JP2011237095A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011237095A
JP2011237095A JP2010108141A JP2010108141A JP2011237095A JP 2011237095 A JP2011237095 A JP 2011237095A JP 2010108141 A JP2010108141 A JP 2010108141A JP 2010108141 A JP2010108141 A JP 2010108141A JP 2011237095 A JP2011237095 A JP 2011237095A
Authority
JP
Japan
Prior art keywords
temperature
compressor
container
time
discharge gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010108141A
Other languages
Japanese (ja)
Other versions
JP5464359B2 (en
Inventor
Kazuya Funada
和也 船田
Masaki Fujino
正樹 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010108141A priority Critical patent/JP5464359B2/en
Publication of JP2011237095A publication Critical patent/JP2011237095A/en
Application granted granted Critical
Publication of JP5464359B2 publication Critical patent/JP5464359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure that a protection function of a compressor operates before a compressor temperature (temperature of a sealed container) reaches an operation limit temperature, even in a negative pressure operation state where there is a little of or return inhaled refrigerant or no refrigerant returns, and to improve the reliability of the protection function.SOLUTION: When a container temperature Tc is a predetermined operation limit temperature Tmax or lower and the container temperature Tc is higher than a discharge gas temperature Tg even in either of a time point t1 when a predetermined time has passed after the compressor starts operation and a time point t2 after a predetermined time has passed from the time point t1, the operation of the compressor is stopped.

Description

本発明は空気調和機に関し、さらに詳しく言えば、冷媒を圧縮する圧縮機の保護機能に関するものである。   The present invention relates to an air conditioner, and more particularly to a protective function of a compressor that compresses a refrigerant.

空気調和機の多くは、図4に示すように、圧縮機11,四方弁12,室内熱交換器13,膨張弁14,室外熱交換器15およびアキュムレータ16を冷媒配管を介して接続してなる冷媒循環系を基本的な構成として備える。なお、室内熱交換器13と室外熱交換器15には、それぞれ送風ファンが設けられているが、図4ではその図示が省略されている。   As shown in FIG. 4, many air conditioners are configured by connecting a compressor 11, a four-way valve 12, an indoor heat exchanger 13, an expansion valve 14, an outdoor heat exchanger 15, and an accumulator 16 through a refrigerant pipe. A refrigerant circulation system is provided as a basic configuration. The indoor heat exchanger 13 and the outdoor heat exchanger 15 are each provided with a blower fan, but the illustration thereof is omitted in FIG.

セパレータ型(スプリット型)の場合、圧縮機11,四方弁12,膨張弁14,室外熱交換器15およびアキュムレータ16は室外機ユニット1内に配置され、室内熱交換器13は室内機ユニット2内に配置される。   In the case of the separator type (split type), the compressor 11, the four-way valve 12, the expansion valve 14, the outdoor heat exchanger 15 and the accumulator 16 are disposed in the outdoor unit 1, and the indoor heat exchanger 13 is disposed in the indoor unit 2. Placed in.

室外機ユニット1と室内機ユニット2は、ガス側配管17と液側配管18とを介して接続されるが、これらの各配管17,18は、室外機ユニット1と室内機ユニット2とをそれぞれ所定の場所に設置したのち、ガス側配管17は二方弁17aを介して、また、液側配管18は冷媒注入口を有する三方弁18aを介して接続される。   The outdoor unit 1 and the indoor unit 2 are connected to each other through a gas side pipe 17 and a liquid side pipe 18. These pipes 17 and 18 are connected to the outdoor unit 1 and the indoor unit 2, respectively. After installation at a predetermined location, the gas side pipe 17 is connected via a two-way valve 17a, and the liquid side pipe 18 is connected via a three-way valve 18a having a refrigerant inlet.

詳しくは図示しないが、圧縮機11には、通常、密閉容器内にロータリ式もしくはスクロール式等の冷媒圧縮部と、この冷媒圧縮部を駆動する電動機とを収納してなる密閉型圧縮機が用いられる。なお、この種の圧縮機には、回転数が一定の一定速型と、回転数が可変の能力可変型(インバータ型を含む、以下「インバータ型」という)とがある。   Although not shown in detail, the compressor 11 is usually a hermetic compressor in which a rotary or scroll type refrigerant compression unit and an electric motor that drives the refrigerant compression unit are housed in a hermetic container. It is done. This type of compressor is classified into a constant speed type with a constant rotational speed and a variable capacity type with a variable rotational speed (including an inverter type, hereinafter referred to as an “inverter type”).

密閉型圧縮機では、冷媒圧縮部にて生成された高温高圧のガス冷媒が密閉容器内に噴出され電動機等を冷却したのち、冷媒回路に向けて吐出されるため、正常に運転されているかぎり、圧縮機の温度は安全温度範囲内に維持される。   In a hermetic compressor, high-temperature and high-pressure gas refrigerant generated in the refrigerant compressor is ejected into a hermetic container and cooled down after the motor is discharged, and then discharged toward the refrigerant circuit. The compressor temperature is maintained within a safe temperature range.

しかしながら、例えば誤操作により、各ユニット1,2の設置後に、配管接続用の二方弁17aや三方弁18aを開け忘れたり、膨張弁14を全閉にした状態で、圧縮機11が運転されると、戻り吸入冷媒が少ない負圧運転(もしくは戻り吸入冷媒がない空運転)となり、圧縮機の温度が異常に上昇し、最悪故障に至ることがある。   However, the compressor 11 is operated in a state where the two-way valve 17a and the three-way valve 18a for pipe connection are forgotten to be opened or the expansion valve 14 is fully closed after installation of the units 1 and 2, for example, due to an erroneous operation. Then, a negative pressure operation with a small amount of return suction refrigerant (or an empty operation without a return suction refrigerant) may occur, and the temperature of the compressor may rise abnormally, resulting in the worst failure.

そこで、ほとんどの空気調和機には、圧縮機の温度(密閉容器の温度)を監視し、その温度上昇が異常な場合には、圧縮機の運転を停止させる保護機能が設けられている(例えば、特許文献1,2参照)。   Therefore, most air conditioners are provided with a protection function for monitoring the temperature of the compressor (temperature of the sealed container) and stopping the operation of the compressor if the temperature rise is abnormal (for example, Patent Documents 1 and 2).

上記戻り吸入冷媒が少ない負圧運転時における従来の保護機能の問題点を図5により説明する。Tcは圧縮機密閉容器の容器温度で、Tgは圧縮機の吐出ガス温度である。また、Tmaxは、保護機能を動作させる運転限界温度で、この例では108℃としている。   The problem of the conventional protection function during negative pressure operation with a small amount of return suction refrigerant will be described with reference to FIG. Tc is the container temperature of the compressor hermetic container, and Tg is the discharge gas temperature of the compressor. Tmax is an operation limit temperature at which the protection function is operated, and is 108 ° C. in this example.

室内外の空調負荷が高い場合には、一定速型,インバータ型ともに、圧縮機が高い回転数で運転されるため、容器温度Tgは、一点鎖線で示すように、運転開始から急激に上昇して比較的短時間で運転限界温度Tmaxに達し、保護機能が働く。   When the indoor / outdoor air conditioning load is high, the compressor is operated at a high rotational speed for both the constant speed type and the inverter type, so that the container temperature Tg rapidly increases from the start of operation as indicated by a one-dot chain line. Thus, the operation limit temperature Tmax is reached in a relatively short time, and the protective function is activated.

しかしながら、インバータ型では、室内外の空調負荷が低い場合に、圧縮機は低回転数で運転されるため、容器温度Tgは、二点鎖線で示すように、緩やかな勾配をもって上昇し、運転限界温度Tmaxに到達して保護機能が働くまでには比較的長い時間がかかることになる。その間、圧縮機は、戻り吸入冷媒が少ない負圧運転状態となるため、例えば電動機の駆動軸の軸受部分が異常発熱し、焼き付き事故を起こすおそれがある。   However, in the inverter type, when the indoor and outdoor air conditioning load is low, the compressor is operated at a low rotational speed, so that the container temperature Tg rises with a gentle gradient as shown by the two-dot chain line, and the operation limit is reached. It takes a relatively long time to reach the temperature Tmax and activate the protection function. Meanwhile, since the compressor is in a negative pressure operation state with a small amount of returned suction refrigerant, for example, the bearing portion of the drive shaft of the electric motor may abnormally generate heat and cause a seizure accident.

特開昭62−3178号公報JP-A-62-2178 特開平9−79709号公報JP-A-9-79709

したがって、本発明の課題は、戻り吸入冷媒が少ないか、ほとんどない負圧運転状態時においても、圧縮機温度(密閉容器の温度)が運転限界温度に到達する前に、圧縮機の保護機能を確実に動作させ、圧縮機の信頼性を高めることにある。   Therefore, an object of the present invention is to provide a compressor protection function before the compressor temperature (the temperature of the sealed container) reaches the operating limit temperature even in a negative pressure operation state where there is little or almost no return suction refrigerant. It is to ensure the operation and increase the reliability of the compressor.

上記課題を解決するため、本発明は、密閉容器内に冷媒圧縮部と上記冷媒圧縮部を駆動する電動機とを含む圧縮機を冷凍サイクル内に備える空気調和機において、上記圧縮機の吐出ガス温度Tgを検出する第1温度センサと、上記密閉容器の容器温度Tcを検出する第2温度センサと、上記第1温度センサおよび上記第2温度センサから出力される吐出ガス温度Tgと容器温度Tcとに基づいて上記圧縮機の運転を制御する制御手段とを備え、上記制御手段は、上記圧縮機が運転開始されてから所定時間経過後のt1時点と、t1時点からさらに所定時間経過後のt2時点のいずれにおいても、上記容器温度Tcが所定の運転限界温度Tmax以下で、かつ、上記容器温度Tc>上記吐出ガス温度Tgである場合には、上記圧縮機の運転を停止することを特徴としている。 In order to solve the above problems, the present invention provides an air conditioner including a compressor including a refrigerant compression unit and an electric motor for driving the refrigerant compression unit in a hermetic container in a refrigeration cycle. A first temperature sensor for detecting Tg; a second temperature sensor for detecting a container temperature Tc of the closed container; a discharge gas temperature Tg and a container temperature Tc output from the first temperature sensor and the second temperature sensor; Control means for controlling the operation of the compressor on the basis of the above-mentioned control means, wherein the control means is a time point t1 after a lapse of a predetermined time from the start of operation of the compressor, and a time point t2 after a lapse of a predetermined time from the time point t1. At any time, if the container temperature Tc is equal to or lower than a predetermined operation limit temperature Tmax and the container temperature Tc> the discharge gas temperature Tg, the operation of the compressor is stopped. It is characterized in that.

本発明の好ましい態様によれば、上記制御手段は、上記t2時点での上記容器温度Tc>上記吐出ガス温度Tgの温度差α2が、上記t1時点での上記容器温度Tc>上記吐出ガス温度Tgの温度差α1よりも大きい場合に、上記圧縮機の運転を停止する。   According to a preferred aspect of the present invention, the control means is configured such that the temperature difference α2 of the container temperature Tc> the discharge gas temperature Tg at the time t2 is greater than the container temperature Tc> the discharge gas temperature Tg at the time t1. When the temperature difference α1 is larger than the above, the operation of the compressor is stopped.

また、上記t1時点もしくは上記t2時点に至る前に上記圧縮機が停止された場合、上記制御手段は、上記圧縮機の運転再開時から上記の温度監視制御をやり直す。   When the compressor is stopped before reaching the time point t1 or the time point t2, the control means restarts the temperature monitoring control from the time when the operation of the compressor is resumed.

本発明によれば、圧縮機が運転開始されてから所定時間経過後のt1時点と、t1時点からさらに所定時間経過後のt2時点のいずれにおいても、容器温度Tcが所定の運転限界温度Tmax以下であるが、容器温度Tc>吐出ガス温度Tgである場合には、圧縮機の運転を停止するようにしたことにより、圧縮機温度(密閉容器の温度)が運転限界温度に達していなくても、戻り吸入冷媒が少ないか、ほとんどない負圧運転状態が長時間にわたって継続することを防止することができ、圧縮機の信頼性が高められる。   According to the present invention, the container temperature Tc is equal to or lower than the predetermined operation limit temperature Tmax at the time t1 after the predetermined time has elapsed since the compressor started operation and at the time t2 after the predetermined time has elapsed from the time t1. However, when the container temperature Tc> the discharge gas temperature Tg, the compressor operation (sealed container temperature) does not reach the operation limit temperature because the operation of the compressor is stopped. Further, it is possible to prevent the negative pressure operation state with little or little return suction refrigerant from continuing for a long time, and the reliability of the compressor is improved.

本発明の実施形態を説明するための模式図。The schematic diagram for demonstrating embodiment of this invention. 容器温度と吐出ガス温度とがほぼ同一温度であるときから圧縮機の運転を開始した際の容器温度と吐出ガス温度との関係を示すグラフ。The graph which shows the relationship between the container temperature at the time of starting operation | movement of a compressor from when the container temperature and discharge gas temperature are substantially the same temperature, and discharge gas temperature. 圧縮機が比較的短い停止時間の後、運転を再開した場合における容器温度と吐出ガス温度との関係を示すグラフ。The graph which shows the relationship between the container temperature and discharge gas temperature when a compressor restarts an operation | movement after a comparatively short stop time. 空気調和機が備える基本的な冷媒循環系を示す模式図。The schematic diagram which shows the basic refrigerant circulation system with which an air conditioner is provided. 従来の圧縮機保護機能の問題点を説明するための容器温度と吐出ガス温度との関係を示すグラフ。The graph which shows the relationship between the container temperature and discharge gas temperature for demonstrating the problem of the conventional compressor protection function.

次に、図1ないし図3により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 3, but the present invention is not limited to this.

この実施形態に係る空気調和機も、先の図4で説明した従来例と同様な冷媒循環系を備えるが、図1に圧縮機11のみを示し、これについて説明する。   The air conditioner according to this embodiment also includes a refrigerant circulation system similar to that of the conventional example described with reference to FIG. 4, but only the compressor 11 is shown in FIG.

圧縮機11は、金属製の密閉容器(シェル)110を備え、密閉容器110内には、冷媒圧縮部120と、冷媒圧縮部120を駆動する電動機130が収納されている。   The compressor 11 includes a metal hermetic container (shell) 110, and the refrigerant container 120 and an electric motor 130 that drives the refrigerant compressor 120 are accommodated in the airtight container 110.

図示の例において、冷媒圧縮部120はロータリ式であるが、スクロール式であってもよい。冷媒圧縮部120の下部には冷凍機油が貯められている。電動機130には、インナーロータ型の誘導電動機等が用いられる。   In the illustrated example, the refrigerant compressor 120 is a rotary type, but may be a scroll type. Refrigerating machine oil is stored in the lower part of the refrigerant compressor 120. As the electric motor 130, an inner rotor type induction motor or the like is used.

密閉容器110の上部には、四方弁12に至る冷媒吐出管111が接続され、密閉容器110の下部には、アキュムレータ16からの冷媒吸入管112が接続されている。   A refrigerant discharge pipe 111 reaching the four-way valve 12 is connected to the upper part of the sealed container 110, and a refrigerant suction pipe 112 from the accumulator 16 is connected to the lower part of the sealed container 110.

冷媒吸入管112から供給された戻り冷媒は、冷媒圧縮部120で圧縮されて高温高圧のガス冷媒となって密閉容器110内に噴出され、電動機130のステータ巻線等を冷却したのち、冷媒吐出管111より冷媒循環系に吐出される。   The return refrigerant supplied from the refrigerant suction pipe 112 is compressed by the refrigerant compressor 120 and becomes a high-temperature and high-pressure gas refrigerant, which is jetted into the sealed container 110, cools the stator winding of the electric motor 130, etc., and then discharges the refrigerant. It is discharged from the pipe 111 to the refrigerant circulation system.

本発明では、圧縮機11の保護機能の構成要素として、第1および第2の少なくとも2つの温度センサ141,142と、これらの各温度センサ141,142の検出温度に基づいて例えば電動機130の通電用スイッチSWを開閉する制御手段143とを備える。   In the present invention, as the constituent elements of the protective function of the compressor 11, the first and second at least two temperature sensors 141 and 142, and the energization of the electric motor 130, for example, based on the detected temperatures of these temperature sensors 141 and 142. Control means 143 for opening and closing the switch SW.

第1温度センサ141は、冷媒吐出管111に取り付けられて冷媒の吐出ガス温度Tgを検出する。第2温度センサ142は、密閉容器110に取り付けられて密閉容器の容器温度Tcを検出する。   The first temperature sensor 141 is attached to the refrigerant discharge pipe 111 and detects the refrigerant discharge gas temperature Tg. The second temperature sensor 142 is attached to the sealed container 110 and detects the container temperature Tc of the sealed container.

第2温度センサ142は、冷凍機油が貯められている密閉容器110の底部側に取り付けられることが好ましい。これによれば、冷凍機油は比較的熱伝導率が高いため、密閉容器110内の温度をより正確に検出できる。場合によっては、第2温度センサ142は密閉容器110内に配置されてもよい。   It is preferable that the 2nd temperature sensor 142 is attached to the bottom part side of the airtight container 110 in which refrigerator oil is stored. According to this, since the refrigerating machine oil has a relatively high thermal conductivity, the temperature in the sealed container 110 can be detected more accurately. In some cases, the second temperature sensor 142 may be disposed in the sealed container 110.

次に、制御手段143の動作について説明する。圧縮機11が正常に運転されている場合には、図3のta以前,tc以後のように、容器温度Tcよりも吐出ガス温度Tgの方が高くなる。   Next, the operation of the control unit 143 will be described. When the compressor 11 is operating normally, the discharge gas temperature Tg is higher than the container temperature Tc as before ta and after tc in FIG.

これに対して、上記したように、例えば誤操作により、各ユニット1,2の設置後に、配管接続用の二方弁17aや三方弁18aを開け忘れたり、膨張弁14を全閉にした状態で、圧縮機11が運転されると、戻り吸入冷媒が少ない負圧運転(もしくは戻り吸入冷媒がない空運転)となり、反対に容器温度Tcの方が吐出ガス温度Tgよりも高くなる。   On the other hand, as described above, after installation of the units 1 and 2, for example, by mistaken operation, the pipe connection two-way valve 17 a or the three-way valve 18 a is forgotten to be opened, or the expansion valve 14 is fully closed. When the compressor 11 is operated, the negative pressure operation (or the idling operation without the return suction refrigerant) with little return suction refrigerant is performed, and the container temperature Tc is higher than the discharge gas temperature Tg.

図2のグラフに、圧縮機11が長時間停止されていた状態から、室内外の空調負荷が低くて低回転数で運転が開始された場合に、吐出ガス温度Tgと容器温度Tcとがほぼ同一温度から上昇する推移を示す。   In the graph of FIG. 2, when the compressor 11 is stopped for a long time and the operation is started at a low rotation speed with a low indoor / outdoor air conditioning load, the discharge gas temperature Tg and the container temperature Tc are almost equal. It shows the transition from the same temperature.

先にも説明したように、低回転数での戻り吸入冷媒が少ない負圧運転時には、容器温度Tcは緩やかな勾配をもって上昇するため、なかなか運転限界温度Tmax(この例ては108℃)にまで到達しない。   As described above, the container temperature Tc rises with a gentle gradient during the negative pressure operation at a low rotational speed and a small amount of the return suction refrigerant, so it easily reaches the operation limit temperature Tmax (108 ° C. in this example). Not reach.

そこで、制御手段143では、圧縮機11が運転開始されてから、所定時間経過後のt1時点(例えば30分経過時点)と、t1時点からさらに所定時間経過後のt2時点(運転開始から例えば60分経過時点)の少なくとも2回にわたって、容器温度Tcと吐出ガス温度Tgとを比較し、そのいずれにおいても、容器温度Tcが所定の運転限界温度Tmax以下で、かつ、容器温度Tc>吐出ガス温度Tgである場合には、戻り吸入冷媒が少ない負圧運転(空運転)状態であると判断し、通電スイッチSWをオフとして、圧縮機の運転を停止する。なお、この例で温度検出の時間間隔を30分としているのは、容器温度Tc,吐出ガス温度Tgともに短時間で急激には変化しないという経験則によるものであり、30分よりも短くしてもよいし、長くしてもよい。   Therefore, in the control means 143, after the compressor 11 is started to operate, the time t1 after a predetermined time has elapsed (for example, 30 minutes), and the time t2 after the predetermined time has elapsed from the time t1 (for example, 60 The container temperature Tc and the discharge gas temperature Tg are compared at least twice (at the time when the minute has elapsed). In any of them, the container temperature Tc is equal to or lower than a predetermined operation limit temperature Tmax, and the container temperature Tc> the discharge gas temperature. If it is Tg, it is determined that the return suction refrigerant is in a negative pressure operation (idle operation) state, the energization switch SW is turned off, and the compressor operation is stopped. In this example, the temperature detection time interval is set to 30 minutes because of the empirical rule that neither the container temperature Tc nor the discharge gas temperature Tg changes rapidly in a short time, and is set to be shorter than 30 minutes. It may be long.

なお、第1回目の比較時点を、圧縮機運転開始後の所定時間経過後のt1時点としているのは、図3に示すように、圧縮機11の停止時間(ta〜tb間)が短く、かつ、特に外気温度が低い場合には、伝熱のタイムラグにより、一時的に吐出ガス温度Tgよりも容器温度Tcの方が高くなることがあり得るからである。   Note that the first comparison time point is the time point t1 after the elapse of a predetermined time after the start of the compressor operation, as shown in FIG. 3, the stop time of the compressor 11 (between ta and tb) is short, In particular, when the outside air temperature is low, the container temperature Tc may be temporarily higher than the discharge gas temperature Tg due to the heat transfer time lag.

好ましくは、信頼性をより高めるうえで、t2時点での容器温度Tc>吐出ガス温度Tgの温度差α2が、t1時点での容器温度Tc>吐出ガス温度Tgの温度差α1よりも大きい場合、すなわち、その温度差αが時間の経過に伴って増えている場合に、通電スイッチSWをオフとして、圧縮機の運転を停止するとよい。   Preferably, in order to further improve the reliability, when the temperature difference α2 of the container temperature Tc> the discharge gas temperature Tg at the time t2 is larger than the temperature difference α1 of the container temperature Tc> the discharge gas temperature Tg at the time t1, That is, when the temperature difference α increases with time, the power switch SW is turned off to stop the operation of the compressor.

また、上記t1時点もしくは上記t2時点に至る前に圧縮機11が停止された場合、制御手段143は、圧縮機11の運転再開時から上記の温度監視制御をやり直すようにしている。   Further, when the compressor 11 is stopped before reaching the time t1 or the time t2, the control unit 143 restarts the temperature monitoring control from the time when the operation of the compressor 11 is resumed.

なお、例えば膨張弁14がゴミ詰まりの状態で圧縮機11の運転が開始され、その後において、膨張弁14のゴミ詰まりが解消され、冷媒が循環し始めることがあり得る。このような場合には、圧縮機11の戻り冷媒量が増えるため、容器温度Tc>吐出ガス温度Tgの温度差が経時的に小さくなる。   Note that, for example, the operation of the compressor 11 may be started in a state where the expansion valve 14 is clogged with dust, and thereafter, the clogging of the expansion valve 14 may be eliminated and the refrigerant may start to circulate. In such a case, the return refrigerant amount of the compressor 11 increases, so that the temperature difference of the container temperature Tc> the discharge gas temperature Tg decreases with time.

そこで、t2時点からさらに所定時間経過後のt3時点での容器温度Tc>吐出ガス温度Tgの温度差をα3として、α1>α2>α3のように、容器温度Tc>吐出ガス温度Tgの温度差が次第に小さくなっていく場合には、圧縮機11が正常運転に復帰したとして、圧縮機11を停止させないようにすることが好ましい。   Therefore, the temperature difference of container temperature Tc> discharge gas temperature Tg at time t3 after a lapse of a predetermined time from time t2 is α3, and the temperature difference of container temperature Tc> discharge gas temperature Tg, such as α1> α2> α3. Is gradually reduced, it is preferable not to stop the compressor 11 even if the compressor 11 returns to normal operation.

11 圧縮機
110 密閉容器
111 冷媒吐出管
112 冷媒吸入管
120 冷媒圧縮部
130 電動機
141 第1温度センサ
142 第2温度センサ
143 制御手段
DESCRIPTION OF SYMBOLS 11 Compressor 110 Airtight container 111 Refrigerant discharge pipe 112 Refrigerant suction pipe 120 Refrigerant compression part 130 Electric motor 141 1st temperature sensor 142 2nd temperature sensor 143 Control means

Claims (3)

密閉容器内に冷媒圧縮部と上記冷媒圧縮部を駆動する電動機とを含む圧縮機を冷凍サイクル内に備える空気調和機において、
上記圧縮機の吐出ガス温度Tgを検出する第1温度センサと、上記密閉容器の容器温度Tcを検出する第2温度センサと、上記第1温度センサおよび上記第2温度センサから出力される吐出ガス温度Tgと容器温度Tcとに基づいて上記圧縮機の運転を制御する制御手段とを備え、
上記制御手段は、上記圧縮機が運転開始されてから所定時間経過後のt1時点と、t1時点からさらに所定時間経過後のt2時点のいずれにおいても、上記容器温度Tcが所定の運転限界温度Tmax以下で、かつ、上記容器温度Tc>上記吐出ガス温度Tgである場合には、上記圧縮機の運転を停止することを特徴とする空気調和機。
In an air conditioner equipped with a compressor including a refrigerant compression unit and an electric motor driving the refrigerant compression unit in a closed container in a refrigeration cycle,
A first temperature sensor for detecting a discharge gas temperature Tg of the compressor; a second temperature sensor for detecting a container temperature Tc of the closed container; and a discharge gas output from the first temperature sensor and the second temperature sensor. Control means for controlling the operation of the compressor based on the temperature Tg and the container temperature Tc,
The control means is configured such that the container temperature Tc is equal to a predetermined operation limit temperature Tmax at a time point t1 after a predetermined time has elapsed since the start of operation of the compressor and a time point t2 after a predetermined time has elapsed from the time point t1. The air conditioner is characterized in that the compressor operation is stopped when the container temperature Tc is greater than the discharge gas temperature Tg.
上記制御手段は、上記t2時点での上記容器温度Tc>上記吐出ガス温度Tgの温度差α2が、上記t1時点での上記容器温度Tc>上記吐出ガス温度Tgの温度差α1よりも大きい場合に、上記圧縮機の運転を停止することを特徴とする請求項1に記載の空気調和機。   When the temperature difference α2 of the container temperature Tc> the discharge gas temperature Tg at the time t2 is greater than the temperature difference α1 of the container temperature Tc> the discharge gas temperature Tg at the time t1 The air conditioner according to claim 1, wherein operation of the compressor is stopped. 上記t1時点もしくは上記t2時に至る前に上記圧縮機が停止された場合、上記制御手段は、上記圧縮機の運転再開時から上記の温度監視制御をやり直すことを特徴とする請求項1または2に記載の空気調和機。   3. The temperature monitoring control according to claim 1, wherein when the compressor is stopped before the time point t <b> 1 or the time point t <b> 2, the control unit restarts the temperature monitoring control from the time when the operation of the compressor is resumed. The air conditioner described.
JP2010108141A 2010-05-10 2010-05-10 Air conditioner Active JP5464359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108141A JP5464359B2 (en) 2010-05-10 2010-05-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108141A JP5464359B2 (en) 2010-05-10 2010-05-10 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011237095A true JP2011237095A (en) 2011-11-24
JP5464359B2 JP5464359B2 (en) 2014-04-09

Family

ID=45325277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108141A Active JP5464359B2 (en) 2010-05-10 2010-05-10 Air conditioner

Country Status (1)

Country Link
JP (1) JP5464359B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070881A (en) * 2012-10-02 2014-04-21 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JP2014077578A (en) * 2012-10-10 2014-05-01 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JPWO2014017161A1 (en) * 2012-07-23 2016-07-07 三菱電機株式会社 Refrigeration air conditioner, refrigerant leak detection device, and refrigerant leak detection method
CN107036245A (en) * 2017-04-25 2017-08-11 广东美的暖通设备有限公司 The control device and method of multiple on-line system and its outdoor compressor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272555A (en) * 1985-05-29 1986-12-02 株式会社東芝 Air conditioner
JPH04148169A (en) * 1990-10-08 1992-05-21 Sanyo Electric Co Ltd Controller for refrigerator
JPH05280810A (en) * 1992-03-18 1993-10-29 Hitachi Ltd Air conditioner
JPH0763447A (en) * 1993-08-25 1995-03-10 Mitsubishi Electric Corp Refrigerating cycling apparatus
JPH07120079A (en) * 1993-10-21 1995-05-12 Takenaka Komuten Co Ltd Safety device for compressor
JPH07270003A (en) * 1994-03-29 1995-10-20 Matsushita Refrig Co Ltd Refrigerator
JPH07337072A (en) * 1994-06-07 1995-12-22 Nippondenso Co Ltd Protector for sealed compressor
JP2001141323A (en) * 1999-11-12 2001-05-25 Mitsubishi Electric Corp Air conditioner
JP2002235964A (en) * 2001-02-09 2002-08-23 Sanyo Electric Co Ltd Air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272555A (en) * 1985-05-29 1986-12-02 株式会社東芝 Air conditioner
JPH04148169A (en) * 1990-10-08 1992-05-21 Sanyo Electric Co Ltd Controller for refrigerator
JPH05280810A (en) * 1992-03-18 1993-10-29 Hitachi Ltd Air conditioner
JPH0763447A (en) * 1993-08-25 1995-03-10 Mitsubishi Electric Corp Refrigerating cycling apparatus
JPH07120079A (en) * 1993-10-21 1995-05-12 Takenaka Komuten Co Ltd Safety device for compressor
JPH07270003A (en) * 1994-03-29 1995-10-20 Matsushita Refrig Co Ltd Refrigerator
JPH07337072A (en) * 1994-06-07 1995-12-22 Nippondenso Co Ltd Protector for sealed compressor
JP2001141323A (en) * 1999-11-12 2001-05-25 Mitsubishi Electric Corp Air conditioner
JP2002235964A (en) * 2001-02-09 2002-08-23 Sanyo Electric Co Ltd Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014017161A1 (en) * 2012-07-23 2016-07-07 三菱電機株式会社 Refrigeration air conditioner, refrigerant leak detection device, and refrigerant leak detection method
US9677799B2 (en) 2012-07-23 2017-06-13 Mitsubishi Electric Corporation Refrigeration and air-conditioning apparatus, refrigerant leakage detection device, and refrigerant leakage detection method
JP2014070881A (en) * 2012-10-02 2014-04-21 Panasonic Corp Refrigeration cycle device and air conditioner including the same
JP2014077578A (en) * 2012-10-10 2014-05-01 Panasonic Corp Refrigeration cycle device and air conditioner including the same
CN107036245A (en) * 2017-04-25 2017-08-11 广东美的暖通设备有限公司 The control device and method of multiple on-line system and its outdoor compressor
CN107036245B (en) * 2017-04-25 2020-01-07 广东美的暖通设备有限公司 Multi-split air conditioner system and control device and method of outdoor compressor thereof

Also Published As

Publication number Publication date
JP5464359B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103216963B (en) Air-conditioning and its startup control method
US8418483B2 (en) System and method for calculating parameters for a refrigeration system with a variable speed compressor
US20100236264A1 (en) Compressor motor control
JPS63187065A (en) Air conditioner
JP2004093074A (en) Refrigerator
CN101680445B (en) Electric compressor control device
JPWO2007083794A1 (en) Air conditioner
JP2002242833A (en) Refrigerating cycle device
JP5464359B2 (en) Air conditioner
JP2013204871A (en) Air conditioner
JP4710571B2 (en) Air conditioner
JP3868265B2 (en) Air conditioner
KR102018764B1 (en) Heat pump system and control method thereof
WO2022239836A1 (en) Electric compressor control device, electric compressor, and electric compressor control method
JP3686195B2 (en) Compressor abnormality protection device and refrigeration cycle device
JP2014144695A (en) Vehicular air conditioning control unit
JP2005140414A (en) Freezing and refrigerating unit, and refrigerator using it
JP2013083361A (en) Refrigeration cycle device
JP2010203745A (en) Air conditioner
KR101097976B1 (en) A method for controlling an operation of refrigerators
JP2518114B2 (en) Compressor drive
JP2012102896A (en) Refrigerating cycle device
US10571177B2 (en) Scroll unloading detection system
JPH10311612A (en) Refrigerating device
JP2008136329A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R151 Written notification of patent or utility model registration

Ref document number: 5464359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350