JP2011240363A - Method for splitting wafer-like substrate - Google Patents

Method for splitting wafer-like substrate Download PDF

Info

Publication number
JP2011240363A
JP2011240363A JP2010114042A JP2010114042A JP2011240363A JP 2011240363 A JP2011240363 A JP 2011240363A JP 2010114042 A JP2010114042 A JP 2010114042A JP 2010114042 A JP2010114042 A JP 2010114042A JP 2011240363 A JP2011240363 A JP 2011240363A
Authority
JP
Japan
Prior art keywords
substrate
scanning
laser beam
dividing
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114042A
Other languages
Japanese (ja)
Other versions
JP5775266B2 (en
Inventor
Kenji Takeda
健治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTO SYSTEM KK
Original Assignee
OPUTO SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTO SYSTEM KK filed Critical OPUTO SYSTEM KK
Priority to JP2010114042A priority Critical patent/JP5775266B2/en
Publication of JP2011240363A publication Critical patent/JP2011240363A/en
Application granted granted Critical
Publication of JP5775266B2 publication Critical patent/JP5775266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a substrate splitting method which has high-speed and easiness in cutting and prevents splash of fine particles.SOLUTION: The substrate splitting method has: a scanning step for scanning a substrate at a scanning speed V while irradiating the substrate with a laser beam of pulse period T to form a split base point line; and a pressurizing step for applying a line-like external force to the substrate from the rear surface of the substrate perpendicularly thereto along the split base point line to split the substrate while opening a modified region of the surface of the substrate. A pulse width τ of a laser beam is 10-30 pSec, and a pulse frequency F thereof is 100 KHz-50 MHz. A scanning pitch V/F specified by the pulse frequency F and the scanning speed V is set at V/F≤0.7 Φ, where Φ is a beam spot diameter of the laser beam.

Description

本発明は、半導体基板などのウェハ状の基板にレーザ光を照射して分割基点ラインを形成し、その後に外力を加えて基板を分割する方法に関し、特に、高速性と切断容易性とを有すると共に、微粒子の飛散を抑制できる分割方法に関する。   The present invention relates to a method of dividing a substrate by irradiating a wafer-like substrate such as a semiconductor substrate with laser light to form a dividing base line, and then applying an external force, and particularly has high speed and easy cutting. In addition, the present invention relates to a dividing method capable of suppressing scattering of fine particles.

LED等の光半導体のウェハからチップに分割する加工方法としては、スクライブブレーク法が広く知られている。そして、スクライブ方法は、近年では、ダイアモンドポイントヘッドによる機械的な罫書き加工から、レーザ光を照射するV溝カット法に変更されつつある(特許文献1、特許文献2参照)。   A scribe break method is widely known as a processing method for dividing an optical semiconductor wafer such as an LED into chips. In recent years, the scribing method is being changed from mechanical scoring using a diamond point head to a V-groove cutting method in which laser light is irradiated (see Patent Documents 1 and 2).

V溝カット法では、レーザ光を表面付近に当てて、熱溶融によって内部まで溶かすことでV字状の切断溝を形成する。しかし、このV溝カット法では、溶融した基板素材が溢れ出し、切断溝の周辺に再固着したり、アブレーションにより照射位置の周辺に微粒子が飛散して再固着するため、切り出されたチップの不良要因となっていた。   In the V-groove cutting method, a V-shaped cut groove is formed by applying a laser beam to the vicinity of the surface and melting the inside by thermal melting. However, in this V-groove cutting method, the melted substrate material overflows and re-adheres to the periphery of the cutting groove, or particles are scattered and re-adhered to the periphery of the irradiation position by ablation. It was a factor.

そこで、多光子吸収現象を利用して基板内部を改質脆化させる分割法(以下、多光子吸収切断法という)も提案されている(特許文献3、特許文献4参照)。この多光子吸収切断法は、レーザ光に対して高い透過性を有する素材であっても、光エネルギーを集中させて多光子吸収を生じさせることで、素材内部を改質させて脆化を図るものである。   Therefore, a splitting method (hereinafter referred to as a multiphoton absorption cutting method) in which the inside of the substrate is modified and embrittled by utilizing a multiphoton absorption phenomenon has been proposed (see Patent Document 3 and Patent Document 4). In this multiphoton absorption cutting method, even if a material has high transparency to laser light, the inside of the material is modified and embrittled by concentrating light energy and causing multiphoton absorption. Is.

特許第3449201号公報(日亜化学工業)Japanese Patent No. 3449201 (Nichia Corporation) 特許第4286488号公報(キャノンマシナリー)Japanese Patent No. 4286488 (Canon Machinery) 特許第3624909号公報(浜松ホトニクス)Japanese Patent No. 3624909 (Hamamatsu Photonics) 特許第3626442号公報(浜松ホトニクス)Japanese Patent No. 3626442 (Hamamatsu Photonics)

上記した特許文献3〜4の発明では、基板表面から所定距離だけ内側に改質領域を形成するので、V溝カット法における問題点が解消される点で優れている。   In the inventions of Patent Documents 3 to 4 described above, the modified region is formed inward by a predetermined distance from the substrate surface, which is excellent in that the problems in the V-groove cutting method are eliminated.

しかし、何れの特許文献も、切断起点ラインを形成する場合の最適条件を教示するものではない。すなわち、多光子吸収切断法において、基板素材の性質に対応したレーザ光の最適な照射条件は未だ知られていない。   However, none of the patent documents teach the optimum conditions for forming the cutting start line. That is, in the multiphoton absorption cutting method, the optimum irradiation condition of the laser beam corresponding to the properties of the substrate material is not yet known.

本発明は、上記の課題に着目してなされたものであって、レーザ光を最適に照射して分割基点ラインを形成して基板を適切に分割できる分割方法を提供することを目的とする。   The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a dividing method capable of appropriately dividing a substrate by optimally irradiating a laser beam to form a dividing base line.

レーザ光に対して高い透過度を有する素材であっても、素材に応じた特定の閾値を超えて光エネルギーを集中させると、多光子吸収が起きることが知られている。そして、多光子吸収によって原子結合をはずされた物質は、エネルギーの高い領域から低い領域にかけて電子励起→イオン化・ラジカル化→素材内部のプラズマ・アブレーション(溶融・気化混合状態)→溶融→高温固体→元固体のように状態が変化すると推定される。   It is known that even if a material has a high transmittance with respect to laser light, multiphoton absorption occurs when light energy is concentrated beyond a specific threshold corresponding to the material. And the substance that has been dissociated by multiphoton absorption is excited from the high energy region to the low energy region → ionization / radicalization → plasma ablation (melting / vaporization mixed state) inside the material → melting → high temperature solid → It is estimated that the state changes like the original solid.

しかし、上記の現象は、エネルギーレベルや、その持続時間などに応じて状態変化の速度などが異なる。そこで、本発明者は、条件を変えた種々の実験を繰り返して、分割に最適な照射条件を検出して本発明を完成させた。   However, the above phenomenon differs in the speed of state change depending on the energy level and the duration. Therefore, the present inventor has completed the present invention by repeating various experiments with different conditions to detect the optimum irradiation conditions for the division.

すなわち、本発明は、使用するレーザ光に対して分光透過度が高いウェハ状の基板に、パルス周期Tのレーザ光を照射しつつ走査速度Vで走査して、基板内部に結晶破壊層を形成すると共に、結晶破壊層に連続して基板表面に至る改質領域を形成して分割基点ラインを形成する走査工程と、分割基点ラインに沿って、ライン状の外力を基板に直交して基板の裏面から加えることで、基板表面の改質領域を開口させて分割する加圧工程と、を有して構成され、パルス幅τは10〜30pSec、パルス周波数Fは100KHz〜50MHzであって、パルス周波数Fと走査速度Vとで特定される走査ピッチV/Fは、レーザ光のビームスポット径Φに対して、V/F≦0.7Φに設定されている。   That is, the present invention scans a wafer-like substrate having a high spectral transmittance with respect to the laser beam used at a scanning speed V while irradiating the laser beam with a pulse period T, and forms a crystal breakdown layer inside the substrate. And a scanning step of forming a modified base line by forming a modified region that reaches the substrate surface continuously to the crystal breaking layer, and a line-shaped external force perpendicular to the substrate along the divided base line. A pressurizing step of opening and dividing the modified region of the substrate surface by adding from the back surface, the pulse width τ is 10 to 30 pSec, the pulse frequency F is 100 KHz to 50 MHz, The scanning pitch V / F specified by the frequency F and the scanning speed V is set to V / F ≦ 0.7Φ with respect to the beam spot diameter Φ of the laser light.

本発明では、図1(a)に示すように、パルス幅τでパルス周波数Fのレーザ光が使用される。本発明では、このようなレーザ光を走査速度Vで走査させるので、パルス周期T(=1/F)毎に、直径Φのレーザスポットが形成され、このレーザスポットが、走査方向にV*τだけ継続される。なお、レーザ光は、レンズやミラーで集光されて焦点位置で最小直径Φに絞られるが、本発明のビームスポット径は、焦点位置におけるレーザ光の直径(ビームウエスト直径)を意味する。   In the present invention, laser light having a pulse width F and a pulse frequency F is used as shown in FIG. In the present invention, such a laser beam is scanned at a scanning speed V, so that a laser spot having a diameter Φ is formed every pulse period T (= 1 / F), and this laser spot is V * τ in the scanning direction. Will only continue. The laser light is condensed by a lens or a mirror and is reduced to the minimum diameter Φ at the focal position. The beam spot diameter of the present invention means the diameter of the laser light (beam waist diameter) at the focal position.

図1(b)は、レーザ光の焦点位置を平面的に図示したものであり、ビームスポット径Φのレーザスポットが、走査方向に、Φ+V*τだけ継続して散点状に形成されることを示している。もっとも、パルス周波数F=100KHz〜50MHzは、パルス周期T=0.02〜10μSecを意味し、パルス幅τ=10〜30pSecに対して、τ<<Tの関係が成立するので、事実上、Φ+V*τ=Φとなる。   FIG. 1B is a plan view of the focal position of the laser beam, and the laser spot having the beam spot diameter Φ is continuously formed in the form of scattered dots in the scanning direction by Φ + V * τ. Is shown. However, the pulse frequency F = 100 KHz to 50 MHz means the pulse period T = 0.02 to 10 μSec, and the relationship of τ << T is established with respect to the pulse width τ = 10 to 30 pSec. * Τ = Φ.

本発明者の研究によると、パルス周期T=0.02〜10μSec、パルス幅τ=10〜30pSecのパルス条件において、レーザスポットの走査線上での重複距離を、ビームスポット径Φの30%以上に設定すると、適度なエネルギー(例えば、1パルス後毎に1〜10μJ程度)で、適切な分割ラインが形成できることが明らかとなった。言い換えると、重複距離が30%未満であると、改質領域の広がりが不十分となり、照射エネルギーを大幅に高めない限り、適切な分割基点ラインを形成できなかった。   According to the research of the present inventor, the overlapping distance on the scanning line of the laser spot is set to 30% or more of the beam spot diameter Φ under the pulse condition of the pulse period T = 0.02 to 10 μSec and the pulse width τ = 10 to 30 pSec. When set, it became clear that an appropriate division line can be formed with an appropriate energy (for example, about 1 to 10 μJ every pulse). In other words, if the overlap distance is less than 30%, the extension of the modified region becomes insufficient, and an appropriate division base line cannot be formed unless the irradiation energy is significantly increased.

図1(b)に示す通り、レーザスポットの重複距離は、走査方向に(Φ+V*τ)−P≒Φ−Pである。そのため、重複距離をビームスポット径Φの30%以上に設定すると、0.3*Φ≦Φ−Pとなり、これを整理すると、P=V/Fの関係から、上記したV/F≦0.7Φの関係が成立する。   As shown in FIG. 1B, the overlapping distance of the laser spots is (Φ + V * τ) −P≈Φ−P in the scanning direction. Therefore, when the overlap distance is set to 30% or more of the beam spot diameter Φ, 0.3 * Φ ≦ Φ−P is established, and when this is arranged, the above relationship V / F ≦ 0. The relationship of 7Φ is established.

本発明で加工対象となる基板は、半導体基板やガラス平板が典型的であり、30μm〜1mm程度の厚みを有するのが一般的である。このような場合、ビームスポット径Φは、好ましくは、照射軸に垂直な平面で1μm〜10μm程度に設定され、照射方向の焦点深度は、好ましくは、3μm〜50μmに設定される。なお、焦点深度とは、最小径のビームスポット径Φが、ルート2倍に広がる範囲を特定するレイリー長さを意味する。   The substrate to be processed in the present invention is typically a semiconductor substrate or a glass flat plate, and generally has a thickness of about 30 μm to 1 mm. In such a case, the beam spot diameter Φ is preferably set to about 1 μm to 10 μm on a plane perpendicular to the irradiation axis, and the focal depth in the irradiation direction is preferably set to 3 μm to 50 μm. The depth of focus means a Rayleigh length that specifies a range in which the minimum beam spot diameter Φ extends twice as much as the route.

本発明の走査工程において、基板表面を開口させても良いが、必ずしも開口させる必要はない。何れにしても、本発明では、照射エネルギーを最適に設定して基板表面の開口部を狭く設定することで、開口部から放出される気化・溶融粒子の飛散汚染を抑えることができる。   In the scanning process of the present invention, the substrate surface may be opened, but is not necessarily opened. In any case, in the present invention, by setting the irradiation energy optimally and setting the opening on the surface of the substrate to be narrow, it is possible to suppress the scattering contamination of vaporized and molten particles released from the opening.

基板内部の結晶破壊層から表面にかけて改質領域を形成するには、所定の波長で所定のエネルギーのレーザ光を、所定の焦点位置に照射する必要があり、素材毎に最適値が特定される。但し、パルスエネルギーは、焦点位置において1〜10000J/cmであって、1パルス後毎に、1〜10μJ程度に設定されるのが好ましい。 In order to form a modified region from the crystal breakdown layer inside the substrate to the surface, it is necessary to irradiate a predetermined focal position with a laser beam having a predetermined energy at a predetermined wavelength, and an optimum value is specified for each material. . However, the pulse energy is preferably 1 to 10000 J / cm 2 at the focal position, and is preferably set to about 1 to 10 μJ every one pulse.

また、焦点位置は、好ましくは、基板の板厚に対して、照射表面から20〜45%の深さに形成するべきである。基板の板厚Dは、特に限定されないが、典型的には、30μm〜1mm程度の板厚Dであり、基板表面からD*0.2〜D*0.45の位置が最適な焦点位置となる。なお、基板の素材の屈折率は、一般に空気の屈折率より大きいために、照射に用いる対物レンズの焦点位置より深い位置が焦点位置となる。   Further, the focal position should preferably be formed at a depth of 20 to 45% from the irradiation surface with respect to the thickness of the substrate. The plate thickness D of the substrate is not particularly limited, but typically is a plate thickness D of about 30 μm to 1 mm, and the position of D * 0.2 to D * 0.45 from the substrate surface is the optimum focal position. Become. Since the refractive index of the material of the substrate is generally larger than the refractive index of air, a position deeper than the focal position of the objective lens used for irradiation becomes the focal position.

ところで、基板がやや反っている場合や、板厚が不正確な場合もある。そこで、このような場合には、走査工程に先行して基板表面の位置を計測する計測工程を設けるか、或いは、走査工程においてレーザ照射の直前に基板表面を計測して、対物レンズなどの照射光学系を制御しつつレーザ光を走査させることで、焦点位置を所定位置に維持するのが好ましい。   By the way, the substrate may be slightly warped or the plate thickness may be inaccurate. Therefore, in such a case, a measurement process for measuring the position of the substrate surface is provided prior to the scanning process, or the substrate surface is measured immediately before laser irradiation in the scanning process to irradiate an objective lens or the like. It is preferable to maintain the focal position at a predetermined position by scanning the laser beam while controlling the optical system.

基板の素材は、特に限定されないが、バンドギャップエネルギーが3〜9eVである基板素材が好適に使用される。この場合、波長500〜1200nmのレーザ光を用いるのが好適であり、この場合には、焦点以外の部位に低エネルギー光束が当たっても吸収を起こさない。具体的な基板素材とは、例えば、サファイアAl 8.8eV(吸収帯140nm以下)、シリコンカーバイドSiC 3.3eV(吸収帯376nm以下)、窒化ガリウムGaN 3.4eV(吸収帯365nm以下)を例示することができる。 The material of the substrate is not particularly limited, but a substrate material having a band gap energy of 3 to 9 eV is preferably used. In this case, it is preferable to use a laser beam having a wavelength of 500 to 1200 nm. In this case, no absorption occurs even if a low-energy light beam strikes a portion other than the focal point. Specific substrate materials include, for example, sapphire Al 2 O 3 8.8 eV (absorption band 140 nm or less), silicon carbide SiC 3.3 eV (absorption band 376 nm or less), gallium nitride GaN 3.4 eV (absorption band 365 nm or less). Can be illustrated.

また、上記素材の組み合わせで構成されるGaN系LEDなどの基板に本発明を適用することもでき、各素材の透過性が高いので、このような基板においても、本発明によれば、焦点位置にエネルギーを集中させ他の領域にダメージを与えない。   Further, the present invention can be applied to a substrate such as a GaN-based LED composed of a combination of the above materials, and each material has high transparency. Concentrate energy on and do not damage other areas.

本発明の加圧工程では、ライン状の外力を与えて分割基点から亀裂を拡大させ破断に至らしめる。加工対象となる基板は、一般に、平板状であって、1辺10mm以下の方形状の素子が格子状に作成されている。そして、素子サイズが500μm〜100μmの極小の場合、素子間の隙間は、30μm〜10μm程度であるので、高精度に垂直な破断面が要求される。しかし、本発明では、基板に直交して、ライン状の外力を加えるので上記の要請に応えることができる。   In the pressurizing step of the present invention, a line-shaped external force is applied to expand the crack from the split base point and lead to the break. A substrate to be processed is generally a flat plate shape, and rectangular elements having a side of 10 mm or less are formed in a lattice shape. When the element size is as small as 500 μm to 100 μm, the gap between the elements is about 30 μm to 10 μm, and therefore, a highly accurate vertical fracture surface is required. However, in the present invention, a linear external force is applied perpendicular to the substrate, so that the above request can be met.

また、分割された個片がバラバラになると事前測定した各個辺特性データとの照合が出来なくなり、また、姿勢がランダムになると搬送整列も困難になる。そこで、好ましくは、レーザ照射側の反対面に粘着シートを配置すると共に、粘着シート越しに押圧部材の刃先を基板の直交方向に押し当て、基板を押し上げ、分割基点を押し開くよう応力を与えるのが好ましい(図2参照)。   Further, if the divided pieces are separated, it is not possible to collate with the individual side characteristic data measured in advance, and if the posture is random, the conveyance alignment becomes difficult. Therefore, preferably, an adhesive sheet is disposed on the opposite surface of the laser irradiation side, and the cutting edge of the pressing member is pressed through the adhesive sheet in the direction perpendicular to the substrate, the substrate is pushed up, and stress is applied so as to open the dividing base point. Is preferred (see FIG. 2).

なお、走査工程に使用される改質機構と、加圧工程で使用される分轄機構とは同一装置内で実現されてもよいし、別装置で実現し順次加工される作業工程を採っても良い。また、走査工程における走査回数は、必要に応じて複数回としても良い。   The reforming mechanism used in the scanning process and the demarcation mechanism used in the pressurizing process may be realized in the same apparatus, or may be implemented in a separate apparatus and sequentially processed. good. In addition, the number of scans in the scanning process may be a plurality of times as necessary.

上記した通り、本発明では、レーザ光の一回の走査で内部改質と分割基点の生成がなされるので、加工効率に優れている。そして、本発明では、素材の溶融や質量喪失を目指さないため、エネルギー量が抑制され、且つ、レーザ光の高速走査が可能となる。   As described above, in the present invention, the internal modification and the generation of the dividing base point are performed by one scanning of the laser beam, so that the processing efficiency is excellent. In the present invention, since the material is not melted or lost of mass, the amount of energy is suppressed, and high-speed scanning with laser light is possible.

また、本発明では、表面開口部が、質量喪失を伴わない破断面もしくは脆弱な改質閉口面となるため、表面機能素子部へのデブリの飛散については極少もしくは解消される。そして、本発明の走査工程では、ほぼ基板内部だけが改質されるため、結晶外由来元素による化合物を生成することもない。   Further, in the present invention, since the surface opening becomes a fractured surface without losing mass or a fragile modified closed surface, the debris scattering to the surface functional element portion is minimized or eliminated. In the scanning process of the present invention, since only the inside of the substrate is reformed, a compound based on an element derived from outside the crystal is not generated.

本発明を説明する図面である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 実施例の加圧工程を説明する図面である。It is drawing explaining the pressurization process of an Example. 実施例1を説明する写真である。2 is a photograph illustrating Example 1. 実施例2を説明する写真である。6 is a photograph illustrating Example 2.

以下、本発明者が実施した多数の実験結果のうち、代表例を2つだけ実施例として説明する。但し、何れの実施例も特に本発明を限定するものではない。   Hereinafter, only two representative examples of the results of many experiments conducted by the present inventor will be described as examples. However, any embodiment does not particularly limit the present invention.

実験条件は、以下の通りである。   The experimental conditions are as follows.

粘着シートに貼り付けたウェハ状の加工対象物を、シートを下にしてXY移動テーブル上に搭載し、真空吸着により移動テーブルに吸着保持して実験に供した。ウェハ表面に上記の条件でレーザ照射しながら、テーブルを一直線に移動させ、改質層を連続させ、スクライブライン(分割基点ライン)とした。   A wafer-like workpiece attached to the pressure-sensitive adhesive sheet was mounted on an XY moving table with the sheet facing down, and was sucked and held on the moving table by vacuum suction for use in experiments. While irradiating the wafer surface with laser under the above conditions, the table was moved in a straight line, and the modified layer was made continuous to form a scribe line (divided base line).

その後、下記の機能を持つ分割機にかけて個片化を行った。すなわち、個片化はスクライブラインに沿ってレーザ照射面と反対面から粘着シートを介して先端が鋭利なナイフ状の刃を押し込んで行った。   After that, it was divided into pieces using a divider with the following functions. That is, the singulation was performed by pushing a knife-like blade with a sharp tip from the surface opposite to the laser irradiation surface along the scribe line through the adhesive sheet.

レーザ照射面には保護シートを貼り表面を保護して上でスクライブラインと並行でかつ同ラインを中心に対称的に一定間隔離した2枚の支持板で受け、押し込むナイフ先端接触部を支点としてレーザ照射面に作成した開口基点から開口するような力を与えて分割した(図2参照)。   A protective sheet is applied to the laser irradiation surface, and the surface is protected by two support plates that are parallel to the scribe line and spaced apart symmetrically around the same line. The laser irradiation surface was divided by applying a force that opens from the opening base point created (see FIG. 2).

この操作を一定ピッチでX方向Y方向に直交したスクライブライン群に対して行い、最後に粘着シートを四方に引き伸ばし個片を取り出し可能にした。   This operation was performed with respect to the scribe line group orthogonal to the X direction and the Y direction at a constant pitch, and finally the adhesive sheet was stretched in all directions so that individual pieces could be taken out.

図3(a)は個辺の分割断面を示す写真であり、図3(b)は、シートを四方に引き伸ばした状態を示す平面写真である。   FIG. 3A is a photograph showing a divided cross section of an individual side, and FIG. 3B is a plan photograph showing a state in which the sheet is stretched in all directions.

実験条件は、以下の通りである。   The experimental conditions are as follows.

その後、実施例1と同様の手順で分割操作を実施した。図4(a)は、個辺の分割断面を示す写真であり、図4(b)は、シートを四方に引き伸ばした状態を示す平面写真である。   Thereafter, the dividing operation was performed in the same procedure as in Example 1. FIG. 4A is a photograph showing a divided cross section of each side, and FIG. 4B is a plan photograph showing a state in which the sheet is stretched in all directions.

Claims (9)

使用するレーザ光に対して分光透過度が高いウェハ状の基板に、パルス周期Tのレーザ光を照射しつつ走査速度Vで走査して、基板内部に結晶破壊層を形成すると共に、結晶破壊層に連続して基板表面に至る改質領域を形成して分割基点ラインを形成する走査工程と、
分割基点ラインに沿って、ライン状の外力を基板に直交して基板の裏面から加えることで、基板表面の改質領域を開口させて分割する加圧工程と、を有して構成され、
レーザ光のパルス幅τは10〜30pSec、パルス周波数Fは100KHz〜50MHzであって、パルス周波数Fと走査速度Vとで特定される走査ピッチV/Fは、レーザ光のビームスポット径Φに対して、V/F≦0.7Φに設定されていることを特徴とする基板の分割方法。
A wafer-like substrate having a high spectral transmittance with respect to the laser beam to be used is scanned at a scanning speed V while irradiating a laser beam having a pulse period T to form a crystal breaking layer inside the substrate, and the crystal breaking layer A scanning step of forming a divided base line by forming a modified region that continuously reaches the substrate surface;
A pressing step of opening and dividing the modified region on the surface of the substrate by applying a linear external force from the back surface of the substrate perpendicular to the substrate along the dividing base line is configured.
The pulse width τ of the laser light is 10 to 30 pSec, the pulse frequency F is 100 KHz to 50 MHz, and the scanning pitch V / F specified by the pulse frequency F and the scanning speed V is relative to the beam spot diameter Φ of the laser light. The substrate dividing method is characterized in that V / F ≦ 0.7Φ is set.
前記レーザ光の焦点位置は、基板の板厚に対して、照射表面から20〜45%の深さに設定される請求項1に記載の分割方法。   The dividing method according to claim 1, wherein the focal position of the laser beam is set to a depth of 20 to 45% from the irradiation surface with respect to the thickness of the substrate. 前記ビームスポット径は、照射軸に垂直な平面で1μm〜10μmに設定され、照射方向の焦点深度は、3μm〜50μmに設定される請求項1又は2に記載の分割方法。   3. The dividing method according to claim 1, wherein the beam spot diameter is set to 1 μm to 10 μm on a plane perpendicular to the irradiation axis, and the focal depth in the irradiation direction is set to 3 μm to 50 μm. 前記レーザ光の波長は、500〜1200nmであり、パルスエネルギーは、1〜10000J/cmである請求項1〜3の何れかに記載の分割方法。 Wavelength of the laser beam is 500-1200 nm, pulse energy, the method of division according to any one of claims 1 to 3 is 1~10000J / cm 2. 前記基板表面には、レーザ光に対して基板本体と分光透過性が同等もしくは高い物質が積層されている請求項1〜4の何れかに記載の分割方法。   5. The dividing method according to claim 1, wherein a substance having the same or high spectral transmittance as that of the substrate main body is laminated on the surface of the substrate. 前記加圧工程では、基板裏面に粘着シートが貼着された状態で実行される請求項1〜5の何れかに記載の分割方法。   The dividing method according to any one of claims 1 to 5, wherein the pressurizing step is performed in a state where an adhesive sheet is adhered to the back surface of the substrate. 請求項1〜6の何れかに記載の分割方法を使用する電子素子の製造方法。   The manufacturing method of the electronic device which uses the dividing method in any one of Claims 1-6. 使用するレーザ光に対して分光透過度が高いウェハ状の基板に、パルス周期Tのレーザ光を照射しつつ走査速度Vで走査して、基板内部に結晶破壊層を形成すると共に、結晶破壊層に連続して基板表面に至る改質領域を形成して分割基点ラインを形成する走査機構と、
分割基点ラインに沿って、ライン状の外力を基板に直交して基板の裏面から加えることで、基板表面の改質領域を開口させて分割する加圧機構と、を有して構成され、
レーザ光のパルス幅τは10〜30pSec、パルス周波数Fは100KHz〜50MHzであって、パルス周波数Fと走査速度Vとで特定される走査ピッチV/Fは、レーザ光のビームスポット径Φに対して、V/F≦0.7Φに設定されていることを特徴とする基板分割システム。
A wafer-like substrate having a high spectral transmittance with respect to the laser beam to be used is scanned at a scanning speed V while irradiating a laser beam having a pulse period T to form a crystal breaking layer inside the substrate, and the crystal breaking layer A scanning mechanism that continuously forms a modified region that reaches the substrate surface to form a split base line;
A pressure mechanism that opens and divides the modified region of the substrate surface by applying a line-shaped external force from the back surface of the substrate perpendicularly to the substrate along the dividing base line.
The pulse width τ of the laser light is 10 to 30 pSec, the pulse frequency F is 100 KHz to 50 MHz, and the scanning pitch V / F specified by the pulse frequency F and the scanning speed V is relative to the beam spot diameter Φ of the laser light. The substrate dividing system is set to V / F ≦ 0.7Φ.
前記走査機構は、予め基板表面を走査することで基板表面の位置を特定する検査動作を先行させて動作する請求項7に記載の分割システム。   The division system according to claim 7, wherein the scanning mechanism operates in advance with an inspection operation for specifying a position of the substrate surface by scanning the substrate surface in advance.
JP2010114042A 2010-05-18 2010-05-18 Method for dividing wafer-like substrate Expired - Fee Related JP5775266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114042A JP5775266B2 (en) 2010-05-18 2010-05-18 Method for dividing wafer-like substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114042A JP5775266B2 (en) 2010-05-18 2010-05-18 Method for dividing wafer-like substrate

Publications (2)

Publication Number Publication Date
JP2011240363A true JP2011240363A (en) 2011-12-01
JP5775266B2 JP5775266B2 (en) 2015-09-09

Family

ID=45407563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114042A Expired - Fee Related JP5775266B2 (en) 2010-05-18 2010-05-18 Method for dividing wafer-like substrate

Country Status (1)

Country Link
JP (1) JP5775266B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171906A (en) * 2012-02-20 2013-09-02 Laser System:Kk Laser dicing method and laser processing device
JP2015051445A (en) * 2013-09-06 2015-03-19 住友電工ハードメタル株式会社 Method for manufacturing joining body and joining body
JP2016225535A (en) * 2015-06-02 2016-12-28 株式会社ディスコ Production method of wafer
JP2017216424A (en) * 2016-06-02 2017-12-07 株式会社ディスコ Wafer production method
CN108515278A (en) * 2013-04-26 2018-09-11 维亚机械株式会社 Laser processing
JP2018152582A (en) * 2014-11-27 2018-09-27 シルテクトラ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Solid separation by material change
JP2019050367A (en) * 2017-09-11 2019-03-28 日亜化学工業株式会社 Manufacturing method for light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193286A (en) * 2004-01-09 2005-07-21 Hamamatsu Photonics Kk Laser machining method and laser machining apparatus
JP2008006652A (en) * 2006-06-28 2008-01-17 Aisin Seiki Co Ltd Method for partitioning processing of rigid and brittle material plate
JP2008060167A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor light-emitting element, manufacturing method thereof, and light-emitting device using same
JP2008098465A (en) * 2006-10-13 2008-04-24 Aisin Seiki Co Ltd Method for separating semiconductor light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193286A (en) * 2004-01-09 2005-07-21 Hamamatsu Photonics Kk Laser machining method and laser machining apparatus
JP2008006652A (en) * 2006-06-28 2008-01-17 Aisin Seiki Co Ltd Method for partitioning processing of rigid and brittle material plate
JP2008060167A (en) * 2006-08-29 2008-03-13 Nichia Chem Ind Ltd Semiconductor light-emitting element, manufacturing method thereof, and light-emitting device using same
JP2008098465A (en) * 2006-10-13 2008-04-24 Aisin Seiki Co Ltd Method for separating semiconductor light-emitting element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171906A (en) * 2012-02-20 2013-09-02 Laser System:Kk Laser dicing method and laser processing device
CN108515278A (en) * 2013-04-26 2018-09-11 维亚机械株式会社 Laser processing
JP2015051445A (en) * 2013-09-06 2015-03-19 住友電工ハードメタル株式会社 Method for manufacturing joining body and joining body
US11407066B2 (en) 2014-01-15 2022-08-09 Siltectra Gmbh Splitting of a solid using conversion of material
JP2018152582A (en) * 2014-11-27 2018-09-27 シルテクトラ ゲゼルシャフト ミット ベシュレンクター ハフトゥング Solid separation by material change
US11833617B2 (en) 2014-11-27 2023-12-05 Siltectra Gmbh Splitting of a solid using conversion of material
JP2016225535A (en) * 2015-06-02 2016-12-28 株式会社ディスコ Production method of wafer
TWI687294B (en) * 2015-06-02 2020-03-11 日商迪思科股份有限公司 Wafer generation method
JP2017216424A (en) * 2016-06-02 2017-12-07 株式会社ディスコ Wafer production method
JP2019050367A (en) * 2017-09-11 2019-03-28 日亜化学工業株式会社 Manufacturing method for light-emitting device

Also Published As

Publication number Publication date
JP5775266B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5775266B2 (en) Method for dividing wafer-like substrate
KR102341602B1 (en) Wafer producing method
TWI694511B (en) Wafer processing method
KR102341600B1 (en) Wafer producing method
KR102361278B1 (en) Wafer producing method
KR102341591B1 (en) Wafer producing method
JP4237745B2 (en) Laser processing method
KR102354665B1 (en) Wafer producing method
KR102341604B1 (en) Wafer producing method
KR102354661B1 (en) Wafer producing method
TWI471195B (en) Processing object grinding method
US8828306B2 (en) Working object cutting method
TWI501830B (en) Cutting method
KR102341597B1 (en) Wafer producing method
KR20170055909A (en) METHOD OF SEPARATING SiC SUBSTRATE
TWI477340B (en) Laser processing methods, laser processing and laser processing equipment
JP6249091B2 (en) Method for dividing brittle material substrate
TW201709310A (en) Processing method for wafer can solve problem of consuming abrasion stone without economy benefit
EP1944118A1 (en) Laser processing method and laser processing device
KR20150089931A (en) Optical device and method for processing optical device
TW201235144A (en) Dividing method
TW201721731A (en) Laser processing method
JP2009039755A (en) Machining method for cutting
JP5177992B2 (en) Processing object cutting method
JP2015050415A (en) Optical device and processing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5775266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees