JP2011236161A - Ionic liquid, method for producing the same, power storage device using the same - Google Patents

Ionic liquid, method for producing the same, power storage device using the same Download PDF

Info

Publication number
JP2011236161A
JP2011236161A JP2010109449A JP2010109449A JP2011236161A JP 2011236161 A JP2011236161 A JP 2011236161A JP 2010109449 A JP2010109449 A JP 2010109449A JP 2010109449 A JP2010109449 A JP 2010109449A JP 2011236161 A JP2011236161 A JP 2011236161A
Authority
JP
Japan
Prior art keywords
ionic liquid
anion
mmol
storage device
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109449A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kai
裕之 甲斐
Kazuo Takimiya
和男 瀧宮
Eigo Miyazaki
栄吾 宮碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Hiroshima University NUC
Original Assignee
Mazda Motor Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Hiroshima University NUC filed Critical Mazda Motor Corp
Priority to JP2010109449A priority Critical patent/JP2011236161A/en
Publication of JP2011236161A publication Critical patent/JP2011236161A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemically stable ionic liquid having excellent organic compound solubility.SOLUTION: The ionic liquid is composed of oxazolidine cation, wherein an alkyl/methoxyalkyl group (R) is substituted for the N position, and an anion (X-) including halogen, and is represented by general formula (1).

Description

本発明は、オキサゾリジン系のイオン液体およびその製造方法、並びに同イオン液体を用いた蓄電装置に関する。   The present invention relates to an oxazolidine-based ionic liquid, a manufacturing method thereof, and a power storage device using the ionic liquid.

イオン液体は、難燃性、イオン伝導性、不揮発性、高極性、溶解性などの種々の特性を併せ持ち、有機合成化学の分野では特殊反応媒体や難溶解物質の溶解剤としての利用がなされるとともに、例えばクラウンエーテルのような相間移動触媒などの特異的触媒としての利用がなされている。また、イオン液体は、キャパシタ、リチウムイオン電池などの二次電池の非水電解質材や、色素増感型太陽電池、電界効果トランジスタ、有機メモリ、有機アクチュエータなどの電子デバイス関連分野への利用が可能であり、近年、注目を集めている。   Ionic liquids have various properties such as flame retardancy, ion conductivity, non-volatility, high polarity, solubility, etc., and are used as a special reaction medium and as a solubilizer for hardly soluble substances in the field of synthetic organic chemistry. At the same time, it is used as a specific catalyst such as a phase transfer catalyst such as crown ether. In addition, ionic liquids can be used in non-aqueous electrolyte materials for secondary batteries such as capacitors and lithium-ion batteries, and electronic device-related fields such as dye-sensitized solar cells, field effect transistors, organic memories, and organic actuators. In recent years, it has attracted attention.

イオン液体としては様々な化合物が知られている。その代表例としては、下記特許文献1に示されるイミダゾール系化合物が挙げられ、この化合物は、キャパシタや二次電池といった蓄電装置用の電解液としての利用に期待がもたれている。これまで、蓄電装置用の電解液としては、プロピレンカーボネート(PC)が用いられることが多かったが、このプロピレンカーボネートと上記イミダゾール系化合物とを比較すると、後者の方が、高耐熱性である(分解温度が高い)点、および非水系電解液を有する蓄電装置の電池容量アップに寄与する点で優れているといわれている。   Various compounds are known as ionic liquids. A typical example is an imidazole compound disclosed in Patent Document 1 below, and this compound is expected to be used as an electrolytic solution for a power storage device such as a capacitor or a secondary battery. Up to now, propylene carbonate (PC) has often been used as an electrolytic solution for a power storage device, but when comparing this propylene carbonate and the imidazole compound, the latter is more heat resistant ( It is said to be excellent in that it has a high decomposition temperature) and contributes to an increase in battery capacity of a power storage device having a non-aqueous electrolyte.

特表2005−515168号公報JP 2005-515168 A

しかしながら、上記特許文献1に開示されたイミダゾール系化合物は、五員環中に2つのN(窒素)を含み、不飽和な二重結合を有する骨格構造であるため、電気化学的にアタックを受け易い(電気化学的に安定でない)という欠点がある。このため、蓄電装置用の電解液として用いた場合に、蓄電装置の上限電圧を十分に高められないという問題がある。   However, since the imidazole compound disclosed in Patent Document 1 has a skeletal structure containing two N (nitrogen) in the five-membered ring and having an unsaturated double bond, it is electrochemically attacked. There is a drawback that it is easy (not electrochemically stable). For this reason, when it uses as electrolyte solution for electrical storage apparatuses, there exists a problem that the upper limit voltage of an electrical storage apparatus cannot fully be raised.

また、イミダゾール系化合物は、五員環中にCを除いてNしかないため、極性に乏しく、有機化合物を溶解するイオン液体としての能力がやや低いということも問題点として挙げられる。   In addition, since the imidazole compound has only N in the five-membered ring except for C, it is poor in polarity and has a slightly low ability as an ionic liquid for dissolving an organic compound.

本発明は、上記のような事情に鑑みてなされたものであり、電気化学的に安定で、しかも有機化合物を溶解する能力に優れたイオン液体およびその製造方法等を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an ionic liquid which is electrochemically stable and has an excellent ability to dissolve an organic compound, a method for producing the same, and the like. .

上記課題を解決するためのものとして、本発明は、アルキル基またはメトキシアルキル基(R)がN位に置換したオキサゾリジンカチオンと、ハロゲンを含むアニオン(X-)とから構成される、下記一般式(1)で表わされるイオン液体である(請求項1)。 In order to solve the above problems, the present invention includes an oxazolidine cation in which an alkyl group or a methoxyalkyl group (R) is substituted at the N-position, and an anion (X ) containing a halogen, which has the following general formula: An ionic liquid represented by (1) (Claim 1).

Figure 2011236161
Figure 2011236161

本発明のイオン液体は、五員環中に二重結合が存在しないため、電気化学的なアタックに強く、より高い安定性を示す。また、五員環中にNだけでなくOが存在するため、極性が高く、有機化合物を溶解する能力に優れている。   Since the ionic liquid of the present invention has no double bond in the five-membered ring, it is resistant to electrochemical attack and exhibits higher stability. Further, since not only N but also O is present in the five-membered ring, the polarity is high and the ability to dissolve an organic compound is excellent.

上記ハロゲンを含むアニオン(X-)の好適例としては、Br-,BF4 -,PF6 -,N(SO2CF32 - のいずれかが挙げられる(請求項2)。 Preferable examples of the halogen-containing anion (X ) include any one of Br , BF 4 , PF 6 , and N (SO 2 CF 3 ) 2 .

また、本発明は、上記イオン液体を電解液として含む蓄電装置である(請求項3)。   Moreover, this invention is an electrical storage apparatus containing the said ionic liquid as electrolyte solution (Claim 3).

本発明によれば、電気化学的な安定性の高い上記イオン液体を蓄電装置用の電解液として用いることで、蓄電装置の上限電圧を高めることができ、その高容量化や、エネルギー密度の増大を図ることができる。また、上記イオン液体による有機化合物の溶解能力が高いため、リチウム塩等の塩を容易に溶かし込むことができ、あるいは溶かし込む塩の濃度を高めることができる。   According to the present invention, the upper limit voltage of the power storage device can be increased by using the ionic liquid having high electrochemical stability as the electrolytic solution for the power storage device, and the capacity is increased and the energy density is increased. Can be achieved. Moreover, since the solubility of the organic compound by the said ionic liquid is high, salts, such as lithium salt, can be dissolved easily or the density | concentration of the salt to dissolve can be raised.

また、本発明は、イオン液体を製造する方法であって、N−メチルオキサゾリジンと、上記Rのアルキル基またはメトキシアルキル基を有するハロゲン化アルキルとを混合し、50℃以上100℃以下の温度条件下で反応させることにより、上記Rのアルキル基またはメトキシアルキル基がN位に置換したN−メチルオキサゾリジンカチオンと、ハロゲンアニオンとを有する塩化合物を得る工程と、上記塩化合物と、上記X- をカウンターアニオンとして含むアルカリ塩または酸試薬とを用いて室温下でアニオン交換反応を行う工程とを含むものである(請求項4)。 The present invention also relates to a method for producing an ionic liquid, wherein N-methyloxazolidine is mixed with the alkyl halide having the alkyl group or methoxyalkyl group, and the temperature condition is 50 ° C. or higher and 100 ° C. or lower. A step of obtaining a salt compound having an N-methyloxazolidine cation in which the alkyl group or methoxyalkyl group of R is substituted at the N-position and a halogen anion, and the salt compound, and the X And an anion exchange reaction at room temperature using an alkali salt or acid reagent contained as a counter anion (Claim 4).

ここで、上記50℃以上100℃以下という温度条件を設定したのは、50℃未満の場合には、反応速度が遅く、反応が完結するまでに長時間を要するため収率が低くなる傾向にある一方、100℃を超える場合には、原料もしくは生成物が一部分解するために純度が低下し、あるいは原料の沸点を超えて一部が反応系外に失われるために収率が低下するという理由からである。   Here, the temperature condition of 50 ° C. or more and 100 ° C. or less is set because the reaction rate is slow when the temperature is less than 50 ° C., and it takes a long time until the reaction is completed, so the yield tends to be low. On the other hand, when the temperature exceeds 100 ° C., the raw material or product is partially decomposed to lower the purity, or the raw material exceeds the boiling point of the raw material and part is lost outside the reaction system, resulting in a decrease in yield. For reasons.

本発明の製造方法によれば、上記イオン液体を高純度、高収率で適正に製造することができる。   According to the production method of the present invention, the ionic liquid can be appropriately produced with high purity and high yield.

以上説明したように、本発明によれば、電気化学的に安定で、しかも有機化合物を溶解する能力に優れたイオン液体およびその製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide an ionic liquid which is electrochemically stable and has an excellent ability to dissolve an organic compound, and a method for producing the ionic liquid.

また、上記イオン液体を蓄電装置用の電解液として用いることで、蓄電装置の性能を効果的に向上させることができる。   Further, by using the ionic liquid as an electrolytic solution for a power storage device, the performance of the power storage device can be effectively improved.

実施例および比較例のイオン液体の基本物性を示す表である。It is a table | surface which shows the basic physical property of the ionic liquid of an Example and a comparative example. 実施例および比較例のイオン液体を電解液として用いたコイン電池の評価結果を示す表である。It is a table | surface which shows the evaluation result of the coin battery which used the ionic liquid of the Example and the comparative example as electrolyte solution.

<イオン液体>
まず、本発明の一実施形態にかかるイオン液体ついて説明する。本実施形態にかかるイオン液体は、下記一般式(1)で示されるカチオンとアニオン(X-)とから構成される。
<Ionic liquid>
First, an ionic liquid according to an embodiment of the present invention will be described. The ionic liquid according to this embodiment is composed of a cation represented by the following general formula (1) and an anion (X ).

Figure 2011236161
Figure 2011236161

カチオンは、上記一般式(1)に示すように、オキサゾリジンを主構造とするものであり、そのN位の置換基(R)として、炭素数が5以上7以下のアルキル基;Cn2n+1(n=5〜7)、またはメチレン基の数が3以上4以下(炭素数が4以上5以下)のメトキシアルキル基;CH3O(CH2m(m=3〜4)を有している。 As shown in the general formula (1), the cation has oxazolidine as a main structure, and the N-position substituent (R) is an alkyl group having 5 to 7 carbon atoms; C n H 2n +1 (n = 5 to 7), or a methoxyalkyl group having 3 to 4 methylene groups (4 to 5 carbon atoms); CH 3 O (CH 2 ) m (m = 3 to 4) Have.

アニオン(X-)は、ハロゲンを含むアニオンであり、その好適例としては、臭素アニオン(Br-),4フッ化ホウ素アニオン(BF4 -),6フッ化リンアニオン(PF6 -),トリフルオロメタンスルホニルアニオン(N(SO2CF32 -)を挙げることができる。なお、以下では、トリフルオロメタンスルホニルアニオンの化学式;N(SO2CF32のことを、NTf2と省略表記する。 The anion (X ) is an anion containing halogen, and preferred examples thereof include a bromine anion (Br ), a boron tetrafluoride anion (BF 4 ), a phosphorous hexafluoride anion (PF 6 ), and a trifluoro. And lomethanesulfonyl anion (N (SO 2 CF 3 ) 2 ). In the following, the chemical formulas of trifluoromethanesulfonyl anion; N (SO 2 CF 3) to a 2, omitting denoted as NTf 2.

本願発明者は、以上のような構造のイオン液体の特性として、電気化学的な安定性が高く、しかも有機化合物を溶解する能力に優れる、という性質を確認している。   The inventor of the present application has confirmed that the ionic liquid having the above structure has high electrochemical stability and excellent ability to dissolve organic compounds.

例えば、イオン液体として近年注目されているイミダゾール系化合物は、耐熱性に優れるなどの特性をもつが、五員環中に不飽和な二重結合が存在するため、電気化学的なアタックを受け易い(電気化学的に安定でない)という欠点がある。これに対し、本実施形態によるオキサゾリジン系のイオン液体は、上記一般式(1)に示したように、五員環中に二重結合が存在しないため、電気化学的なアタックに強く、より高い安定性を示すのである。   For example, an imidazole compound that has been attracting attention as an ionic liquid in recent years has characteristics such as excellent heat resistance, but is susceptible to electrochemical attack because of the presence of an unsaturated double bond in the five-membered ring. (It is not electrochemically stable). On the other hand, the oxazolidine-based ionic liquid according to the present embodiment has a high resistance to electrochemical attack and is higher because there is no double bond in the five-membered ring as shown in the general formula (1). It shows stability.

また、イミダゾール系化合物は、五員環中にCを除いてNしかないため、極性に乏しく、有機化合物を溶解する能力がやや低かったが、本実施形態によるオキサゾリジン系のイオン液体は、五員環中にNだけでなくOが存在するため、極性が高く、有機化合物を溶解する能力がより高いという利点がある。   In addition, since the imidazole compound has only N except for C in the five-membered ring, the polarity is poor and the ability to dissolve the organic compound is somewhat low. However, the oxazolidine-based ionic liquid according to the present embodiment is Since not only N but also O is present in the ring, there are advantages of high polarity and higher ability to dissolve organic compounds.

このような性質を有した本実施形態のイオン液体は、例えば、キャパシタや二次電池といった蓄電装置用の電解液として好適に使用することができる。すなわち、電気化学的な安定性に優れる本実施形態のイオン液体を電解液として用いることで、蓄電装置の上限電圧を高めることができ、蓄電装置の性能をより向上させることができる。   The ionic liquid of this embodiment having such properties can be suitably used as an electrolytic solution for a power storage device such as a capacitor or a secondary battery. That is, by using the ionic liquid of the present embodiment that is excellent in electrochemical stability as the electrolytic solution, the upper limit voltage of the power storage device can be increased, and the performance of the power storage device can be further improved.

<実施例>
次に、上記実施形態にかかるイオン液体の具体例を、本発明の実施例として説明する。
<Example>
Next, specific examples of the ionic liquid according to the above embodiment will be described as examples of the present invention.

(i)イオン液体の製造
実施例としては、上記一般式(1)における置換基(R)およびアニオン(X-)が異なる15種類のイオン液体を製造した。その合成スキームを下記に示す。
(I) Production of ionic liquid As examples, 15 types of ionic liquids having different substituents (R) and anions (X ) in the general formula (1) were produced. The synthesis scheme is shown below.

Figure 2011236161
Figure 2011236161

すなわち、実施例のイオン液体を合成するには、まず、N−メチルオキサゾリジン(1)を出発原料として用い、これとハロゲン化アルキル(RBr)とを混合して、70℃下で24時間撹拌する。ハロゲン化アルキルとしては、Cn2n+1(n=5〜7)で表されるアルキル基、またはCH3O(CH2m(m=3〜4)で表されるメトキシアルキル基のいずれか(R)と、ハロゲン(ここではBr)との化合物を用いた。このハロゲン化アルキル(RBr)を上記のようにN−メチルオキサゾリジン(1)と混合して撹拌することにより、上記アルキル基またはメトキシアルキル基(R)がN位に置換したN−メチルオキサゾリジンカチオンと、ハロゲンアニオン(Br-)とを有する各種塩化合物(2a〜2e)を得た。 That is, in order to synthesize the ionic liquids of the examples, first, N-methyloxazolidine (1) is used as a starting material, this is mixed with an alkyl halide (RBr), and stirred at 70 ° C. for 24 hours. . Examples of the halogenated alkyl include an alkyl group represented by C n H 2n + 1 (n = 5 to 7) or a methoxyalkyl group represented by CH 3 O (CH 2 ) m (m = 3 to 4). A compound of either (R) and halogen (Br in this case) was used. By mixing and stirring this alkyl halide (RBr) with N-methyloxazolidine (1) as described above, an N-methyloxazolidine cation in which the alkyl group or methoxyalkyl group (R) is substituted at the N-position Various salt compounds (2a to 2e) having halogen anions (Br ) were obtained.

次いで、上記塩化合物(2a〜2e)と、目的とするカウンターアニオン(X-)を含む各種アルカリ塩または酸試薬(MX)とを用いて、室温下で24時間のアニオン交換反応を行い、これにより、各種オキサゾリジウム塩(3a〜3e,4a〜4e,5a〜5e)を合成した。なお、MXとしては、LiNTf2,HBF4,KPF6のいずれかを用いた。つまり、ここでのカウンターアニオン(X-)は、NTf2 -,BF4 -,PF6 -のいずれかである。 Next, an anion exchange reaction is carried out at room temperature for 24 hours using the salt compounds (2a to 2e) and various alkali salts or acid reagents (MX) containing the target counter anion (X ). Thus, various oxazolidium salts (3a-3e, 4a-4e, 5a-5e) were synthesized. As MX, any one of LiNTf 2 , HBF 4 , and KPF 6 was used. That is, the counter anion (X ) here is any of NTf 2 , BF 4 , and PF 6 .

ここで、上記合成スキームのより詳細な手順を、実験項として示す。なお、各化合物の同定は、1H−NMR解析により行った。 Here, a more detailed procedure of the above synthesis scheme is shown as an experimental item. Each compound was identified by 1 H-NMR analysis.

(ii)実験項
・臭化N-ペンチル-N-メチルオキサゾリジニウム (2a)
窒素雰囲気下、70 ℃で、N-メチル-1,3-オキサゾリジン (1) (8.0 g, 92 mmol) と1-ブロモペンタン (13.87 g, 92 mmol) とを混合して24時間加熱撹拌した。100 ℃で2時間真空乾燥を行ったのちに室温まで放冷した。得られた粗生成物を2-プロパノール-テトラヒドロフランから再結晶を行い、2aを淡黄色固体 (12.15 g, 56 %) として得た。
M.p.90-93 ℃; 1H-NMR (270 MHz, CDCl3, TMS) δ5.23 (2H, s), 4.52 (2H, t, J = 7.4 Hz), 4.04-4.22 (2H, m), 3.75-3.92 (2H, m), 3.47 (3H, s), 1.78-1.83 (2H, brm), 1.33-1.45 (4H, m), 0.93 (3H, t, J = 7.3 Hz).
・臭化N-ヘキシル-N-メチルオキサゾリジニウム (2b)
窒素雰囲気下、70 ℃で、N-メチル-1,3-オキサゾリジン (1) (10.0 g, 115 mmol) と1-ブロモヘキサン (18.95 g, 115 mmol) とを混合して24時間加熱撹拌した。100 ℃で2時間真空乾燥を行ったのちに室温まで放冷した。得られた粗生成物をアルミナカラムクロマトグラフィー(溶出溶媒:アセトニトリル) により精製を行った後に100 ℃で2時間真空乾燥を行い、2bを茶色液体 (19.58 g, 67 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ5.22 (2H, s), 4.52 (2H, t, J = 7.4 Hz), 4.03-4.22 (2H, m), 3.74-3.90 (2H, m), 3.47 (3H, s), 1.71-1.86 (2H, brm), 1.26-1.45 (6H, m), 0.91 (3H, t, J = 7.3 Hz).
・臭化N-ヘプチル-N-メチルオキサゾリジニウム (2c)
2bと同じ方法によりN-メチル-1,3-オキサゾリジン (1) (10.0 g, 115 mmol) と1-ブロモヘプタン (20.56 g, 115 mmol) とを反応させ、2cを茶色液体 (21.35 g, 70 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ5.23 (2H, s), 4.51 (2H, t, J = 7.4 Hz), 4.05-4.17 (2H, m), 3.78-3.86 (2H, m), 3.47 (3H, s), 1.73-1.86 (2H, brm), 1.21-1.45 (8H, m), 0.90 (3H, t, J = 7.0 Hz).
・臭化N-メチル-N-(3-メトキシ)プロピルオキサゾリジニウム (2d)
2aと同じ方法によりN-メチル-1,3-オキサゾリジン (1) (8.0 g, 92 mmol) と1-ブロモ-3-メトキシプロパン (14.05 g, 92 mmol) とを反応させ、2d を茶色固体(13.62 g, 62 %) として得た。
M.p.78-80℃; 1H-NMR (270 MHz, CDCl3, TMS) δ5.28 (1H, d, J = 5.4 Hz), 5.20 (1H, d, J = 5.4 Hz), 4.46-4.56(2H, m), 4.08-4.14 (2H, m), 3.90-3.97 (2H, m), 3.54 (2H, t, J = 5.4 Hz), 3.50 (3H, s), 3.34 (3H, s), 2.10-2.20 (2H, m).
・臭化N-メチル-N-(4-メトキシ)ブチルオキサゾリジニウム (2e)
2bと同じ方法によりN-メチル-1,3-オキサゾリジン (1) (4.17 g, 48 mmol) と 1-ブロモ-4-メトキシブタン (8.0 g, 48 mmol) とを反応させ、2eを茶色液体 (10.66 g, 87 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ5.25 (1H, d, J = 5.4 Hz), 5.22 (1H, d, J = 5.4 Hz), 4.49-4.55(2H, m), 4.04-4.21 (2H, m), 3.85-3.92 (2H, m), 3.52 (3H, s), 3.51 (2H, t, J = 5.4 Hz), 3.34 (3H, s), 1.87 -1.99 (2H, m), 1.66-1.76 (2H,m).
・N-ペンチル-N-メチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド (3a)
臭化N-ペンチル-N-メチルオキサゾリジニウム (2a) (0.30 g, 1.3 mmol) とリチウム ビス(トリフルオロスルホニル)イミド (0.36 g, 1.3 mmol) とを水 (1.4 mL) に溶解させた。室温で24時間撹拌した後に、ジクロロメタン (3×3 mL) で抽出した。有機層を水 (1×3 mL) で洗浄後、無水硫酸マグネシウムで乾燥させた。溶媒を留去した後に、粗生成物をアルミナカラムクロマトグラフィー (溶出溶媒:アセトニトリル) により精製を行った。得られた生成物を100 ℃で2時間真空乾燥を行い、3aを茶色液体 (0.39 g, 70 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.82 (2H, s), 4.40 (2H, t, J = 8.0 Hz), 3.61-3.80 (2H, m), 3.33-3.47 (2H, m), 3.21 (3H, s), 1.70-1.81 (2H, brm), 1.35-1.44 (4H, m), 0.93 (3H, t, J = 7.0 Hz).
・N-ヘキシル-N-メチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド (3b)
臭化N-ヘキシル-N-メチルオキサゾリジニウム (2b) (0.30 g, 1.2 mmol) とリチウム ビス(トリフルオロスルホニル)イミド (0.34 g, 1.2 mmol) とを水 (1.4 mL) に溶解させた。3aと同じ方法により合成を行い、3bを無色液体 (0.28 g, 52 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.83 (2H, s), 4.40 (2H, t, J = 8.0 Hz), 3.65-3.82 (2H, m), 3.40-3.47 (2H, m), 3.21 (3H, s), 1.70-1.80 (2H, brm), 1.32-1.40 (6H, m), 0.91 (3H, t, J = 6.9 Hz).
・N-ヘプチル-N-メチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド (3c)
臭化N-ヘプチル-N-メチルオキサゾリジニウム (2c) (0.30 g, 1.1 mmol) とリチウム ビス(トリフルオロスルホニル)イミド (0.32 g, 1.1 mmol) とを水 (1.4 mL) に溶解させた。3aと同じ方法により合成を行い、3cを無色液体 (0.35 g, 67 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.84 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.67-3.85 (2H, m), 3.42-3.48 (2H, m), 3.21 (3H, s), 1.70-1.83 (2H, brm), 1.24-1.42 (6H, m), 0.90 (3H, t, J = 6.8 Hz).
・N-メチル-N-(3-メトキシ)プロピルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド (3d)
臭化N-メチル-N-(3-メトキシ)プロピルオキサゾリジニウム (2d) (4.0 g, 17 mmol) とリチウム ビス(トリフルオロスルホニル)イミド (4.78 g, 17 mmol) とを水 (10 mL) に溶解させた。3aと同じ方法により合成を行い、3dを無色液体 (6.07 g, 83 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.85 (2H, s), 4.39-4.45(2H, m), 3.73-3.82 (2H, m), 3.59-3.66 (2H, m), 3.50 (2H, t, J = 5.4 Hz), 3.34 (3H, s), 3.20 (3H, s), 2.00-2.11 (2H, m).
・N-メチル-N-(4-メトキシ)ブチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド (3e)
臭化N-メチル-N-(4-メトキシ)ブチルオキサゾリジニウム (2e) (8.0 g, 32 mmol) とリチウム ビス(トリフルオロスルホニル)イミド (9.04 g, 32 mmol) とを水 (20 mL) に溶解させた。3aと同じ方法により合成を行い、3eを無色液体 (11.29 g, 70 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.82 (2H, s), 4.37-4.43(2H, m), 3.69-3.77 (2H, m), 3.49 (2H, m), 3.44 (2H, t, J = 5.4 Hz), 3.38 (3H, s), 3.20 (3H, s), 1.86-2.00 (2H, m), 1.63-1.72(2H, m).
・N-ペンチル-N-メチルオキサゾリジニウム=テトラフルオロボレート (4a)
臭化N-ペンチル-N-メチルオキサゾリジニウム (2a) (0.90 g, 3.8 mmol) と50 wt% テトラフルオロホウ酸水溶液 (0.66 g, 1.3 mmol) とを水 (3 mL) に溶解させた。室温で24時間撹拌した後に、酢酸エチル (3×5 mL) で抽出した。抽出した有機層を無水硫酸マグネシウムで乾燥させた後に、溶媒を留去した。得られた粗生成物をアルミナカラムクロマトグラフィー (溶出溶媒:アセトニトリル) により精製を行った。得られた生成物を100 ℃で2時間真空乾燥を行い、4aを黄色液体 (0.61 g, 66 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.89 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.70-3.83 (2H, m), 3.38-3.53 (2H, m), 3.24 (3H, s), 1.69-1.79 (2H, brm), 1.25-1.42 (4H, m), 0.90 (3H, t, J = 6.8 Hz).
・N-ヘキシル-N-メチルオキサゾリジニウム=テトラフルオロボレート (4b)
臭化N-ヘキシル-N-メチルオキサゾリジニウム (2b) (10.0 g, 39.7 mmol) と50 wt% テトラフルオロホウ酸水溶液 (7.25 g, 39.7 mmol) とを水 (20 mL) に溶解させた。4aと同じ方法により合成を行い、4bを黄色液体 (7.23 g, 70 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.89 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.70-3.83 (2H, m), 3.38-3.53 (2H, m), 3.24 (3H, s), 1.69-1.79 (2H, brm), 1.25-1.42 (6H, m), 0.90 (3H, t, J = 6.8 Hz).
・N-ヘプチル-N-メチルオキサゾリジニウム=テトラフルオロボレート(4c)
臭化N-ヘプチル-N-メチルオキサゾリジニウム (2c) (8.0 g, 30 mmol) と50 wt% テトラフルオロホウ酸水溶液 (5.27 g, 30.0 mmol) とを水 (20 mL) に溶解させた。4aと同じ方法により合成を行い、4cを黄色液体 (4.24 g, 52 %) として得た。
1H-NMR (270 MHz, CDCl3, TMS) δ4.89 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.70-3.83 (2H, m), 3.38-3.53 (2H, m), 3.24 (3H, s), 1.69-1.79 (2H, brm), 1.25-1.42 (8H, m), 0.90 (3H, t, J = 6.8 Hz).
・N-ペンチル-N-メチルオキサゾリジニウム=ヘキサフルオロホスフェート (5a)
臭化N-ヘプチル-N-メチルオキサゾリジニウム (2a) (0.90 g, 3.8 mmol) とカリウム ヘキサフルオロホスフェート(0.66 g, 3.8 mmol) とを水 (3 mL) に溶解させた。室温で24時間撹拌した後に、ジクロロメタン (3×3 mL) で抽出した。有機層を水 (1×3 mL) で洗浄した後に、無水硫酸マグネシウムで乾燥させた。溶媒を留去した後、ジクロロメタン-ヘキサンから再結晶を行うことにより、5aを淡黄色固体 (0.61 g, 66 %) として得た。
M.p.94-96 ℃; 1H-NMR (270 MHz, CDCl3, TMS) δ4.82 (2H, s), 4.42 (2H, t, J = 8.6 Hz), 3.70-3.77 (2H, m), 3.42-3.50 (2H, m), 3.21 (3H, s), 1.70-1.83 (2H, brm), 1.36-1.42 (4H, m), 0.92 (3H, t, J = 7.0 Hz).
・N-ヘキシル-N-メチルオキサゾリジニウム=ヘキサフルオロホスフェート (5b)
臭化N-ヘキシル-N-メチルオキサゾリジニウム (2b) (0.30 g, 1.2 mmol) とカリウム ヘキサフルオロホスフェート(0.22 g, 1.2 mmol) を水 (3 mL) に溶解させた。5aと同じ方法により合成を行い、5bを白色固体 (0.25 g, 67 %) として得た。
M.p.67-70 ℃; 1H-NMR (270 MHz, CDCl3, TMS) δ4.81 (2H, s), 4.41 (2H, t, J = 7.1 Hz), 3.69-3.80 (2H, m), 3.40-3.52 (2H, m), 3.20 (3H, s), 1.69-1.82 (2H, brm), 1.32-1.45 (6H, m), 0.91 (3H, t, J = 7.0 Hz).
・N-ヘプチル-N-メチルオキサゾリジニウム=ヘキサフルオロホスフェート (5c)
臭化N-ヘプチル-N-メチルオキサゾリジニウム (2c) (0.30 g, 1.1 mmol) とカリウム ヘキサフルオロホスフェート(0.21 g, 1.1 mmol) を水 (3 mL) に溶解させた。5aと同じ方法により合成を行い、5cを白色固体 (0.20 g, 54 %) として得た。
M.p.67-70 ℃; 1H-NMR (270 MHz, CDCl3, TMS) δ4.80 (2H, s), 4.39 (2H, t, J = 7.1 Hz), 3.69-3.80 (2H, m), 3.38-3.50 (2H, m), 3.20 (3H, s), 1.69-1.82 (2H, brm), 1.25-1.42 (8H, m), 0.90 (3H, t, J = 6.8 Hz).
・N-メチル-N-(3-メトキシ)プロピルオキサゾリジニウム=ヘキサフルオロホスフェート (5d)
臭化N-メチル-N-(3-メトキシ)プロピルオキサゾリジニウム (2d) (4.0 g, 17 mmol) とカリウム ヘキサフルオロホスフェート (3.01 g, 17 mmol) を水 (20 mL) に溶解させた。5aと同じ方法により合成を行い、5dを白色固体 (2.49 g, 49%) として得た。
M.p.45-47 ℃; 1H-NMR (270 MHz, CDCl3, TMS) δ4.85 (2H, s), 4.39-4.45(2H, m), 3.73-3.82 (2H, m), 3.59-3.66 (2H, m), 3.50 (2H, t, J = 5.4 Hz), 3.34 (3H, s), 3.20 (3H, s), 2.00-2.11 (2H, m).
(Ii) Experimental items • N-pentyl-N-methyloxazolidinium bromide (2a)
Under a nitrogen atmosphere, N-methyl-1,3-oxazolidine (1) (8.0 g, 92 mmol) and 1-bromopentane (13.87 g, 92 mmol) were mixed and heated and stirred for 24 hours at 70 ° C. After vacuum drying at 100 ° C. for 2 hours, the mixture was allowed to cool to room temperature. The obtained crude product was recrystallized from 2-propanol-tetrahydrofuran to obtain 2a as a pale yellow solid (12.15 g, 56%).
Mp90-93 ° C; 1 H-NMR (270 MHz, CDCl 3 , TMS) δ5.23 (2H, s), 4.52 (2H, t, J = 7.4 Hz), 4.04-4.22 (2H, m), 3.75- 3.92 (2H, m), 3.47 (3H, s), 1.78-1.83 (2H, brm), 1.33-1.45 (4H, m), 0.93 (3H, t, J = 7.3 Hz).
・ N-hexyl bromide-N-methyloxazolidinium (2b)
Under a nitrogen atmosphere, N-methyl-1,3-oxazolidine (1) (10.0 g, 115 mmol) and 1-bromohexane (18.95 g, 115 mmol) were mixed and heated and stirred for 24 hours at 70 ° C. After vacuum drying at 100 ° C. for 2 hours, the mixture was allowed to cool to room temperature. The resulting crude product was purified by alumina column chromatography (elution solvent: acetonitrile) and then vacuum dried at 100 ° C. for 2 hours to obtain 2b as a brown liquid (19.58 g, 67%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ5.22 (2H, s), 4.52 (2H, t, J = 7.4 Hz), 4.03-4.22 (2H, m), 3.74-3.90 (2H, m ), 3.47 (3H, s), 1.71-1.86 (2H, brm), 1.26-1.45 (6H, m), 0.91 (3H, t, J = 7.3 Hz).
・ N-Heptyl-N-methyloxazolidinium bromide (2c)
In the same manner as 2b, N-methyl-1,3-oxazolidine (1) (10.0 g, 115 mmol) and 1-bromoheptane (20.56 g, 115 mmol) are reacted, and 2c is a brown liquid (21.35 g, 70 %).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ5.23 (2H, s), 4.51 (2H, t, J = 7.4 Hz), 4.05-4.17 (2H, m), 3.78-3.86 (2H, m ), 3.47 (3H, s), 1.73-1.86 (2H, brm), 1.21-1.45 (8H, m), 0.90 (3H, t, J = 7.0 Hz).
・ N-methyl-N- (3-methoxy) propyloxazolidinium bromide (2d)
In the same manner as 2a, N-methyl-1,3-oxazolidine (1) (8.0 g, 92 mmol) is reacted with 1-bromo-3-methoxypropane (14.05 g, 92 mmol) to give 2d a brown solid ( 13.62 g, 62%).
Mp78-80 ° C; 1 H-NMR (270 MHz, CDCl 3 , TMS) δ 5.28 (1H, d, J = 5.4 Hz), 5.20 (1H, d, J = 5.4 Hz), 4.46-4.56 (2H, m), 4.08-4.14 (2H, m), 3.90-3.97 (2H, m), 3.54 (2H, t, J = 5.4 Hz), 3.50 (3H, s), 3.34 (3H, s), 2.10-2.20 (2H, m).
・ N-methyl-N- (4-methoxy) butyloxazolidinium bromide (2e)
In the same manner as 2b, N-methyl-1,3-oxazolidine (1) (4.17 g, 48 mmol) is reacted with 1-bromo-4-methoxybutane (8.0 g, 48 mmol) to give 2e a brown liquid ( 10.66 g, 87%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ5.25 (1H, d, J = 5.4 Hz), 5.22 (1H, d, J = 5.4 Hz), 4.49-4.55 (2H, m), 4.04- 4.21 (2H, m), 3.85-3.92 (2H, m), 3.52 (3H, s), 3.51 (2H, t, J = 5.4 Hz), 3.34 (3H, s), 1.87 -1.99 (2H, m) , 1.66-1.76 (2H, m).
N-pentyl-N-methyloxazolidinium bis (trifluorosulfonyl) imide (3a)
N-pentyl-N-methyloxazolidinium bromide (2a) (0.30 g, 1.3 mmol) and lithium bis (trifluorosulfonyl) imide (0.36 g, 1.3 mmol) were dissolved in water (1.4 mL) . After stirring at room temperature for 24 hours, the mixture was extracted with dichloromethane (3 × 3 mL). The organic layer was washed with water (1 × 3 mL) and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the crude product was purified by alumina column chromatography (elution solvent: acetonitrile). The obtained product was vacuum-dried at 100 ° C. for 2 hours to obtain 3a as a brown liquid (0.39 g, 70%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.82 (2H, s), 4.40 (2H, t, J = 8.0 Hz), 3.61-3.80 (2H, m), 3.33-3.47 (2H, m ), 3.21 (3H, s), 1.70-1.81 (2H, brm), 1.35-1.44 (4H, m), 0.93 (3H, t, J = 7.0 Hz).
N-hexyl-N-methyloxazolidinium bis (trifluorosulfonyl) imide (3b)
N-hexyl bromide-N-methyloxazolidinium (2b) (0.30 g, 1.2 mmol) and lithium bis (trifluorosulfonyl) imide (0.34 g, 1.2 mmol) were dissolved in water (1.4 mL) . Synthesis was performed by the same method as 3a to obtain 3b as a colorless liquid (0.28 g, 52%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.83 (2H, s), 4.40 (2H, t, J = 8.0 Hz), 3.65-3.82 (2H, m), 3.40-3.47 (2H, m ), 3.21 (3H, s), 1.70-1.80 (2H, brm), 1.32-1.40 (6H, m), 0.91 (3H, t, J = 6.9 Hz).
N-heptyl-N-methyloxazolidinium bis (trifluorosulfonyl) imide (3c)
N-heptyl-N-methyloxazolidinium bromide (2c) (0.30 g, 1.1 mmol) and lithium bis (trifluorosulfonyl) imide (0.32 g, 1.1 mmol) were dissolved in water (1.4 mL) . Synthesis was performed by the same method as 3a to obtain 3c as a colorless liquid (0.35 g, 67%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.84 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.67-3.85 (2H, m), 3.42-3.48 (2H, m ), 3.21 (3H, s), 1.70-1.83 (2H, brm), 1.24-1.42 (6H, m), 0.90 (3H, t, J = 6.8 Hz).
N-methyl-N- (3-methoxy) propyloxazolidinium bis (trifluorosulfonyl) imide (3d)
N-methyl-N- (3-methoxy) propyloxazolidinium bromide (2d) (4.0 g, 17 mmol) and lithium bis (trifluorosulfonyl) imide (4.78 g, 17 mmol) were mixed with water (10 mL ). Synthesis was performed by the same method as 3a to obtain 3d as a colorless liquid (6.07 g, 83%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.85 (2H, s), 4.39-4.45 (2H, m), 3.73-3.82 (2H, m), 3.59-3.66 (2H, m), 3.50 (2H, t, J = 5.4 Hz), 3.34 (3H, s), 3.20 (3H, s), 2.00-2.11 (2H, m).
N-methyl-N- (4-methoxy) butyloxazolidinium bis (trifluorosulfonyl) imide (3e)
N-methyl-N- (4-methoxy) butyloxazolidinium bromide (2e) (8.0 g, 32 mmol) and lithium bis (trifluorosulfonyl) imide (9.04 g, 32 mmol) were mixed with water (20 mL ). Synthesis was performed in the same manner as 3a to obtain 3e as a colorless liquid (11.29 g, 70%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.82 (2H, s), 4.37-4.43 (2H, m), 3.69-3.77 (2H, m), 3.49 (2H, m), 3.44 (2H , t, J = 5.4 Hz), 3.38 (3H, s), 3.20 (3H, s), 1.86-2.00 (2H, m), 1.63-1.72 (2H, m).
N-pentyl-N-methyloxazolidinium = tetrafluoroborate (4a)
N-pentyl-N-methyloxazolidinium bromide (2a) (0.90 g, 3.8 mmol) and 50 wt% tetrafluoroboric acid aqueous solution (0.66 g, 1.3 mmol) were dissolved in water (3 mL). . After stirring at room temperature for 24 hours, the mixture was extracted with ethyl acetate (3 × 5 mL). The extracted organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off. The resulting crude product was purified by alumina column chromatography (elution solvent: acetonitrile). The obtained product was vacuum-dried at 100 ° C. for 2 hours to obtain 4a as a yellow liquid (0.61 g, 66%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.89 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.70-3.83 (2H, m), 3.38-3.53 (2H, m ), 3.24 (3H, s), 1.69-1.79 (2H, brm), 1.25-1.42 (4H, m), 0.90 (3H, t, J = 6.8 Hz).
N-hexyl-N-methyloxazolidinium = tetrafluoroborate (4b)
N-hexyl bromide-N-methyloxazolidinium (2b) (10.0 g, 39.7 mmol) and 50 wt% tetrafluoroboric acid aqueous solution (7.25 g, 39.7 mmol) were dissolved in water (20 mL). . Synthesis was performed by the same method as 4a to obtain 4b as a yellow liquid (7.23 g, 70%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.89 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.70-3.83 (2H, m), 3.38-3.53 (2H, m ), 3.24 (3H, s), 1.69-1.79 (2H, brm), 1.25-1.42 (6H, m), 0.90 (3H, t, J = 6.8 Hz).
N-heptyl-N-methyloxazolidinium = tetrafluoroborate (4c)
N-heptyl-N-methyloxazolidinium bromide (2c) (8.0 g, 30 mmol) and 50 wt% tetrafluoroboric acid aqueous solution (5.27 g, 30.0 mmol) were dissolved in water (20 mL). . Synthesis was performed in the same manner as 4a to obtain 4c as a yellow liquid (4.24 g, 52%).
1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.89 (2H, s), 4.41 (2H, t, J = 7.8 Hz), 3.70-3.83 (2H, m), 3.38-3.53 (2H, m ), 3.24 (3H, s), 1.69-1.79 (2H, brm), 1.25-1.42 (8H, m), 0.90 (3H, t, J = 6.8 Hz).
N-pentyl-N-methyloxazolidinium = hexafluorophosphate (5a)
N-heptyl-N-methyloxazolidinium bromide (2a) (0.90 g, 3.8 mmol) and potassium hexafluorophosphate (0.66 g, 3.8 mmol) were dissolved in water (3 mL). After stirring at room temperature for 24 hours, the mixture was extracted with dichloromethane (3 × 3 mL). The organic layer was washed with water (1 × 3 mL) and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, recrystallization from dichloromethane-hexane gave 5a as a pale yellow solid (0.61 g, 66%).
Mp94-96 ° C; 1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.82 (2H, s), 4.42 (2H, t, J = 8.6 Hz), 3.70-3.77 (2H, m), 3.42- 3.50 (2H, m), 3.21 (3H, s), 1.70-1.83 (2H, brm), 1.36-1.42 (4H, m), 0.92 (3H, t, J = 7.0 Hz).
N-hexyl-N-methyloxazolidinium = hexafluorophosphate (5b)
N-hexyl-N-methyloxazolidinium bromide (2b) (0.30 g, 1.2 mmol) and potassium hexafluorophosphate (0.22 g, 1.2 mmol) were dissolved in water (3 mL). Synthesis was performed by the same method as 5a to obtain 5b as a white solid (0.25 g, 67%).
Mp67-70 ° C; 1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.81 (2H, s), 4.41 (2H, t, J = 7.1 Hz), 3.69-3.80 (2H, m), 3.40- 3.52 (2H, m), 3.20 (3H, s), 1.69-1.82 (2H, brm), 1.32-1.45 (6H, m), 0.91 (3H, t, J = 7.0 Hz).
N-heptyl-N-methyloxazolidinium = hexafluorophosphate (5c)
N-heptyl-N-methyloxazolidinium bromide (2c) (0.30 g, 1.1 mmol) and potassium hexafluorophosphate (0.21 g, 1.1 mmol) were dissolved in water (3 mL). Synthesis was performed by the same method as 5a to obtain 5c as a white solid (0.20 g, 54%).
Mp67-70 ° C; 1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.80 (2H, s), 4.39 (2H, t, J = 7.1 Hz), 3.69-3.80 (2H, m), 3.38- 3.50 (2H, m), 3.20 (3H, s), 1.69-1.82 (2H, brm), 1.25-1.42 (8H, m), 0.90 (3H, t, J = 6.8 Hz).
N-methyl-N- (3-methoxy) propyloxazolidinium = hexafluorophosphate (5d)
N-methyl-N- (3-methoxy) propyloxazolidinium bromide (2d) (4.0 g, 17 mmol) and potassium hexafluorophosphate (3.01 g, 17 mmol) were dissolved in water (20 mL). . Synthesis was performed by the same method as 5a to obtain 5d as a white solid (2.49 g, 49%).
Mp45-47 ° C; 1 H-NMR (270 MHz, CDCl 3 , TMS) δ4.85 (2H, s), 4.39-4.45 (2H, m), 3.73-3.82 (2H, m), 3.59-3.66 (2H , m), 3.50 (2H, t, J = 5.4 Hz), 3.34 (3H, s), 3.20 (3H, s), 2.00-2.11 (2H, m).

(iii)各イオン液体の特性
上述した合成スキームにより得られる各種オキサゾリジウム塩(3a〜3e,4a〜4e,5a〜5e)のうち、NTf2 -(=N(SO2CF32 -)をアニオンとする5種類の塩、つまり、N−ペンチル−N−メチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド(3a)、N−ヘキシル−N−メチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド(3b)、N−ヘプチル−N−メチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド(3c)、N−メチル−N−(3−メトキシ)プロピルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド(3d)、およびN−メチル−N−(4−メトキシ)ブチルオキサゾリジニウム=ビス(トリフルオロスルホニル)イミド(3e)を、それぞれ実施例1〜5のイオン液体として、これら各実施例に対し、還元分解電位、酸化分解電位、電位窓、および熱分解温度(Td)を測定する実験を行った。
(Iii) Characteristics of each ionic liquid Among various oxazolidium salts (3a to 3e, 4a to 4e, 5a to 5e) obtained by the above-described synthesis scheme, NTf 2 (= N (SO 2 CF 3 ) 2 ) is used. Five types of salts as anions, that is, N-pentyl-N-methyloxazolidinium = bis (trifluorosulfonyl) imide (3a), N-hexyl-N-methyloxazolidinium = bis (trifluorosulfonyl) ) Imide (3b), N-heptyl-N-methyloxazolidinium = bis (trifluorosulfonyl) imide (3c), N-methyl-N- (3-methoxy) propyloxazolidinium = bis (trifluoro) Sulfonyl) imide (3d), and N-methyl-N- (4-methoxy) butyloxazolidinium bis (trifluorosulfonyl) imide (3e) ) Were used as the ionic liquids of Examples 1 to 5, respectively, and experiments were conducted to measure the reductive decomposition potential, the oxidative decomposition potential, the potential window, and the thermal decomposition temperature (Td) for each of these Examples.

なお、還元(酸化)分解電位とは、ある化合物の還元(酸化)反応の際に発生する電位差(V)であり、その絶対値が大きいほど、化合物が還元(酸化)され難いということになる。電位窓とは、上記還元分解電位と酸化分解電位との差(絶対値の合計)である。熱分解温度(Td)とは、市販の熱重量/示差熱分析装置(TG/DTA)を用いて測定した熱分解の開始温度(℃)のことである。   The reduction (oxidation) decomposition potential is a potential difference (V) generated during the reduction (oxidation) reaction of a certain compound. The larger the absolute value, the less the compound is reduced (oxidized). . The potential window is a difference (total absolute value) between the reductive decomposition potential and the oxidative decomposition potential. The thermal decomposition temperature (Td) is a thermal decomposition starting temperature (° C.) measured using a commercially available thermogravimetric / differential thermal analyzer (TG / DTA).

上記実施例1〜5と比較するための比較例には、従来からあるイオン液体として、イミダゾール系イオン液体(比較例1)、およびプロピレンカーボネート(比較例2)を用いた。なお、比較例1のイミダゾール系イオン液体の化合物名称は、1−エチル−3−メチルイミダゾリウムミダゾールテトラフルオロボレートであり、比較例2のプロピレンカーボネートの化合物名称は、プリピレンカーボネート/テトラエチルアンモニウムテトラフルオロボレートである。   In comparative examples for comparison with Examples 1 to 5, imidazole ionic liquid (Comparative Example 1) and propylene carbonate (Comparative Example 2) were used as conventional ionic liquids. The compound name of the imidazole-based ionic liquid in Comparative Example 1 is 1-ethyl-3-methylimidazolium midazole tetrafluoroborate, and the compound name of propylene carbonate in Comparative Example 2 is propylene carbonate / tetraethylammonium tetra. It is a fluoroborate.

上記各実施例および比較例を用いて還元分解電位、酸化分解電位、電位窓、および熱分解温度(Td)を測定した結果を図1に示す。なお、還元分解電位、および酸化分解電位の基準は、Ag/AgCl=0Vとしたものである。この図1に示すように、実施例1〜5のイオン液体は、そのいずれにおいても、還元分解電位および酸化分解電位の絶対値が、比較例1,2(イミダゾール系イオン液体およびプロピレンカーボネート)と比べて大きくなっており、結果として、電位窓の値にかなりの上昇が見られる。すなわち、実施例1〜5のイオン液体は、比較例1,2と比べて、酸化・還元され難く、電気化学的な安定性に優れていることが分かった。   The results of measuring the reductive decomposition potential, the oxidative decomposition potential, the potential window, and the thermal decomposition temperature (Td) using the above Examples and Comparative Examples are shown in FIG. The reductive decomposition potential and the oxidative decomposition potential are based on Ag / AgCl = 0V. As shown in FIG. 1, in any of the ionic liquids of Examples 1 to 5, the absolute values of the reductive decomposition potential and the oxidative decomposition potential were different from those of Comparative Examples 1 and 2 (imidazole ionic liquid and propylene carbonate). As a result, there is a considerable increase in the value of the potential window. That is, it was found that the ionic liquids of Examples 1 to 5 were less oxidized / reduced than Comparative Examples 1 and 2, and were excellent in electrochemical stability.

また、熱分解温度(Td)については、実施例1〜4の熱分解温度が、比較例1,2と比べていずれも高く、優れた耐熱性を示している。また、実施例5については、比較例1(イミダゾール系イオン液体)と比べた場合には、熱分解温度が若干低下しているが、比較例2(プロピレンカーボネート)と比べた場合には、熱分解温度が大幅に上昇しており、十分な耐熱性の向上が見られる。   Moreover, about thermal decomposition temperature (Td), the thermal decomposition temperature of Examples 1-4 is high compared with Comparative Examples 1 and 2, and has shown the outstanding heat resistance. Moreover, about Example 5, when compared with the comparative example 1 (imidazole type | system | group ionic liquid), although thermal decomposition temperature has fallen a little, when compared with the comparative example 2 (propylene carbonate), heat The decomposition temperature is significantly increased, and sufficient heat resistance is improved.

以上のように、実施例1〜5のイオン液体は、比較例1,2と比べて電気化学的な安定性に優れており、しかも、耐熱性についても十分な性能を有することが分かった。   As described above, it was found that the ionic liquids of Examples 1 to 5 were excellent in electrochemical stability as compared with Comparative Examples 1 and 2, and had sufficient performance with respect to heat resistance.

なお、図1の実験では、NTf2 -をアニオンとする5種類のオキサゾリジウム塩(3a〜3e)を実施例1〜5として、還元分解電位、酸化分解電位、電位窓、および熱分解温度(Td)の測定を行ったが、BF4 -,PF6 -をアニオンとする他のオキサゾリジウム塩(4a〜4e,5a〜5e)についても、電気化学的な特徴は共通しており、図1と同様の結果が得られるものと考えられる。 In the experiment of FIG. 1, five kinds of oxazolidium salts (3a to 3e) having NTf 2 as an anion are used as Examples 1 to 5, and the reduction decomposition potential, the oxidation decomposition potential, the potential window, and the thermal decomposition temperature (Td ) Was measured, but the electrochemical characteristics of the other oxazolidium salts (4a to 4e, 5a to 5e) having BF 4 and PF 6 as anions are the same as in FIG. It is thought that the result of is obtained.

(iv)蓄電装置に使用した場合の特性
次に、実施例のイオン液体を、蓄電装置用の電解液として用いた場合に、その蓄電装置にどの程度の性能の向上が見られるかを確認する実験を行った。この実験では、蓄電装置として、型式:CR2032のコイン電池を用い、このコイン電池の電解液として、実施例2,3のイオン液体(3b,3c)を使用した。なお、CR2032のコイン電池における正極および負極は、ともに活性炭(クレハ製)である。
(Iv) Characteristics when used in a power storage device Next, when the ionic liquid of the example is used as an electrolytic solution for a power storage device, it is confirmed how much performance improvement is seen in the power storage device. The experiment was conducted. In this experiment, a coin battery of model CR2032 was used as the power storage device, and the ionic liquids (3b, 3c) of Examples 2 and 3 were used as the electrolyte of the coin battery. The positive and negative electrodes of the CR2032 coin battery are both activated carbon (manufactured by Kureha).

上記のようなコイン電池を用いて、その上限電圧(V)、初期放電容量(mAh/g)、エネルギー密度(Wh/kg)を測定した。上限電圧とは、電解液が分解し始める電圧のことであり、その測定は、コイン電池に加える電圧を徐々に高め、充電カーブの傾きが変わったときの電圧を特定することで行った。また、測定された上限電圧まで充電した後、初期放電容量を測定した。具体的には、1mAの定電流で上限電圧まで充電した後、1mAの定電流で0Vまで放電し、1サイクル目の放電容量を初期放電容量として測定した。エネルギー密度は、重量あたりに得られるエネルギーのことであり、1/2×(初期放電容量)×(上限電圧)2÷(コイン電池の重量)により得られる。なお、今回の実験で用いたCR2032のコイン電池の重量は、4gである。 Using the coin battery as described above, the upper limit voltage (V), initial discharge capacity (mAh / g), and energy density (Wh / kg) were measured. The upper limit voltage is a voltage at which the electrolyte begins to decompose, and the measurement was performed by gradually increasing the voltage applied to the coin battery and specifying the voltage when the slope of the charging curve changed. Moreover, after charging to the measured upper limit voltage, the initial discharge capacity was measured. Specifically, after charging to the upper limit voltage with a constant current of 1 mA, the battery was discharged to 0 V with a constant current of 1 mA, and the discharge capacity at the first cycle was measured as the initial discharge capacity. The energy density is energy obtained per weight, and is obtained by 1/2 × (initial discharge capacity) × (upper limit voltage) 2 ÷ (weight of coin battery). The weight of the CR2032 coin battery used in this experiment is 4 g.

上記実験の測定結果を図2に示す。図2では、実施例2,3のイオン液体を電解液として用いたコイン電池に対し、上記上限電圧、初期放電容量、エネルギー密度の測定を行うとともに、比較例1,2(イミダゾール系イオン液体およびプロピレンカーボネート)のイオン液体を用いたコイン電池についても同様の測定を行った。   The measurement results of the above experiment are shown in FIG. In FIG. 2, the upper limit voltage, initial discharge capacity, and energy density were measured for the coin battery using the ionic liquids of Examples 2 and 3 as the electrolyte, and Comparative Examples 1 and 2 (imidazole-based ionic liquid and The same measurement was performed on a coin battery using an ionic liquid of propylene carbonate.

図2によれば、コイン電池用の電解液として実施例2,3のイオン液体を用いた場合には、比較例1,2のイオン液体を用いた場合と比較して、上限電圧、放電容量、エネルギー密度の全ての値が上昇していることが分かる。特に、エネルギー密度については、現在の主流であるプロピレンカーボネート(比較例2)を用いた場合と比較して、約3.5倍のエネルギー密度が得られており、イミダゾール系イオン液体(比較例1)と比較しても、2倍以上のエネルギー密度が得られていることが分かる。   According to FIG. 2, when the ionic liquids of Examples 2 and 3 are used as the electrolyte solution for the coin battery, the upper limit voltage and the discharge capacity are compared with the case of using the ionic liquids of Comparative Examples 1 and 2. It can be seen that all values of energy density are rising. In particular, the energy density is about 3.5 times that of the case where propylene carbonate (Comparative Example 2), which is the current mainstream, is used, and an imidazole ionic liquid (Comparative Example 1) is obtained. ), It can be seen that the energy density is twice or more.

すなわち、実施例2,3のイオン液体は、図1に示したように、比較例1,2のイオン液体と比べて電位窓の値がかなり大きく、電気化学的な安定性により優れているため、このような実施例2,3のイオン液体を電解液として用いることで、コイン電池の作動電圧(上限電圧)が上昇し、その結果、電池の高容量化、およびエネルギー密度の大幅な上昇が得られたものと考えられる。   That is, as shown in FIG. 1, the ionic liquids of Examples 2 and 3 have a considerably large potential window value and superior electrochemical stability as compared with the ionic liquids of Comparative Examples 1 and 2. By using the ionic liquids of Examples 2 and 3 as the electrolytic solution, the operating voltage (upper limit voltage) of the coin battery is increased. As a result, the capacity of the battery is increased and the energy density is significantly increased. It is thought that it was obtained.

なお、図2では、実施例2,3のイオン液体(3b,3c)を電解液として用いたコイン電池に対し上限電圧、放電容量、エネルギー密度の測定を行ったが、図1の結果からすれば、他の実施例1,4,5のイオン液体(3a,3d,3e)を電解液として用いた場合にも、当然に、図2と同様の性能改善が得られるものと考えられ、さらに、これ以外の実施例にかかるオキサゾリジウム塩(4a〜4e,5a〜5e)を用いた場合にも、同様の結果が得られるものと考えられる。   In FIG. 2, the upper limit voltage, discharge capacity, and energy density were measured for the coin battery using the ionic liquids (3b, 3c) of Examples 2 and 3 as the electrolytic solution. For example, even when the ionic liquids (3a, 3d, 3e) of other Examples 1, 4, and 5 are used as the electrolytic solution, it is naturally considered that the same performance improvement as in FIG. 2 can be obtained. It is considered that the same results can be obtained when the oxazolidium salts (4a to 4e, 5a to 5e) according to the other examples are used.

Claims (4)

アルキル基またはメトキシアルキル基(R)がN位に置換したオキサゾリジンカチオンと、ハロゲンを含むアニオン(X-)とから構成される、下記一般式(1)で表わされるイオン液体。
Figure 2011236161
An ionic liquid represented by the following general formula (1), comprising an oxazolidine cation in which an alkyl group or a methoxyalkyl group (R) is substituted at the N-position, and an anion (X ) containing a halogen.
Figure 2011236161
上記ハロゲンを含むアニオン(X-)が、Br-,BF4 -,PF6 -,N(SO2CF32 - のいずれかであることを特徴とする請求項1記載のイオン液体。 2. The ionic liquid according to claim 1, wherein the halogen-containing anion (X ) is any one of Br , BF 4 , PF 6 , and N (SO 2 CF 3 ) 2 . 請求項1または2記載のイオン液体を電解液として含む蓄電装置。   A power storage device comprising the ionic liquid according to claim 1 or 2 as an electrolytic solution. 請求項1記載のイオン液体を製造する方法であって、
N−メチルオキサゾリジンと、上記Rのアルキル基またはメトキシアルキル基を有するハロゲン化アルキルとを混合し、50℃以上100℃以下の温度条件下で反応させることにより、上記Rのアルキル基またはメトキシアルキル基がN位に置換したN−メチルオキサゾリジンカチオンと、ハロゲンアニオンとを有する塩化合物を得る工程と、
上記塩化合物と、上記X- をカウンターアニオンとして含むアルカリ塩または酸試薬とを用いて室温下でアニオン交換反応を行う工程とを含むことを特徴とするイオン液体の製造方法。
A method for producing an ionic liquid according to claim 1, comprising:
By mixing N-methyloxazolidine and the alkyl halide having the alkyl group of R or the methoxyalkyl group, and reacting under a temperature condition of 50 ° C. or more and 100 ° C. or less, the alkyl group or methoxyalkyl group of the R Obtaining a salt compound having an N-methyloxazolidine cation substituted at the N-position and a halogen anion;
A method for producing an ionic liquid comprising the step of performing an anion exchange reaction at room temperature using the salt compound and an alkali salt or acid reagent containing X as a counter anion.
JP2010109449A 2010-05-11 2010-05-11 Ionic liquid, method for producing the same, power storage device using the same Pending JP2011236161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109449A JP2011236161A (en) 2010-05-11 2010-05-11 Ionic liquid, method for producing the same, power storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109449A JP2011236161A (en) 2010-05-11 2010-05-11 Ionic liquid, method for producing the same, power storage device using the same

Publications (1)

Publication Number Publication Date
JP2011236161A true JP2011236161A (en) 2011-11-24

Family

ID=45324553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109449A Pending JP2011236161A (en) 2010-05-11 2010-05-11 Ionic liquid, method for producing the same, power storage device using the same

Country Status (1)

Country Link
JP (1) JP2011236161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130786A (en) * 2011-12-01 2013-06-05 海洋王照明科技股份有限公司 Oxazolidines ionic liquid containing carbonic ester perssad and preparation method and application thereof
CN103833661A (en) * 2012-11-26 2014-06-04 海洋王照明科技股份有限公司 Oxazolidine ionic liquid, and preparation method and application thereof
CN103896876A (en) * 2012-12-28 2014-07-02 海洋王照明科技股份有限公司 Double-center piperazine ionic liquid, preparation method thereof, electrolyte and lithium-ion battery
WO2018030564A1 (en) * 2016-08-12 2018-02-15 주식회사 씨트리 Method for preparing electrolyte ionic liquid containing ether group and having high ion conductivity
CN109643817A (en) * 2016-06-10 2019-04-16 雷恩第大学 Ionic liquid is in electrochemistry as the purposes of adjuvant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084664A (en) * 2006-09-27 2008-04-10 Sony Corp Electrochemical light-emitting element and electrochemical light-emitting device
WO2009132740A2 (en) * 2008-04-29 2009-11-05 Merck Patent Gmbh, Reactive ionic liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084664A (en) * 2006-09-27 2008-04-10 Sony Corp Electrochemical light-emitting element and electrochemical light-emitting device
WO2009132740A2 (en) * 2008-04-29 2009-11-05 Merck Patent Gmbh, Reactive ionic liquids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014023458; Inorganic Chemistry 43(9), 2004, p. 2960-2966 *
JPN6014023461; Chemistry - A European Journal 12(8), 2006, p. 2196-2212 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130786A (en) * 2011-12-01 2013-06-05 海洋王照明科技股份有限公司 Oxazolidines ionic liquid containing carbonic ester perssad and preparation method and application thereof
CN103130786B (en) * 2011-12-01 2016-07-13 海洋王照明科技股份有限公司 Oxazolidine class ionic liquid of carbonate-containing group and its preparation method and application
CN103833661A (en) * 2012-11-26 2014-06-04 海洋王照明科技股份有限公司 Oxazolidine ionic liquid, and preparation method and application thereof
CN103896876A (en) * 2012-12-28 2014-07-02 海洋王照明科技股份有限公司 Double-center piperazine ionic liquid, preparation method thereof, electrolyte and lithium-ion battery
CN109643817A (en) * 2016-06-10 2019-04-16 雷恩第大学 Ionic liquid is in electrochemistry as the purposes of adjuvant
WO2018030564A1 (en) * 2016-08-12 2018-02-15 주식회사 씨트리 Method for preparing electrolyte ionic liquid containing ether group and having high ion conductivity
KR20190033539A (en) * 2016-08-12 2019-03-29 주식회사 씨트리 A method for producing an ionic liquid for an electrolyte comprising an ether group having a high ion conductivity
KR102127081B1 (en) 2016-08-12 2020-06-25 주식회사 메디포럼제약 Method for preparing ionic liquids for electrolytes with high ionic conductivity

Similar Documents

Publication Publication Date Title
EP1642896B1 (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
JP6847915B2 (en) Non-fluoridation salts, solutions, and their use
JP2011236161A (en) Ionic liquid, method for producing the same, power storage device using the same
JP3907446B2 (en) Synthesis of ionic metal complexes
JP2014531415A (en) Bisquaternary ammonium salt ionic liquid having two centers, process for its preparation and use
KR102285191B1 (en) Silicon-containing sulfuric acid ester salt
JP2006225372A (en) Method for synthesizing ionic complex
CN1516702A (en) Boron chelate complexes
CN113896706A (en) Preparation method and application of methylene methanedisulfonate
JP2017095416A (en) Silicon-containing sulfonate
JP3080359B2 (en) Hyperbranched polymer and method for producing the same
JP6051757B2 (en) Ionic liquid
US7094365B2 (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
US9196424B2 (en) Double-center bipyridyl cationic ion liquid, preparation method therefor and use thereof
JP2001247522A (en) Method of preparing quaternary alkylammonium tetrafluoroborates
JP4405779B2 (en) Ether complex salt
JP5217030B2 (en) Novel organic paramagnetic ionic liquid compound and supporting electrolyte containing the same
JPH06239996A (en) Conductive polymer and its preparation
JP5703009B2 (en) Sulfone compound, method for producing sulfone compound, and electrolytic solution for electrochemical device
JP2017145197A (en) Electrolyte solution containing magnesium salts, and methods of making magnesium salts
JP2007015931A (en) Carbonate compound
JP6103582B2 (en) Solid electrolyte comprising (meth) acrylic acid amide compound, polymer thereof and polymer containing metal ion
CN104505264B (en) A kind of synthetic method of halogen-free spiro quaternary ammonium salt
JP2010163396A (en) Dopant for electroconductive polymer, and electroconductive polymer using the same
JPS6296470A (en) Novel tcnq complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310