JP2011236189A - Method for synthesizing disubstituted isocyanuric acid compound - Google Patents

Method for synthesizing disubstituted isocyanuric acid compound Download PDF

Info

Publication number
JP2011236189A
JP2011236189A JP2010117797A JP2010117797A JP2011236189A JP 2011236189 A JP2011236189 A JP 2011236189A JP 2010117797 A JP2010117797 A JP 2010117797A JP 2010117797 A JP2010117797 A JP 2010117797A JP 2011236189 A JP2011236189 A JP 2011236189A
Authority
JP
Japan
Prior art keywords
mmol
stirred
cyanurate
isocyanuric acid
disubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010117797A
Other languages
Japanese (ja)
Inventor
Takashi Mori
隆司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010117797A priority Critical patent/JP2011236189A/en
Publication of JP2011236189A publication Critical patent/JP2011236189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a disubstituted isocyanuric acid compound useful as a synthetic raw material of a new resin additive, such as diallyl isocyanurate, dimethallyl isocyanurate, allyl methallyl isocyanurate, etc.SOLUTION: This method for synthesizing the disubstituted isocyanuric acid compounds expressed by general formula is provided by repeating the partial hydrolysis of using an alkali hydroxide and alkylation of using an alkyl halide of trialkyl cyanurates in an aprotic polar organic solvent alternately. All of these compounds can be synthesized in a good purity by using inexpensive raw materials such as cyanuric chloride, sodium hydroxide, an alcohol and ally halides.

Description

合成ゴム原料及び電気絶縁樹脂などの合成樹脂添加剤の原料として有用な化1の一般式で示されるジアリルイソシアヌレート(以下DAICと略す)、ジメタアリルイソシアヌレート(以下DMAICと略す)、アリルメタアリルイソシアヌレート(以下AMAICと略す)等の二置換イソシアヌル酸化合物の合成法に関する。  Diallyl isocyanurate (hereinafter abbreviated as DAIC), dimethallyl isocyanurate (hereinafter abbreviated as DMAIC), allylmeta represented by the general formula of Chemical Formula 1 useful as a raw material for synthetic rubber raw materials and synthetic resin additives such as electrical insulating resins The present invention relates to a method for synthesizing disubstituted isocyanuric acid compounds such as allyl isocyanurate (hereinafter abbreviated as AMAIC).

Figure 2011236189
Figure 2011236189

シアヌル酸エステルまたはイソシアヌル酸エステル、特に中でもトリアリルイソシアヌレート(以下TAICと略す)、トリアリルシアヌレート(以下TACと略す)は、各種合成樹脂のモノマー原料、架橋剤、改質剤等として有用な化合物であり、これを含有する原料から合成されたポリマーは耐摩耗性、耐熱性に優れている。  Cyanuric acid ester or isocyanuric acid ester, especially triallyl isocyanurate (hereinafter abbreviated as TAIC) and triallyl cyanurate (hereinafter abbreviated as TAC) are useful as monomer raw materials, crosslinking agents, modifiers and the like for various synthetic resins. A polymer synthesized from a raw material containing a compound is excellent in wear resistance and heat resistance.

しかし、これらを高い割合で含有する原料から合成したポリマーは脆く可尭性が低くなるという難点がある。これを補う技術として、ジアリルシアヌレート誘導体およびジアリルイソシアヌレート誘導体の開発などが進められてきており(特許文献1)、ジアリルシアヌレート(特許文献2)やDAICの効率的な合成法が望まれてきた。  However, a polymer synthesized from a raw material containing these in a high ratio has a drawback that it is brittle and has low flexibility. In order to compensate for this, development of diallyl cyanurate derivatives and diallyl isocyanurate derivatives has been promoted (Patent Document 1), and an efficient synthesis method of diallyl cyanurate (Patent Document 2) and DAIC has been desired. It was.

これまでDAICの合成法の特許文献としては、▲1▼イソシアヌル酸とハロゲン化アリルとの反応(特許文献3)、または▲2▼トリアリルシアヌレートをフェノール及び活性白土存在下にキシレン中で加熱する方法(特許文献4)が報告されている。また、非特許文献でアリルイソシアナートおよびシアン酸塩との反応により合成する方法が報告されている(非特許文献1)。  To date, the patent literature for DAIC synthesis includes (1) reaction of isocyanuric acid with allyl halide (Patent Document 3), or (2) heating triallyl cyanurate in xylene in the presence of phenol and activated clay. (Patent Document 4) has been reported. In addition, non-patent literature reports a method of synthesis by reaction with allyl isocyanate and cyanate (Non-patent literature 1).

しかし、従来の合成方法ではいずれもDAICの収率が低く、モノアリルイソシアヌレートも多量に副生するため、純粋なDAICを取り出すためには再結晶を繰り返す必要が有り、製造コストが高くなることにより実用化に制限があった。また、従来の方法ではAMAICのような非対称な二置換イソシアヌル酸化合物の合成は不可能であった。  However, in all conventional synthesis methods, the yield of DAIC is low, and a large amount of monoallyl isocyanurate is produced as a by-product. Therefore, it is necessary to repeat recrystallization to extract pure DAIC, resulting in high production costs. Therefore, there was a limit to practical use. In addition, it has been impossible to synthesize an asymmetric disubstituted isocyanuric acid compound such as AMAIC by the conventional method.

特開2007−238472号 公報  JP 2007-238472 A 特許第4329325号 公報  Japanese Patent No. 4329325 特開平4−49285号 公報  JP-A-4-49285 米国特許2830051号 公報  US Patent No. 2830051

Journal of Organic Chemistry,Vo.35,NO.7,2253−7,1970  Journal of Organic Chemistry, Vo. 35, NO. 7, 2253-7, 1970

この発明は、二置換イソシアヌル酸化合物の合成に係わる上記の難点を解消し、汎用性の高い多機能性の二置換イソシアヌル酸化合物を安価に合成する手法を提供するためになされたものである。  The present invention has been made to solve the above-mentioned difficulties associated with the synthesis of a disubstituted isocyanuric acid compound and to provide a method for synthesizing a versatile and multifunctional disubstituted isocyanuric acid compound at a low cost.

いずれも安価な原料である塩化シアヌル、水酸化ナトリウム、アルコールおよびハロゲン化アリル類を原料に化1の一般式で示される二置換イソシアヌル酸化合物を合成する方法である。  Any of these is a method of synthesizing a disubstituted isocyanuric acid compound represented by the general formula 1 using cyanuric chloride, sodium hydroxide, alcohol and allyl halides which are inexpensive raw materials as raw materials.

つまり、化2に示される一般式に示すように、まず塩化シアヌル(1)と安価なアルコール(ROHで示す)を用いてトリアルキルシアヌレート中間体(2)を合成し、これに水酸化ナトリウムを用いた部分的加水分解とハロゲン化アリル類(4)または(7)を用いたアリル化を交互に2回繰り返す事によって(8)を生成させ、最後に1つだけ残った酸素−アルキル結合を酸またはアルカリで加水分解する事によって二置換イソシアヌル酸化合物(9)を合成する方法である。

Figure 2011236189
That is, as shown in the general formula shown in Chemical Formula 2, first, a trialkyl cyanurate intermediate (2) was synthesized using cyanuric chloride (1) and an inexpensive alcohol (shown by ROH), and this was combined with sodium hydroxide. (8) is generated by alternately repeating partial hydrolysis using allylic acid and allylation using allyl halides (4) or (7) twice, and finally only one remaining oxygen-alkyl bond Is a method of synthesizing a disubstituted isocyanuric acid compound (9) by hydrolyzing the compound with an acid or an alkali.
Figure 2011236189

本発明により、機能性樹脂モノマー、架橋剤、改質剤の原料として従来から期待されていた二置換イソシアヌレート化合物を安価にかつ純度よく合成する事が可能になった。また、本発明に関する技術を用いれば、DAICおよびDMAICだけにとどまらず、AMAICなど非対称な化合物も合成できる。このことによって、トリアジン環上に3つの異なる置換基を導入することも可能であり、従来のイソシアヌル酸エステルよりもさらに高い性能を持つ新しい化合物へと導ける可能性があり、その効果は多大である。  According to the present invention, it has become possible to synthesize a disubstituted isocyanurate compound, which has been conventionally expected as a raw material for functional resin monomers, crosslinking agents, and modifiers, at low cost and with high purity. Further, by using the technology relating to the present invention, not only DAIC and DMAIC but also asymmetric compounds such as AMAIC can be synthesized. This makes it possible to introduce three different substituents on the triazine ring, which can lead to new compounds with higher performance than conventional isocyanuric esters, and the effects are enormous. .

発明の形態Form of invention

以下、本発明における二置換イソシアヌル酸化合物の合成に関する原理を詳しく説明する(化2参照)。  Hereafter, the principle regarding the synthesis | combination of the disubstituted isocyanuric acid compound in this invention is demonstrated in detail (refer chemical formula 2).

まず、塩化シアヌル(1)をアルコール溶媒中で水酸化ナトリウムと反応させることでトリアルキルシアヌレート(2)を合成する。  First, trialkyl cyanurate (2) is synthesized by reacting cyanuric chloride (1) with sodium hydroxide in an alcohol solvent.

このトリアリルシアヌレート(2)をDMSOなどの非プロトン極性有機溶媒中で水酸化ナトリウムと接触させると、3つある酸素−アルキル結合のうち1つだけが加水分解され、生じたシアヌル酸ジアルキル塩(3)が生成する。(3)にハロゲン化アリル類(4)を作用させるとトリアジン環中の窒素原子上がアルキル化され、中間体(5)が生成する。  When this triallyl cyanurate (2) is contacted with sodium hydroxide in an aprotic polar organic solvent such as DMSO, only one of the three oxygen-alkyl bonds is hydrolyzed and the resulting dialkyl salt of cyanuric acid (3) is generated. When allyl halides (4) are allowed to act on (3), the nitrogen atom in the triazine ring is alkylated to produce intermediate (5).

また、トリアリルシアヌレート等の酸素−アルキル結合からなるエステル基は水酸化ナトリウムで容易に加水分解されるが、窒素−アルキル結合は水酸化ナトリウムでは加水分解されないため、もう一度水酸化ナトリウムで処理する事で中間(5)の2つ残った酸素−アルキル結合のうちの1つが加水分解され、中間体(6)が生成し、これに再びハロゲン化アリル類(7)を用いてアルキル化を行う事で、中間体(8)が生成する。  In addition, ester groups consisting of oxygen-alkyl bonds such as triallyl cyanurate are easily hydrolyzed with sodium hydroxide, but nitrogen-alkyl bonds are not hydrolyzed with sodium hydroxide. As a result, one of the two remaining oxygen-alkyl bonds of intermediate (5) is hydrolyzed to produce intermediate (6), which is again alkylated using allyl halides (7). This produces intermediate (8).

その後、中間体(8)の1つだけ残った酸素−アルキル結合を酸性またはアルカリ性条件で切断すれば、二置換イソシアヌル酸化合物(9)が得られる。  Then, the disubstituted isocyanuric acid compound (9) can be obtained by cleaving the remaining oxygen-alkyl bond in the intermediate (8) under acidic or alkaline conditions.

尚、実施例で用いたいずれのトリアルキルシアヌレートでも、50%水酸化ナトリウム水溶液を用いれば60℃で1時間加熱する事で完全に加水分解が完結するが(実施例1−5)、ペレット状の水酸化ナトリウムを用いる場合、これがDMSOに溶解し難いために、温度を80℃に上昇させる必要が有った(実施例6−8)。  In any of the trialkyl cyanurates used in the examples, the hydrolysis is completely completed by heating at 60 ° C. for 1 hour using a 50% aqueous sodium hydroxide solution (Example 1-5). When the sodium hydroxide was used, it was difficult to dissolve in DMSO, so the temperature had to be raised to 80 ° C. (Examples 6-8).

また、本発明において使用したハロゲン化アリルとしては、目的生成物であるDAICの収率の点からは臭化アリルを使用するのが良く、より安価な塩化アリルを使用すると反応性が低いために反応時間を長くしても収率が低下した(実施例3,5比較)。しかし、塩化アリルを使用する場合に▲1▼アルカリ加水分解の際にペレット状の水酸化ナトリウムを用いる、▲2▼加水分解及びアリル化の際の反応温度を上げる、▲3▼塩化アリルの当量数を増やす、ことで収率を改善する事ができた(実施例6)。  In addition, as the allyl halide used in the present invention, allyl bromide is preferably used from the viewpoint of the yield of the target product DAIC, and the reactivity is low when a cheaper allyl chloride is used. Even if the reaction time was lengthened, the yield decreased (Comparative Examples 3 and 5). However, when using allyl chloride, (1) using pelleted sodium hydroxide during alkali hydrolysis, (2) increasing the reaction temperature during hydrolysis and allylation, (3) equivalent of allyl chloride The yield could be improved by increasing the number (Example 6).

また、最終の加水分解は酸性条件下で行っても、アルカリ性条件下で行っても収率に影響は無かった(実施例3と実施例4を比較)。  Further, the final hydrolysis had no effect on the yield whether it was performed under acidic conditions or alkaline conditions (compare Example 3 and Example 4).

この技術に関して特筆すべき特徴として、上記に示した二置換イソシアヌル酸化合物の合成は複数の段階反応を経ており、本実施例では一旦中間体(2)を取り出すと共に反応容器も取り替えているが、工業的には塩化シアヌル(1)から化合物(9)までの一連の反応は1つの合成反応釜中で連続的に行う事も可能である。  As a notable feature regarding this technology, the synthesis of the disubstituted isocyanuric acid compound shown above has undergone a plurality of step reactions, and in this example, the intermediate (2) is once taken out and the reaction vessel is replaced. Industrially, a series of reactions from cyanuric chloride (1) to compound (9) can be carried out continuously in one synthesis reaction kettle.

また、この方法によれば、モノアリルシアヌレートは微量しか副生しないため、分液操作と晶析を各々1回行うだけで純粋なDAICを製造する事ができる。この方法を見出した事で、熱安定性、高周波電気特性の優れたポリマー材料であるDAIC、DMAIC、AMAICを安価に製造する事が可能になった。  In addition, according to this method, since only a small amount of monoallyl cyanurate is produced as a by-product, pure DAIC can be produced by performing the liquid separation operation and the crystallization only once. By finding this method, it has become possible to produce DAIC, DMAIC, and AMAIC, which are polymer materials having excellent thermal stability and high-frequency electrical characteristics, at low cost.

以下、本発明に関して実施例を挙げて説明すると共に、本発明によって得られた結果を表−1にまとめた。  Hereinafter, the present invention will be described with reference to examples, and the results obtained by the present invention are summarized in Table 1.

ペレット状水酸化ナトリウム12.5g(300mmol)、メタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧蒸留でメタノールを除いた。濃縮物にトルエン400ml、水100mlを加えて分液操作を行った。有機層を濃縮するとトリメチルシアヌレートが14.9g(87mmol)得られた(粗収率87%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and methanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. Methanol was removed from the reaction solution by distillation under reduced pressure. Separation operation was performed by adding 400 ml of toluene and 100 ml of water to the concentrate. Concentration of the organic layer yielded 14.9 g (87 mmol) of trimethylcyanurate (crude yield 87%).

上記で得られたトリメチルシアヌレートにDMSO30mlおよび50%水酸化ナトリウム水溶液7.2g(90mmol)を加えて60℃で1時間撹拌した。臭化アリル10.8g(90mmol)を加えて60℃で1時間撹拌した。50%水酸化ナトリウム水溶液7.2g(90mmol)を加えて60℃で1時間撹拌した。臭化アリル10.8g(90mmol)を加えて60℃で1時間撹拌した。HSO2.94g(30mmol)/HO20ml加えて60℃で2時間撹拌した。酸加水分解により生成したDAICが析出した。水酸化ナトリウム4.0g(96mmol)、水330ml加えて結晶を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.9g(50mmol)/HO20mlを加えるとDAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDAIC結晶が4.60g得られた(通算収率22%)。To the trimethyl cyanurate obtained above, 30 ml of DMSO and 7.2 g (90 mmol) of 50% aqueous sodium hydroxide solution were added and stirred at 60 ° C. for 1 hour. 10.8 g (90 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. A 50% aqueous sodium hydroxide solution (7.2 g, 90 mmol) was added, and the mixture was stirred at 60 ° C. for 1 hour. 10.8 g (90 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. It was stirred for 2 hours at H 2 SO 4 2.94g (30mmol) / H 2 O20ml addition 60 ° C.. DAIC produced by acid hydrolysis was precipitated. After adding 4.0 g (96 mmol) of sodium hydroxide and 330 ml of water to dissolve all the crystals, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.9g (50mmol) / H 2 O20ml adding the DAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 4.60 g of almost pure DAIC crystals were obtained (total yield 22%).

ペレット状水酸化ナトリウム12.5g(300mmol)、2−プロパノール100mlを500mlの4つ口フラスコに仕込み、撹拌しながら塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き2時間室温で撹拌した。反応溶液から減圧蒸留で2−プロパノールを除いた。濃縮物にトルエン100ml、水100mlを加えて分液操作を行った。有機層を濃縮するとトリイソプロピルシアヌレートが14.0g(55mmol)得られた(粗収率55%)。  12.5 g (300 mmol) of pelleted sodium hydroxide and 100 ml of 2-propanol were charged into a 500 ml four-necked flask, and 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes with stirring. The ice bath was removed and the mixture was stirred for 2 hours at room temperature. 2-Propanol was removed from the reaction solution by distillation under reduced pressure. Separation operation was performed by adding 100 ml of toluene and 100 ml of water to the concentrate. Concentration of the organic layer yielded 14.0 g (55 mmol) of triisopropyl cyanurate (crude yield 55%).

上記で得られたトリイソプロピルシアヌレートにDMSO20mlおよび50%水酸化ナトリウム水溶液4.4g(55mmol)を加えて60℃で1時間撹拌した。臭化アリル6.7g(55mmol)を加えて60℃で1時間撹拌した。50%水酸化ナトリウム水溶液4.4g(55mmol)を加えて60℃で1時間撹拌した。臭化アリル6.7g(55mmol)を加えて60℃で1時間撹拌した。HSO2.0g(20mmol)/HO20ml加えて60℃で2時間撹拌した。酸加水分解により生成したDAICが析出した。水酸化ナトリウム3.34g(84mmol)、水220ml加えて結晶を全て溶解させた後、トルエン40mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.2g(42mmol)/HO12mlを加えるとDAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDAIC結晶が5.43g得られた(通算収率26%)。To the triisopropyl cyanurate obtained above, 20 ml of DMSO and 4.4 g (55 mmol) of 50% aqueous sodium hydroxide solution were added and stirred at 60 ° C. for 1 hour. 6.7 g (55 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. 4.4 g (55 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 60 ° C. for 1 hour. 6.7 g (55 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. H 2 SO 4 (2.0 g, 20 mmol) / H 2 O (20 ml) was added, and the mixture was stirred at 60 ° C. for 2 hours. DAIC produced by acid hydrolysis was precipitated. After adding 3.34 g (84 mmol) of sodium hydroxide and 220 ml of water to dissolve all the crystals, liquid separation was performed using 40 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.2g (42mmol) / H 2 O12ml adding the DAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 5.43 g of almost pure DAIC crystals were obtained (total yield 26%).

ペレット状水酸化ナトリウム12.5g(300mmol)、エタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧ろ過で塩を除いた。ろ液から減圧蒸留でエタノールを除くとトリエチルシアヌレートが19.7g(92mmol)得られた(粗収率92%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and ethanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. The salt was removed from the reaction solution by filtration under reduced pressure. When ethanol was removed from the filtrate by vacuum distillation, 19.7 g (92 mmol) of triethyl cyanurate was obtained (crude yield 92%).

上記で得られたトリエチルシアヌレートにDMSO30mlおよび50%水酸化ナトリウム水溶液7.6g(95mmol)を加えて60℃で1時間撹拌した。臭化アリル11.5g(95mmol)を加えて60℃で1時間撹拌した。50%水酸化ナトリウム水溶液7.6g(95mmol)を加えて60℃で1時間撹拌した。臭化アリル11.5g(95mmol)を加えて60℃で1時間撹拌した。HSO2.94g(30mmol)/HO20ml加えて60℃で2時間撹拌した。酸加水分解により生成したDAICが析出した。水酸化ナトリウム4.0g(96mmol)、水330ml加えて結晶を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.9g(50mmol)/HO20mlを加えるとDAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDAIC結晶が11.6g得られた(通算収率55%)。To the triethyl cyanurate obtained above, 30 ml of DMSO and 7.6 g (95 mmol) of 50% aqueous sodium hydroxide solution were added and stirred at 60 ° C. for 1 hour. 11.5 g (95 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. 7.6 g (95 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 60 ° C. for 1 hour. 11.5 g (95 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. It was stirred for 2 hours at H 2 SO 4 2.94g (30mmol) / H 2 O20ml addition 60 ° C.. DAIC produced by acid hydrolysis was precipitated. After adding 4.0 g (96 mmol) of sodium hydroxide and 330 ml of water to dissolve all the crystals, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.9g (50mmol) / H 2 O20ml adding the DAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 11.6 g of nearly pure DAIC crystals were obtained (total yield 55%).

ペレット状水酸化ナトリウム12.5g(300mmol)、エタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧ろ過で塩を除いた。ろ液から減圧蒸留でエタノールを除くとトリエチルシアヌレートが19.7g(92mmol)得られた(収率約92%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and ethanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. The salt was removed from the reaction solution by filtration under reduced pressure. When ethanol was removed from the filtrate by distillation under reduced pressure, 19.7 g (92 mmol) of triethyl cyanurate was obtained (yield: about 92%).

上記で得られたトリエチルシアヌレートにDMSO30mlおよび50%水酸化ナトリウム水溶液7.6g(95mmol)を加えて60℃で1時間撹拌した。臭化アリル11.5g(95mmol)を加えて60℃で1時間撹拌した。50%水酸化ナトリウム水溶液7.6g(95mmol)を加えて60℃で1時間撹拌した。臭化アリル11.5g(95mmol)を加えて60℃で1時間撹拌した。50%水酸化ナトリウム水溶液7.3g(92mmol)加えて60℃で2時間撹拌した。水330ml加えて固体を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.9g(50mmol)/HO20mlを加えるとDAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDAIC結晶が11.6g得られた(通算収率55%)。To the triethyl cyanurate obtained above, 30 ml of DMSO and 7.6 g (95 mmol) of 50% aqueous sodium hydroxide solution were added and stirred at 60 ° C. for 1 hour. 11.5 g (95 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. 7.6 g (95 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 60 ° C. for 1 hour. 11.5 g (95 mmol) of allyl bromide was added and stirred at 60 ° C. for 1 hour. 7.3 g (92 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 60 ° C. for 2 hours. After 330 ml of water was added to dissolve all solids, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.9g (50mmol) / H 2 O20ml adding the DAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 11.6 g of nearly pure DAIC crystals were obtained (total yield 55%).

ペレット状水酸化ナトリウム12.5g(300mmol)、エタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧ろ過で塩を除いた。ろ液から減圧蒸留でエタノールを除くとトリエチルシアヌレートが20.5g(96mmol)得られた(粗収率96%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and ethanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. The salt was removed from the reaction solution by filtration under reduced pressure. When ethanol was removed from the filtrate by distillation under reduced pressure, 20.5 g (96 mmol) of triethyl cyanurate was obtained (crude yield 96%).

上記で得られたトリエチルシアヌレートにDMSO30mlおよび50%水酸化ナトリウム水溶液7.6g(95mmol)を加えて60℃で1時間撹拌した。塩化アリル7.3g(95mmol)を加えて60℃で1時間撹拌した。50%水酸化ナトリウム水溶液7.6g(95mmol)を加えて60℃で1時間撹拌した。塩化アリル7.3g(95mmol)を加えて60℃で1時間撹拌した。HSO2.94g(30mmol)/HO20ml加えて60℃で2時間撹拌した。酸加水分解により生成したDAICが析出した。水酸化ナトリウム4.0g(96mmol)、水330ml加えて結晶を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながら、HSO4.9g(50mmol)/HO20mlを加えるとDAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDAIC結晶が6.00g得られた(通算収率29%)。To the triethyl cyanurate obtained above, 30 ml of DMSO and 7.6 g (95 mmol) of 50% aqueous sodium hydroxide solution were added and stirred at 60 ° C. for 1 hour. 7.3 g (95 mmol) of allyl chloride was added and stirred at 60 ° C. for 1 hour. 7.6 g (95 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 60 ° C. for 1 hour. 7.3 g (95 mmol) of allyl chloride was added and stirred at 60 ° C. for 1 hour. It was stirred for 2 hours at H 2 SO 4 2.94g (30mmol) / H 2 O20ml addition 60 ° C.. DAIC produced by acid hydrolysis was precipitated. After adding 4.0 g (96 mmol) of sodium hydroxide and 330 ml of water to dissolve all the crystals, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer, DAIC solid precipitated the addition of H 2 SO 4 4.9g (50mmol) / H 2 O20ml. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 6.00 g of almost pure DAIC crystals were obtained (total yield 29%).

ペレット状水酸化ナトリウム12.5g(300mmol)、エタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧ろ過で塩を除いた。ろ液から減圧蒸留でエタノールを除くとトリエチルシアヌレートが20.6g(97mmol)得られた(粗収率97%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and ethanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. The salt was removed from the reaction solution by filtration under reduced pressure. When ethanol was removed from the filtrate by vacuum distillation, 20.6 g (97 mmol) of triethyl cyanurate was obtained (crude yield 97%).

上記で得られたトリエチルシアヌレートにDMSO30mlおよびペレット状の水酸化ナトリウム水溶液4.0g(96mmol)を加えて80℃で1時間撹拌した。塩化アリル9.2g(120mmol)を加えて80℃で2時間撹拌した。ペレット状水酸化ナトリウム4.0g(96mmol)を加えて60℃で1時間撹拌した。塩化アリル9.2g(120mmol)を加えて60℃で2時間撹拌した。50%水酸化ナトリウム水溶液7.7g(96mmol)加えて80℃で2時間撹拌した。水330ml加えて結晶を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.9g(50mmol)/HO20mlを加えるとDAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDAIC結晶が8.4g得られた(通算収率40%)。To the triethyl cyanurate obtained above, 30 ml of DMSO and 4.0 g (96 mmol) of a sodium hydroxide aqueous solution in a pellet form were added and stirred at 80 ° C. for 1 hour. 9.2 g (120 mmol) of allyl chloride was added and stirred at 80 ° C. for 2 hours. 4.0 g (96 mmol) of pelleted sodium hydroxide was added and stirred at 60 ° C. for 1 hour. 9.2 g (120 mmol) of allyl chloride was added and stirred at 60 ° C. for 2 hours. 7.7 g (96 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 80 ° C. for 2 hours. After 330 ml of water was added to dissolve all the crystals, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.9g (50mmol) / H 2 O20ml adding the DAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 8.4 g of nearly pure DAIC crystals were obtained (total yield 40%).

ペレット状水酸化ナトリウム12.5g(300mmol)、エタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧ろ過で塩を除いた。ろ液から減圧蒸留でエタノールを除くとトリエチルシアヌレートが20.6g(97mmol)得られた(粗収率97%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and ethanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. The salt was removed from the reaction solution by filtration under reduced pressure. When ethanol was removed from the filtrate by vacuum distillation, 20.6 g (97 mmol) of triethyl cyanurate was obtained (crude yield 97%).

上記で得られたトリエチルシアヌレートにDMSO30mlおよびペレット状の水酸化ナトリウム水溶液4.0g(96mmol)を加えて80℃で1時間撹拌した。塩化メタリル10.9g(120mmol)を加えて80℃で2時間撹拌した。ペレット状水酸化ナトリウム4.0g(96mmol)を加えて80℃で1時間撹拌した。塩化メタリル10.9g(120mmol)を加えて80℃で2時間撹拌した。50%水酸化ナトリウム水溶液7.7g(96mmol)加えて80℃で2時間撹拌した。水330ml加えて結晶を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.9g(50mmol)/HO20mlを加えるとDMAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なDMAIC結晶が2.36g得られた(通算収率10%)。To the triethyl cyanurate obtained above, 30 ml of DMSO and 4.0 g (96 mmol) of a sodium hydroxide aqueous solution in a pellet form were added and stirred at 80 ° C. for 1 hour. 10.9 g (120 mmol) of methallyl chloride was added and stirred at 80 ° C. for 2 hours. 4.0 g (96 mmol) of pelleted sodium hydroxide was added and stirred at 80 ° C. for 1 hour. 10.9 g (120 mmol) of methallyl chloride was added and stirred at 80 ° C. for 2 hours. 7.7 g (96 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 80 ° C. for 2 hours. After 330 ml of water was added to dissolve all the crystals, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.9g (50mmol) / H 2 O20ml adding the DMAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 2.36 g of almost pure DMAIC crystals were obtained (total yield: 10%).

ペレット状水酸化ナトリウム12.5g(300mmol)、エタノール100mlを500mlの4つ口フラスコに仕込んだ。反応系を氷浴で冷却し撹拌しながら、塩化シアヌル18.4g(100mmol)を30分かけて加えた。氷浴を取り除き1.5時間室温で撹拌した。反応溶液から減圧ろ過で塩を除いた。ろ液から減圧蒸留でエタノールを除くとトリエチルシアヌレートが20.6g(97mmol)得られた(収率約97%)。  Pelletized sodium hydroxide (12.5 g, 300 mmol) and ethanol (100 ml) were charged into a 500 ml four-necked flask. While the reaction system was cooled in an ice bath and stirred, 18.4 g (100 mmol) of cyanuric chloride was added over 30 minutes. The ice bath was removed and stirred for 1.5 hours at room temperature. The salt was removed from the reaction solution by filtration under reduced pressure. When ethanol was removed from the filtrate by distillation under reduced pressure, 20.6 g (97 mmol) of triethyl cyanurate was obtained (yield: about 97%).

上記で得られたトリエチルシアヌレートにDMSO30mlおよびペレット状の水酸化ナトリウム水溶液4.0g(96mmol)を加えて80℃で1時間撹拌した。塩化メタリル10.9g(120mmol)を加えて80℃で2時間撹拌した。ペレット状水酸化ナトリウム4.0g(96mmol)を加えて80℃で1時間撹拌した。塩化アリル10.9g(120mmol)を加えて80℃で2時間撹拌した。50%水酸化ナトリウム水溶液7.7g(96mmol)加えて80℃で2時間撹拌した。水330ml加えて結晶を全て溶解させた後、トルエン50mlを用いて分液を行い、不純物をトルエン層に抽出した。水層に撹拌しながらHSO4.9g(50mmol)/HO20mlを加えるとAMAICの固体が析出した。ろ過で得られた固体を50mlの水で洗浄した後、60℃で恒量になるまで乾燥した。ほぼ純粋なAMAIC結晶が5.13g得られた(通算収率23%)。To the triethyl cyanurate obtained above, 30 ml of DMSO and 4.0 g (96 mmol) of a sodium hydroxide aqueous solution in a pellet form were added and stirred at 80 ° C. for 1 hour. 10.9 g (120 mmol) of methallyl chloride was added and stirred at 80 ° C. for 2 hours. 4.0 g (96 mmol) of pelleted sodium hydroxide was added and stirred at 80 ° C. for 1 hour. 10.9 g (120 mmol) of allyl chloride was added and stirred at 80 ° C. for 2 hours. 7.7 g (96 mmol) of 50% aqueous sodium hydroxide solution was added and stirred at 80 ° C. for 2 hours. After 330 ml of water was added to dissolve all the crystals, liquid separation was performed using 50 ml of toluene, and impurities were extracted into the toluene layer. With stirring to the aqueous layer H 2 SO 4 4.9g (50mmol) / H 2 O20ml adding the AMAIC solid precipitated. The solid obtained by filtration was washed with 50 ml of water and then dried at 60 ° C. until a constant weight was obtained. 5.13 g of almost pure AMAIC crystals were obtained (23% overall yield).

Figure 2011236189
Figure 2011236189

Claims (5)

トリアルキルシアヌレート類を非プロトン極性有機溶媒中、水酸化アルカリを用いた部分的加水分解及びハロゲン化アルキルを用いたアルキル化を交互に繰り返す事を特徴とする、化1の一般式に示される二置換イソシアヌル酸化合物類の合成方法。
Figure 2011236189
It is represented by the general formula of Chemical Formula 1, characterized by alternately repeating partial hydrolysis of trialkylcyanurates in an aprotic polar organic solvent using an alkali hydroxide and alkylation using an alkyl halide. Synthesis method of disubstituted isocyanuric acid compounds.
Figure 2011236189
トリアルキルシアヌレート類がトリメチルシアヌレート、トリエチルシアヌレート、トリイソプロピルシアヌレート、トリアリルシアヌレート、トリメタアリルシアヌレートである事を特徴とする請求項1記載の二置換イソシアヌル酸化合物類の合成方法。  The method for synthesizing disubstituted isocyanuric acid compounds according to claim 1, wherein the trialkyl cyanurate is trimethyl cyanurate, triethyl cyanurate, triisopropyl cyanurate, triallyl cyanurate, or trimethallyl cyanurate. . ハロゲン化アルキルが臭化アリル、塩化アリル、塩化メタアリルである事を特徴とする請求項1記載の二置換イソシアヌル酸化合物類の合成方法。  The method for synthesizing disubstituted isocyanuric acid compounds according to claim 1, wherein the alkyl halide is allyl bromide, allyl chloride, or methallyl chloride. 非プロトン極性有機溶剤がジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1−メチル−2−ピロジノン、ジメチルイミダゾリジノンからなる群から選ばれた請求項1記載の二置換インシアヌル酸化合物類の合成方法。  The method for synthesizing disubstituted inocyanuric acid compounds according to claim 1, wherein the aprotic polar organic solvent is selected from the group consisting of dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrodinone and dimethylimidazolidinone. 水酸化アルカリが水酸化ナトリウム、水酸化カリウム、水酸化リチウムからなる群から選ばれた請求項1記載の二置換イソシアヌル酸化合物類の合成方法。  The method for synthesizing disubstituted isocyanuric acid compounds according to claim 1, wherein the alkali hydroxide is selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
JP2010117797A 2010-05-04 2010-05-04 Method for synthesizing disubstituted isocyanuric acid compound Pending JP2011236189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117797A JP2011236189A (en) 2010-05-04 2010-05-04 Method for synthesizing disubstituted isocyanuric acid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117797A JP2011236189A (en) 2010-05-04 2010-05-04 Method for synthesizing disubstituted isocyanuric acid compound

Publications (1)

Publication Number Publication Date
JP2011236189A true JP2011236189A (en) 2011-11-24

Family

ID=45324577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117797A Pending JP2011236189A (en) 2010-05-04 2010-05-04 Method for synthesizing disubstituted isocyanuric acid compound

Country Status (1)

Country Link
JP (1) JP2011236189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159310A1 (en) * 2016-03-16 2017-09-21 日産化学工業株式会社 Manufacturing method for isocyanuric acid derivative having two hydrocarbon groups

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159310A1 (en) * 2016-03-16 2017-09-21 日産化学工業株式会社 Manufacturing method for isocyanuric acid derivative having two hydrocarbon groups
CN108779081A (en) * 2016-03-16 2018-11-09 日产化学株式会社 The manufacturing method of isocyanuric acid derivative with 2 alkyl
JPWO2017159310A1 (en) * 2016-03-16 2019-01-24 日産化学株式会社 Method for producing isocyanuric acid derivative having two hydrocarbon groups
CN108779081B (en) * 2016-03-16 2022-05-13 日产化学株式会社 Process for producing isocyanuric acid derivative having 2 hydrocarbon groups

Similar Documents

Publication Publication Date Title
CN112250685B (en) Preparation method of indolo [2,3-A ] carbazole
TW201813959A (en) Bisfuran dihalide, method for producing bisfuran dihalide, and method for producing bisfuran diacid, bisfuran diol or bisfuran diamine using bisfuran dihalide
JPWO2014103811A1 (en) Process for producing purified amine compound
KR101653025B1 (en) Method for producing 2-amino-4-(trifluoromethyl)pyridine
JP5390800B2 (en) Method for producing toluidine compound
CN102887868A (en) Preparation method of triallyl isocyanurate
JP2011236189A (en) Method for synthesizing disubstituted isocyanuric acid compound
JP2008031166A (en) Preparation methods of boronic acid and derivative thereof
CN109956871B (en) Preparation method of 3,4, 5-trifluoro-2' -nitrobiphenyl
CN115572272A (en) Preparation method of febuxostat and aldehyde ester intermediate thereof
CN102365266B (en) Fluorine-containing n-alkyl sulfonyl imide compound, manufacturing method therefor, and method of manufacturing an ionic compound
KR20090012625A (en) Process for preparation of disodium stilbenedisolfonates
JP6260385B2 (en) Method for producing 2-hydroxymethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxin-5,7-dicarboxylic acid dialkyl ester
US20210002223A1 (en) Method for producing aniline derivative
RU2571417C2 (en) Method of producing n-substituted 2-amino-4-(hydroxymethylphosphenyl)-2-butenoic acid
TW201934527A (en) Method for producing halogen compound, method for producing potassium salt, and potassium salt
KR20110036431A (en) Method for preparing sulfonium sult and sulfonium sult prepared by the same
CN112898207B (en) Compound and preparation method and application thereof
JPH09143169A (en) Production of 4,6-diamino-1,3,5-triazin-2-yl-benzoic acids
JP2016108332A (en) Method for producing amino compound
JP2603872B2 (en) Method for producing thiodialkylcarboxylic acid
JP4329325B2 (en) Process for producing monoalkali metal salt of diallyl cyanurate
KR102157528B1 (en) Method for producing 2-aminonicotinic acid benzyl ester derivative
US858143A (en) Salts of methylene citryl salicylic acid.
JP5411721B2 (en) Diallyl isocyanurate compounds