JP2011234204A - Optical communication system having light emission power control function - Google Patents

Optical communication system having light emission power control function Download PDF

Info

Publication number
JP2011234204A
JP2011234204A JP2010103753A JP2010103753A JP2011234204A JP 2011234204 A JP2011234204 A JP 2011234204A JP 2010103753 A JP2010103753 A JP 2010103753A JP 2010103753 A JP2010103753 A JP 2010103753A JP 2011234204 A JP2011234204 A JP 2011234204A
Authority
JP
Japan
Prior art keywords
communication
battery
led
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010103753A
Other languages
Japanese (ja)
Inventor
Shinichi Miyashita
慎一 宮下
Norikazu Makita
憲和 蒔田
Takahisa Yamamoto
隆久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2010103753A priority Critical patent/JP2011234204A/en
Publication of JP2011234204A publication Critical patent/JP2011234204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To control light emission power of an LED for optical communication mounted on a terminal according to a battery consumption level and a communication distance.SOLUTION: A terminal includes a receiver 7 that receives an optical signal for visible light communication from a lighting device and a transmitter 8 that transmits an optical signal of visible light or an infrared light toward the lighting device side. The receiver 7 includes a signal intensity detector that detects the intensity of a reception signal from the lighting device. The terminal includes a battery voltage detector for detecting a voltage value of a battery 6. A signal processor 16 detects an output current of an infrared LED 24 using a current detection resistor 25 and compares the output current with the reception signal intensity of the visible light communication and the voltage of the battery. The signal processor 16 outputs a control signal to a driving circuit 23 based on the comparison result and the driving circuit 23 drives the infrared LED 24 by receiving the control signal. The infrared emission LED 24 is driven with an appropriate power value, considering both consumption status of the battery (a battery voltage) and a communication distance.

Description

本発明は、通信距離並びに電池電圧に応じて発光電力を制御することを可能とした光通信システムに関するものである。   The present invention relates to an optical communication system that can control light emission power according to a communication distance and a battery voltage.

最近、LEDを使用した可視光通信システムが提案されている。このような可視光通信システムの1つとして、天井などに設置した照明器具に使用されるLEDと、この照明器具の照射範囲内に位置するヘッドセットやPDAなどの携行型の通信端末との間で、通信を行うものがある。通信に当たっては、アップリンクとダウンリンクの双方を可視光通信で行なっても良いし、例えばダウンリンクを可視光通信で、アップリンクを赤外線通信で行うこともある。この場合、照明器具と端末のそれぞれに通信用の送信部と受信部とを設け、照明器具の送信部として照明用のLEDを用い、端末の送信部として赤外線LEDなどの発光素子を用い、受信部には、フォトダイオードなどの光検出器を用いる。   Recently, a visible light communication system using LEDs has been proposed. As one of such visible light communication systems, between an LED used in a lighting device installed on a ceiling or the like and a portable communication terminal such as a headset or a PDA located within the irradiation range of the lighting device. There is something that communicates. In communication, both the uplink and the downlink may be performed by visible light communication. For example, the downlink may be performed by visible light communication and the uplink may be performed by infrared communication. In this case, a transmitter and a receiver for communication are provided in each of the luminaire and the terminal, an LED for illumination is used as the transmitter of the luminaire, and a light emitting element such as an infrared LED is used as the transmitter of the terminal. For the part, a photodetector such as a photodiode is used.

このシステムにおいて、照明器具では、電力線に通信用の信号を重畳させ、この信号に応じて点灯したLEDを発振させることで送信が行われ、携行型の端末では、端末に装備した電池によって発光素子を駆動することで送信が行われる。そのため、端末の使用を続けると電池の放電により、端末側の発光電力が低下する。特に、端末は、使用者が携行して移動することから、照明器具と端末との通信距離が変化し、電池消耗時には必要な通信距離を確保できない。   In this system, in a luminaire, transmission is performed by superimposing a communication signal on a power line and oscillating a lighted LED in response to this signal. In a portable terminal, a light emitting element is provided by a battery installed in the terminal. Transmission is performed by driving. Therefore, if the terminal is continuously used, the light emission power on the terminal side decreases due to the discharge of the battery. In particular, since the terminal is carried by the user, the communication distance between the luminaire and the terminal changes, and the necessary communication distance cannot be ensured when the battery is consumed.

この問題を解決するための手段として、例えば、従来から下記特許文献1−4に記載の発明が知られている。
特許文献1の発明は、通信中に赤外線通信装置間の距離が変化した場合においても、その距離に応じて赤外線の発光強度を最適化し、赤外線通信装置の低消費電力化を図る。
特許文献2の発明は、端末の持つ複数の機能の中で、消費電力が大きい機能を停止させて消費電力が小さい無線部のみを動作させる。
特許文献3の発明は、固定側の送受信機から送信されたレベル検出信号に基づいて、パワー制御信号を生成してレーザダイオードの出力光パワー制御を行いつつ、光送信信号を生成し送信する。
特許文献4の発明は、距離センサから距離情報を取得し、通信可能な所定範囲内に存在する場合にのみ送信部を発光させる。
As means for solving this problem, for example, the inventions described in the following Patent Documents 1-4 are conventionally known.
In the invention of Patent Document 1, even when the distance between infrared communication devices changes during communication, the infrared light emission intensity is optimized according to the distance, and the power consumption of the infrared communication device is reduced.
The invention of Patent Document 2 stops only a function with high power consumption among a plurality of functions of a terminal and operates only a wireless unit with low power consumption.
The invention of Patent Document 3 generates and transmits an optical transmission signal while generating a power control signal based on the level detection signal transmitted from the fixed-side transceiver and performing output light power control of the laser diode.
In the invention of Patent Document 4, distance information is acquired from a distance sensor, and the transmitter is caused to emit light only when it exists within a predetermined communicable range.

特開2002-374212号公報JP 2002-374212 A 特開2002-208888号公報JP 2002-208888 A 特開2008-244774号公報JP 2008-244774 A 特開2008-028819号公報JP 2008-028819 A

可視光通信システムでは、1つの照明器具に対して通信距離の異なる複数の端末が通信することも多い。そのような場合に照明器具の近くの端末から届いた強力な光が、照明器具から離れた所にある端末から出た弱い光に干渉して、いわゆる遠近問題に伴う通信障害を発生するおそれがある。特に、この点は、端末側から照明器具に発信する場合に、大きな問題となる。しかしながら、前記特許文献1−4の発明は、いずれも電池の消耗を防止するために発光電力を効率良く利用したり、消耗時における発光電力制御に関するものに過ぎず、電池の消耗に対する配慮はあっても、電池の未消耗時(満充電時)においては電力制御を行うことがないため、遠近問題への対策は何ら取られていない。   In a visible light communication system, a plurality of terminals having different communication distances often communicate with one lighting fixture. In such a case, strong light that has arrived from a terminal near the luminaire may interfere with weak light emitted from a terminal that is away from the luminaire, which may cause a communication failure due to a so-called perspective problem. is there. In particular, this point becomes a big problem when transmitting from the terminal side to the luminaire. However, the inventions of Patent Documents 1 to 4 are all related to efficient use of light emission power to prevent battery consumption and light emission power control at the time of consumption. However, since power control is not performed when the battery is not consumed (when fully charged), no countermeasures are taken for the perspective problem.

本発明は前記のような従来技術の問題点を解決するために提案されたものであって、その目的は、電池の消耗状態(電池電圧値)と通信距離との双方を考慮して、照明装置と端末間の通信を安定して実施できる発光電力制御機能を有する光通信システムを提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and the object thereof is to illuminate in consideration of both battery consumption (battery voltage value) and communication distance. An object of the present invention is to provide an optical communication system having a light emission power control function capable of stably performing communication between an apparatus and a terminal.

前記の目的を達成するために、本発明の発光電力制御機能を有する光通信システムは、照明装置からの可視光通信用の光信号を受信する受信部と、照明装置側に可視光または赤外線の光信号を発信する送信部を備えた端末に、照明器具からの受信信号の強度を検出する信号強度検出部と、端末を駆動する電池電圧値を検出する電池電圧検出部を設け、前記検出した受信信号強度と電池電圧とを基準値(一定値もしくは一定範囲の基準値)と比較し、この比較結果に基づいて、端末に設けられた送信部に供給する電力を制御する信号処理部とを備えていることを特徴とする。   In order to achieve the above object, an optical communication system having a light emission power control function according to the present invention includes a receiving unit that receives an optical signal for visible light communication from an illumination device, and a visible light or infrared ray on the illumination device side. A terminal equipped with a transmitter for transmitting an optical signal is provided with a signal intensity detector for detecting the intensity of a received signal from a lighting fixture, and a battery voltage detector for detecting a battery voltage value for driving the terminal. A signal processing unit that compares the received signal strength and the battery voltage with a reference value (a constant value or a reference value within a certain range) and controls the power supplied to the transmission unit provided in the terminal based on the comparison result. It is characterized by having.

この場合、信号処理部は、前記基準値として、送信部の出力電流値を使用することも、本発明の一態様である。   In this case, it is also an aspect of the present invention that the signal processing unit uses the output current value of the transmission unit as the reference value.

また、前記受信信号強度と電池電圧とを予め用意した換算表に基づいて比較し、換算値が小さな方と前記基準値とを比較することも、本発明の一態様である。   It is also an aspect of the present invention that the received signal strength and the battery voltage are compared based on a conversion table prepared in advance, and the smaller converted value is compared with the reference value.

前記のような構成を有する本発明の発光電力制御機能を有する光通信システムでは、電池の消耗時には発光電力を減少させることで、小電力でも可能な近距離の通信を行えるようにして、電池消耗時には、使用者が端末を照明装置に近づけることで通信状態を確保する。一方、通信距離が近付いた場合には通信障害が生じないように、端末からの発光電力を減少させる。特に、本発明では、単に通信距離により発光電力を減少させるのではなく、通信距離と電池電圧の両方を監視することで、電池電圧が低い場合には通信距離が近くなってもそれにより発光電力の減少を行わない。これにより、電池電圧が低くなった場合に端末を照明装置に近づけた場合、発光電力が更に低下して通信が不可能になる欠点が解消される。   In the optical communication system having the light emission power control function of the present invention having the above-described configuration, the battery power consumption is reduced by reducing the light emission power when the battery is consumed so that short-distance communication is possible even with low power. Sometimes, the user ensures the communication state by bringing the terminal closer to the lighting device. On the other hand, when the communication distance approaches, the light emission power from the terminal is reduced so that communication failure does not occur. In particular, in the present invention, the emission power is not simply reduced by the communication distance, but by monitoring both the communication distance and the battery voltage, when the battery voltage is low, the emission power can be reduced even if the communication distance is close. Do not reduce. Thereby, when the battery voltage becomes low, when the terminal is brought close to the lighting device, the disadvantage that the emitted light power further decreases and communication becomes impossible is solved.

本発明の光通信システムの実施例1を示す配置図。1 is a layout diagram showing Embodiment 1 of an optical communication system of the present invention. 実施例1における端末の構成を示すブロック図。FIG. 3 is a block diagram illustrating a configuration of a terminal according to the first embodiment. 実施例1における信号処理部の構成を示すブロック図。FIG. 2 is a block diagram illustrating a configuration of a signal processing unit according to the first embodiment. 実施例1の端末の動作を示すフローチャート。3 is a flowchart showing the operation of the terminal according to the first embodiment.

(1)実施例1の構成
以下、本発明の実施例1の構成を図1から図3に従って具体的に説明する。
図1において、符号1はLED照明装置であって、一例として蛍光管形に配置された複数のLEDを備えており、建物の天井その他の箇所に固定されている。このLED照明装置1は、電源及び信号を供給する同軸ケーブル2によって、点灯用の電源、通信制御用の親機及び他のLED照明装置に接続されている。図示しない親機は、各LED照明装置1の発光を制御したり、各LED照明装置1を通じて端末から受信した信号を処理するものであり、LED照明装置1はこの親機を介して公衆回線網などの外部ネットワークにも接続されている。
(1) Configuration of Embodiment 1 Hereinafter, the configuration of Embodiment 1 of the present invention will be described in detail with reference to FIGS.
In FIG. 1, the code | symbol 1 is an LED illuminating device, Comprising: As an example, it has several LED arrange | positioned by the fluorescent tube shape, and is being fixed to the ceiling other part of a building. The LED lighting device 1 is connected to a power source for lighting, a master unit for communication control, and another LED lighting device by a coaxial cable 2 that supplies power and signals. A master unit (not shown) controls light emission of each LED lighting device 1 and processes a signal received from a terminal through each LED lighting device 1, and the LED lighting device 1 is connected to the public network via this parent device. It is also connected to an external network.

各LED照明装置1の近傍(通信範囲)には、ヘッドセット5やPDAなどの端末が配置(作業員が携行)されている。この端末としては、必ずしもヘッドセットやPDAに限定されることなく、可視光通信を行うことが可能なものであれば、どのようなものでも使用可能である。この端末と各LED照明装置1とは、可視光通信システムによって信号を授受するが、必ずしも双方向可視光通信である必要はなく、本実施例では、ダウンリンクを可視光通信とし、アップリンクを赤外線通信とする。そのため、本実施例では、LED照明装置1に赤外線受信用のフォトダイオードなどの受信部4が設けられている。一方、ヘッドセット5には、駆動用電源となる電池6、照明装置1からの可視光通信データを受信する可視光通信受信部7及び赤外線発光LEDなどにより照明装置1に赤外線通信データを発信する赤外線通信送信部8が設けられている。   In the vicinity (communication range) of each LED lighting device 1, terminals such as a headset 5 and a PDA are arranged (carrying workers). The terminal is not necessarily limited to a headset or PDA, and any terminal that can perform visible light communication can be used. The terminal and each LED lighting device 1 exchange signals with the visible light communication system, but it is not always necessary to perform bidirectional visible light communication. In this embodiment, the downlink is visible light communication, and the uplink is Infrared communication. Therefore, in this embodiment, the LED lighting device 1 is provided with a receiving unit 4 such as a photodiode for receiving infrared rays. On the other hand, the headset 5 transmits infrared communication data to the lighting device 1 by a battery 6 serving as a driving power source, a visible light communication receiving unit 7 that receives visible light communication data from the lighting device 1, an infrared light emitting LED, and the like. An infrared communication transmitter 8 is provided.

このような構成を有する本実施例の端末の回路構成を図2に示す。本実施例の端末は、ヘッドセット5であるため、可視光通信によって受信したデータを音声情報に変換する受信回路部Rと、端末に設けられたマイクからの音声信号を赤外線通信により照明装置1側に送出する送信回路部Sとから構成される。   FIG. 2 shows a circuit configuration of the terminal of this embodiment having such a configuration. Since the terminal according to the present embodiment is the headset 5, the receiving circuit unit R that converts data received by visible light communication into sound information and the sound signal from the microphone provided in the terminal by infrared communication are used for the lighting device 1. And a transmission circuit unit S for sending to the side.

受信回路部Rは、通信データを重畳した可視光を受信し電気信号に変換するための可視光受光素子10、この可視光受光素子10の出力信号のうち通信データとして再生に必要な帯域のみを抽出するバンドパスフィルタ11、バンドパスフィルタ11を通過した信号の振幅制限を行い一定幅の信号として出力するリミッタ12、このリミッタ12からの出力信号を復調してアナログ音声信号とする復調器13、復調器13の出力を増幅してスピーカ15に送出するパワーアンプ14を備えている。   The receiving circuit unit R receives visible light superimposed with communication data and converts it into an electrical signal, and outputs only the band necessary for reproduction as communication data from the output signal of the visible light receiving element 10. A band-pass filter 11 to be extracted, a limiter 12 that limits the amplitude of the signal that has passed through the band-pass filter 11 and outputs the signal as a signal having a constant width, and a demodulator 13 that demodulates the output signal from the limiter 12 to produce an analog audio signal; A power amplifier 14 that amplifies the output of the demodulator 13 and sends it to the speaker 15 is provided.

送信回路部Sは、音声入力用のマイク20、入力された音声信号を増幅するマイクアンプ21、マイクアンプ21からの出力信号を変調してAM若しくはFM変調信号を生成する変調器22、この変調器22からの変調信号に従って赤外線発光LED24を駆動する駆動回路23を備えている。   The transmission circuit unit S includes a microphone 20 for voice input, a microphone amplifier 21 for amplifying the input voice signal, a modulator 22 for modulating an output signal from the microphone amplifier 21 to generate an AM or FM modulation signal, and this modulation. A drive circuit 23 for driving the infrared light emitting LED 24 according to the modulation signal from the device 22 is provided.

本実施例では、前記受信回路部R及び送信回路部Sに加えて、赤外線発光LED24の駆動部23に制御信号を出力する信号処理部16が端末に設けられている。この信号処理部16は、前記リミッタ12から可視光受光素子10で受信した可視光通信信号の受信信号強度(RSSI)を取得すると共に、端末の電源である電池6の電圧値、及び電池6とLED24間に接続された電流検出抵抗25を通して得られたLED出力電流値を取得する。これら受信信号強度、電池電圧値及びLED出力電流値に基づいて、信号処理部16はLED電流制御出力(制御用電圧値)を出力し、この電流制御出力に基づいて駆動回路23からLED24に出力される駆動電流を増減する。   In the present embodiment, in addition to the receiving circuit unit R and the transmitting circuit unit S, a signal processing unit 16 that outputs a control signal to the driving unit 23 of the infrared light emitting LED 24 is provided in the terminal. The signal processing unit 16 acquires the received signal strength (RSSI) of the visible light communication signal received from the limiter 12 by the visible light receiving element 10, the voltage value of the battery 6 that is the power source of the terminal, The LED output current value obtained through the current detection resistor 25 connected between the LEDs 24 is acquired. Based on the received signal strength, the battery voltage value, and the LED output current value, the signal processing unit 16 outputs an LED current control output (control voltage value), and outputs it from the drive circuit 23 to the LED 24 based on the current control output. Increase or decrease the drive current.

この信号処理部16の一例を図3に示す。この信号処理部16は、受信回路部Rのリミッタ12に接続された受信信号強度検出部30、電池6に接続された電池電圧検出部31を備えている。この受信信号強度検出部30及び電池電圧検出部31の出力は、比較部32に接続され、この比較部32には各検出部30,31からの入力データを比較可能な参照値に換算するテーブル33が接続されている。すなわち、各検出部30,31からの入力データは、電圧値として読み込まれ、図示しないフィルタによって整形された後、比較部32に送られる。   An example of the signal processing unit 16 is shown in FIG. The signal processing unit 16 includes a reception signal strength detection unit 30 connected to the limiter 12 of the reception circuit unit R and a battery voltage detection unit 31 connected to the battery 6. Outputs of the received signal strength detection unit 30 and the battery voltage detection unit 31 are connected to a comparison unit 32. The comparison unit 32 converts the input data from the detection units 30 and 31 into a reference value that can be compared. 33 is connected. That is, input data from each of the detection units 30 and 31 is read as a voltage value, shaped by a filter (not shown), and then sent to the comparison unit 32.

換算テーブル33では、例えば、受信信号強度については、そのフィルタ出力電圧値を、最大0.1、最小1.0の値をとる参照値Aに変換して、比較部32に返却する。電池電圧については、そのフィルタ出力電圧値を、最大1.0、最小0.3の値をとる参照値Bに変換して比較部32に返却する。   In the conversion table 33, for example, for the received signal strength, the filter output voltage value is converted into a reference value A having a maximum value of 0.1 and a minimum value of 1.0, and returned to the comparison unit 32. As for the battery voltage, the filter output voltage value is converted into a reference value B having a maximum value of 1.0 and a minimum value of 0.3, and is returned to the comparison unit 32.

すなわち、換算テーブル33では、受信信号強度については、例えば参照値Aが0.1から1.0の範囲に設定されている場合、受信信号強度が一番高い時は参照値Aの最小値0.1をフィルタ出力電圧値に設定し、受信信号強度が一番低い時は参照値Aの最大値1.0をフィルタ出力電圧値に設定し、比較部32に返却する。電池電圧については、例えば参照値Bが0.3から1.0の範囲に設定されている場合、電池が満充電時は、参照値Bの最大値1.0をそのフィルタ出力電圧値に設定し、電池消耗時は参照値Bの最小値0.3をそのフィルタ出力電圧値に設定し、比較部32に返却する。   That is, in the conversion table 33, for the received signal strength, for example, when the reference value A is set in the range of 0.1 to 1.0, the minimum value 0 of the reference value A is obtained when the received signal strength is the highest. .1 is set as the filter output voltage value, and when the received signal strength is the lowest, the maximum value 1.0 of the reference value A is set as the filter output voltage value and returned to the comparison unit 32. For the battery voltage, for example, when the reference value B is set in the range of 0.3 to 1.0, the maximum value 1.0 of the reference value B is set as the filter output voltage value when the battery is fully charged. When the battery is exhausted, the minimum value 0.3 of the reference value B is set as the filter output voltage value and returned to the comparison unit 32.

このように、本発明では、通信距離が近い、すなわち受信信号強度が高い場合には、その参照値Aを小さくすることで赤外線LEDの発光電力を絞り、通信時の遠近問題の解決を図る。また、電池電力が消耗している場合には、赤外線LEDの発光電力を絞ることで、短い通信距離でも通信自体は継続することができるようにするため、読み込んだ電池電圧が高いほど参照値Bを大きくしている。従って、受信信号強度のフィルタ出力電圧と電池電圧のフィルタ出力電圧の増減と、これらフィルタ出力電圧に基づく各参照値A,Bの増減とが逆になっている。   Thus, in the present invention, when the communication distance is short, that is, when the received signal strength is high, the emission power of the infrared LED is reduced by reducing the reference value A to solve the perspective problem during communication. Further, when the battery power is consumed, the communication power can be continued even with a short communication distance by reducing the emission power of the infrared LED. Therefore, the higher the read battery voltage is, the higher the reference value B is. Has increased. Accordingly, the increase / decrease in the filter output voltage of the received signal strength and the filter output voltage of the battery voltage are reversed from the increase / decrease in the reference values A and B based on these filter output voltages.

比較部32は、前記参照値A,Bの大小を比較して、小さい方を目標値Cとして、目標値Cを、制御判定部34に出力する。この制御判定部34には、LED電流検出部35が接続され、前記目標値CとLED電流検出部35から図示しないフィルタによって整形されたLED電流フィルタ出力値が入力される。また、LED電流の初期値αも、この制御判定部34内に保存されている。この比較部32における目標値CとLED電流フィルタ出力値、及びLED電流の初期値αとの比較により、駆動中のLED電流を増減するか否かの判定が行われ、その判定結果が、電流制御出力信号として制御指令出力部36から駆動回路23に出力される。   The comparison unit 32 compares the reference values A and B, and outputs the target value C to the control determination unit 34 with the smaller one as the target value C. An LED current detection unit 35 is connected to the control determination unit 34, and the target value C and an LED current filter output value shaped by a filter (not shown) are input from the LED current detection unit 35. The initial value α of the LED current is also stored in the control determination unit 34. By comparing the target value C with the LED current filter output value and the initial value α of the LED current in the comparison unit 32, it is determined whether or not the LED current during driving is increased or decreased. A control output signal is output from the control command output unit 36 to the drive circuit 23 as a control output signal.

(2)実施例1の作用
実施例1の作用を図4のフローチャートにより説明する。
実施例1のシステムにおいて、ダウンリンクの可視光通信とアップリンクの赤外線通信により、照明装置1と端末であるヘッドセット5の間で通信が開始されると、端末側では、前記図2に示した受信回路部Rにより、可視光受光素子10によって受信した可視光通信信号を音声信号に変換してスピーカ15から出力すると共に、送信回路部Sによりマイク20からの音声信号を駆動回路23からのLED駆動信号に変換することで、赤外線発光LED24を発光させる。
(2) Operation of Embodiment 1 The operation of Embodiment 1 will be described with reference to the flowchart of FIG.
In the system of the first embodiment, when communication is started between the lighting device 1 and the headset 5 which is a terminal by downlink visible light communication and uplink infrared communication, on the terminal side, as shown in FIG. The visible light communication signal received by the visible light receiving element 10 is converted into an audio signal by the receiving circuit unit R and output from the speaker 15, and the audio signal from the microphone 20 is output from the drive circuit 23 by the transmitting circuit unit S. The infrared light emitting LED 24 is caused to emit light by converting the LED driving signal.

この場合、照明装置1と端末との距離及び端末の電池6の消耗度応じて、駆動回路23からの赤外線発光LED24の発光電力を制御するため、図4のフローチャートに示すようなLED電流制御が開始される(ステップ1)。まず、図3の制御判定部34が、開始時点のLED電流初期値αを記憶する(ステップ2)。次に、受信信号強度検出部30がリミッタ12から受信信号強度RSSIを読み込み(ステップ3)、所定のフィルタリングを行った後(ステップ4)、比較部32に出力する。比較部32では、換算テーブル33を参照することで、このRSSI電圧フィルタ出力を参照値Aに変換する(ステップ5)。   In this case, in order to control the light emission power of the infrared light emitting LED 24 from the drive circuit 23 according to the distance between the lighting device 1 and the terminal and the consumption level of the battery 6 of the terminal, the LED current control as shown in the flowchart of FIG. Start (step 1). First, the control determination unit 34 in FIG. 3 stores the LED current initial value α at the start time (step 2). Next, the received signal strength detection unit 30 reads the received signal strength RSSI from the limiter 12 (step 3), performs predetermined filtering (step 4), and outputs it to the comparison unit 32. The comparison unit 32 converts the RSSI voltage filter output into a reference value A by referring to the conversion table 33 (step 5).

一方、RSSI電圧の読み込みと相前後して、電池電圧検出部31が電池6の電圧値を読み込み(ステップ6)、所定のフィルタリングを行った後(ステップ7)、比較部32に出力する。比較部32では、換算テーブル33を参照することで、このRSSI電圧フィルタ出力を参照値Bに変換する(ステップ8)。次に、比較部32では、2つの参照値A,Bを比較して(ステップ9)、小さい方の値を目標値Cとする(ステップ10,11)。   On the other hand, before or after reading the RSSI voltage, the battery voltage detection unit 31 reads the voltage value of the battery 6 (step 6), performs predetermined filtering (step 7), and outputs it to the comparison unit 32. The comparison unit 32 converts the RSSI voltage filter output into a reference value B by referring to the conversion table 33 (step 8). Next, the comparison unit 32 compares the two reference values A and B (step 9), and sets the smaller value as the target value C (steps 10 and 11).

この目標値Cの決定と相前後して、LED電流検出部35により現在のLED電流を読み込み(ステップ12)、所定のフィルタリングを行った後(ステップ13)、制御判定部34において、前記目標値Cとフィルタリング後のLED電流フィルタ出力を前記目標値Cで割った値と、予め記憶しておいたLED電流初期値αとを比較する(ステップ14)。比較結果が初期値αよりも小さい場合、すなわち通信距離が遠いか或いは電池残余電力が大きい場合には、制御指令出力部35からの電流制御出力を予め定めておいたΔVだけ増加し、これにより赤外線発光LED34を駆動するLED電流を増加させる(ステップ15)。一方、比較結果が初期値αよりも大きい場合、すなわち通信距離が近いか或いは電池が消耗している場合には、制御指令出力部35からの電流制御出力を予め定めておいたΔVだけ減少し、これにより赤外線発光LED34を駆動するLED電流を減少させる(ステップ16)。   Before and after the determination of the target value C, the LED current detection unit 35 reads the current LED current (step 12) and performs predetermined filtering (step 13). A value obtained by dividing C and the filtered LED current filter output by the target value C is compared with the LED current initial value α stored in advance (step 14). When the comparison result is smaller than the initial value α, that is, when the communication distance is long or the remaining battery power is large, the current control output from the control command output unit 35 is increased by a predetermined ΔV, thereby The LED current for driving the infrared light emitting LED 34 is increased (step 15). On the other hand, when the comparison result is larger than the initial value α, that is, when the communication distance is short or the battery is exhausted, the current control output from the control command output unit 35 is decreased by a predetermined ΔV. Thus, the LED current for driving the infrared light emitting LED 34 is decreased (step 16).

(3)実施例1の効果
前記のような構成を有する実施例1によれば、通信距離が近く受信信号強度が高い場合には、赤外線LEDの発光電力を絞ることで、端末が照明装置に接近した場合に発生する通信障害を防止することができる。また、電池電力が消耗している場合には、赤外線LEDの発光電力を絞った状態で使用者が端末を照明装置に近づけることで、低電力でも通信を継続することが可能になる。その結果、電池消耗時においても、比較的長時間にわたり通信を行うことができ、電池の消耗に伴い通信が突然切断されるような不都合がない。
(3) Effects of Example 1 According to Example 1 having the above-described configuration, when the communication distance is short and the received signal strength is high, the terminal is turned into the lighting device by reducing the emission power of the infrared LED. It is possible to prevent communication failure that occurs when approaching. In addition, when the battery power is exhausted, the user can continue the communication even with low power by bringing the terminal closer to the lighting device while the emission power of the infrared LED is reduced. As a result, communication can be performed for a relatively long time even when the battery is exhausted, and there is no inconvenience that the communication is suddenly disconnected when the battery is exhausted.

(4)他の実施例
本発明は、前記実施例1に限定されるものではなく、次のような構成も本発明に包含される。
(a) 受信信号強度のフィルタ出力電圧と電池電圧のフィルタ出力電圧を比較する場合の各参照値A,Bは、前記実施例のような値に限定されるものではなく、通信距離の増減の程度、電池容量などに応じて、適宜変更することができる。
(b) 赤外線LEDを駆動するための電流制御出力としては、前記実施例のように電流制御出力電圧の増加によりLED電流が増加する回路の他に、電流制御出力電圧の増加によりLED電流が減少する回路を採用することもできる。その場合には、各比較部の参照値や制御判定部の比較式を変更すればよい。
(c) 前記実施例は、アップリンクとして赤外線を使用したが、端末の送信部として可視光(白色)LEDを使用することで、アップリンクも可視光通信とすることができる。
(d) 図4のフローチャートは、通信信号強度、電池電圧、LED電流の順に読み込んでいるが、各データの読み込みや比較は必ずしもこのようにする必要はなく、目標値の決め方を変更するなどの手法により、読み込みや比較の順序を変更することもできる。
(4) Other Embodiments The present invention is not limited to the first embodiment, and the following configuration is also included in the present invention.
(a) The reference values A and B when the filter output voltage of the received signal strength and the filter output voltage of the battery voltage are compared are not limited to the values as in the above embodiment, It can be appropriately changed according to the degree, battery capacity, and the like.
(b) As the current control output for driving the infrared LED, in addition to the circuit in which the LED current increases as the current control output voltage increases as in the previous embodiment, the LED current decreases as the current control output voltage increases. It is also possible to employ a circuit that In that case, the reference value of each comparison unit and the comparison expression of the control determination unit may be changed.
(c) Although the infrared rays were used as the uplink in the above embodiment, the uplink can also be set to visible light communication by using a visible light (white) LED as a transmission unit of the terminal.
(d) The flow chart of FIG. 4 reads in the order of communication signal strength, battery voltage, and LED current. However, it is not always necessary to read and compare each data in this way. Depending on the method, the order of reading and comparison can be changed.

1…LED照明装置
2…同軸ケーブル
3…LED
4…赤外線通信受信部
5…ヘッドセット
6…電池
7…可視光通信受信部
8…赤外線通信送信部
10…可視光受光素子
11…バンドパスフィルタ
12…リミッタ
13…復調器
14…パワーアンプ
15…スピーカ
16…信号処理部
20…マイク
21…マイクアンプ
22…変調器
23…赤外線発光LED駆動回路
24…赤外線発光LED
25…電流検出抵抗
30…受信信号強度検出部
31…電池電圧検出部
32…比較部
33…換算テーブル
34…制御判定部
35…LED電流検出部
36…制御指令出力部
S…送信回路部
R…受信回路部
DESCRIPTION OF SYMBOLS 1 ... LED lighting apparatus 2 ... Coaxial cable 3 ... LED
4 ... Infrared communication receiver 5 ... Headset 6 ... Battery 7 ... Visible light communication receiver 8 ... Infrared communication transmitter 10 ... Visible light receiving element 11 ... Band pass filter 12 ... Limiter 13 ... Demodulator 14 ... Power amplifier 15 ... Speaker 16 ... Signal processing unit 20 ... Microphone 21 ... Microphone amplifier 22 ... Modulator 23 ... Infrared light emitting LED drive circuit 24 ... Infrared light emitting LED
25 ... Current detection resistor 30 ... Received signal strength detection unit 31 ... Battery voltage detection unit 32 ... Comparison unit 33 ... Conversion table 34 ... Control determination unit 35 ... LED current detection unit 36 ... Control command output unit S ... Transmission circuit unit R ... Receiver circuit

Claims (3)

照明装置からの可視光通信用の光信号を受信する受信部と、照明装置側に可視光または赤外線の光信号を発信する送信部を備えた端末に、
照明器具からの受信信号の強度を検出する信号強度検出部と、
端末を駆動する電池電圧値を検出する電池電圧検出部と、
前記検出した受信信号強度と電池電圧とを基準値と比較し、この比較結果に基づいて、端末に設けられた送信部に供給する電力を制御する信号処理部と、
を設けたことを特徴とする発光電力制御機能を有する光通信システム。
To a terminal equipped with a receiving unit that receives an optical signal for visible light communication from an illuminating device and a transmitting unit that transmits an optical signal of visible light or infrared light to the illuminating device side,
A signal strength detection unit for detecting the strength of the received signal from the lighting fixture;
A battery voltage detector for detecting a battery voltage value for driving the terminal;
A signal processing unit that compares the detected received signal strength and battery voltage with a reference value, and controls power supplied to a transmission unit provided in the terminal based on the comparison result;
An optical communication system having a light emission power control function.
前記信号処理部は、前記基準値として、前記送信部の出力電流値を使用するものであることを特徴とする請求項1に記載の発光電力制御機能を有する光通信システム。   2. The optical communication system having a light emission power control function according to claim 1, wherein the signal processing unit uses an output current value of the transmission unit as the reference value. 前記信号処理部は、前記受信信号強度と前記電池電圧とを予め用意した換算テーブルに用意された参照値にそれぞれ変換し、前記受信信号強度と前記電池電圧の参照値を比較し、比較した参照値が小さな方と前記基準値とを比較するものであることを特徴とする請求項1または請求項2に記載の発光電力制御機能を有する光通信システム。   The signal processing unit converts the received signal strength and the battery voltage into reference values prepared in a conversion table prepared in advance, compares the received signal strength and the reference value of the battery voltage, and compares the reference values. The optical communication system having a light emission power control function according to claim 1 or 2, wherein a smaller value is compared with the reference value.
JP2010103753A 2010-04-28 2010-04-28 Optical communication system having light emission power control function Pending JP2011234204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103753A JP2011234204A (en) 2010-04-28 2010-04-28 Optical communication system having light emission power control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103753A JP2011234204A (en) 2010-04-28 2010-04-28 Optical communication system having light emission power control function

Publications (1)

Publication Number Publication Date
JP2011234204A true JP2011234204A (en) 2011-11-17

Family

ID=45323058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103753A Pending JP2011234204A (en) 2010-04-28 2010-04-28 Optical communication system having light emission power control function

Country Status (1)

Country Link
JP (1) JP2011234204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010967A1 (en) * 2012-07-12 2014-01-16 Lg Innotek Co., Ltd. Lighting control method and lighting control system
CN105846896A (en) * 2016-05-16 2016-08-10 苏州安莱光电科技有限公司 Visible light OFDM communication device for infrared compensation total range light modulation
US9839102B2 (en) 2012-07-12 2017-12-05 Lg Innotek Co., Ltd. Lighting control method and lighting control system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010967A1 (en) * 2012-07-12 2014-01-16 Lg Innotek Co., Ltd. Lighting control method and lighting control system
US9357621B2 (en) 2012-07-12 2016-05-31 Lg Innotek Co., Ltd. Lighting control apparatus, lighting control method, and lighting control system
US9439271B2 (en) 2012-07-12 2016-09-06 Lg Innotek Co., Ltd. Lighting control method and lighting control system
US9839102B2 (en) 2012-07-12 2017-12-05 Lg Innotek Co., Ltd. Lighting control method and lighting control system
US9949349B2 (en) 2012-07-12 2018-04-17 Lg Innotek Co., Ltd. Lighting control apparatus, lighting control method, and lighting control system
CN105846896A (en) * 2016-05-16 2016-08-10 苏州安莱光电科技有限公司 Visible light OFDM communication device for infrared compensation total range light modulation

Similar Documents

Publication Publication Date Title
JP5171393B2 (en) Visible light communication system
KR101141663B1 (en) Using visible light underwater communication device and method
Sugiyama et al. Brightness control methods for illumination and visible-light communication systems
JP4506502B2 (en) Illumination light transmission system
US20100111538A1 (en) Illuminating light communication device
CN102307063A (en) Voice information notification system based on LED visible light
KR20130012996A (en) Dimming-controllable led lighting system using smartphone and method using the same
CN103532625A (en) White-light LED (light-emitting diode) speech signal communication transceiving system
WO2006077968A1 (en) Optical communication system
US7601940B2 (en) Gain control system for visible light communication systems
JP2011234204A (en) Optical communication system having light emission power control function
KR100790181B1 (en) Illumination light communication system and method thereof
JP2010146447A (en) Moving body management system
JP2008206086A (en) Visible optical communication system
KR20170000515A (en) Underwater bidirectional wireless data communication system and communication method by detecting weak light amount change in underwater turbidity condition diffused light
JP2009206840A (en) Communication system selection method, visible light communication method, device therefor
US20100074625A1 (en) Apparatus for voice communication using an incoherent light source
CN202135182U (en) Anti-lose device for mobile phone
CN104601236A (en) Reflection principle based visible light communication system and method
US20230058596A1 (en) Lifi power management
JPH01292918A (en) Optical space transmitting and communicating system
Ashida et al. A VLC receiving devise using audio jacks with a folding noise
JP2013149038A (en) Transmitter and receiver
KR101379968B1 (en) Apparatus, system and method for communicating data using light
US8405315B2 (en) Energy-saving lamp