JP2011237547A - Variable power optical system - Google Patents

Variable power optical system Download PDF

Info

Publication number
JP2011237547A
JP2011237547A JP2010107747A JP2010107747A JP2011237547A JP 2011237547 A JP2011237547 A JP 2011237547A JP 2010107747 A JP2010107747 A JP 2010107747A JP 2010107747 A JP2010107747 A JP 2010107747A JP 2011237547 A JP2011237547 A JP 2011237547A
Authority
JP
Japan
Prior art keywords
lens group
optical system
lens
angle end
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010107747A
Other languages
Japanese (ja)
Inventor
Yasuhiko Obikane
靖彦 帯金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2010107747A priority Critical patent/JP2011237547A/en
Publication of JP2011237547A publication Critical patent/JP2011237547A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system that realizes a variable power ratio of about 2-3 while maintaining high optical performance, and enables imaging in a wide angle end without hindrance in spite of a small and simple configuration.SOLUTION: The variable power optical system includes, in order from an object side: a first lens group Ghaving negative refractive power; a second lens group Ghaving positive refractive power; and a third lens group Ghaving positive refractive power. In the variable power optical system, when power is varied from a wide angle end to a telephoto end, the distance between the first lens group Gand the third lens group Gis unchanged and the following conditional expression is satisfied: (1) 1.4<(Tw×Tt)/(fw×ft)<2.0, where Tw is the entire length of the optical system at the wide angle end, Tt is the entire length of the optical system at the telephoto angle end, fw is the focal length of the whole system at the wide angle end, and ft is the focal length of the whole system at the telephoto angle end.

Description

この発明は、デジタルスチルカメラやデジタルビデオカメラをはじめ、情報携帯端末(PDA)や、携帯電話にも搭載することが可能な小型の変倍光学系に関する。   The present invention relates to a small variable power optical system that can be mounted on a digital still camera, a digital video camera, a personal digital assistant (PDA), and a mobile phone.

デジタルカメラや情報携帯端末、携帯電話などに用いられる撮像装置には、一般に、固体撮像素子としてCCDやCMOSなどのイメージセンサが用いられている。近年、微細加工技術の進歩により、イメージセンサの小型化・高集積化が促進された。このため、イメージセンサを搭載する撮像装置のさらなる小型化が可能になった。これに伴い、小型化が可能になった撮像装置に搭載される光学系もより小型のものが要求され、かかる要求を満足しようとした技術が提案されている(たとえば、特許文献1〜4を参照。)。   In general, an image sensor such as a CCD or a CMOS is used as a solid-state image sensor in an image pickup apparatus used for a digital camera, a portable information terminal, a mobile phone, or the like. In recent years, miniaturization and high integration of image sensors have been promoted by advances in microfabrication technology. For this reason, it has become possible to further reduce the size of an imaging device equipped with an image sensor. Along with this, an optical system mounted on an imaging apparatus that can be downsized is also required to be smaller, and a technique for satisfying such a request has been proposed (for example, Patent Documents 1 to 4). reference.).

たとえば、特許文献1には、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群(3枚のレンズで構成)と、第3レンズ群と、が配置されて構成されたズームレンズが開示されている。特許文献2には、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群(2枚のレンズで構成)と、正の屈折力を有する第3レンズ群と、が配置されて構成された変倍光学系が開示されている。特許文献3には、物体側より順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、が配置されて構成された切換式変倍光学系が開示されている。また、特許文献4には、物体側より順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、が配置されて構成されたズームレンズが開示されている。   For example, in Patent Document 1, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power (consisting of three lenses), a third lens group, , And a zoom lens configured to be arranged. In Patent Document 2, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power (consisting of two lenses), and a first lens group having positive refractive power. A variable magnification optical system configured by arranging three lens groups is disclosed. In Patent Document 3, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a positive refractive power are arranged in order from the object side. A switchable variable magnification optical system configured as described above is disclosed. Patent Document 4 discloses, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive lens power. And a fourth lens group having a refractive power of 2 are arranged.

特開2006−343552号公報JP 2006-343552 A 特開2005−77770号公報Japanese Patent Laying-Open No. 2005-77770 特開平10−206732号公報JP-A-10-206732 特許第3864897号公報Japanese Patent No. 3864897

特許文献1に開示されたズームレンズでは、比較的少ないレンズ枚数で構成され、光学系の小型化が図られている。しかしながら、所定の光学性能を確保するためには、3つの群を互いに決められた間隔を維持しつつ駆動させなければならず、複数の駆動レンズ群の位置決めに高い精度が要求される。このため、各レンズ群を所定の間隔を維持しながら駆動させるために必要となる機構が複雑になるという問題がある。   The zoom lens disclosed in Patent Document 1 is configured with a relatively small number of lenses, and the optical system is downsized. However, in order to ensure a predetermined optical performance, the three groups must be driven while maintaining a predetermined interval, and high accuracy is required for positioning of the plurality of drive lens groups. For this reason, there is a problem that a mechanism necessary for driving each lens group while maintaining a predetermined interval becomes complicated.

また、特許文献2,3に開示された変倍光学系では、広角端と望遠端において第1レンズ群と第3レンズ群の位置が同一となるため、レンズの位置決めが容易になり、各レンズ群を可動させるための機構が簡易になるという利点はある。しかしながら、特許文献2,3に開示された変倍光学系は、光学系の全長を規定する条件の数値が比較的大きいため、十分な小型化が達成されていないという問題が残る。   Further, in the variable magnification optical systems disclosed in Patent Documents 2 and 3, since the positions of the first lens group and the third lens group are the same at the wide-angle end and the telephoto end, it is easy to position the lens. There is an advantage that the mechanism for moving the group becomes simple. However, the variable magnification optical systems disclosed in Patent Documents 2 and 3 have a problem that a sufficient size reduction is not achieved because the numerical values of the conditions for defining the total length of the optical system are relatively large.

さらに、特許文献4に開示されたズームレンズでは、光学系内部に反射部材を備え、厚み方向の形状寸法を薄くすることができるという利点がある。しかしながら、光学系全長および体積を考慮した場合、反射部材を備えていない光学系(たとえば、特許文献1等に記載のもの)よりも大きくなる傾向にあり、特に小型化が要求される携帯機器に搭載するには不向きであるという問題がある。   Furthermore, the zoom lens disclosed in Patent Document 4 has an advantage that a reflection member is provided inside the optical system, and the shape dimension in the thickness direction can be reduced. However, when the total length and volume of the optical system are taken into consideration, it tends to be larger than an optical system that does not include a reflecting member (for example, the one described in Patent Document 1), and particularly for portable devices that are required to be downsized. There is a problem that it is not suitable for mounting.

この発明は、上述した従来技術による問題点を解消するため、小型で簡易な構成でありながら、高い光学性能を維持しつつ2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行える変倍光学系を提供することを目的とする。また、変倍時のレンズの位置決め制御が容易な変倍光学系を提供することも目的としている。   In order to eliminate the above-mentioned problems caused by the prior art, the present invention enables a magnification change of about 2 to 3 times while maintaining a high optical performance while being a small and simple configuration, and can also be taken at a wide angle end. An object of the present invention is to provide a variable magnification optical system that can be used without any problem. It is another object of the present invention to provide a variable magnification optical system that can easily control the positioning of the lens during variable magnification.

上述した課題を解決し、目的を達成するため、請求項1の発明にかかる変倍光学系は、 物体側より順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、広角端から望遠端への変倍を行う際に前記第1レンズ群と前記第3レンズ群との間隔が不変であり、かつ、以下の条件式を満足することを特徴とする。
(1) 1.4<(Tw・Tt)1/2/(fw・ft)1/2<2.0
ただし、Twは広角端における光学系の全長、Ttは望遠端における光学系の全長、fwは広角端における全系の焦点距離、ftは望遠端における全系の焦点距離を示す。
In order to solve the above-described problems and achieve the object, a variable magnification optical system according to the invention of claim 1 includes a first lens group having a negative refractive power, arranged in order from the object side, and a positive refractive power. And a third lens group having a positive refractive power, and a distance between the first lens group and the third lens group when zooming from the wide-angle end to the telephoto end is performed. Is invariant and satisfies the following conditional expression.
(1) 1.4 <(Tw · Tt) 1/2 / (fw · ft) 1/2 <2.0
Where Tw is the total length of the optical system at the wide angle end, Tt is the total length of the optical system at the telephoto end, fw is the focal length of the entire system at the wide angle end, and ft is the focal length of the entire system at the telephoto end.

この請求項1に記載の発明によれば、小型で簡易な構成であるにもかかわらず、高い光学性能を維持しながら2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行える変倍光学系を提供することができる。   According to the first aspect of the present invention, it is possible to change the magnification by about 2 to 3 times while maintaining high optical performance in spite of a small and simple configuration, and the photographing at the wide angle end is also hindered. It is possible to provide a variable magnification optical system that can be eliminated.

また請求項2にかかる変倍光学系は、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
(2) 0.4<f2/(fw・ft)1/2<0.8
ただし、f2は前記第2レンズ群の焦点距離を示す。
According to a second aspect of the present invention, the variable magnification optical system according to the first aspect of the present invention satisfies the following conditional expression.
(2) 0.4 <f2 / (fw · ft) 1/2 <0.8
Here, f2 represents the focal length of the second lens group.

この請求項2に記載の発明によれば、小型で、高い光学性能を備えた変倍光学系を提供することができる。   According to the second aspect of the present invention, it is possible to provide a variable magnification optical system that is small and has high optical performance.

また、請求項3の発明にかかる変倍光学系は、請求項1または2に記載の発明において、広角端から望遠端への変倍を行う際に、前記第2レンズ群を物体側に移動させ、前記第1レンズ群および前記第3レンズ群の位置を固定することを特徴とする。   According to a third aspect of the present invention, the zoom optical system according to the first or second aspect moves the second lens group to the object side when zooming from the wide-angle end to the telephoto end. The positions of the first lens group and the third lens group are fixed.

この請求項3に記載の発明によれば、前記第2レンズ群のみを移動させて変倍を行うことから、レンズ駆動機構を簡易な構成にすることができる。特に、第2レンズ群だけを広角端または望遠端の位置に移動させて、2つの焦点距離を任意に選択する2焦点の切換式光学系として好ましい構成となる。   According to the third aspect of the present invention, since the zooming is performed by moving only the second lens group, the lens driving mechanism can be simplified. In particular, this is a preferable configuration as a two-focus switching optical system in which only the second lens group is moved to the wide-angle end or telephoto end to arbitrarily select two focal lengths.

また、請求項4の発明にかかる変倍光学系は、請求項1または2に記載の発明において、広角端から望遠端への変倍を行う際に、前記第2レンズ群を変倍を行うために物体側に移動させるとともに、前記第1レンズ群および前記第3レンズ群を結像面位置の変動を補正するために一体的に結像面側に凸形状の軌跡を描くように移動させることを特徴とする。   According to a fourth aspect of the present invention, in the variable power optical system according to the first or second aspect of the present invention, the second lens group is zoomed when performing zooming from the wide-angle end to the telephoto end. Therefore, the first lens group and the third lens group are moved together so as to draw a convex locus on the imaging plane side in order to correct the fluctuation of the imaging plane position. It is characterized by that.

この請求項4に記載の発明によれば、前記第1レンズ群と前記第3レンズ群との間隔は不変であり、レンズ位置を考慮しなければならないのは第2レンズ群に関してのみであるため、レンズ位置決め制御が容易になる。2焦点の切換式光学系だけでなく、ズーム光学系としても好ましい構成となる。   According to the fourth aspect of the present invention, the distance between the first lens group and the third lens group is invariable, and the lens position needs to be considered only for the second lens group. Lens positioning control becomes easy. Not only a bifocal switching optical system but also a zoom optical system is preferable.

この発明によれば、小型で簡易な構成でありながら、高い光学性能を維持しつつ2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行える変倍光学系を提供することができるという効果を奏する。加えて、変倍時のレンズの位置決め制御が容易な変倍光学系を提供することができるという効果を奏する。   According to the present invention, there is provided a variable magnification optical system that enables a variable magnification of about 2 to 3 times while maintaining high optical performance, and that can perform photographing at a wide angle end without hindrance, while having a small and simple configuration. There is an effect that can be. In addition, there is an effect that it is possible to provide a variable magnification optical system in which lens positioning control at the time of variable magnification is easy.

実施例1にかかる変倍光学系の構成を示す光軸に沿う断面図である。1 is a cross-sectional view along the optical axis showing the configuration of a variable magnification optical system according to Example 1. FIG. 実施例1にかかる変倍光学系の広角端における諸収差図である。FIG. 6 is a diagram illustrating various aberrations at the wide-angle end of the variable magnification optical system according to Example 1. 実施例1にかかる変倍光学系の望遠端における諸収差図である。FIG. 6 is a diagram illustrating various aberrations at the telephoto end of the variable magnification optical system according to the first example. 実施例2にかかる変倍光学系の構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a variable magnification optical system according to Example 2. 実施例2にかかる変倍光学系の広角端における諸収差図である。FIG. 6 is a diagram illustrating various aberrations at the wide-angle end of the variable magnification optical system according to Example 2. 実施例2にかかる変倍光学系の望遠端における諸収差図である。FIG. 6 is a diagram illustrating various aberrations at the telephoto end of the variable magnification optical system according to the second example. 実施例3にかかる変倍光学系の構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a variable magnification optical system according to Example 3. 実施例3にかかる変倍光学系の広角端における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the wide-angle end of the variable magnification optical system according to Example 3. 実施例3にかかる変倍光学系の望遠端における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the telephoto end of the variable magnification optical system according to Example 3. 実施例4にかかる変倍光学系の構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of a variable magnification optical system according to Example 4. 実施例4にかかる変倍光学系の広角端における諸収差図である。FIG. 10 is a diagram illustrating various aberrations at the wide-angle end of the variable magnification optical system according to Example 4. 実施例4にかかる変倍光学系の中間における諸収差図である。FIG. 10 is a diagram illustrating various aberrations in the middle of the variable magnification optical system according to the fourth example. 実施例4にかかる変倍光学系の望遠端における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the telephoto end of the variable magnification optical system according to Example 4; 実施例5にかかる変倍光学系の構成を示す光軸に沿う断面図である。FIG. 10 is a cross-sectional view along the optical axis showing the configuration of a variable magnification optical system according to Example 5. 実施例5にかかる変倍光学系の広角端における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the wide-angle end of the variable magnification optical system according to Example 5. 実施例5にかかる変倍光学系の中間における諸収差図である。FIG. 10 is a diagram illustrating various aberrations in the middle of the variable magnification optical system according to the fifth example. 実施例5にかかる変倍光学系の望遠端における諸収差図である。FIG. 10 is a diagram illustrating all aberrations at the telephoto end of the variable magnification optical system according to Example 5.

以下、この発明にかかる変倍光学系の好適な実施の形態を詳細に説明する。   Hereinafter, preferred embodiments of the variable magnification optical system according to the present invention will be described in detail.

この発明にかかる変倍光学系は、物体側から順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備えて構成される。   The zoom optical system according to the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a positive refractive power, which are arranged in order from the object side. And a lens group.

この発明は、小型で簡易な構成でありながら、高い光学性能を維持しつつ2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行える変倍光学系を提供することを目的としている。また、変倍時のレンズの位置決め制御が容易な変倍光学系を提供することも目的としている。そこで、かかる目的を達成するため、以下に示すような各種条件を設定している。   The present invention is to provide a variable magnification optical system that enables a variable magnification of about 2 to 3 times while maintaining high optical performance, and that can perform photographing at a wide angle end without hindrance, while having a small and simple configuration. It is aimed. It is another object of the present invention to provide a variable magnification optical system that can easily control the positioning of the lens during variable magnification. Therefore, in order to achieve this purpose, various conditions as shown below are set.

まず、この発明にかかる変倍光学系では、広角端から望遠端への変倍を行う際に前記第1レンズ群と前記第3レンズ群との間隔が不変であり、かつ、次の条件式を満足することが好ましい。
(1) 1.4<(Tw・Tt)1/2/(fw・ft)1/2<2.0
ただし、Twは広角端における光学系の全長、Ttは望遠端における光学系の全長、fwは広角端における全系の焦点距離、ftは望遠端における全系の焦点距離を示す。
First, in the variable magnification optical system according to the present invention, the distance between the first lens group and the third lens group is invariable when zooming from the wide-angle end to the telephoto end, and the following conditional expression: Is preferably satisfied.
(1) 1.4 <(Tw · Tt) 1/2 / (fw · ft) 1/2 <2.0
Where Tw is the total length of the optical system at the wide angle end, Tt is the total length of the optical system at the telephoto end, fw is the focal length of the entire system at the wide angle end, and ft is the focal length of the entire system at the telephoto end.

まず、この変倍光学系では、前記第1レンズ群と前記第3レンズ群との間の距離は変化しないので、前記第1レンズ群および前記第3レンズ群の位置決め制御が容易である。次に、条件式(1)は、広角端および望遠端における光学系の全長と焦点距離との関係を規定する式である。この条件式(1)を満足することにより、高い光学性能を維持しながら2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行えるようになる。なお、条件式(1)においてその下限を下回ると、光学系の焦点距離が望遠側寄りになり広角端での撮影ができなくなってしまうか、もしくは変倍比が大きくなりすぎ良好な光学性能が維持できなくなってしまう。一方、条件式(1)においてその上限を超えると、光学系全長が長くなり携帯機器に搭載する光学系としては不適なものとなってしまうか、もしくは変倍比が極めて小さくなってしまう。   First, in this variable magnification optical system, since the distance between the first lens group and the third lens group does not change, positioning control of the first lens group and the third lens group is easy. Conditional expression (1) is an expression that defines the relationship between the total length of the optical system and the focal length at the wide-angle end and the telephoto end. By satisfying this conditional expression (1), it is possible to change the magnification by about 2 to 3 times while maintaining high optical performance, and photographing at the wide angle end can be performed without any trouble. If the lower limit of conditional expression (1) is not reached, the focal length of the optical system will be closer to the telephoto side and photographing at the wide-angle end will be impossible, or the zoom ratio will become too large and good optical performance will be obtained. It becomes impossible to maintain. On the other hand, if the upper limit in conditional expression (1) is exceeded, the total length of the optical system becomes long, making it unsuitable as an optical system mounted on a portable device, or the zoom ratio becomes extremely small.

さらに、この発明にかかる変倍光学系では、次の条件式を満足することが好ましい。
(2) 0.4<f2/(fw・ft)1/2<0.8
ただし、f2は前記第2レンズ群の焦点距離を示す。
Furthermore, in the variable magnification optical system according to the present invention, it is preferable that the following conditional expression is satisfied.
(2) 0.4 <f2 / (fw · ft) 1/2 <0.8
Here, f2 represents the focal length of the second lens group.

条件式(2)は、前記第2レンズ群の焦点距離と全系の焦点距離との関係を規定する式である。この条件式(2)を満足することにより、光学系の小型化、高性能化が達成できる。なお、条件式(2)においてその下限を下回ると、前記第2レンズ群のパワーが強くなりすぎ、光学系全長は短くすることができるが、諸収差の補正が困難になる。一方、条件式(2)においてその上限を超えると、前記第2レンズ群のパワーが弱くなりすぎて変倍時の前記第2レンズ群の移動量が大きくなるため、光学系の小型化に不利になる。   Conditional expression (2) defines the relationship between the focal length of the second lens group and the focal length of the entire system. By satisfying this conditional expression (2), the optical system can be reduced in size and performance. If the lower limit of conditional expression (2) is not reached, the power of the second lens group becomes too strong, and the overall length of the optical system can be shortened, but it becomes difficult to correct various aberrations. On the other hand, if the upper limit of conditional expression (2) is exceeded, the power of the second lens group becomes too weak and the amount of movement of the second lens group at the time of zooming becomes large, which is disadvantageous for miniaturization of the optical system. become.

さらに、この発明にかかる変倍光学系では、広角端から望遠端への変倍を行う際に、前記第2レンズ群を物体側に移動させ、前記第1レンズ群および前記第3レンズ群の位置を固定することが好ましい。   Further, in the zoom optical system according to the present invention, when zooming from the wide angle end to the telephoto end, the second lens group is moved to the object side, and the first lens group and the third lens group are moved. It is preferable to fix the position.

変倍光学系では、複数のレンズ群を光軸に沿う方向に移動させて変倍を行うため、レンズ群を保持する機構や、レンズ群を駆動させる機構が複雑になる。また、変倍光学系では、変倍時のレンズ群の移動により、結像面の位置がずれやすい。そこで、変倍時の結像面の位置がほぼ一定になるように、複数のレンズ群を互いに決められた間隔を維持しつつ駆動させなければならない。このため、変倍光学系においては、特にレンズの位置決め制御に高い精度が要求される。加えて、変倍光学系では、レンズ群の駆動時に複数のレンズ群間で発生する相互偏心を補正する必要があり、これにも高い精度が要求される。このような高い精度が要求されるレンズの位置決め制御を小型の駆動機構を用いて行うことは困難である。   In the variable power optical system, zooming is performed by moving a plurality of lens groups in a direction along the optical axis, so that a mechanism for holding the lens group and a mechanism for driving the lens group become complicated. Further, in the variable magnification optical system, the position of the imaging plane is likely to shift due to the movement of the lens group at the time of variable magnification. Therefore, it is necessary to drive the plurality of lens groups while maintaining a predetermined interval so that the position of the imaging surface at the time of zooming becomes substantially constant. For this reason, in a variable magnification optical system, high accuracy is particularly required for lens positioning control. In addition, in the variable magnification optical system, it is necessary to correct the mutual decentration occurring between the plurality of lens groups when the lens groups are driven, and this also requires high accuracy. It is difficult to perform lens positioning control requiring such high accuracy using a small drive mechanism.

そこで、この発明にかかる変倍光学系では、前記第1レンズ群および前記第3レンズ群の位置を固定し、移動させるのは前記第2レンズ群だけにしたため、レンズ群の保持機構や駆動機構を簡易にすることができる。かかる構成は、前記第2レンズ群だけを広角端側および望遠端側の両移動端に移動させて、2つの焦点距離を選択する2焦点切換光学系の実現に適している。   Therefore, in the variable magnification optical system according to the present invention, since the positions of the first lens group and the third lens group are fixed and moved only by the second lens group, a lens group holding mechanism and a driving mechanism are provided. Can be simplified. Such a configuration is suitable for realizing a two-focus switching optical system that selects only two focal lengths by moving only the second lens group to both the wide-angle end side and the telephoto end side.

また、この発明にかかる光学系では、広角端から望遠端への変倍を行う際に、前記第2レンズ群を変倍を行うために物体側に移動させ、前記第1レンズ群および前記第3レンズ群を結像面位置の変動を補正するために一体的に結像面側に凸形状の軌跡を描くように移動させるようにしてもよい。   In the optical system according to the present invention, when zooming from the wide-angle end to the telephoto end, the second lens group is moved to the object side for zooming, and the first lens group and the first lens group The three lens groups may be integrally moved so as to draw a convex locus on the image forming surface side in order to correct the fluctuation of the image forming surface position.

前述のように、変倍光学系では、複数のレンズ群が光軸に沿う方向に移動するため、レンズ群の保持機構や駆動機構が複雑になる傾向にあり、また、各レンズの位置決め制御に高い精度が要求される。   As described above, in the variable magnification optical system, since a plurality of lens groups move in a direction along the optical axis, the lens group holding mechanism and the drive mechanism tend to be complicated, and each lens is positioned and controlled. High accuracy is required.

そこで、この発明にかかる変倍光学系では、結像面位置の変動を補正のために、前記第1レンズ群および前記第3レンズ群を一体的に結像面側に凸形状の軌跡を描くように移動させるようにした。このようにすることで、変倍時に、前記第1〜第3レンズ群は移動するが、前記第1レンズ群と前記第3レンズ群との間の距離は変化しない。このため、すべてのレンズ群に対して互いに決められた間隔を維持しつつ駆動させる必要がない分だけ、レンズの位置決め制御が簡易になる。   Therefore, in the variable magnification optical system according to the present invention, the first lens group and the third lens group are integrally drawn with a convex locus on the imaging plane side in order to correct the fluctuation of the imaging plane position. So that it moves. By doing so, the first to third lens groups move at the time of zooming, but the distance between the first lens group and the third lens group does not change. For this reason, the lens positioning control is simplified to the extent that it is not necessary to drive all the lens groups while maintaining a predetermined interval.

さらに、この発明にかかる変倍光学系では、次の条件式を満足することが好ましい。
(3) 1.5<nda<1.65
(4) 22<νda<60
ただし、ndaは各レンズ群を構成するレンズのd線に対する屈折率、νdaは各レンズ群を構成するレンズのd線に対するアッベ数を示す。
Furthermore, in the variable magnification optical system according to the present invention, it is preferable that the following conditional expression is satisfied.
(3) 1.5 <nda <1.65
(4) 22 <νda <60
Here, nda represents the refractive index of the lenses constituting each lens group with respect to the d-line, and νda represents the Abbe number of the lenses constituting each lens group with respect to the d-line.

条件式(3),(4)を満足することにより、樹脂材料(たとえばプラスチック)により形成されたレンズ(以下樹脂レンズという)を用いて各レンズ群を構成することが可能になる。樹脂レンズは、ガラスレンズと比較し、形状自由度が高いため、加工しやすく、安価に製造できる。このため、樹脂レンズを用いることで光学系の製造コストを抑えることができる。また、樹脂レンズは軽量なため、レンズ群の駆動機構への負荷も軽くなり、また携帯機器に搭載するのにも好都合である。   When the conditional expressions (3) and (4) are satisfied, each lens group can be configured using a lens (hereinafter referred to as a resin lens) formed of a resin material (for example, plastic). Resin lenses have a higher degree of freedom in shape than glass lenses, so they are easy to process and can be manufactured at low cost. For this reason, the manufacturing cost of an optical system can be held down by using a resin lens. In addition, since the resin lens is lightweight, the load on the driving mechanism of the lens group is reduced, and it is convenient for mounting on a portable device.

さらに、この発明にかかる変倍光学系は、複数の非球面レンズを備えていることが好ましい。非球面レンズを用いることで、少ないレンズ枚数で諸収差を良好に補正することができる。非球面レンズを用いることで、光学系の小型化に有利になる。   Furthermore, the variable magnification optical system according to the present invention preferably includes a plurality of aspherical lenses. By using an aspheric lens, various aberrations can be favorably corrected with a small number of lenses. Use of an aspheric lens is advantageous in reducing the size of the optical system.

さらに、この発明にかかる変倍光学系では、前記第3レンズ群が結像面に凸面を向けたメニスカス形状の正の単レンズによって構成されていることが好ましい。このようにすることで、全変倍域において前記第2レンズ群により発生するマイナス方向の像面湾曲を補正しやすくなる。これに伴い、前記第1レンズ群による像面湾曲補正の負担も軽減され、各レンズ群のパワー配置を最適化しやすくなり、広角化、高変倍比化に伴う収差の発生の抑制が容易になる。   Furthermore, in the variable magnification optical system according to the present invention, it is preferable that the third lens group is constituted by a meniscus positive single lens having a convex surface facing the image forming surface. By doing so, it becomes easy to correct the negative field curvature generated by the second lens group in the entire zooming range. Along with this, the burden of field curvature correction by the first lens group is reduced, it is easy to optimize the power arrangement of each lens group, and it is easy to suppress the occurrence of aberrations due to wide angle and high zoom ratio. Become.

さらに、この発明にかかる変倍光学系では、各レンズ群の移動により変倍を行ったあとに、すべてのレンズ群を一体的に光軸方向に沿って移動させることでフォーカシングを行うことが好ましい。このようなことで、すべてのレンズ群に対して互いに決められた間隔を維持しつつ駆動させる必要がない分だけ、レンズの位置決め制御が簡易になる。   Furthermore, in the zoom optical system according to the present invention, it is preferable to perform focusing by moving all the lens groups integrally along the optical axis direction after zooming by moving each lens group. . In this way, the lens positioning control is simplified to the extent that it is not necessary to drive all the lens groups while maintaining a predetermined interval.

以上説明したように、この発明にかかる変倍光学系は、上記各条件を満足することにより、小型で簡易な構成でありながら、高い光学性能を維持しつつ2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行えるようになる。さらに、変倍時のレンズの位置決め制御も容易になる。   As described above, the variable magnification optical system according to the present invention satisfies the above-described conditions, so that it can reduce the magnification by about 2 to 3 times while maintaining high optical performance while maintaining a small and simple configuration. This makes it possible to shoot at the wide-angle end without any trouble. Furthermore, the lens positioning control during zooming becomes easy.

図1は、実施例1にかかる変倍光学系の構成を示す光軸に沿う断面図である。この変倍光学系は、図示しない物体側から順に、負の屈折力を有する第1レンズ群G11と、正の屈折力を有する第2レンズ群G12と、正の屈折力を有する第3レンズ群G13と、が配置されて構成される。第3レンズ群G13と結像面IMGとの間には、撮像素子のカバーガラスCGが配置されている。カバーガラスCGは必要に応じて配置されるものであり、不要な場合は省略可能である。また、結像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。 FIG. 1 is a cross-sectional view along the optical axis showing the configuration of the variable magnification optical system according to the first example. This variable magnification optical system includes, in order from the object side (not shown), a first lens group G 11 having a negative refractive power, a second lens group G 12 having a positive refractive power, and a third lens having a positive refractive power. a lens group G 13, is formed is disposed. Between the third lens group G 13 and the image plane IMG, a cover glass CG of the image pickup element is disposed. The cover glass CG is arranged as necessary, and can be omitted if unnecessary. In addition, a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the imaging plane IMG.

第1レンズ群G11は、負レンズL111により構成される。第2レンズ群G12は、前記物体側から順に、負レンズL121、正レンズL122、負レンズL123が配置されて構成される。正レンズL122の前記物体側面には、所定の口径を規定する開口絞りSが設けられている。第3レンズ群G13は、結像面IMGに凸面を向けた正のメニスカスレンズL131によって構成される。なお、各レンズ群を構成するレンズのすべての面に非球面が形成されている。また、各レンズ群を構成するレンズには、樹脂材質(プラスチック)で形成されているものを用いるとよい。 The first lens group G 11 is constituted by a negative lens L 111. The second lens group G 12 includes a negative lens L 121 , a positive lens L 122 , and a negative lens L 123 arranged in this order from the object side. An aperture stop S that defines a predetermined aperture is provided on the object side surface of the positive lens L 122 . The third lens group G 13 is constituted by a positive meniscus lens L 131 with a convex surface facing the imaging plane IMG. In addition, aspherical surfaces are formed on all surfaces of the lenses constituting each lens group. In addition, it is preferable to use a lens made of a resin material (plastic) for each lens group.

この変倍光学系では、第2レンズ群G12を光軸に沿って結像面IMG側から前記物体側へ移動させることによって広角端から望遠端への変倍を行う。第1レンズ群G11および第3レンズ群G13の位置は固定されている。この変倍光学系は、第2レンズ群G12だけを広角端側および望遠端側の両移動端に移動させて、2つの焦点距離を選択する2焦点切換光学系である。 In this variable power optical system performs zooming to the telephoto end from the wide-angle end by moving the imaging surface IMG side to the object side along the second lens group G 12 to the optical axis. The positions of the first lens group G 11 and the third lens group G 13 are fixed. The zoom lens system, only the second lens group G 12 is moved to the both moving ends of the wide-angle end and the telephoto end side, a bifocal switching換光science system to select two focal lengths.

以下、実施例1にかかる変倍光学系に関する各種数値データを示す。   Various numerical data related to the variable magnification optical system according to Example 1 are shown below.

Fナンバ=3.44(広角端)〜5.36(望遠端)
変倍光学系全系の焦点距離=3.05mm(fw:広角端)〜6.10mm(ft:望遠端)
半画角(ω)=37.48°(広角端)〜20.24°(望遠端)
変倍比=2.0
F number = 3.44 (wide-angle end) to 5.36 (telephoto end)
Focal length of the entire variable magnification optical system = 3.05 mm (fw: wide angle end) to 6.10 mm (ft: telephoto end)
Half angle of view (ω) = 37.48 ° (wide-angle end) to 20.24 ° (telephoto end)
Scaling ratio = 2.0

(条件式(1)に関する数値)
(Tw・Tt)1/2/(fw・ft)1/2=1.764
(Numerical value for conditional expression (1))
(Tw · Tt) 1/2 / (fw · ft) 1/2 = 1.764

(条件式(2)に関する数値)
f2(第2レンズ群G12の焦点距離)=2.493mm
f2/(fw・ft)1/2=0.578
(Numerical value related to conditional expression (2))
f2 (the focal length of the second lens group G 12) = 2.493mm
f2 / (fw · ft) 1/2 = 0.578

(条件式(3)に関する数値)
nda(各レンズ群を構成するレンズのd線に対する屈折率)=1.531〜1.614
(Numerical value for conditional expression (3))
nda (refractive index with respect to d-line of lenses constituting each lens group) = 1.531-1.614

(条件式(4)に関する数値)
νda(各レンズ群を構成するレンズのd線に対するアッベ数)=25.58〜56.04
(Numerical values related to conditional expression (4))
νda (Abbe number with respect to d-line of lenses constituting each lens group) = 25.58 to 56.04

1=-56.903(非球面)
1=0.45 nd1=1.531 νd1=56.0
2=3.170(非球面)
2=1.86(広角端)〜0.10(望遠端)
3=1.190(非球面)
3=0.45 nd2=1.614 νd2=25.6
4=0.934(非球面)
4=0.10
5=0.894(非球面)
5=0.76 nd3=1.531 νd3=56.0
6=-3.227(非球面)
6=0.36
7=-7.360(非球面)
7=0.45 nd4=1.614 νd4=25.6
8=1.276(非球面)
8=0.38(広角端)〜2.14(望遠端)
9=-11.485(非球面)
9=1.80 nd5=1.585 νd5=29.9
10=-1.545(非球面)
10=0.10
11=∞
11=0.50 nd6=1.517 νd6=64.2
12=∞
12=0.40
13=∞(結像面)
r 1 = -56.903 (aspherical surface)
d 1 = 0.45 nd 1 = 1.531 νd 1 = 56.0
r 2 = 3.170 (aspherical surface)
d 2 = 1.86 (wide-angle end) to 0.10 (telephoto end)
r 3 = 1.190 (aspherical surface)
d 3 = 0.45 nd 2 = 1.614 νd 2 = 25.6
r 4 = 0.934 (aspherical surface)
d 4 = 0.10
r 5 = 0.894 (aspherical surface)
d 5 = 0.76 nd 3 = 1.531 νd 3 = 56.0
r 6 = -3.227 (aspherical surface)
d 6 = 0.36
r 7 = -7.360 (aspherical surface)
d 7 = 0.45 nd 4 = 1.614 νd 4 = 25.6
r 8 = 1.276 (aspherical surface)
d 8 = 0.38 (wide-angle end) ~2.14 (telephoto end)
r 9 = -11.485 (aspherical surface)
d 9 = 1.80 nd 5 = 1.585 νd 5 = 29.9
r 10 = -1.545 (aspherical surface)
d 10 = 0.10
r 11 = ∞
d 11 = 0.50 nd 6 = 1.517 νd 6 = 64.2
r 12 = ∞
d 12 = 0.40
r 13 = ∞ (imaging plane)

円錐係数(k)および非球面係数(A4,A6,A8,A10,A12
(第1面)
k=-1.0000×10,
4=-2.7414×10-2, A6=6.3118×10-3,
8=-3.5854×10-4, A10=0,
12=0
(第2面)
k=-2.3305,
4=-2.1774×10-2, A6=-1.2696×10-2,
8=1.3069×10-2, A10=-4.4331×10-3
12=6.4057×10-4
(第3面)
k=-2.1219,
4=2.9341×10-2, A6=-9.9503×10-2,
8=-1.7848×10-1, A10=4.9015×10-2
12=5.3983×10-15
(第4面)
k=-1.0365,
4=-2.0810×10-1, A6=5.9581×10-2,
8=-6.0504×10-1, A10=7.9547×10-1
12=-1.5500×10-15
(第5面)
k=-9.4557×10-1,
4=-1.0648×10-1, A6=2.9908×10-1,
8=-4.6601×10-1, A10=6.8224×10-1
12=2.1493×10-15
(第6面)
k=5.5275,
4=-2.7301×10-1, A6=4.6777×10-1,
8=-4.8558×10-1, A10=6.4435×10-1
12=-1.0544×10-16
(第7面)
k=1.0000×10,
4=-1.3313, A6=7.0634×10-1,
8=-1.4319, A10=4.7446×10-1,
12=0
(第8面)
k=-1.0000×10,
4=-3.7398×10-1, A6=5.1373×10-1,
8=-3.4590×10-1, A10=1.1490×10-1
12=-7.8817×10-14
(第9面)
k=7.9175,
4=-2.0759×10-2, A6=1.0994×10-2,
8=-3.8546×10-3, A10=7.7662×10-4
12=-5.7043×10-5
(第10面)
k=-3.4134,
4=-5.5374×10-2, A6=1.9011×10-2,
8=-4.6995×10-3, A10=5.3014×10-4
12=-1.7500×10-5
Conical coefficient (k) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 , A 12 )
(First side)
k = -1.0000 × 10,
A 4 = -2.7414 × 10 -2 , A 6 = 6.3118 × 10 -3 ,
A 8 = -3.5854 × 10 -4 , A 10 = 0,
A 12 = 0
(Second side)
k = -2.3305,
A 4 = -2.1774 × 10 -2 , A 6 = -1.2696 × 10 -2 ,
A 8 = 1.3069 × 10 −2 , A 10 = −4.4331 × 10 −3 ,
A 12 = 6.4057 × 10 -4
(Third side)
k = -2.1219,
A 4 = 2.9341 × 10 -2 , A 6 = -9.9503 × 10 -2 ,
A 8 = -1.7848 × 10 −1 , A 10 = 4.9015 × 10 −2 ,
A 12 = 5.3983 × 10 -15
(Fourth surface)
k = -1.0365,
A 4 = −2.0810 × 10 −1 , A 6 = 5.9581 × 10 −2 ,
A 8 = −6.0504 × 10 −1 , A 10 = 7.9547 × 10 −1 ,
A 12 = -1.5500 × 10 -15
(5th page)
k = -9.4557 × 10 -1 ,
A 4 = -1.0648 × 10 -1 , A 6 = 2.9908 × 10 -1 ,
A 8 = −4.6601 × 10 −1 , A 10 = 6.8224 × 10 −1 ,
A 12 = 2.1493 × 10 -15
(Sixth surface)
k = 5.5275,
A 4 = -2.7301 × 10 -1 , A 6 = 4.6777 × 10 -1 ,
A 8 = -4.8558 × 10 −1 , A 10 = 6.4435 × 10 −1 ,
A 12 = -1.0544 × 10 -16
(Seventh side)
k = 1.000 × 10,
A 4 = -1.3313, A 6 = 7.0634 × 10 -1 ,
A 8 = -1.4319, A 10 = 4.7446 × 10 -1 ,
A 12 = 0
(8th page)
k = -1.0000 × 10,
A 4 = -3.7398 × 10 -1 , A 6 = 5.1373 × 10 -1 ,
A 8 = -3.4590 × 10 −1 , A 10 = 1.1490 × 10 −1 ,
A 12 = -7.8817 × 10 -14
(9th page)
k = 7.9175,
A 4 = -2.0759 × 10 -2 , A 6 = 1.0994 × 10 -2 ,
A 8 = -3.8546 × 10 -3 , A 10 = 7.7662 × 10 -4 ,
A 12 = -5.7043 × 10 -5
(Tenth aspect)
k = -3.4134,
A 4 = -5.5374 × 10 -2 , A 6 = 1.9011 × 10 -2 ,
A 8 = -4.6995 × 10 −3 , A 10 = 5.3014 × 10 −4 ,
A 12 = -1.7500 × 10 -5

また、図2は、実施例1にかかる変倍光学系の広角端における諸収差図である。図3は、実施例1にかかる変倍光学系の望遠端における諸収差図である。図の曲線はd線(587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるΔS,ΔMは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 2 is a diagram of various aberrations at the wide angle end of the variable magnification optical system according to the first example. FIG. 3 is a diagram of various aberrations at the telephoto end of the variable magnification optical system according to the first example. The curve in the figure represents the aberration at the wavelength corresponding to the d-line (587.56 nm). In the astigmatism diagrams, ΔS and ΔM represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

図4は、実施例2にかかる変倍光学系の構成を示す光軸に沿う断面図である。この変倍光学系は、図示しない物体側から順に、負の屈折力を有する第1レンズ群G21と、正の屈折力を有する第2レンズ群G22と、正の屈折力を有する第3レンズ群G23と、が配置されて構成される。第3レンズ群G23と結像面IMGとの間には、撮像素子のカバーガラスCGが配置されている。カバーガラスCGは必要に応じて配置されるものであり、不要な場合は省略可能である。また、結像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。 FIG. 4 is a cross-sectional view along the optical axis showing the configuration of the variable magnification optical system according to the second example. This variable magnification optical system includes, in order from the object side (not shown), a first lens group G 21 having a negative refractive power, a second lens group G 22 having a positive refractive power, and a third lens having a positive refractive power. a lens group G 23, is formed are disposed. Between the third lens group G 23 and the image plane IMG, a cover glass CG of the image pickup element is disposed. The cover glass CG is arranged as necessary, and can be omitted if unnecessary. In addition, a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the imaging plane IMG.

第1レンズ群G21は、負レンズL211により構成される。第2レンズ群G22は、前記物体側から順に、正レンズL221、負レンズL222が配置されて構成される。正レンズL221の前記物体側面には、所定の口径を規定する開口絞りSが設けられている。第3レンズ群G23は、結像面IMGに凸面を向けた正のメニスカスレンズL231によって構成される。なお、各レンズ群を構成するレンズのすべての面に非球面が形成されている。また、各レンズ群を構成するレンズには、樹脂材質(プラスチック)で形成されているものを用いるとよい。 The first lens group G 21 includes, formed by a negative lens L 211. The second lens group G 22 includes a positive lens L 221 and a negative lens L 222 arranged in order from the object side. An aperture stop S that defines a predetermined aperture is provided on the object side surface of the positive lens L 221 . The third lens group G 23 is constituted by a positive meniscus lens L 231 with a convex surface facing the imaging plane IMG. In addition, aspherical surfaces are formed on all surfaces of the lenses constituting each lens group. In addition, it is preferable to use a lens made of a resin material (plastic) for each lens group.

この変倍光学系では、第2レンズ群G22を光軸に沿って結像面IMG側から前記物体側へ移動させることによって広角端から望遠端への変倍を行う。第1レンズ群G21および第3レンズ群G23の位置は固定されている。この変倍光学系は、第2レンズ群G22だけを広角端側および望遠端側の両移動端に移動させて、2つの焦点距離を選択する2焦点切換光学系である。 In this variable power optical system performs zooming to the telephoto end from the wide-angle end by moving the imaging surface IMG side to the object side along the second lens group G 22 to the optical axis. The positions of the first lens group G 21 and the third lens group G 23 are fixed. The zoom lens system, only the second lens group G 22 is moved to the both moving ends of the wide-angle end and the telephoto end side, a bifocal switching換光science system to select two focal lengths.

以下、実施例2にかかる変倍光学系に関する各種数値データを示す。   Various numerical data related to the variable magnification optical system according to Example 2 are shown below.

Fナンバ=3.50(広角端)〜5.29(望遠端)
変倍光学系全系の焦点距離=3.00mm(fw:広角端)〜6.00mm(ft:望遠端)
半画角(ω)=37.48°(広角端)〜20.97°(望遠端)
変倍比=2.0
F number = 3.50 (wide-angle end) to 5.29 (telephoto end)
Focal length of the entire zoom optical system = 3.00 mm (fw: wide angle end) to 6.00 mm (ft: telephoto end)
Half angle of view (ω) = 37.48 ° (wide-angle end) to 20.97 ° (telephoto end)
Scaling ratio = 2.0

(条件式(1)に関する数値)
(Tw・Tt)1/2/(fw・ft)1/2=1.508
(Numerical value for conditional expression (1))
(Tw · Tt) 1/2 / (fw · ft) 1/2 = 1.508

(条件式(2)に関する数値)
f2(第2レンズ群G22の焦点距離)=2.014mm
f2/(fw・ft)1/2=0.475
(Numerical value related to conditional expression (2))
f2 (the focal length of the second lens group G 22) = 2.014mm
f2 / (fw · ft) 1/2 = 0.475

(条件式(3)に関する数値)
nda(各レンズ群を構成するレンズのd線に対する屈折率)=1.531〜1.614
(Numerical value for conditional expression (3))
nda (refractive index with respect to d-line of lenses constituting each lens group) = 1.531-1.614

(条件式(4)に関する数値)
νda(各レンズ群を構成するレンズのd線に対するアッベ数)=25.58〜56.04
(Numerical values related to conditional expression (4))
νda (Abbe number with respect to d-line of lenses constituting each lens group) = 25.58 to 56.04

1=4.753(非球面)
1=0.45 nd1=1.531 νd1=56.0
2=1.460(非球面)
2=1.57(広角端)〜0.15(望遠端)
3=1.009(非球面)
3=0.78 nd2=1.531 νd2=56.0
4=-2.193(非球面)
4=0.20
5=-50.902(非球面)
5=0.45 nd3=1.614 νd3=25.6
6=1.213(非球面)
6=0.85(広角端)〜2.27(望遠端)
7=-2.928(非球面)
7=1.10 nd4=1.585 νd4=29.9
8=-2.028(非球面)
8=0.10
9=∞
9=0.30 nd5=1.517 νd5=64.2
10=∞
10=0.60
11=∞(結像面)
r 1 = 4.753 (aspherical surface)
d 1 = 0.45 nd 1 = 1.531 νd 1 = 56.0
r 2 = 1.460 (aspherical surface)
d 2 = 1.57 (wide-angle end) to 0.15 (telephoto end)
r 3 = 1.090 (aspherical surface)
d 3 = 0.78 nd 2 = 1.531 νd 2 = 56.0
r 4 = -2.193 (aspherical surface)
d 4 = 0.20
r 5 = -50.902 (aspherical surface)
d 5 = 0.45 nd 3 = 1.614 νd 3 = 25.6
r 6 = 1.213 (aspherical surface)
d 6 = 0.85 (wide-angle end) to 2.27 (telephoto end)
r 7 = -2.928 (aspherical surface)
d 7 = 1.10 nd 4 = 1.585 νd 4 = 29.9
r 8 = -2.028 (aspherical surface)
d 8 = 0.10
r 9 = ∞
d 9 = 0.30 nd 5 = 1.517 νd 5 = 64.2
r 10 = ∞
d 10 = 0.60
r 11 = ∞ (imaging plane)

円錐係数(k)および非球面係数(A4,A6,A8,A10,A12
(第1面)
k=0,
4=-1.6293×10-1, A6=2.1425×10-2,
8=3.9388×10-2, A10=-2.4078×10-2
12=4.3203×10-3
(第2面)
k=0,
4=-2.4413×10-1, A6=4.1317×10-2,
8=6.7894×10-2, A10=-5.6761×10-2
12=1.1042×10-2
(第3面)
k=0,
4=-1.7186×10-2, A6=3.6456×10-2,
8=-2.1361×10-1, A10=5.8719×10-1
12=-7.1198×10-1
(第4面)
k=0,
4=2.8651×10-1, A6=-4.7558×10-1,
8=9.7497×10-1, A10=-2.1447,
12=1.4249
(第5面)
k=0,
4=-6.3744×10-2, A6=-1.0834,
8=1.8748, A10=-4.6860,
12=2.4931×10-10
(第6面)
k=0,
4=-1.5316×10-1, A6=-1.9750×10-1,
8=1.9806×10-1, A10=-1.9666×10-1
12=2.8252×10-1
(第7面)
k=0,
4=-5.5118×10-2, A6=3.0448×10-2,
8=1.5523×10-3, A10=-1.3835×10-3
12=1.2085×10-4
(第8面)
k=0,
4=-3.6749×10-2, A6=3.5648×10-3,
8=9.3800×10-3, A10=-3.2573×10-3
12=4.9412×10-4
Conical coefficient (k) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 , A 12 )
(First side)
k = 0,
A 4 = -1.6293 × 10 -1 , A 6 = 2.1425 × 10 -2 ,
A 8 = 3.9388 × 10 -2 , A 10 = -2.4078 × 10 -2 ,
A 12 = 4.3203 × 10 -3
(Second side)
k = 0,
A 4 = -2.4413 × 10 -1 , A 6 = 4.1317 × 10 -2 ,
A 8 = 6.7894 × 10 -2 , A 10 = -5.6761 × 10 -2 ,
A 12 = 1.1042 × 10 -2
(Third side)
k = 0,
A 4 = -1.7186 × 10 -2 , A 6 = 3.6456 × 10 -2 ,
A 8 = −2.1361 × 10 −1 , A 10 = 5.8719 × 10 −1 ,
A 12 = -7.1198 × 10 -1
(Fourth surface)
k = 0,
A 4 = 2.8651 × 10 −1 , A 6 = −4.7558 × 10 −1 ,
A 8 = 9.7497 × 10 −1 , A 10 = −2.1447,
A 12 = 1.4249
(5th page)
k = 0,
A 4 = -6.3744 × 10 -2 , A 6 = -1.0834,
A 8 = 1.8748, A 10 = -4.6860,
A 12 = 2.4931 × 10 -10
(Sixth surface)
k = 0,
A 4 = -1.5316 × 10 -1 , A 6 = -1.9750 × 10 -1 ,
A 8 = 1.9806 × 10 −1 , A 10 = −1.9666 × 10 −1 ,
A 12 = 2.8252 × 10 -1
(Seventh side)
k = 0,
A 4 = -5.5118 × 10 -2 , A 6 = 3.0448 × 10 -2 ,
A 8 = 1.5523 × 10 −3 , A 10 = −1.3835 × 10 −3 ,
A 12 = 1.2085 × 10 -4
(8th page)
k = 0,
A 4 = -3.6749 × 10 -2 , A 6 = 3.5648 × 10 -3 ,
A 8 = 9.3800 × 10 −3 , A 10 = −3.2573 × 10 −3 ,
A 12 = 4.9412 × 10 -4

また、図5は、実施例2にかかる変倍光学系の広角端における諸収差図である。図6は、実施例2にかかる変倍光学系の望遠端における諸収差図である。図の曲線はd線(587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるΔS,ΔMは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 5 is a diagram illustrating various aberrations at the wide angle end of the variable magnification optical system according to the second example. FIG. 6 is a diagram of various aberrations at the telephoto end of the variable magnification optical system according to the second example. The curve in the figure represents the aberration at the wavelength corresponding to the d-line (587.56 nm). In the astigmatism diagrams, ΔS and ΔM represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

図7は、実施例3にかかる変倍光学系の構成を示す光軸に沿う断面図である。この変倍光学系は、図示しない物体側から順に、負の屈折力を有する第1レンズ群G31と、正の屈折力を有する第2レンズ群G32と、正の屈折力を有する第3レンズ群G33と、が配置されて構成される。第3レンズ群G33と結像面IMGとの間には、撮像素子のカバーガラスCGが配置されている。カバーガラスCGは必要に応じて配置されるものであり、不要な場合は省略可能である。また、結像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。 FIG. 7 is a cross-sectional view along the optical axis showing the configuration of the variable magnification optical system according to the third example. This variable magnification optical system includes, in order from the object side (not shown), a first lens group G 31 having a negative refractive power, a second lens group G 32 having a positive refractive power, and a third lens having a positive refractive power. a lens group G 33, is formed are disposed. Between the third lens group G 33 and the image plane IMG, a cover glass CG of the image pickup element is disposed. The cover glass CG is arranged as necessary, and can be omitted if unnecessary. In addition, a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the imaging plane IMG.

第1レンズ群G31は、負レンズL311により構成される。第2レンズ群G32は、前記物体側から順に、負レンズL321、正レンズL322、負レンズL323が配置されて構成される。正レンズL322の前記物体側面には、所定の口径を規定する開口絞りSが設けられている。第3レンズ群G33は、結像面IMGに凸面を向けた正のメニスカスレンズL331によって構成される。なお、各レンズ群を構成するレンズのすべての面に非球面が形成されている。また、各レンズ群を構成するレンズには、樹脂材質(プラスチック)で形成されているものを用いるとよい。 The first lens group G 31 is constituted by a negative lens L 311. The second lens group G 32 includes, in order from the object side, a negative lens L 321, a positive lens L 322, configured negative lens L 323 are arranged. An aperture stop S that defines a predetermined aperture is provided on the object side surface of the positive lens L 322 . The third lens group G 33 includes a positive meniscus lens L 331 having a convex surface directed toward the image forming plane IMG. In addition, aspherical surfaces are formed on all surfaces of the lenses constituting each lens group. In addition, it is preferable to use a lens made of a resin material (plastic) for each lens group.

この変倍光学系では、第2レンズ群G32を光軸に沿って結像面IMG側から前記物体側へ移動させることによって広角端から望遠端への変倍を行う。第1レンズ群G31および第3レンズ群G33の位置は固定されている。この変倍光学系は、第2レンズ群G32だけを広角端側および望遠端側の両移動端に移動させて、2つの焦点距離を選択する2焦点切換光学系である。 In this variable power optical system performs zooming to the telephoto end from the wide-angle end by moving the imaging surface IMG side to the object side along the second lens group G 32 to the optical axis. The positions of the first lens group G 31 and the third lens group G 33 are fixed. The zoom lens system, only the second lens group G 32 is moved in both the moving end of the wide-angle end and the telephoto end side, a bifocal switching換光science system to select two focal lengths.

以下、実施例3にかかる変倍光学系に関する各種数値データを示す。   Various numerical data related to the variable magnification optical system according to Example 3 are shown below.

Fナンバ=2.86(広角端)〜5.85(望遠端)
変倍光学系全系の焦点距離=3.05mm(fw:広角端)〜9.15mm(ft:望遠端)
半画角(ω)=37.48°(広角端)〜14.09°(望遠端)
変倍比=3.0
F number = 2.86 (wide-angle end) to 5.85 (telephoto end)
Focal length of the entire zoom optical system = 3.05 mm (fw: wide angle end) to 9.15 mm (ft: telephoto end)
Half angle of view (ω) = 37.48 ° (wide-angle end) to 14.09 ° (telephoto end)
Zoom ratio = 3.0

(条件式(1)に関する数値)
(Tw・Tt)1/2/(fw・ft)1/2=1.834
(Numerical value for conditional expression (1))
(Tw · Tt) 1/2 / (fw · ft) 1/2 = 1.834

(条件式(2)に関する数値)
f2(第2レンズ群G32の焦点距離)=2.958mm
f2/(fw・ft)1/2=0.560
(Numerical value related to conditional expression (2))
f2 (the focal length of the second lens group G 32) = 2.958mm
f2 / (fw · ft) 1/2 = 0.560

(条件式(3)に関する数値)
nda(各レンズ群を構成するレンズのd線に対する屈折率)=1.531〜1.614
(Numerical value for conditional expression (3))
nda (refractive index with respect to d-line of lenses constituting each lens group) = 1.531-1.614

(条件式(4)に関する数値)
νda(各レンズ群を構成するレンズのd線に対するアッベ数)=25.58〜56.04
(Numerical values related to conditional expression (4))
νda (Abbe number with respect to d-line of lenses constituting each lens group) = 25.58 to 56.04

1=2.437(非球面)
1=0.45 nd1=1.531 νd1=56.0
2=1.373(非球面)
2=3.45(広角端)〜0.10(望遠端)
3=1.467(非球面)
3=0.49 nd2=1.614 νd2=25.6
4=1.126(非球面)
4=0.10
5=1.032(非球面)
5=1.03 nd3=1.531 νd3=56.0
6=-4.844(非球面)
6=0.40
7=7.021(非球面)
7=0.45 nd4=1.614 νd4=25.6
8=1.089(非球面)
8=0.44(広角端)〜3.79(望遠端)
9=-11.058(非球面)
9=1.88 nd5=1.585 νd5=29.9
10=-1.498(非球面)
10=0.10
11=∞
11=0.50 nd6=1.517 νd6=64.2
12=∞
12=0.40
13=∞(結像面)
r 1 = 2.437 (aspherical surface)
d 1 = 0.45 nd 1 = 1.531 νd 1 = 56.0
r 2 = 1.373 (aspherical surface)
d 2 = 3.45 (wide-angle end) to 0.10 (telephoto end)
r 3 = 1.467 (aspherical surface)
d 3 = 0.49 nd 2 = 1.614 νd 2 = 25.6
r 4 = 1.126 (aspherical surface)
d 4 = 0.10
r 5 = 1.032 (aspherical surface)
d 5 = 1.03 nd 3 = 1.531 νd 3 = 56.0
r 6 = -4.844 (aspherical surface)
d 6 = 0.40
r 7 = 7.021 (aspherical surface)
d 7 = 0.45 nd 4 = 1.614 νd 4 = 25.6
r 8 = 1.089 (aspherical surface)
d 8 = 0.44 (wide-angle end) ~3.79 (telephoto end)
r 9 = -11.058 (aspherical surface)
d 9 = 1.88 nd 5 = 1.585 νd 5 = 29.9
r 10 = -1.498 (aspherical surface)
d 10 = 0.10
r 11 = ∞
d 11 = 0.50 nd 6 = 1.517 νd 6 = 64.2
r 12 = ∞
d 12 = 0.40
r 13 = ∞ (imaging plane)

円錐係数(k)および非球面係数(A4,A6,A8,A10,A12
(第1面)
k=-1.0000×10,
4=-4.4678×10-2, A6=6.2775×10-3,
8=-2.4548×10-4, A10=0,
12=0
(第2面)
k=-4.5680,
4=5.7014×10-3, A6=-2.5192×10-2,
8=1.1465×10-2, A10=-2.3013×10-3
12=1.9576×10-4
(第3面)
k=-1.8548,
4=5.1716×10-2, A6=-3.2749×10-2,
8=-7.2874×10-2, A10=3.6342×10-2
12=3.8445×10-15
(第4面)
k=2.5208×10-3,
4=-7.9242×10-2, A6=-9.4326×10-2,
8=-2.9188×10-1, A10=3.1897×10-1
12=-3.2934×10-15
(第5面)
k=-6.7338×10-1,
4=-5.5692×10-2, A6=5.4755×10-2,
8=-2.3977×10-1, A10=2.5228×10-1
12=1.0733×10-14
(第6面)
k=-9.8748,
4=-3.0181×10-1, A6=4.0392×10-1,
8=-5.4887×10-1, A10=4.1483×10-1
12=-5.8116×10-15
(第7面)
k=1.0000×10,
4=-1.1059, A6=7.3823×10-1,
8=-9.0144×10-1, A10=9.2908×10-1,
12=0
(第8面)
k=-6.1022,
4=-4.0206×10-1, A6=5.4252×10-1,
8=-3.4385×10-1, A10=1.1105×10-1
12=-8.7893×10-14
(第9面)
k=-9.6858,
4=-2.3451×10-2, A6=1.8018×10-2,
8=-5.6187×10-3, A10=7.5026×10-4
12=-3.6239×10-5
(第10面)
k=-3.0941,
4=-4.3308×10-2, A6=1.9452×10-2,
8=-4.3766×10-3, A10=4.2334×10-4
12=-1.4605×10-5
Conical coefficient (k) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 , A 12 )
(First side)
k = -1.0000 × 10,
A 4 = -4.4678 × 10 −2 , A 6 = 6.2775 × 10 −3 ,
A 8 = -2.4548 × 10 -4 , A 10 = 0,
A 12 = 0
(Second side)
k = -4.5680,
A 4 = 5.7014 × 10 −3 , A 6 = −2.5192 × 10 −2 ,
A 8 = 1.1465 × 10 −2 , A 10 = −2.33013 × 10 −3 ,
A 12 = 1.9576 × 10 -4
(Third side)
k = -1.8548,
A 4 = 5.1716 × 10 -2 , A 6 = -3.2749 × 10 -2 ,
A 8 = -7.2874 × 10 -2 , A 10 = 3.6342 × 10 -2 ,
A 12 = 3.8445 × 10 -15
(Fourth surface)
k = 2.5208 × 10 -3 ,
A 4 = -7.9242 × 10 -2 , A 6 = -9.4326 × 10 -2 ,
A 8 = -2.9188 × 10 -1 , A 10 = 3.1897 × 10 -1 ,
A 12 = -3.2934 × 10 -15
(5th page)
k = -6.7338 × 10 -1 ,
A 4 = -5.5692 × 10 -2 , A 6 = 5.4755 × 10 -2 ,
A 8 = -2.3977 × 10 −1 , A 10 = 2.5228 × 10 −1 ,
A 12 = 1.0733 × 10 -14
(Sixth surface)
k = -9.8748,
A 4 = -3.0181 × 10 −1 , A 6 = 4.0392 × 10 −1 ,
A 8 = -5.4887 × 10 −1 , A 10 = 4.1483 × 10 −1 ,
A 12 = -5.8116 × 10 -15
(Seventh side)
k = 1.000 × 10,
A 4 = -1.1059, A 6 = 7.3823 × 10 -1 ,
A 8 = −9.0144 × 10 −1 , A 10 = 9.2908 × 10 −1 ,
A 12 = 0
(8th page)
k = -6.1022,
A 4 = −4.0206 × 10 −1 , A 6 = 5.4252 × 10 −1 ,
A 8 = -3.4385 × 10 −1 , A 10 = 1.1105 × 10 −1 ,
A 12 = -8.7893 × 10 -14
(9th page)
k = -9.6858,
A 4 = -2.3451 × 10 -2 , A 6 = 1.8018 × 10 -2 ,
A 8 = -5.6187 × 10 -3 , A 10 = 7.5026 × 10 -4 ,
A 12 = -3.6239 × 10 -5
(Tenth aspect)
k = -3.0941,
A 4 = -4.3308 × 10 -2 , A 6 = 1.9452 × 10 -2 ,
A 8 = -4.3766 × 10 −3 , A 10 = 4.2334 × 10 −4 ,
A 12 = -1.4605 × 10 -5

また、図8は、実施例3にかかる変倍光学系の広角端における諸収差図である。図9は、実施例3にかかる変倍光学系の望遠端における諸収差図である。図の曲線はd線(587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるΔS,ΔMは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 8 is a diagram illustrating various aberrations at the wide-angle end of the variable magnification optical system according to the third example. FIG. 9 is a diagram illustrating various aberrations at the telephoto end of the variable magnification optical system according to the third example. The curve in the figure represents the aberration at the wavelength corresponding to the d-line (587.56 nm). In the astigmatism diagrams, ΔS and ΔM represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

図10は、実施例4にかかる変倍光学系の構成を示す光軸に沿う断面図である。この変倍光学系は、図示しない物体側から順に、負の屈折力を有する第1レンズ群G41と、正の屈折力を有する第2レンズ群G42と、正の屈折力を有する第3レンズ群G43と、が配置されて構成される。第3レンズ群G43と結像面IMGとの間には、撮像素子のカバーガラスCGが配置されている。カバーガラスCGは必要に応じて配置されるものであり、不要な場合は省略可能である。また、結像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。 FIG. 10 is a cross-sectional view along the optical axis showing the configuration of the variable magnification optical system according to the fourth example. This variable magnification optical system includes, in order from the object side (not shown), a first lens group G 41 having a negative refractive power, a second lens group G 42 having a positive refractive power, and a third lens having a positive refractive power. a lens group G 43, is formed are disposed. Between the third lens group G 43 and the image plane IMG, a cover glass CG of the image pickup element is disposed. The cover glass CG is arranged as necessary, and can be omitted if unnecessary. In addition, a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the imaging plane IMG.

第1レンズ群G41は、負レンズL411により構成される。第2レンズ群G42は、前記物体側から順に、負レンズL421、正レンズL422、負レンズL423が配置されて構成される。正レンズL422の前記物体側面には、所定の口径を規定する開口絞りSが設けられている。第3レンズ群G43は、結像面IMGに凸面を向けた正のメニスカスレンズL431によって構成される。なお、各レンズ群を構成するレンズのすべての面に非球面が形成されている。また、各レンズ群を構成するレンズには、樹脂材質(プラスチック)で形成されているものを用いるとよい。 The first lens group G 41 includes a negative lens L 411 . The second lens group G 42 includes, in order from the object side, a negative lens L 421, a positive lens L 422, configured negative lens L 423 are arranged. An aperture stop S that defines a predetermined aperture is provided on the object side surface of the positive lens L 422 . The third lens group G 43 is constituted by a positive meniscus lens L 431 with a convex surface facing the imaging plane IMG. In addition, aspherical surfaces are formed on all surfaces of the lenses constituting each lens group. In addition, it is preferable to use a lens made of a resin material (plastic) for each lens group.

この変倍光学系では、第2レンズ群G32を光軸に沿って結像面IMG側から前記物体側へ移動させることによって広角端から望遠端への変倍を行う。そして、第1レンズ群G41および第3レンズ群G43を一体的に結像面IMG側に凸形状の軌跡を描くように移動させることにより、変倍に伴う結像面位置の変動を補正する。 In this variable power optical system performs zooming to the telephoto end from the wide-angle end by moving the imaging surface IMG side to the object side along the second lens group G 32 to the optical axis. Then, the first lens group G 41 and the third lens group G 43 are integrally moved so as to draw a convex locus on the imaging surface IMG side, thereby correcting the variation of the imaging surface position due to zooming. To do.

以下、実施例4にかかる変倍光学系に関する各種数値データを示す。   Various numerical data related to the variable magnification optical system according to Example 4 are shown below.

Fナンバ=2.89(広角端)〜4.65(中間)〜5.83(望遠端)
変倍光学系全系の焦点距離=3.05mm(fw:広角端)〜6.10mm(中間)〜9.15mm(ft:望遠端)
半画角(ω)=37.61°(広角端)〜20.87°(中間)〜14.03°(望遠端)
変倍比=3.0
F number = 2.89 (wide-angle end) to 4.65 (middle) to 5.83 (telephoto end)
Focal length of the entire zoom optical system = 3.05 mm (fw: wide angle end)-6.10 mm (middle)-9.15 mm (ft: telephoto end)
Half angle of view (ω) = 37.61 ° (wide-angle end) to 20.87 ° (middle) to 14.03 ° (telephoto end)
Zoom ratio = 3.0

(条件式(1)に関する数値)
(Tw・Tt)1/2/(fw・ft)1/2=1.903
(Numerical value for conditional expression (1))
(Tw · Tt) 1/2 / (fw · ft) 1/2 = 1.903

(条件式(2)に関する数値)
f2(第2レンズ群G42の焦点距離)=3.362mm
f2/(fw・ft)1/2=0.636
(Numerical value related to conditional expression (2))
f2 (the focal length of the second lens group G 42) = 3.362mm
f2 / (fw · ft) 1/2 = 0.636

(条件式(3)に関する数値)
nda(各レンズ群を構成するレンズのd線に対する屈折率)=1.531〜1.614
(Numerical value for conditional expression (3))
nda (refractive index with respect to d-line of lenses constituting each lens group) = 1.531-1.614

(条件式(4)に関する数値)
νda(各レンズ群を構成するレンズのd線に対するアッベ数)=25.58〜56.04
(Numerical values related to conditional expression (4))
νda (Abbe number with respect to d-line of lenses constituting each lens group) = 25.58 to 56.04

1=2.193(非球面)
1=0.50 nd1=1.531 νd1=56.0
2=1.298(非球面)
2=3.79(広角端)〜1.60(中間)〜0.12(望遠端)
3=1.625(非球面)
3=0.45 nd2=1.614 νd2=25.6
4=1.322(非球面)
4=0.10
5=1.160(非球面)
5=0.88 nd3=1.531 νd3=56.0
6=18.659(非球面)
6=0.37
7=2.549(非球面)
7=0.45 nd4=1.614 νd4=25.6
8=1.338(非球面)
8=0.64(広角端)〜2.83(中間)〜4.31(望遠端)
9=-3.052(非球面)
9=1.34 nd5=1.585 νd5=29.9
10=-1.530(非球面)
10=0.10
11=∞
11=0.50 nd6=1.517 νd6=64.2
12=∞
12=1.21(広角端)〜0.40(中間)〜0.66(望遠端)
13=∞(結像面)
r 1 = 2.193 (aspherical surface)
d 1 = 0.50 nd 1 = 1.531 νd 1 = 56.0
r 2 = 1.298 (aspherical surface)
d 2 = 3.79 (wide-angle end) to 1.60 (middle) to 0.12 (telephoto end)
r 3 = 1.625 (aspherical surface)
d 3 = 0.45 nd 2 = 1.614 νd 2 = 25.6
r 4 = 1.322 (aspherical surface)
d 4 = 0.10
r 5 = 1.160 (aspherical surface)
d 5 = 0.88 nd 3 = 1.531 νd 3 = 56.0
r 6 = 18.659 (aspherical surface)
d 6 = 0.37
r 7 = 2.549 (aspherical surface)
d 7 = 0.45 nd 4 = 1.614 νd 4 = 25.6
r 8 = 1.338 (aspherical surface)
d 8 = 0.64 (wide-angle end) ~2.83 (Intermediate) ~4.31 (telephoto end)
r 9 = -3.052 (aspherical surface)
d 9 = 1.34 nd 5 = 1.585 νd 5 = 29.9
r 10 = -1.530 (aspherical surface)
d 10 = 0.10
r 11 = ∞
d 11 = 0.50 nd 6 = 1.517 νd 6 = 64.2
r 12 = ∞
d 12 = 1.21 (wide-angle end) to 0.40 (middle) ~0.66 (telephoto end)
r 13 = ∞ (imaging plane)

円錐係数(k)および非球面係数(A4,A6,A8,A10,A12
(第1面)
k=-3.8830,
4=-5.3594×10-2, A6=6.7356×10-3,
8=-2.3670×10-4, A10=0,
12=0
(第2面)
k=-3.4593,
4=8.5214×10-3, A6=-3.3148×10-2,
8=1.3908×10-2, A10=-2.5704×10-3
12=1.9576×10-4
(第3面)
k=-1.8173,
4=4.8433×10-2, A6=-5.3090×10-2,
8=-9.0960×10-2, A10=8.7568×10-2
12=3.8443×10-15
(第4面)
k=3.6462×10-1,
4=-1.9276×10-2, A6=-1.7459×10-1,
8=-4.5955×10-1, A10=6.2979×10-1
12=-3.2933×10-15
(第5面)
k=-5.2690×10-1,
4=-2.2038×10-2, A6=-4.3797×10-2,
8=-3.5423×10-1, A10=3.5128×10-1
12=1.0733×10-14
(第6面)
k=-1.0000×10,
4=-4.0280×10-1, A6=3.7092×10-1,
8=-6.4567×10-1, A10=4.5105×10-1
12=-5.8114×10-15
(第7面)
k=4.0833,
4=-8.8211×10-1, A6=2.9392×10-1,
8=-1.1664, A10=1.5208,
12=0
(第8面)
k=-1.8234,
4=-5.1959×10-1, A6=4.5266×10-1,
8=-1.7660×10-1, A10=6.2885×10-2
12=-8.7893×10-14
(第9面)
k=-2.9892×10-1,
4=-1.7417×10-2, A6=9.7623×10-3,
8=-3.5495×10-3, A10=8.9406×10-4
12=-7.1551×10-5
(第10面)
k=-2.6530,
4=-5.8796×10-2, A6=1.9675×10-2,
8=-4.4510×10-3, A10=4.3603×10-4
12=-1.4825×10-6
Conical coefficient (k) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 , A 12 )
(First side)
k = -3.8830,
A 4 = -5.3594 × 10 −2 , A 6 = 6.7356 × 10 −3 ,
A 8 = -2.3670 × 10 -4 , A 10 = 0,
A 12 = 0
(Second side)
k = -3.4593,
A 4 = 8.5214 × 10 −3 , A 6 = −3.3148 × 10 −2 ,
A 8 = 1.3908 × 10 −2 , A 10 = −2.5704 × 10 −3 ,
A 12 = 1.9576 × 10 -4
(Third side)
k = -1.8173,
A 4 = 4.8433 × 10 -2 , A 6 = -5.3090 × 10 -2 ,
A 8 = -9.0960 × 10 -2 , A 10 = 8.7568 × 10 -2 ,
A 12 = 3.8443 × 10 -15
(Fourth surface)
k = 3.6462 × 10 -1 ,
A 4 = -1.9276 × 10 -2 , A 6 = -1.7459 × 10 -1 ,
A 8 = -4.5955 × 10 -1 , A 10 = 6.2979 × 10 -1 ,
A 12 = -3.2933 × 10 -15
(5th page)
k = -5.2690 × 10 -1 ,
A 4 = -2.2038 × 10 -2 , A 6 = -4.3797 × 10 -2 ,
A 8 = -3.5423 × 10 −1 , A 10 = 3.5128 × 10 −1 ,
A 12 = 1.0733 × 10 -14
(Sixth surface)
k = -1.0000 × 10,
A 4 = -4.0280 × 10 -1 , A 6 = 3.7092 × 10 -1 ,
A 8 = -6.4567 × 10 −1 , A 10 = 4.5105 × 10 −1 ,
A 12 = -5.8114 × 10 -15
(Seventh side)
k = 4.0833,
A 4 = −8.8211 × 10 −1 , A 6 = 2.9392 × 10 −1 ,
A 8 = -1.1664, A 10 = 1.5208,
A 12 = 0
(8th page)
k = -1.8234,
A 4 = -5.1959 × 10 −1 , A 6 = 4.5266 × 10 −1 ,
A 8 = -1.7660 × 10 -1 , A 10 = 6.2885 × 10 -2 ,
A 12 = -8.7893 × 10 -14
(9th page)
k = -2.9892 × 10 -1 ,
A 4 = -1.7417 × 10 -2 , A 6 = 9.7623 × 10 -3 ,
A 8 = -3.5495 × 10 -3 , A 10 = 8.9406 × 10 -4 ,
A 12 = -7.1551 × 10 -5
(Tenth aspect)
k = -2.6530,
A 4 = -5.8796 × 10 -2 , A 6 = 1.9675 × 10 -2 ,
A 8 = -4.4510 × 10 -3 , A 10 = 4.3603 × 10 -4 ,
A 12 = -1.4825 × 10 -6

また、図11は、実施例4にかかる変倍光学系の広角端における諸収差図である。図12は、実施例4にかかる変倍光学系の中間における諸収差図である。図13は、実施例4にかかる変倍光学系の望遠端における諸収差図である。図の曲線はd線(587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるΔS,ΔMは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 11 is a diagram illustrating various aberrations at the wide angle end of the variable magnification optical system according to the fourth example. FIG. 12 is a diagram illustrating various aberrations in the middle of the variable magnification optical system according to the fourth example. FIG. 13 is a diagram illustrating various aberrations at the telephoto end of the variable magnification optical system according to the fourth example. The curve in the figure represents the aberration at the wavelength corresponding to the d-line (587.56 nm). In the astigmatism diagrams, ΔS and ΔM represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

図14は、実施例5にかかる変倍光学系の構成を示す光軸に沿う断面図である。この変倍光学系は、図示しない物体側から順に、負の屈折力を有する第1レンズ群G51と、正の屈折力を有する第2レンズ群G52と、正の屈折力を有する第3レンズ群G53と、が配置されて構成される。第3レンズ群G53と結像面IMGとの間には、撮像素子のカバーガラスCGが配置されている。カバーガラスCGは必要に応じて配置されるものであり、不要な場合は省略可能である。また、結像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。 FIG. 14 is a cross-sectional view along the optical axis showing the configuration of the variable magnification optical system according to the fifth example. This variable magnification optical system includes, in order from the object side (not shown), a first lens group G 51 having a negative refractive power, a second lens group G 52 having a positive refractive power, and a third lens having a positive refractive power. a lens group G 53, is formed are disposed. Between the third lens group G 53 and the imaging plane IMG, a cover glass CG of the image sensor is disposed. The cover glass CG is arranged as necessary, and can be omitted if unnecessary. In addition, a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the imaging plane IMG.

第1レンズ群G51は、負レンズL511により構成される。第2レンズ群G52は、前記物体側から順に、所定の口径を規定する開口絞りS、正レンズL521、負レンズL522が配置されて構成される。第3レンズ群G53は、結像面IMGに凸面を向けた正のメニスカスレンズL531によって構成される。なお、各レンズ群を構成するレンズのすべての面に非球面が形成されている。また、各レンズ群を構成するレンズには、樹脂材質(プラスチック)で形成されているものを用いるとよい。 The first lens group G 51 includes a negative lens L 511 . The second lens group G 52 includes an aperture stop S that defines a predetermined aperture, a positive lens L 521 , and a negative lens L 522 in order from the object side. The third lens group G 53 includes a positive meniscus lens L 531 having a convex surface directed toward the imaging surface IMG. In addition, aspherical surfaces are formed on all surfaces of the lenses constituting each lens group. In addition, it is preferable to use a lens made of a resin material (plastic) for each lens group.

この変倍光学系では、第2レンズ群G52を光軸に沿って結像面IMG側から前記物体側へ移動させることによって広角端から望遠端への変倍を行う。そして、第1レンズ群G51および第3レンズ群G53を一体的に結像面IMG側に凸形状の軌跡を描くように移動させることにより、変倍に伴う結像面位置の変動を補正する。 In this variable power optical system performs zooming to the telephoto end from the wide-angle end by moving the imaging surface IMG side to the object side along the second lens group G 52 to the optical axis. Then, the first lens group G 51 and the third lens group G 53 are integrally moved so as to draw a convex locus on the imaging surface IMG side, thereby correcting the variation of the imaging surface position due to zooming. To do.

以下、実施例5にかかる変倍光学系に関する各種数値データを示す。   Various numerical data related to the variable magnification optical system according to Example 5 are shown below.

Fナンバ=3.48(広角端)〜5.41(中間)〜6.10(望遠端)
変倍光学系全系の焦点距離=3.75mm(fw:広角端)〜7.50mm(中間)〜9.38mm(ft:望遠端)
半画角(ω)=31.96°(広角端)〜17.03°(中間)〜14.01°(望遠端)
変倍比=2.5
F number = 3.48 (wide-angle end)-5.41 (middle)-6.10 (telephoto end)
Focal length of the entire zooming optical system = 3.75 mm (fw: wide angle end)-7.50 mm (middle)-9.38 mm (ft: telephoto end)
Half angle of view (ω) = 31.96 ° (wide-angle end) to 17.03 ° (middle) to 14.01 ° (telephoto end)
Scaling ratio = 2.5

(条件式(1)に関する数値)
(Tw・Tt)1/2/(fw・ft)1/2=1.838
(Numerical value for conditional expression (1))
(Tw · Tt) 1/2 / (fw · ft) 1/2 = 1.838

(条件式(2)に関する数値)
f2(第2レンズ群G52の焦点距離)=4.019mm
f2/(fw・ft)1/2=0.678
(Numerical value related to conditional expression (2))
f2 (the focal length of the second lens group G 52) = 4.019mm
f2 / (fw · ft) 1/2 = 0.678

(条件式(3)に関する数値)
nda(各レンズ群を構成するレンズのd線に対する屈折率)=1.531〜1.614
(Numerical value for conditional expression (3))
nda (refractive index with respect to d-line of lenses constituting each lens group) = 1.531-1.614

(条件式(4)に関する数値)
νda(各レンズ群を構成するレンズのd線に対するアッベ数)=25.58〜56.04
(Numerical values related to conditional expression (4))
νda (Abbe number with respect to d-line of lenses constituting each lens group) = 25.58 to 56.04

1=-6.579(非球面)
1=0.50 nd1=1.531 νd1=56.0
2=14.789(非球面)
2=3.91(広角端)〜1.10(中間)〜0.12(望遠端)
3=∞(開口絞り)
3=0
4=1.531(非球面)
4=1.37 nd2=1.531 νd2=56.0
5=-9.055(非球面)
5=0.30
6=5.272(非球面)
6=0.52 nd3=1.614 νd3=25.6
7=1.272(非球面)
7=0.81(広角端)〜3.62(中間)〜4.60(望遠端)
8=-93.914(非球面)
8=1.81 nd4=1.531 νd4=56.0
9=-2.887(非球面)
9=0.10
10=∞
10=0.50 nd5=1.517 νd5=64.2
11=∞
7=1.18(広角端)〜0.63(中間)〜0.98(望遠端)
12=∞(結像面)
r 1 = -6.579 (aspherical surface)
d 1 = 0.50 nd 1 = 1.531 νd 1 = 56.0
r 2 = 14.789 (aspherical surface)
d 2 = 3.91 (wide-angle end) to 1.10 (middle) to 0.12 (telephoto end)
r 3 = ∞ (aperture stop)
d 3 = 0
r 4 = 1.531 (aspherical surface)
d 4 = 1.37 nd 2 = 1.531 νd 2 = 56.0
r 5 = -9.055 (aspherical surface)
d 5 = 0.30
r 6 = 5.272 (aspherical surface)
d 6 = 0.52 nd 3 = 1.614 νd 3 = 25.6
r 7 = 1.272 (aspherical surface)
d 7 = 0.81 (wide-angle end) to 3.62 (middle) to 4.60 (telephoto end)
r 8 = -93.914 (aspherical surface)
d 8 = 1.81 nd 4 = 1.531 νd 4 = 56.0
r 9 = -2.887 (aspherical surface)
d 9 = 0.10
r 10 = ∞
d 10 = 0.50 nd 5 = 1.517 νd 5 = 64.2
r 11 = ∞
d 7 = 1.18 (wide-angle end) to 0.63 (middle) to 0.98 (telephoto end)
r 12 = ∞ (imaging plane)

円錐係数(k)および非球面係数(A4,A6,A8,A10,A12
(第1面)
k=0,
4=1.1811×10-3, A6=-2.2200×10-4,
8=1.9882×10-5, A10=0,
12=0
(第2面)
k=0,
4=-7.0910×10-4, A6=-5.6061×10-4,
8=5.6302×10-5, A10=0,
12=0
(第4面)
k=0,
4=-6.9177×10-3, A6=-1.5514×10-3,
8=-4.7250×10-3, A10=0,
12=0
(第5面)
k=0,
4=5.1832×10-3, A6=-2.3170×10-2,
8=-1.7215×10-2, A10=0,
12=0
(第6面)
k=0,
4=-1.8816×10-1, A6=-1.7966×10-2,
8=-8.2568×10-2, A10=0,
12=0
(第7面)
k=0,
4=-2.0063×10-1, A6=1.4853×10-2,
8=-1.1189×10-2, A10=0,
12=0
(第8面)
k=0,
4=-3.7431×10-3, A6=2.2286×10-3,
8=-1.0560×10-4, A10=0,
12=0
(第9面)
k=0,
4=6.3474×10-3, A6=5.3312×10-5,
8=2.1974×10-4, A10=0,
12=0
Conical coefficient (k) and aspheric coefficient (A 4 , A 6 , A 8 , A 10 , A 12 )
(First side)
k = 0,
A 4 = 1.1811 × 10 −3 , A 6 = −2.2200 × 10 −4 ,
A 8 = 1.9882 × 10 -5 , A 10 = 0,
A 12 = 0
(Second side)
k = 0,
A 4 = -7.0910 × 10 -4 , A 6 = -5.6061 × 10 -4 ,
A 8 = 5.6302 × 10 -5 , A 10 = 0,
A 12 = 0
(Fourth surface)
k = 0,
A 4 = -6.9177 × 10 -3 , A 6 = -1.5514 × 10 -3 ,
A 8 = −4.7250 × 10 −3 , A 10 = 0,
A 12 = 0
(5th page)
k = 0,
A 4 = 5.1832 × 10 −3 , A 6 = −2.3170 × 10 −2 ,
A 8 = -1.7215 × 10 -2 , A 10 = 0,
A 12 = 0
(Sixth surface)
k = 0,
A 4 = -1.8816 × 10 −1 , A 6 = −1.7966 × 10 −2 ,
A 8 = −8.2568 × 10 −2 , A 10 = 0,
A 12 = 0
(Seventh side)
k = 0,
A 4 = -2.0063 × 10 −1 , A 6 = 1.4853 × 10 −2 ,
A 8 = −1.1189 × 10 −2 , A 10 = 0,
A 12 = 0
(8th page)
k = 0,
A 4 = -3.7431 × 10 -3 , A 6 = 2.2286 × 10 -3 ,
A 8 = -1.0560 × 10 -4 , A 10 = 0,
A 12 = 0
(9th page)
k = 0,
A 4 = 6.3474 × 10 −3 , A 6 = 5.3312 × 10 −5 ,
A 8 = 2.1974 × 10 -4 , A 10 = 0,
A 12 = 0

また、図15は、実施例5にかかる変倍光学系の広角端における諸収差図である。図16は、実施例5にかかる変倍光学系の中間における諸収差図である。図17は、実施例5にかかる変倍光学系の望遠端における諸収差図である。図の曲線はd線(587.56nm)に相当する波長の収差を表す。そして、非点収差図におけるΔS,ΔMは、それぞれサジタル像面、メリディオナル像面に対する収差を表す。   FIG. 15 is a diagram illustrating various aberrations at the wide-angle end of the variable magnification optical system according to the fifth example. FIG. 16 is a diagram illustrating various aberrations in the middle of the variable magnification optical system according to the fifth example. FIG. 17 is a diagram of various aberrations at the telephoto end of the variable magnification optical system according to the fifth example. The curve in the figure represents the aberration at the wavelength corresponding to the d-line (587.56 nm). In the astigmatism diagrams, ΔS and ΔM represent aberrations with respect to the sagittal image surface and the meridional image surface, respectively.

なお、上記各実施例中の数値データにおいて、r1,r2,・・・・は各レンズ、開口絞り面などの曲率半径、d1,d2,・・・・は各レンズ、開口絞りなどの肉厚またはそれらの面間隔、nd1,nd2,・・・・は各レンズなどのd線(λ=587.56nm)に対する屈折率、νd1,νd2,・・・・は各レンズなどのd線(λ=587.56nm)に対するアッベ数を示している。 In the numerical data in the above embodiments, r 1 , r 2 ,... Are the radii of curvature of each lens, aperture stop surface, etc., d 1 , d 2 ,. , Etc., or their surface spacing, nd 1 , nd 2 ,... Is the refractive index for the d-line (λ = 587.56 nm) of each lens, νd 1 , νd 2 ,. The Abbe number with respect to d-line (λ = 587.56 nm) of a lens or the like is shown.

また、上記各非球面形状は、レンズ面頂点から光軸方向の距離をZ、光軸と垂直な方向の高さをhとし、光の進行方向を正とするとき、以下に示す式により表される。   Each of the aspheric shapes is expressed by the following equation when the distance from the apex of the lens surface in the optical axis direction is Z, the height in the direction perpendicular to the optical axis is h, and the light traveling direction is positive. Is done.

Figure 2011237547
Figure 2011237547

ただし、cは曲率(1/r)、kは円錐係数、A4,A6,A8,A10,A12はそれぞれ4次,6次,8次,10次,12次の非球面係数である。 Where c is the curvature (1 / r), k is the conic coefficient, and A 4 , A 6 , A 8 , A 10 , and A 12 are the 4th, 6th, 8th, 10th, and 12th aspheric coefficients, respectively. It is.

以上説明したように、上記各実施例の変倍光学系は、上記各条件を満足することで、小型で簡易な構成でありながら、高い光学性能を維持しつつ2〜3倍程度の変倍を可能とし、広角端での撮影も支障なく行えるようになる。さらに、変倍時のレンズの位置決め制御も容易になる。また、上記各実施例の変倍光学系は、適宜非球面が形成されたレンズを用いているため、少ないレンズ枚数で、良好な光学性能を維持することができる。   As described above, the variable power optical system of each of the above embodiments satisfies the above-described conditions, so that the zoom power of about 2 to 3 times is maintained while maintaining high optical performance while having a small and simple configuration. It is possible to shoot at the wide-angle end without any trouble. Furthermore, the lens positioning control during zooming becomes easy. In addition, since the variable power optical system of each of the above embodiments uses a lens with an appropriately aspherical surface, good optical performance can be maintained with a small number of lenses.

以上のように、この発明の変倍光学系は、デジタルスチルカメラやデジタルビデオカメラに有用であり、特に、情報携帯端末や、携帯電話などの小型装置に最適である。   As described above, the variable power optical system of the present invention is useful for digital still cameras and digital video cameras, and is particularly suitable for small devices such as information portable terminals and cellular phones.

11,G21,G31,G41,G51 第1レンズ群
12,G22,G32,G42,G52 第2レンズ群
13,G23,G33,G43,G53 第3レンズ群
111,L121,L123,L211,L222,L311,L321,L323,L411,L421,L423,L511,L522,負レンズ
122,L221,L322,L422,L521 正レンズ
131,L231,L331,L431,L531 正のメニスカスレンズ
S 開口絞り
CG カバーガラス
IMG 結像面
G 11 , G 21 , G 31 , G 41 , G 51 1st lens group G 12 , G 22 , G 32 , G 42 , G 52 2nd lens group G 13 , G 23 , G 33 , G 43 , G 53 the third lens group L 111, L 121, L 123 , L 211, L 222, L 311, L 321, L 323, L 411, L 421, L 423, L 511, L 522, a negative lens L 122, L 221 , L 322 , L 422 , L 521 positive lens L 131 , L 231 , L 331 , L 431 , L 531 positive meniscus lens S aperture stop CG cover glass IMG imaging surface

Claims (4)

物体側より順に配置された、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を備え、
広角端から望遠端への変倍を行う際に前記第1レンズ群と前記第3レンズ群との間隔が不変であり、かつ、以下の条件式を満足することを特徴とする変倍光学系。
(1) 1.4<(Tw・Tt)1/2/(fw・ft)1/2<2.0
ただし、Twは広角端における光学系の全長、Ttは望遠端における光学系の全長、fwは広角端における全系の焦点距離、ftは望遠端における全系の焦点距離を示す。
A first lens group having negative refracting power, a second lens group having positive refracting power, and a third lens group having positive refracting power, arranged in order from the object side;
A variable power optical system characterized in that the distance between the first lens group and the third lens group is unchanged when zooming from the wide-angle end to the telephoto end, and satisfies the following conditional expression: .
(1) 1.4 <(Tw · Tt) 1/2 / (fw · ft) 1/2 <2.0
Where Tw is the total length of the optical system at the wide angle end, Tt is the total length of the optical system at the telephoto end, fw is the focal length of the entire system at the wide angle end, and ft is the focal length of the entire system at the telephoto end.
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
(2) 0.4<f2/(fw・ft)1/2<0.8
ただし、f2は前記第2レンズ群の焦点距離を示す。
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
(2) 0.4 <f2 / (fw · ft) 1/2 <0.8
Here, f2 represents the focal length of the second lens group.
広角端から望遠端への変倍を行う際に、前記第2レンズ群を物体側に移動させ、前記第1レンズ群および前記第3レンズ群の位置を固定することを特徴とする請求項1または2に記載の変倍光学系。   2. The zoom lens system according to claim 1, wherein when performing zooming from the wide-angle end to the telephoto end, the second lens group is moved to the object side, and the positions of the first lens group and the third lens group are fixed. Or the variable magnification optical system according to 2; 広角端から望遠端への変倍を行う際に、前記第2レンズ群を変倍を行うために物体側に移動させるとともに、前記第1レンズ群および前記第3レンズ群を結像面位置の変動を補正するために一体的に結像面側に凸形状の軌跡を描くように移動させることを特徴とする請求項1または2に記載の変倍光学系。   When zooming from the wide-angle end to the telephoto end, the second lens group is moved to the object side for zooming, and the first lens group and the third lens group are moved to the image plane position. 3. The variable magnification optical system according to claim 1, wherein the optical system is moved so as to draw a convex locus on the image plane side in order to correct the fluctuation.
JP2010107747A 2010-05-07 2010-05-07 Variable power optical system Pending JP2011237547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107747A JP2011237547A (en) 2010-05-07 2010-05-07 Variable power optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107747A JP2011237547A (en) 2010-05-07 2010-05-07 Variable power optical system

Publications (1)

Publication Number Publication Date
JP2011237547A true JP2011237547A (en) 2011-11-24

Family

ID=45325607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107747A Pending JP2011237547A (en) 2010-05-07 2010-05-07 Variable power optical system

Country Status (1)

Country Link
JP (1) JP2011237547A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452329B (en) * 2012-08-30 2014-09-11 Largan Precision Co Ltd Optical image capturing lens assembly
CN105242383A (en) * 2015-10-13 2016-01-13 利达光电股份有限公司 Wide-aperture day and night confocal glass and plastic hybrid lens
CN106802476A (en) * 2013-01-22 2017-06-06 三星电机株式会社 Subminiature optical system and the mancarried device including the Subminiature optical system
CN114236749A (en) * 2020-09-09 2022-03-25 大立光电股份有限公司 Image capturing lens, image capturing device and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452329B (en) * 2012-08-30 2014-09-11 Largan Precision Co Ltd Optical image capturing lens assembly
CN106802476A (en) * 2013-01-22 2017-06-06 三星电机株式会社 Subminiature optical system and the mancarried device including the Subminiature optical system
US10191249B2 (en) 2013-01-22 2019-01-29 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US10310224B2 (en) 2013-01-22 2019-06-04 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US10473895B2 (en) 2013-01-22 2019-11-12 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US11099362B2 (en) 2013-01-22 2021-08-24 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
US11796773B2 (en) 2013-01-22 2023-10-24 Samsung Electro-Mechanics Co., Ltd. Subminiature optical system and portable device including the same
CN105242383A (en) * 2015-10-13 2016-01-13 利达光电股份有限公司 Wide-aperture day and night confocal glass and plastic hybrid lens
CN105242383B (en) * 2015-10-13 2017-11-24 利达光电股份有限公司 Day and night confocal glass moulds hybrid lenses for a kind of large aperture
CN114236749A (en) * 2020-09-09 2022-03-25 大立光电股份有限公司 Image capturing lens, image capturing device and electronic device
CN114236749B (en) * 2020-09-09 2023-01-20 大立光电股份有限公司 Image capturing lens, image capturing device and electronic device

Similar Documents

Publication Publication Date Title
JP5907417B2 (en) Imaging lens, imaging device, and information device
JP5577309B2 (en) Zoom lens system, lens barrel, interchangeable lens device, and camera system
CN201732203U (en) Variable focus lens and image pickup device
JP4819476B2 (en) Zoom lens and imaging apparatus using the same
JP2009216941A (en) Bending variable power optical system
JP4744969B2 (en) Variable magnification optical system
CN103038687A (en) Zoom lens system, interchangeable lens device, and camera system
JP2005292403A (en) Variable power optical system, imaging lens device and digital apparatus
JP5954577B2 (en) Imaging lens, lens unit, imaging device
JP2007212961A (en) Zoom lens system, imaging apparatus and camera
JP2009282465A (en) Zoom lens and imaging apparatus
JP4984608B2 (en) Zoom lens and imaging apparatus
JP5529475B2 (en) Zoom lens and imaging device
JP2006337793A (en) Zoom lens and imaging apparatus using same
CN101566723B (en) Zoom lens and imaging apparatus
JP2011085653A (en) Zoom lens system, imaging apparatus and camera
JP6355076B2 (en) Zoom lens system, interchangeable lens device and camera system
JP2011237547A (en) Variable power optical system
JP5905883B2 (en) Zoom lens and imaging device
JP2008281857A (en) Zoom lens
JP2014119741A (en) Zoom lens
JP2013145286A (en) Zoom lens system, imaging apparatus, and camera
JP2011248269A (en) Zoom lens system, imaging device and camera system
JP2009198798A (en) Collapsible zoom lens
JP2015031829A (en) Zoom lens, optical device and method for manufacturing zoom lens