JP2011231703A - Engine exhaust heat regeneration system - Google Patents

Engine exhaust heat regeneration system Download PDF

Info

Publication number
JP2011231703A
JP2011231703A JP2010103415A JP2010103415A JP2011231703A JP 2011231703 A JP2011231703 A JP 2011231703A JP 2010103415 A JP2010103415 A JP 2010103415A JP 2010103415 A JP2010103415 A JP 2010103415A JP 2011231703 A JP2011231703 A JP 2011231703A
Authority
JP
Japan
Prior art keywords
heat exchanger
engine
refrigerant
heat
regeneration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010103415A
Other languages
Japanese (ja)
Other versions
JP5452346B2 (en
Inventor
Kazuhiko Kawajiri
和彦 川尻
Kazunori Tsuchino
和典 土野
Minoru Sato
稔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010103415A priority Critical patent/JP5452346B2/en
Publication of JP2011231703A publication Critical patent/JP2011231703A/en
Application granted granted Critical
Publication of JP5452346B2 publication Critical patent/JP5452346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient engine exhaust heat regeneration system.SOLUTION: The engine exhaust heat regeneration system includes a heat exchanger that vaporizes coolant by heating with exhaust heat from the engine, an expansion machine that expands the vaporized coolant to generate output, a condenser that cools and condenses the coolant vapor discharged from the expansion machine, and a coolant pump that pressure-sends and circulates the liquid coolant. The heat exchanger includes a first heat exchanger in which flow of the coolant and flow of engine cooling fluid become parallel, and a second heat exchanger connected to the downstream of the first heat exchanger regarding coolant flow, and in which flow of the coolant and flow of the engine cooling fluid become counterflow. A flow rate adjusting valve that adjusts cooling water flow rate or a bypass flow passage of the second heat exchanger can be provided.

Description

この発明は、自動車用エンジン等の内燃機関の冷却水や排気ガスとして外部に排出される排熱を、ランキンサイクルにより動力等として回生するエンジン排熱回生システムに関するものである。   The present invention relates to an engine exhaust heat regeneration system that regenerates exhaust heat discharged to the outside as cooling water or exhaust gas of an internal combustion engine such as an automobile engine as power or the like by a Rankine cycle.

内燃機関(以下、エンジンと記す)において、冷却水を介して外部へ排出される排熱をランキンサイクルにより動力等として回生する排熱回生システムは、エンジン冷却水とランキンサイクルの冷媒(例えばR134a)との間で熱交換を行い、ランキンサイクルで動力を発生するものである。排熱回生システムは、エンジンからの冷却水排熱で冷媒を加熱して蒸気化する熱交換器、加熱して蒸気化された冷媒を膨張させて出力を発生させる膨張機、膨張機で出力を発生した後に排出された冷媒蒸気を冷却凝縮する凝縮器、液体の冷媒を圧送して循環させる冷媒ポンプから構成されている。このような排熱回生システムにおいて、エンジン冷却水と冷媒との間で熱交換する熱交換器は、冷却水と冷媒とが対向流となって熱交換するように構成されている。(例えば特許文献1参照)。   In an internal combustion engine (hereinafter referred to as an engine), an exhaust heat regeneration system that regenerates exhaust heat discharged outside through cooling water as power by Rankine cycle is an engine coolant and Rankine cycle refrigerant (for example, R134a). Heat is exchanged between the two and power is generated in the Rankine cycle. The exhaust heat regeneration system is a heat exchanger that heats and evaporates the refrigerant with the exhaust heat of the cooling water from the engine, an expander that expands the vaporized refrigerant that is heated and vaporized, and generates an output. It is composed of a condenser that cools and condenses the refrigerant vapor discharged after generation, and a refrigerant pump that pumps and circulates liquid refrigerant. In such an exhaust heat regeneration system, the heat exchanger that exchanges heat between the engine coolant and the refrigerant is configured to exchange heat between the coolant and the refrigerant as an opposing flow. (For example, refer to Patent Document 1).

特開2005−337063号公報(6頁、図1)Japanese Patent Laying-Open No. 2005-337063 (page 6, FIG. 1)

自動車が運転されている場合、一般に約90℃のエンジン冷却水が毎分数Lから数十Lで循環量している。エンジン冷却水は熱交換器で冷媒と熱交換することにより温度が数℃程度低下してエンジンに戻り、循環してエンジン冷却を行う。一方、冷媒(例えばR134a)は熱交換器でエンジン冷却水により加熱され、蒸気となり、膨張機に導かれて膨張して動力を発生する。エンジン冷却水と冷媒は対向流となって熱交換する。冷媒ポンプにより圧送された液体状の冷媒は、熱交換器において、約90℃のエンジン冷却水により加熱され、その温度近傍(約90℃)まで加熱されて沸騰し、蒸発を開始する。圧力が一定のため、蒸発を開始し加熱される蒸発中の冷媒の温度は一定となる。この時、冷媒の蒸発温度とエンジン冷却水との温度差は僅か数℃以下、極端には1℃以下と非常に小さくなり、冷媒の蒸発開始後は、エンジン冷却水と冷媒との熱交換温度差が小さいために十分な熱交換を得ることが困難となる。このように、従来は、エンジンの冷却水排熱を十分に冷媒に伝達して回収することが困難となるとともに、冷媒が完全に気化されない場合も発生し、膨張機で十分な動力を発生することができず、排熱回生システムとして高い効率を実現することができないという問題があった。また、小さな温度差で十分な熱交換を行うために、大きな熱交換面積を有する大きな熱交換器を設ける必要があり、設置スペースが限られる自動車へ排熱回生システムを適用することが困難となる問題もあった。   When an automobile is in operation, the engine coolant at about 90 ° C. is generally circulated at a rate of several liters to several tens of liters per minute. The engine cooling water exchanges heat with the refrigerant in the heat exchanger, the temperature drops to about several degrees Celsius, returns to the engine, and circulates to cool the engine. On the other hand, the refrigerant (for example, R134a) is heated by engine cooling water in a heat exchanger, becomes steam, is led to an expander, and expands to generate power. The engine coolant and the refrigerant exchange heat with each other. The liquid refrigerant pumped by the refrigerant pump is heated by the engine cooling water of about 90 ° C. in the heat exchanger, heated to near that temperature (about 90 ° C.), boils, and starts to evaporate. Since the pressure is constant, the temperature of the evaporating refrigerant that starts and evaporates is constant. At this time, the temperature difference between the evaporating temperature of the refrigerant and the engine cooling water is as small as only a few degrees C or less, extremely 1 C or less, and the heat exchange temperature between the engine cooling water and the refrigerant after the evaporation of the refrigerant starts. Since the difference is small, it is difficult to obtain sufficient heat exchange. As described above, conventionally, it is difficult to sufficiently transfer and recover the exhaust heat of the engine coolant to the refrigerant, and the refrigerant may not be completely vaporized, and sufficient power is generated by the expander. There was a problem that it was not possible to achieve high efficiency as an exhaust heat regeneration system. In addition, in order to perform sufficient heat exchange with a small temperature difference, it is necessary to provide a large heat exchanger having a large heat exchange area, and it becomes difficult to apply the exhaust heat regeneration system to an automobile having a limited installation space. There was also a problem.

従ってこの発明の目的は、スペースが限られる自動車へ適用可能なコンパクトな熱交換器で、エンジン冷却水の排熱を回収して冷媒を十分に加熱して気化させ、膨張機で大きな動力を発生して高い効率を実現するエンジン排熱回生システムを得ることである。   Therefore, the object of the present invention is a compact heat exchanger applicable to automobiles with limited space, which recovers exhaust heat of engine cooling water and sufficiently heats and evaporates the refrigerant to generate large power in the expander. And to obtain an engine exhaust heat regeneration system that achieves high efficiency.

この発明に係るエンジン排熱回生システムは、エンジンからの排熱で冷媒を加熱して蒸気化する熱交換器と、蒸気化された冷媒を膨張させて出力を発生する膨張機と、上記膨張機から排出された冷媒蒸気を冷却凝縮する凝縮器と、液体冷媒を圧送して循環させる冷媒ポンプとを備えた排熱回生システムにおいて、上記熱交換器が、冷媒とエンジン冷却水が並行流になる第1熱交換器と、上記第1熱交換器に対して冷媒の流れの下流に接続され、冷媒とエンジン冷却水が対向流になる第2熱交換器とを備えていることを特徴とするものである。   An engine exhaust heat regeneration system according to the present invention includes a heat exchanger that heats and vaporizes a refrigerant with exhaust heat from the engine, an expander that expands the vaporized refrigerant to generate an output, and the expander In the exhaust heat regeneration system comprising a condenser that cools and condenses the refrigerant vapor discharged from the refrigerant and a refrigerant pump that pumps and circulates the liquid refrigerant, the heat exchanger is configured so that the refrigerant and the engine cooling water flow in parallel. A first heat exchanger, and a second heat exchanger connected downstream of the refrigerant flow with respect to the first heat exchanger, wherein the refrigerant and the engine coolant are opposed to each other are provided. Is.

この発明のエンジン排熱回生システムによれば、冷媒とエンジン冷却水との熱交換温度差が大きくなり、冷媒が十分加熱され気化して、大きな膨張機仕事が得られて高い効率を実現することができる。   According to the engine exhaust heat regeneration system of the present invention, the heat exchange temperature difference between the refrigerant and the engine coolant becomes large, the refrigerant is sufficiently heated and vaporized, and a large expander work is obtained to achieve high efficiency. Can do.

この発明の実施の形態1によるエンジン排熱回生システムを示す構成図である。1 is a configuration diagram showing an engine exhaust heat regeneration system according to Embodiment 1 of the present invention. FIG. 図1のエンジン排熱回生システムのモリエル線図である。FIG. 2 is a Mollier diagram of the engine exhaust heat regeneration system of FIG. 1. 従来の一般的な排熱回生システムの構成を示す図である。It is a figure which shows the structure of the conventional general exhaust heat regeneration system. 従来の一般的な排熱回生システムのモリエル線図である。It is a Mollier diagram of a conventional general exhaust heat regeneration system. 本発明の実施の形態2によるエンジン排熱回生システムを示す構成図である。It is a block diagram which shows the engine exhaust-heat regeneration system by Embodiment 2 of this invention. エンジン冷却水の流量と冷媒蒸発温度の関係を示す実験結果の図である。It is a figure of the experimental result which shows the relationship between the flow volume of engine cooling water, and refrigerant | coolant evaporation temperature. 本発明の実施の形態3によるエンジン排熱回生システムを示す構成図である。It is a block diagram which shows the engine exhaust-heat regeneration system by Embodiment 3 of this invention. 本発明の実施の形態4によるエンジン排熱回生システムに使用できる熱交換器の一例を示す図である。It is a figure which shows an example of the heat exchanger which can be used for the engine waste heat regeneration system by Embodiment 4 of this invention. 本発明の実施の形態4によるエンジン排熱回生システムに使用できる熱交換器の別の例を示す図である。It is a figure which shows another example of the heat exchanger which can be used for the engine exhaust-heat regeneration system by Embodiment 4 of this invention. 本発明の実施の形態4によるエンジン排熱回生システムに使用できる熱交換器のまた別の例を示す図である。It is a figure which shows another example of the heat exchanger which can be used for the engine exhaust-heat regeneration system by Embodiment 4 of this invention. 本発明の実施の形態5によるエンジン排熱回生システムを示す構成図である。It is a block diagram which shows the engine exhaust heat regeneration system by Embodiment 5 of this invention.

以下、この発明をより詳細に説明するため、この発明の実施の形態を添付の図面を参照して説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化あるいは省略する。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings in order to explain the present invention in more detail. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

実施の形態1.
図1は本発明の実施の形態1によるエンジン排熱回生システムを示す構成図である。エンジン1は、例えば自動車走行の駆動力を発生させる内燃機関である。エンジン1を冷却するための冷却水回路2には、エンジン冷却水を循環させる循環流路2aに冷却水ポンプ3、第1熱交換器7、第2熱交換器8が設置されており、エンジン冷却水は、冷却水ポンプ3により第2熱交換器8、第1熱交換器7の順で流通し、エンジン1に戻り循環する。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an engine exhaust heat regeneration system according to Embodiment 1 of the present invention. The engine 1 is, for example, an internal combustion engine that generates driving force for driving a car. The cooling water circuit 2 for cooling the engine 1 is provided with a cooling water pump 3, a first heat exchanger 7, and a second heat exchanger 8 in a circulation passage 2a for circulating the engine cooling water. The cooling water is circulated in the order of the second heat exchanger 8 and the first heat exchanger 7 by the cooling water pump 3, and circulates back to the engine 1.

排熱回生装置5は、順番に冷媒ポンプ6、第1熱交換器7、第2熱交換器8、膨張機9、および凝縮器10が配管により接続されて冷媒が循環する循環流路11で構成されている。膨張機9にはその出力で駆動される発電機12が連結されている。凝縮器10には、その送風冷却用のファン13が設置されている。排熱回生装置5の循環流路11の内部には、冷媒、例えばR134aが充填されており、冷媒ポンプ6で液体状の冷媒を第1熱交換器7へ圧送し循環流通させる。第1熱交換器7ではエンジン1からのエンジン冷却水と冷媒が並行流となって熱交換するように構成され、第2熱交換器8ではエンジン1からの冷却水と冷媒が対向流となって熱交換するように構成されている。   The exhaust heat regenerator 5 is a circulation channel 11 in which a refrigerant is circulated by connecting a refrigerant pump 6, a first heat exchanger 7, a second heat exchanger 8, an expander 9, and a condenser 10 in order. It is configured. A power generator 12 driven by the output is connected to the expander 9. The condenser 10 is provided with a fan 13 for cooling the air. The inside of the circulation flow path 11 of the exhaust heat regeneration device 5 is filled with a refrigerant, for example, R134a, and the refrigerant pump 6 pumps the liquid refrigerant to the first heat exchanger 7 for circulation. In the first heat exchanger 7, the engine cooling water and the refrigerant from the engine 1 are configured to exchange heat in parallel flow, and in the second heat exchanger 8, the cooling water and the refrigerant from the engine 1 are opposed to each other. Heat exchange.

次に、本実施の形態における排熱回生システムの動作について説明する。ここでは、1300ccクラスの小型自動車で、常用される車速40km/hで走行している場合を例にとって具体的に数値を示しつつ説明する。冷却水ポンプ3により冷却水回路2を循環するエンジン冷却水は、93℃程度となっており、エンジンから冷却水への放熱量は約5600Wである。エンジン冷却水流量が20L/minの時、この熱量を放熱するとエンジン冷却水は4℃低下し89℃でエンジンに戻り、エンジンの運転が続けられる。   Next, the operation of the exhaust heat regeneration system in the present embodiment will be described. Here, a description will be given by taking a specific example of a case where a small vehicle of 1300 cc class is traveling at a vehicle speed of 40 km / h that is normally used. The engine cooling water circulating through the cooling water circuit 2 by the cooling water pump 3 is about 93 ° C., and the heat radiation from the engine to the cooling water is about 5600 W. When the engine coolant flow rate is 20 L / min, if this heat is dissipated, the engine coolant decreases by 4 ° C. and returns to the engine at 89 ° C., and the engine operation is continued.

図2は本発明の実施の形態1による排熱回生システムの冷媒の状態を示すモリエル線図である。図1と図2について本発明の実施の形態1による排熱回生システムの動作を説明する。凝縮器10で冷却されて液化された30℃の低圧の冷媒(状態A)は、冷媒ポンプ6により高圧の液となり(状態B)、第1熱交換器7に送られる。第1熱交換器7では、冷媒は後述するように第2熱交換器8で冷媒と熱交換した後の約91℃となったエンジン冷却水と並行流となって熱交換し、86℃まで加熱されて蒸発を開始し(状態C)、一方、エンジン冷却水は89℃まで低下して、エンジンに戻る。   FIG. 2 is a Mollier diagram showing the state of the refrigerant in the exhaust heat regeneration system according to Embodiment 1 of the present invention. The operation of the exhaust heat regeneration system according to the first embodiment of the present invention will be described with reference to FIGS. The low-pressure refrigerant (state A) at 30 ° C. cooled and liquefied by the condenser 10 becomes high-pressure liquid (state B) by the refrigerant pump 6 and is sent to the first heat exchanger 7. In the first heat exchanger 7, as described later, the refrigerant exchanges heat in parallel with the engine cooling water that has reached about 91 ° C. after heat exchange with the refrigerant in the second heat exchanger 8, up to 86 ° C. It is heated and begins to evaporate (state C), while the engine cooling water drops to 89 ° C. and returns to the engine.

蒸発を開始した冷媒(状態C)は、第2熱交換器に入り、エンジン1から出た93℃のエンジン冷却水と対向流となって熱交換し、完全に蒸発して(状態D)、92.9℃まで加熱され(状態E)、一方、エンジン冷却水は約91℃まで低下して、第1熱交換器7に入る。高温高圧になった冷媒蒸気(状態E)は、膨張機9で膨張して仕事を発生し、低圧の蒸気冷媒となって膨張機9から吐出される(状態F)。   The refrigerant that has started to evaporate (state C) enters the second heat exchanger, exchanges heat with the 93 ° C. engine cooling water discharged from the engine 1, and completely evaporates (state D). Heated to 92.9 ° C. (state E), while the engine cooling water drops to about 91 ° C. and enters the first heat exchanger 7. The high-temperature and high-pressure refrigerant vapor (state E) expands in the expander 9 to generate work, and is discharged from the expander 9 as low-pressure vapor refrigerant (state F).

膨張機9から吐出された冷媒蒸気は、凝縮器10で大気に放熱されて再び低温の液体となって(状態A)冷媒ポンプ6に入り、これが繰り返されて、連続的に膨張機9から仕事を取り出すことが出来る。図1に示した例では、膨張機9は発電機12に連結されており、電力として取り出すことができ、これにより自動車で必要とされる電力をまかなうことが出来、約5%も燃費が向上する。   The refrigerant vapor discharged from the expander 9 is radiated to the atmosphere by the condenser 10 and becomes a low-temperature liquid again (state A) and enters the refrigerant pump 6, which is repeated and continuously works from the expander 9. Can be taken out. In the example shown in FIG. 1, the expander 9 is connected to the generator 12 and can be taken out as electric power, which can cover the electric power required by the automobile, and the fuel efficiency is improved by about 5%. To do.

このように、この発明のエンジン排熱回生システムは、エンジン1からの排熱で冷媒を加熱して蒸気化する熱交換器(第1熱交換器7および第2熱交換器8)と、蒸気化された冷媒を膨張させて出力を発生する膨張機9と、膨張機9から排出された冷媒蒸気を冷却凝縮する凝縮器10と、液体冷媒を圧送して循環させる冷媒ポンプ6とを備えた排熱回生システムであって、熱交換器7および8が、冷媒とエンジン冷却水が並行流になる第1熱交換器7と、第1熱交換器7に対して冷媒の流れの下流側に接続され、冷媒とエンジン冷却水とが対向流になる第2熱交換器8とを備えている。   As described above, the engine exhaust heat regeneration system according to the present invention includes a heat exchanger (first heat exchanger 7 and second heat exchanger 8) that heats the refrigerant with exhaust heat from the engine 1 and vaporizes the steam, An expander 9 that expands the converted refrigerant to generate an output, a condenser 10 that cools and condenses the refrigerant vapor discharged from the expander 9, and a refrigerant pump 6 that pumps and circulates liquid refrigerant are provided. In the exhaust heat regeneration system, the heat exchangers 7 and 8 are disposed on the downstream side of the refrigerant flow with respect to the first heat exchanger 7 in which the refrigerant and the engine coolant flow in parallel, and the first heat exchanger 7. The second heat exchanger 8 is connected and the refrigerant and the engine cooling water are opposed to each other.

この構成により、冷媒とエンジン冷却水との熱交換温度差が大きくなり、十分な熱交換を行うことができ、冷媒が十分加熱され気化されて、大きな膨張機仕事が得られて高い効率を実現する排熱回生システムを得ることができる。さらに、熱交換温度差が大きくなるため、大きな熱交換面積を必要とせず、熱交換面積が小さなコンパクトな熱交換器で十分な熱交換を行うことが可能となり、設置スペースが限られる自動車へ排熱回生システムの適用が容易となる。   With this configuration, the heat exchange temperature difference between the refrigerant and the engine coolant is increased, sufficient heat exchange can be performed, and the refrigerant is sufficiently heated and vaporized to obtain large expander work and achieve high efficiency An exhaust heat regeneration system can be obtained. In addition, since the heat exchange temperature difference becomes large, a large heat exchange area is not required, and it is possible to perform sufficient heat exchange with a compact heat exchanger with a small heat exchange area. Application of heat regeneration system becomes easy.

比較例1.
図3には、本発明との比較のために、エンジン冷却水と冷媒とが対向流の熱交換器のみで熱交換する従来の一般的なエンジン排熱回生システムの構成を示してあり、図4にはその動作の状態を示すモリエル線図を示してある。図3においては、本発明の実施の形態1との比較を容易にするため、エンジン冷却水と冷媒が対向流となって熱交換する熱交換器を第1熱交換器14と第2熱交換器15との二つに分けて描いてある。
Comparative Example 1
For comparison with the present invention, FIG. 3 shows a configuration of a conventional general engine exhaust heat regeneration system in which engine coolant and refrigerant exchange heat only with a counterflow heat exchanger. 4 is a Mollier diagram showing the state of the operation. In FIG. 3, in order to facilitate comparison with the first embodiment of the present invention, the heat exchanger that exchanges heat between the engine cooling water and the refrigerant in the opposite flow is used as the first heat exchanger 14 and the second heat exchange. It is drawn in two parts with the container 15.

凝縮器10で冷却液化された30℃の低圧の冷媒(状態A0)は、冷媒ポンプ6により高圧の液となり(状態B0)、第1熱交換器14に送られる。第1熱交換器14では、冷媒は第2熱交換器15で冷媒と熱交換した後の約92℃となったエンジン冷却水と対応流となって熱交換し、89℃まで加熱されて蒸発を開始し(状態C0)、一方、エンジン冷却水は90℃まで低下して、エンジンに戻る。蒸発を開始した冷媒は、第2熱交換器15に入り、エンジン1から出た93℃のエンジン冷却水と対向流となって熱交換する。   The 30 ° C. low-pressure refrigerant (state A0) liquefied by the condenser 10 becomes high-pressure liquid (state B0) by the refrigerant pump 6 and is sent to the first heat exchanger 14. In the first heat exchanger 14, the refrigerant exchanges heat with the engine cooling water that has reached about 92 ° C. after the heat exchange with the refrigerant in the second heat exchanger 15, and heat-exchanges to 89 ° C. to evaporate. (State C0), on the other hand, the engine cooling water drops to 90 ° C. and returns to the engine. The refrigerant that has started to evaporate enters the second heat exchanger 15 and exchanges heat with the 93 ° C. engine cooling water exiting the engine 1 as a counter flow.

先に説明し図1および2に示す本発明の排熱回生システムにおいては、第2熱交換器8でのエンジン冷却水と冷媒との平均温度差は約6℃であった。これに対して、図3および4に示す比較例の排熱回生システムにおいては、第2熱交換器15でのエンジン冷却水と冷媒との平均温度差は約3.5℃程度に小さくなっており、これに比例してここでの熱交換量も約40%少なくなる。従って、第2熱交換器15では冷媒は一部が蒸発し(状態E0)、一方、エンジン冷却水は約92℃まで低下して、第1熱交換器14に入る。   In the exhaust heat regeneration system of the present invention described above and shown in FIGS. 1 and 2, the average temperature difference between the engine coolant and the refrigerant in the second heat exchanger 8 is about 6 ° C. On the other hand, in the exhaust heat regeneration system of the comparative example shown in FIGS. 3 and 4, the average temperature difference between the engine coolant and the refrigerant in the second heat exchanger 15 becomes as small as about 3.5 ° C. In proportion to this, the heat exchange amount here is also reduced by about 40%. Therefore, in the second heat exchanger 15, a part of the refrigerant evaporates (state E0), while the engine cooling water decreases to about 92 ° C. and enters the first heat exchanger.

一部が液状の高温高圧になった冷媒蒸気(状態E0)は、膨張機9で膨張して仕事を発生し、低圧の蒸気冷媒となって膨張機9から吐出される(状態F0)。膨張機9から吐出された冷媒蒸気は、凝縮器10で大気に放熱されて再び低温の液体となって(状態A0)冷媒ポンプ6に入り、これが繰り返されて、連続的に膨張機9から仕事を取り出すことができる。   The refrigerant vapor (state E0), which is partly in liquid high temperature and high pressure, expands in the expander 9 to generate work, and becomes low-pressure vapor refrigerant and is discharged from the expander 9 (state F0). The refrigerant vapor discharged from the expander 9 is dissipated to the atmosphere by the condenser 10 to become a low-temperature liquid again (state A0) and enters the refrigerant pump 6, and this process is repeated to continuously work from the expander 9. Can be taken out.

このように、この比較例1の対向流の熱交換器を使った排熱回生システムでは、エンジン冷却水から冷媒に伝えられる熱量は、本発明による実施の形態1における排熱回生システムより約20%少なく、膨張機9による発生仕事も約20%小さくなる。   Thus, in the exhaust heat regeneration system using the counterflow heat exchanger of Comparative Example 1, the amount of heat transferred from the engine coolant to the refrigerant is about 20 than that in the exhaust heat regeneration system according to the first embodiment of the present invention. %, The work generated by the expander 9 is also reduced by about 20%.

このように、この発明によれば冷媒はエンジン冷却水と十分な熱交換を行うことができ、冷媒が十分加熱され気化して、大きな膨張機仕事が得られて高い効率を実現する排熱回生システムを得ることができる。さらに、熱交換温度差が大きくなるため、大きな熱交換面積を必要とせず、熱交換面積が小さなコンパクトな熱交換器で十分な熱交換を行うことが可能となり、設置スペースが限られる自動車へ排熱回生システムの適用が容易となる効果も奏する。   As described above, according to the present invention, the refrigerant can perform sufficient heat exchange with the engine cooling water, and the refrigerant is sufficiently heated and vaporized to obtain a large expander work and achieve high efficiency. You can get a system. In addition, since the heat exchange temperature difference becomes large, a large heat exchange area is not required, and it is possible to perform sufficient heat exchange with a compact heat exchanger with a small heat exchange area. There is also an effect that the application of the heat regeneration system becomes easy.

実施の形態2.
図5に示す排熱回生システムにおいては、エンジン1を冷却するための冷却水回路2に流量制御弁4を設けたものである。図示の例では流量制御弁4は冷却水回路2の冷却水ポンプ3と第2熱交換器との間の循環流路2aに接続されている。その他の構成は図1に示すものと同様である。
Embodiment 2. FIG.
In the exhaust heat regeneration system shown in FIG. 5, a flow rate control valve 4 is provided in a cooling water circuit 2 for cooling the engine 1. In the illustrated example, the flow control valve 4 is connected to a circulation flow path 2 a between the cooling water pump 3 of the cooling water circuit 2 and the second heat exchanger. Other configurations are the same as those shown in FIG.

図6は、図5に示す排熱回生システムで1300ccエンジンにおいてエンジンから吐出されるエンジン冷却水の温度が98℃一定の条件で、流量制御弁4によりエンジン冷却水の流量を変えた場合の冷媒蒸発温度の変化を調べた実験結果を示す図である。流量制御弁4によりエンジン冷却水の流量を12L/minから30L/minに変化させると、冷媒の蒸発温度が90℃から93℃まで変化し、流量制御弁4によりエンジン冷却水の流量を変えることで冷媒蒸発温度を制御できることがわかる。   FIG. 6 shows the refrigerant when the flow rate of the engine cooling water is changed by the flow rate control valve 4 under the condition that the temperature of the engine cooling water discharged from the engine in the 1300 cc engine in the exhaust heat regeneration system shown in FIG. It is a figure which shows the experimental result which investigated the change of evaporation temperature. When the flow rate of the engine coolant is changed from 12 L / min to 30 L / min by the flow rate control valve 4, the evaporation temperature of the refrigerant changes from 90 ° C. to 93 ° C., and the flow rate of the engine coolant is changed by the flow rate control valve 4. It can be seen that the refrigerant evaporation temperature can be controlled.

この排熱回生システムによれば、エンジン1と第2熱交換器8との間に接続されて、エンジン1から第2熱交換器8に供給される冷却水の流量を調整制御する流量制御弁4を備えているので、流量制御弁4によりエンジン冷却水の流量を変えることで冷媒蒸発温度を制御でき、エンジン運転条件や冷媒循環量に応じて、熱交換温度差を適正に制御できるので、実施の形態1の場合と同様に、冷媒がエンジン冷却水と十分な熱交換を行うことができ、冷媒が十分加熱され気化されて、大きな膨張機仕事が得られ、高い効率を実現する排熱回生システムを得ることができる。   According to this exhaust heat regeneration system, the flow rate control valve is connected between the engine 1 and the second heat exchanger 8 and adjusts and controls the flow rate of the cooling water supplied from the engine 1 to the second heat exchanger 8. 4, the refrigerant evaporating temperature can be controlled by changing the flow rate of the engine cooling water by the flow rate control valve 4, and the heat exchange temperature difference can be appropriately controlled according to the engine operating conditions and the refrigerant circulation amount. As in the case of the first embodiment, the refrigerant can perform sufficient heat exchange with the engine cooling water, and the refrigerant is sufficiently heated and vaporized to obtain a large expander work and to achieve high efficiency. A regenerative system can be obtained.

実施の形態3.
図7に示す排熱回生システムにおいては、図5に示す構成に、エンジン冷却水が第2熱交換器8をバイパスするバイパス流路16と、バイパス流路17に設けた流量調整弁21とが追加されて設けられている。その他の構成は図5に示すものと同様である。
Embodiment 3 FIG.
In the exhaust heat regeneration system shown in FIG. 7, the configuration shown in FIG. 5 includes a bypass passage 16 through which engine coolant bypasses the second heat exchanger 8 and a flow rate adjustment valve 21 provided in the bypass passage 17. It is added and provided. Other configurations are the same as those shown in FIG.

一般に冷媒ポンプ6から吐出された冷媒の圧力が高く、蒸発温度が高い場合、エンジン冷却水との冷媒との熱交換量は、蒸発までの熱交換量に比べて、蒸発後の方が少なくなるが、この構成によれば、エンジンを第2熱交換器を介さずに第1熱交換器7に接続する流量調整弁17を持つバイパス流路16を備えているので、エンジン運転条件や冷媒循環量に応じて、流量調整弁17によりエンジン冷却水が第2熱交換器8をバイパスさせて、第1熱交換器7に流して無駄なく冷媒と効率良く熱交換でき、冷媒を十分加熱気化させて、大きな膨張機仕事を得て高い効率を実現することができる。   Generally, when the pressure of the refrigerant discharged from the refrigerant pump 6 is high and the evaporation temperature is high, the amount of heat exchange with the refrigerant with the engine cooling water is less after the evaporation than the amount of heat exchange until the evaporation. However, according to this configuration, since the bypass flow path 16 having the flow rate adjusting valve 17 that connects the engine to the first heat exchanger 7 without the second heat exchanger is provided, the engine operating conditions and the refrigerant circulation are provided. Depending on the amount, the engine cooling water can bypass the second heat exchanger 8 by the flow rate adjusting valve 17 and can flow to the first heat exchanger 7 to efficiently exchange heat with the refrigerant without waste. Thus, a large expander work can be obtained and high efficiency can be realized.

実施の形態4.
以上の実施の形態1〜3では、第1熱交換器7と第2熱交換器8とが別個のものとして図示されているが、図8〜10に示すように第1熱交換器7と第2熱交換器8とを組み合わせて単一の一体構造のユニットとすることもでき、この場合にも同様の効果を得ることができる。図8に示す例では、共通の冷媒の循環流路11に沿って熱交換関係に2つの冷却水の循環流路2aが流れ方向が互いに反対となるように配置されている。図9に示す例では、折り返されて重ねられて流れ方向が互いに反対方向にされた2つの冷却水の循環流路2aの外側に、2つの冷却水の循環流路11が、一方は対向流となり他方は並行流となるように、熱交換関係に配置されている。図10に示す例では、共通の冷却水の循環流路2aに沿って熱交換関係に2つの冷媒の循環流路11が流れ方向が互いに反対となるように配置されている。
Embodiment 4 FIG.
In the above Embodiments 1 to 3, the first heat exchanger 7 and the second heat exchanger 8 are illustrated as separate ones. However, as shown in FIGS. The second heat exchanger 8 can be combined to form a single integrated unit, and in this case, the same effect can be obtained. In the example shown in FIG. 8, the two cooling water circulation channels 2 a are arranged in a heat exchange relationship along the common refrigerant circulation channel 11 so that the flow directions are opposite to each other. In the example shown in FIG. 9, two cooling water circulation channels 11 are provided outside the two cooling water circulation channels 2 a that are folded and overlapped so that the flow directions are opposite to each other. The other is arranged in a heat exchange relationship so as to be parallel flow. In the example shown in FIG. 10, two refrigerant circulation channels 11 are arranged in a heat exchange relationship along a common cooling water circulation channel 2 a so that the flow directions are opposite to each other.

実施の形態5.
図11に示す排熱回生システムにおいては、第2熱交換器8と膨張機9との間に、エンジン1の排気管1aに設けられて排気ガスにより加熱される排気ガス熱交換器18が接続されている。このように排気ガス熱交換器18によって、エンジン冷却水から熱回収した冷媒によりさらにエンジン排ガスからも熱回収するように構成することもできる。この構成により、より多くの熱回収が出来るとともに、冷媒蒸気をより高温にすることも可能となり、より大きな燃費向上効果が得られる。
Embodiment 5 FIG.
In the exhaust heat regeneration system shown in FIG. 11, an exhaust gas heat exchanger 18 provided in the exhaust pipe 1 a of the engine 1 and heated by exhaust gas is connected between the second heat exchanger 8 and the expander 9. Has been. As described above, the exhaust gas heat exchanger 18 can be configured to further recover heat from the engine exhaust gas by the refrigerant recovered from the engine cooling water. With this configuration, more heat can be recovered and the refrigerant vapor can be heated to a higher temperature, and a greater fuel efficiency improvement effect can be obtained.

以上に図示して説明した排熱回生システムは単なる例であって様々な変形が可能であり、またそれぞれの具体例の特徴を全てあるいは選択的に組み合わせて用いることもできる。   The exhaust heat regeneration system illustrated and described above is merely an example, and various modifications can be made, and the features of each specific example can be used altogether or selectively combined.

この発明はエンジン排熱回生システムとして利用できるものである。   The present invention can be used as an engine exhaust heat regeneration system.

1 エンジン、1a 排気管、2 冷却水回路、2a 冷却水の循環流路、3 冷却水ポンプ、4 流量制御弁、5 排熱回生装置、6 冷媒ポンプ、7 第1熱交換器、8 第2熱交換器、9 膨張機、10 凝縮器、11 冷媒の循環流路、12 発電機、13 ファン、14 第1熱交換器、15 第2熱交換器、16 バイパス流路、17 流量調整弁、18 排気ガス熱交換器。   DESCRIPTION OF SYMBOLS 1 Engine, 1a Exhaust pipe, 2 Cooling water circuit, 2a Cooling water circulation flow path, 3 Cooling water pump, 4 Flow control valve, 5 Waste heat regeneration device, 6 Refrigerant pump, 7 1st heat exchanger, 8 2nd Heat exchanger, 9 expander, 10 condenser, 11 refrigerant circulation channel, 12 generator, 13 fan, 14 first heat exchanger, 15 second heat exchanger, 16 bypass channel, 17 flow rate adjusting valve, 18 Exhaust gas heat exchanger.

Claims (5)

エンジンからの排熱で冷媒を加熱して蒸気化する熱交換器と、蒸気化された冷媒を膨張させて出力を発生する膨張機と、上記膨張機から排出された冷媒蒸気を冷却凝縮する凝縮器と、液体冷媒を圧送して循環させる冷媒ポンプとを備えた排熱回生システムにおいて、
上記熱交換器が、冷媒とエンジン冷却水が並行流になる第1熱交換器と、上記第1熱交換器に対して冷媒の流れの下流に接続され、冷媒とエンジン冷却水が対向流になる第2熱交換器とを備えていることを特徴とするエンジン排熱回生システム。
A heat exchanger that heats and vaporizes the refrigerant with exhaust heat from the engine, an expander that expands the vaporized refrigerant to generate output, and a condenser that cools and condenses the refrigerant vapor discharged from the expander And an exhaust heat regeneration system including a refrigerant pump that circulates by pumping liquid refrigerant,
The heat exchanger is connected downstream of the flow of the refrigerant with respect to the first heat exchanger in which the refrigerant and the engine cooling water flow in parallel, and the first heat exchanger, and the refrigerant and the engine cooling water are in a counterflow. An engine exhaust heat regeneration system comprising: a second heat exchanger.
上記エンジンと上記第2熱交換器との間に接続されて、上記エンジンから上記第2熱交換器に供給される冷却水の流量を調整する流量調整弁を備えていることを特徴とする請求項1に記載のエンジン排熱回生システム。   A flow rate adjusting valve is provided between the engine and the second heat exchanger and adjusts the flow rate of cooling water supplied from the engine to the second heat exchanger. Item 4. The engine exhaust heat regeneration system according to Item 1. 上記エンジンを上記第2熱交換器を介さずに上記第1熱交換器に接続する流量調整弁を持つバイパス流路を備えたことを特徴とする請求項1あるいは2に記載のエンジン排熱回生システム。   3. The engine exhaust heat regeneration according to claim 1, further comprising a bypass flow path having a flow rate adjusting valve that connects the engine to the first heat exchanger without passing through the second heat exchanger. system. 上記第1熱交換器および第2熱交換器が組み合わされて単一のユニットとされていることを特徴とする請求項1〜3のいずれか一項に記載のエンジン排熱回生システム。   The engine exhaust heat regeneration system according to any one of claims 1 to 3, wherein the first heat exchanger and the second heat exchanger are combined into a single unit. 上記第2熱交換器と上記膨張機との間に接続され、上記エンジンの排気管に設けられて排気ガスにより加熱される排気ガス熱交換器を備えたことを特徴とする請求項1〜4のいずれか一項に記載のエンジン排熱回生システム。   5. An exhaust gas heat exchanger connected between the second heat exchanger and the expander and provided in an exhaust pipe of the engine and heated by exhaust gas is provided. The engine exhaust heat regeneration system according to any one of the above.
JP2010103415A 2010-04-28 2010-04-28 Engine exhaust heat regeneration system Expired - Fee Related JP5452346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103415A JP5452346B2 (en) 2010-04-28 2010-04-28 Engine exhaust heat regeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103415A JP5452346B2 (en) 2010-04-28 2010-04-28 Engine exhaust heat regeneration system

Publications (2)

Publication Number Publication Date
JP2011231703A true JP2011231703A (en) 2011-11-17
JP5452346B2 JP5452346B2 (en) 2014-03-26

Family

ID=45321267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103415A Expired - Fee Related JP5452346B2 (en) 2010-04-28 2010-04-28 Engine exhaust heat regeneration system

Country Status (1)

Country Link
JP (1) JP5452346B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477741B1 (en) * 2013-04-12 2014-12-30 한국기계연구원 Exhaust heat recovery device from engine
JP2015127519A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Exhaust heat recovery device, exhaust heat recovery type vessel propulsion device and exhaust heat recovery method
CN105041443A (en) * 2014-05-02 2015-11-11 现代自动车株式会社 System for controlling air flow rate into vehicle engine compartment
CN107109995A (en) * 2014-11-07 2017-08-29 捷温有限责任公司 Energy acquiring device for developing heat energy from the medium containing heat energy
CN108049917A (en) * 2018-01-08 2018-05-18 北京工业大学 It is a kind of based on single-screw expander without fluid reservoir skid-mounted type organic Rankine cycle power generation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477741B1 (en) * 2013-04-12 2014-12-30 한국기계연구원 Exhaust heat recovery device from engine
JP2015127519A (en) * 2013-12-27 2015-07-09 三菱重工業株式会社 Exhaust heat recovery device, exhaust heat recovery type vessel propulsion device and exhaust heat recovery method
CN105041443A (en) * 2014-05-02 2015-11-11 现代自动车株式会社 System for controlling air flow rate into vehicle engine compartment
CN107109995A (en) * 2014-11-07 2017-08-29 捷温有限责任公司 Energy acquiring device for developing heat energy from the medium containing heat energy
CN108049917A (en) * 2018-01-08 2018-05-18 北京工业大学 It is a kind of based on single-screw expander without fluid reservoir skid-mounted type organic Rankine cycle power generation system
CN108049917B (en) * 2018-01-08 2023-12-22 北京工业大学 Single-screw expander-based skid-mounted organic Rankine cycle power generation system without liquid storage tank

Also Published As

Publication number Publication date
JP5452346B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4140544B2 (en) Waste heat utilization equipment
JP4908383B2 (en) System with organic Rankine cycle circulation for driving at least one expansion device, heat exchanger for driving the expansion device and method for operating at least one expansion device
JP2008008224A (en) Waste heat utilization device
JP2011084102A (en) Cooling device for vehicle
JP2005201067A (en) Rankine cycle system
JP2011012625A (en) Exhaust heat recovery system and control method of the same
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
JP5452346B2 (en) Engine exhaust heat regeneration system
JP7057323B2 (en) Thermal cycle system
JP2003278598A (en) Exhaust heat recovery method and device for vehicle using rankine cycle
CN104165102A (en) Engine waste heat recovery system based on organic Rankine cycle
JP4140543B2 (en) Waste heat utilization equipment
JP6665003B2 (en) Cogeneration equipment
JP2009204204A (en) Waste heat regeneration system
JP2021008870A (en) Heat cycle system
JP2007085195A (en) Waste heat regeneration system
JP5826268B2 (en) Vehicle drive system
JP6382127B2 (en) Heat exchanger, energy recovery device, and ship
US11371393B2 (en) Arrangement for converting thermal energy from lost heat of an internal combustion engine
JP2018021485A (en) Multistage rankine cycle system, internal combustion engine and operation method of multistage rankine cycle system
JP2009250139A (en) Engine waste heat collection system
JP2008202474A (en) Exhaust heat recovery device and engine
JP2009121390A (en) Rankine cycle system
JP6222014B2 (en) Deceleration regeneration control device for vehicle
JP7058247B2 (en) Thermal cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5452346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees