241464A (en) 2010-05-21 2010-05-21 Super-hard composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010116823A JP2011241464A (en) 2010-05-21 2010-05-21 Super-hard composite material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011241464A true JP2011241464A (en) 2011-12-01

Family

ID=45408425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010116823A Pending JP2011241464A (en) 2010-05-21 2010-05-21 Super-hard composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2011241464A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194978A (en) * 1995-11-15 1997-07-29 Sumitomo Electric Ind Ltd Superhard composite member and its production
JPH10310839A (en) * 1997-05-12 1998-11-24 Sumitomo Electric Ind Ltd Super hard composite member with high toughness, and its production
JP2000144298A (en) * 1998-11-12 2000-05-26 Sumitomo Electric Ind Ltd Diamond-containing hard member and its production
WO2006080302A1 (en) * 2005-01-25 2006-08-03 Tix Corporation Composite wear-resistant member and method for manufacture thereof
WO2010029518A1 (en) * 2008-09-15 2010-03-18 Element Six Holding Gmbh A hard-metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194978A (en) * 1995-11-15 1997-07-29 Sumitomo Electric Ind Ltd Superhard composite member and its production
JPH10310839A (en) * 1997-05-12 1998-11-24 Sumitomo Electric Ind Ltd Super hard composite member with high toughness, and its production
JP2000144298A (en) * 1998-11-12 2000-05-26 Sumitomo Electric Ind Ltd Diamond-containing hard member and its production
WO2006080302A1 (en) * 2005-01-25 2006-08-03 Tix Corporation Composite wear-resistant member and method for manufacture thereof
WO2010029518A1 (en) * 2008-09-15 2010-03-18 Element Six Holding Gmbh A hard-metal

Similar Documents

Publication Publication Date Title
Zhou et al. Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites
JP5607524B2 (en) Cemented carbide with ultra-low thermal conductivity
Grasso et al. Spark plasma sintering of diamond binderless WC composites
Zhang et al. Fabrication and tribological properties of WC-TiB2 composite cutting tool materials under dry sliding condition
Yaman et al. Wear performance of spark plasma sintered Co/WC and cBN/Co/WC composites
Moriguchi et al. Sintering behavior and properties of diamond/cemented carbides
Zhang et al. Improvement of thermal stability of diamond by adding Ti powder during sintering of diamond/borosilicate glass composites
Latifi et al. Fracture toughness determination and microstructure investigation of a B4C–NanoTiB2 composite with various volume percent of Fe and Ni additives
Azevedo et al. Microstructure and mechanical properties of Al2O3-WC-Co composites obtained by spark plasma sintering
Yaman et al. Spark plasma sintering of Co–WC cubic boron nitride composites
Cygan et al. Thermal stability and coefficient of friction of the diamond composites with the titanium compound bonding phase
Ma et al. Effect of cobalt content on microstructures and wear resistance of tungsten carbide–cobalt-cemented carbides fabricated by spark plasma sintering
Wang et al. Fabrication and tribological properties of HSS‐based self‐lubrication composites with an interpenetrating network
Hong et al. High‐Pressure Synthesis of Heat‐Resistant Diamond Composite Using a Diamond‐TiC0. 6 Powder Mixture
Sutar et al. Friction and wear behaviour of plasma sprayed fly ash added red mud coatings
JP2011241464A (en) Super-hard composite material and method for producing the same
Jaworska Diamond composites with TiC, SiC and Ti 3 SiC 2 bonding phase
Zhang et al. Mechanical properties of a bi-continuous Cu–Cr3C2 composite
Wu et al. Wear behavior of metal bond diamond composite with hollow spherical silica particles as pore former
EP4003937B1 (en) Dense part made of a ternary ceramic-ceramic composite material and method for manufacturing same
Zhao et al. Influence of applied pressure on the microstructure and properties of Ti (C, N)–TiB2–Co cermets prepared in situ by reactive hot-pressing
Rajaei et al. Effect of Composition on Mechanical Properties of Mullite-WC Nano Composites Prepared by Spark Plasma Sintering.
Sidorenko et al. Modification of the Fe-Cu-Co-Sn-P metal matrix with various forms of carbon nanomaterials
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
Novikov et al. Composite materials of diamond–(Co–Cu–Sn) system with improved mechanical characteristics. Part 2. The influence of CrB 2 additive on the structure and properties of diamond–(Co–Cu–Sn) composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902