JP2011231387A - Free-cutting stainless steel material for precise processing, and method of manufacturing the same - Google Patents

Free-cutting stainless steel material for precise processing, and method of manufacturing the same Download PDF

Info

Publication number
JP2011231387A
JP2011231387A JP2010104780A JP2010104780A JP2011231387A JP 2011231387 A JP2011231387 A JP 2011231387A JP 2010104780 A JP2010104780 A JP 2010104780A JP 2010104780 A JP2010104780 A JP 2010104780A JP 2011231387 A JP2011231387 A JP 2011231387A
Authority
JP
Japan
Prior art keywords
stainless steel
cutting
free
steel material
precision machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010104780A
Other languages
Japanese (ja)
Other versions
JP6044037B2 (en
Inventor
Satoshi Emura
聡 江村
Shigeo Yamamoto
重男 山本
Kazuyuki Sakuratani
和之 櫻谷
Kaneaki Tsuzaki
兼彰 津崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010104780A priority Critical patent/JP6044037B2/en
Priority to PCT/JP2011/053330 priority patent/WO2011135897A1/en
Priority to EP11774682.6A priority patent/EP2565286A4/en
Priority to CN201180021615.7A priority patent/CN102906290B/en
Publication of JP2011231387A publication Critical patent/JP2011231387A/en
Application granted granted Critical
Publication of JP6044037B2 publication Critical patent/JP6044037B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • C21C2007/0018Boron

Abstract

PROBLEM TO BE SOLVED: To provide a free-cutting stainless steel material for precise processing which can meet all of excellent cutting processing accuracy, machinability, corrosion resistance, and an enviromental property at the same time, and a method of manufacturing the same.SOLUTION: The free-cutting stainless steel material for precise cutting is used for performing a shaping process by cutting at a micron meter level, and has such a structure that the free-cutting property giving material is made of h-BN particles and scattered in single state in the steel. The manufacturing method is characterized by heating the free-cutting stainless steel material for precise processing in which the h-BN particles are deposited, then rapidly cooling it to dissolve and extinguish the h-BN particles, and then, tempering it to disperse and deposite the h-BN particles again equally in the material.

Description

本発明は、ミクロンメートルレベルの切削による成形を行う精密加工用快削ステンレス鋼素材に関するものである。   The present invention relates to a free-cutting stainless steel material for precision machining that performs forming by cutting at a micrometer level.

従来、精密部品を加工する素材として、その耐食性を生かしてステンレス鋼を用いることが行われていたが、精密加工においてステンレス鋼を用いることは、一般の鉄鋼を用いるのに比べ、切削加工が困難であるので、その切削性を改善することが望まれていた。
切削性を改善したステンレス鋼としては、硫黄快削ステンレス鋼SUS303が広く知られているが、切削後の表面が粗くなり、ミクロンメートルレベルの精密な切削加工に用いることは困難であるとされていた。
つまり、従来は、切削性と精密加工性(切削後の表面粗さ)は、ステンレス鋼では両立しないものとされていた。
Conventionally, stainless steel has been used as a material for machining precision parts, taking advantage of its corrosion resistance, but using stainless steel in precision machining is more difficult to cut than using ordinary steel. Therefore, it has been desired to improve the machinability.
As a stainless steel with improved machinability, sulfur free-cutting stainless steel SUS303 is widely known, but the surface after cutting becomes rough, and it is said that it is difficult to use it for precision cutting at the micrometer level. It was.
That is, conventionally, stainless steel has been considered to be incompatible with machinability and precision workability (surface roughness after cutting).

国際特許出願WO2008/016158には、優れた切削性と耐食性を同時に満足することができる快削ステンレス鋼とその製造方法が開示されている。この発明では、耐食性が従来のステンレス鋼材料と同等で、25%程度の切削性の改良が行われたが、この材料の切削加工後の表面粗さに関しての開示はされていない。 International patent application WO2008 / 016158 discloses a free-cutting stainless steel capable of simultaneously satisfying excellent machinability and corrosion resistance, and a method for producing the same. In this invention, the corrosion resistance is equivalent to that of a conventional stainless steel material, and the machinability is improved by about 25%. However, the surface roughness after cutting of this material is not disclosed.

このように、切削加工後の表面性状に優れ、かつ、耐食性に優れた精密加工用快削ステンレス鋼素材及びその製造方法は、現在のところ開示されていない。 As described above, a free-cutting stainless steel material for precision machining that has excellent surface properties after cutting and corrosion resistance and a method for producing the same have not been disclosed at present.

本発明は、このような実情に鑑み、切削性と精密加工性の双方を満足できる精密加工用快削ステンレス鋼素材及びその製造方法を提供することを課題とする。 In view of such circumstances, an object of the present invention is to provide a free-cutting stainless steel material for precision machining that can satisfy both machinability and precision workability, and a method for producing the same.

本発明は、固体潤滑材として優れ、化学的に安定で酸あるいはアルカリに侵されることのないh−BN(六方晶系窒化ホウ素)粒子の性質を有効に利用し、特定の熱処理によりh−BNが固溶・再析出することを利用することで、寸法精度が重要視される切削加工後の表面性状及び切削性並びに耐食性に優れた精密加工用快削ステンレス鋼素材とその製造方法を見い出し、なされたものである。 The present invention effectively uses the properties of h-BN (hexagonal boron nitride) particles that are excellent as a solid lubricant and are chemically stable and not affected by acid or alkali. By utilizing the solid solution and re-precipitation, we found a free-cutting stainless steel material for precision machining with excellent surface properties and cutting properties and corrosion resistance after cutting, where dimensional accuracy is important, and its manufacturing method. It was made.

発明1は、ミクロンメーターレベルの切削による成形を行う精密加工用快削ステンレス鋼素材であって、その快削性付与材がh−BN(六方晶系窒化ホウ素)粒子であって、粒径が200nmから5μmの球状の前記h−BN粒子が鋼中に単体状態で分散析出していることを特徴とする構成を採用した。ここで単体状態とは、複数個のh−BN粒子同士あるいはh−BN以外の非金属介在物粒子とh−BN粒子が凝集していない状態を言う。   Invention 1 is a free-cutting stainless steel material for precision machining that performs molding by cutting at a micrometer level, the free-cutting property imparting material is h-BN (hexagonal boron nitride) particles, and the particle size is A configuration was adopted in which spherical h-BN particles of 200 nm to 5 μm were dispersed and precipitated in a single state in steel. Here, the simple substance state refers to a state where a plurality of h-BN particles or non-metallic inclusion particles other than h-BN and h-BN particles are not aggregated.

発明2は、発明1の精密加工用快削ステンレス鋼素材において、そのB含有量が0.003〜0.1mass%であることを特徴とする構成を採用した。   Invention 2 employ | adopted the structure characterized by the B content being 0.003-0.1 mass% in the free-cutting stainless steel raw material for precision processing of Invention 1.

発明3は、発明1の精密加工用快削ステンレス鋼素材において、そのN含有量がモル比においてB含有量と同等かそれ以上あることを特徴とする構成を採用した。 Invention 3 employs a configuration characterized in that in the free-cutting stainless steel material for precision machining of Invention 1, the N content is equal to or higher than the B content in a molar ratio.

発明4は、発明1〜3のいずれかに記載の精密加工用快削ステンレス鋼素材において、その旋削加工面の表面粗さの10点平均粗さ(Rz)が5μm以下となる旋削表面特性を有することを特徴とする構成を採用した。 Invention 4 is a free-cutting stainless steel material for precision machining as set forth in any one of Inventions 1 to 3, wherein the surface roughness of the turning surface has a 10-point average roughness (Rz) of 5 μm or less. The structure characterized by having was adopted.

発明5は、発明4に記載の精密加工用快削ステンレス鋼素材において、前記旋削表面特性は、直径8mmの丸棒を以下の条件で旋削して得られたことを特徴とする構成を採用した。
切削速度:16m/min、切り込み深さ:0.2mm、工具送り速度:0.08mm/rev、工具材質:M30、工具形状:正三角形、チップブレーカーあり、切削液:不使用。
Invention 5 employs a configuration characterized in that in the free-cutting stainless steel material for precision machining described in Invention 4, the turning surface characteristics are obtained by turning a round bar having a diameter of 8 mm under the following conditions. .
Cutting speed: 16 m / min, cutting depth: 0.2 mm, tool feed speed: 0.08 mm / rev, tool material: M30, tool shape: equilateral triangle, with chip breaker, cutting fluid: not used.

発明6は、発明1〜5のいずれかに記載の精密加工用快削ステンレス鋼素材の製造方法であって、Bは、フェロボロン又は金属ボロンの添加により、Nは溶解雰囲気を(アルゴン+窒素)あるいは減圧した窒素中での溶解により、ステンレス溶鋼に添加することを特徴とする構成を採用した。 Invention 6 is a method for producing a precision-cutting free-cutting stainless steel material according to any one of Inventions 1 to 5, wherein B is added with ferroboron or metal boron, and N is a dissolved atmosphere (argon + nitrogen). Or the structure characterized by adding to stainless steel molten steel by melt | dissolution in the pressure-reduced nitrogen was employ | adopted.

発明7は、発明1〜5のいずれかに記載の精密加工用快削ステンレス鋼素材の製造方法であって、Bは、フェロボロン又は金属ボロンの添加により、Nは窒素含有化合物の添加により、ステンレス溶鋼に添加することを特徴とする構成を採用した。 Invention 7 is a method for producing a free-cutting stainless steel material for precision machining according to any one of Inventions 1 to 5, wherein B is added by adding ferroboron or metal boron, N is added by adding a nitrogen-containing compound, and stainless steel is added. The structure characterized by adding to molten steel was adopted.

発明8は、発明1〜5のいずれかに記載の精密加工用快削ステンレス鋼素材の製造方法であって、請求項6又は7に記載の方法により得られた組織中にh−BN粒子が不均一に析出しているステンレス鋼を1200℃以上の温度まで加熱した後に急冷して、h−BN粒子を一旦固溶消滅させ、その後950〜1100℃の温度での焼もどし熱処理を行うことにより、h−BN粒子を再度分散析出させることを特徴とする精密加工用快削ステンレス鋼素材の製造方法。 Invention 8 is a method for producing a free-cutting stainless steel material for precision machining according to any one of Inventions 1 to 5, wherein h-BN particles are contained in the structure obtained by the method according to claim 6 or 7. By heating the non-uniformly precipitated stainless steel to a temperature of 1200 ° C. or higher and then rapidly cooling it, the h-BN particles are once dissolved out, and then tempered at a temperature of 950 to 1100 ° C. , A method for producing a free-cutting stainless steel material for precision machining, wherein the h-BN particles are again dispersed and precipitated.

化学的に安定で酸あるいはアルカリに侵されることのないh−BN粒子を単体状態で分散析出させて、固体潤滑材として優れた切削性を持ち、切削加工精度に優れ、かつ、耐食性も劣化することもない、精密加工用快削ステンレス鋼素材とその製造方法を提供することができた。
特に、実施例に示す通り、切削後の表面粗さが、改削性のないスレンレス鋼と同様かそれ以上に少ない性能を有するものであり、精密加工後の表面処理加工がほとんど不要となった。
これらの効果は、固体潤滑材として優れた特性を持つh−BN粒子を精密加工用快削ステンレス鋼素材に有効に適用したことによるものであり、加工精度、耐食性、快削性のみならず、PbやSeのような環境負荷物質を使用しないため、環境性も満足し得る精密加工用快削ステンレス鋼素材の提供が実現できた。
また、加工精度が優れているため、更なる加工精度向上の工程、例えば研削加工、研磨加工を省略することも可能で、また、切削性の向上による切削機械の動力が削減され、電気エネルギー消費の低減化と、高速切削も可能なため、生産性の向上にもつながる。
Chemically stable h-BN particles that are not attacked by acid or alkali are dispersed and precipitated in a single state, and have excellent machinability as a solid lubricant, excellent cutting accuracy, and deterioration in corrosion resistance. We were able to provide a free-cutting stainless steel material for precision machining and its manufacturing method.
In particular, as shown in the examples, the surface roughness after cutting has a performance similar to or less than that of stainless steel without reworkability, and surface treatment after precision machining is almost unnecessary. .
These effects are due to the effective application of h-BN particles, which have excellent properties as solid lubricants, to free-cutting stainless steel materials for precision machining. Not only machining accuracy, corrosion resistance and free-cutting properties, Since environmentally hazardous substances such as Pb and Se are not used, it was possible to provide a free-cutting stainless steel material for precision machining that can satisfy environmental characteristics.
In addition, since the machining accuracy is excellent, it is possible to omit further machining accuracy improvement processes such as grinding and polishing, and the power of the cutting machine is reduced due to improved machinability, and electric energy consumption is reduced. Can be reduced and high-speed cutting is possible, leading to improved productivity.

本発明は、上記の通りの特徴を持つものであるが、以下にその実施の形態について説明する。
この発明の製造方法において、精密加工用快削ステンレス鋼素材の溶解は、溶解雰囲気の調整が可能な、通常のステンレス鋼を溶製する溶解炉を使用して行われる。この溶解において、B(ホウ素)の原料としては、フェロボロンあるいは金属ボロンが使用されるが、溶融点の低いフェロボロンのほうが溶解原料としては技術的に有利であり、B(ホウ素)の単位重量当たりの市場価格が低いため経済的である。
The present invention has the features as described above, and an embodiment thereof will be described below.
In the production method of the present invention, the free-cutting stainless steel material for precision machining is melted by using a melting furnace for melting ordinary stainless steel, which can adjust the melting atmosphere. In this melting, ferroboron or metal boron is used as a raw material for B (boron), but ferroboron having a low melting point is technically advantageous as a melting raw material, and it is per unit weight of B (boron). Economical due to low market price.

Bの添加量は、精密加工用快削ステンレス鋼素材中の最終B含有量が一般的な目安として0.003〜0.1mass%B、更に好ましくは0.003〜0.03mass%Bである。また、N(窒素)の原料としては、溶解雰囲気中のNを吸収させる、あるいはステンレス鋼を構成する合金元素の窒化物、例えば窒化クロム、窒化フェロクロムなどの添加がある。 The amount of B added is generally 0.003 to 0.1 mass% B, more preferably 0.003 to 0.03 mass% B, as a general guideline for the final B content in the precision-cutting free-cutting stainless steel material. . In addition, as a raw material of N (nitrogen), there is an addition of a nitride of an alloy element that absorbs N in a melting atmosphere or constitutes stainless steel, for example, chromium nitride, ferrochromium nitride or the like.

精密加工用快削ステンレス素材中のN含有量は、一般的な目安としてモル比でN/Bが1以上であればよい。精密加工用快削ステンレス鋼素材中のNとBのモル比が1より小さいと、固溶するB量が増大し、切削性に有効なh−BNの析出量が減少するため、N/Bを1以上にする必要がある。N含有量は精密加工用快削ステンレス鋼素材中の構成元素成分にもよるが、BがNの活量を増加するので、Bの増加とともに鋼中の平衡N濃度は減少する。SUS304の成分組成では、加圧したN雰囲気中での溶解を除けば、0.25mass%以下となる。 As for N content in the free-cutting stainless steel material for precision processing, N / B should just be 1 or more by molar ratio as a general standard. When the molar ratio of N and B in the free-cutting stainless steel material for precision machining is less than 1, the amount of dissolved B increases and the precipitation amount of h-BN effective for machinability decreases. Must be 1 or more. The N content depends on the constituent element components in the free-cutting stainless steel material for precision machining, but since B increases the activity of N, the equilibrium N concentration in the steel decreases as B increases. The component composition of SUS304 is 0.25 mass% or less except for dissolution in a pressurized N atmosphere.

上記のようにして製造されたBとNを含有するステンレス鋼溶鋼は、鋳型に鋳湯され精密加工用快削ステンレス鋼鋳塊になる。   The stainless steel molten steel containing B and N produced as described above is cast into a mold to become a free-cutting stainless steel ingot for precision machining.

精密加工用快削ステンレス鋼鋳塊は、通常の鍛造、圧延加工等の熱間加工を経て、精密加工用快削ステンレス鋼素材の棒材、線材、板材等に成形される。熱間加工後の精密加工用快削ステンレス鋼素材は室温まで空冷される。
精密加工用快削ステンレス鋼素材には、熱間加工後の冷却過程で、その冷却速度により、20〜30μm程度にまで粗大に成長したh−BNが素材の一部に不均一に分布して生成することがある。
The free-cutting stainless steel ingot for precision machining is formed into a rod, wire, plate, or the like of a free-cutting stainless steel material for precision machining through hot working such as normal forging or rolling. The free-cutting stainless steel material for precision machining after hot working is air-cooled to room temperature.
In the free-cutting stainless steel material for precision machining, h-BN, which grows coarsely to about 20 to 30 μm, is unevenly distributed in a part of the material during the cooling process after hot working. May be generated.

精密加工用快削ステンレス鋼素材中に析出したh−BNは、1200℃以上の温度に保持することにより、比較的短時間(例えば、1250℃では、0.5から1時間)にて固溶したBとNに分解した状態で、マトリックス中に存在することができる。このh−BNの固溶現象を利用して、素材中に不均一に、あるいは粗大に生成しているh−BNを素材中の再固溶する熱処理を行う。
なお、このような処理は、精密加工用快削ステンレス鋼素材が溶融した場合は不可能であるから、その溶融温度未満で処理する必要がある。
H-BN deposited in the free-cutting stainless steel material for precision machining is dissolved in a relatively short time (for example, 0.5 to 1 hour at 1250 ° C) by maintaining the temperature at 1200 ° C or higher. It can exist in the matrix in a state of being decomposed into B and N. Utilizing this solid solution phenomenon of h-BN, heat treatment is performed to re-dissolve h-BN generated in the material in a non-uniform or coarse manner in the material.
In addition, since such a process is impossible when the free-cutting stainless steel material for precision processing is melted, it is necessary to perform the process at a temperature lower than the melting temperature.

この状態は急冷することにより、過飽和に固溶した状態のBとNを含有する精密加工用快削ステンレス鋼素材が得られる。急冷の操作は、通常のステンレス鋼に対して行われる水冷で構わないが、後述のh−BNを析出する温度範囲での冷却速度が、析出を起こさない冷却速度とする必要がある。 By rapidly cooling in this state, a free-cutting stainless steel material for precision machining containing B and N in a solid solution state in a supersaturated state is obtained. The quenching operation may be water cooling performed on normal stainless steel, but it is necessary that the cooling rate in the temperature range in which h-BN, which will be described later, is precipitated, is a cooling rate that does not cause precipitation.

過飽和に固溶したBとNを800℃〜1150℃の温度で焼戻すと、固溶化熱処理で固溶したh−BNが再び析出する。800℃付近で焼戻しを行うと、B、Nのこの温度での平衡溶解度と過飽和溶解度との差が大きく、かつこの温度でのB、Nの拡散速度が遅いため拡散できる移動距離が小さいという二つの要因でh−BNの核発生が核成長よりも優先的に起こるため、非常に微細なh−BNが素材全体に均一に析出するのが見られる。逆に1150℃付近で焼もどすと、800℃付近での焼戻しとは反対に、h−BNの核成長が核発生よりも優先的に起こるため、大きな粒径に成長したh−BNの析出が見られる。 When B and N dissolved in supersaturation are tempered at a temperature of 800 ° C. to 1150 ° C., h-BN dissolved in the solution heat treatment is precipitated again. When tempering is performed at around 800 ° C., the difference between the equilibrium solubility of B and N at this temperature and the supersaturated solubility is large, and since the diffusion rate of B and N at this temperature is slow, the travel distance that can be diffused is small. Since nucleation of h-BN occurs preferentially over nuclear growth for one factor, it can be seen that very fine h-BN precipitates uniformly throughout the material. Conversely, when tempering near 1150 ° C., nucleation of h-BN occurs preferentially over nucleation, contrary to tempering near 800 ° C., so that precipitation of h-BN grown to a large particle size occurs. It can be seen.

したがって、切削性が良好となるような粒径及び分布状態のh−BNを析出させるのには、焼戻し温度の選択が重要である。試行実験を行った結果、切削性が良好となるような粒径及び分布状態が得られる焼戻し温度は、950〜1100℃の範囲が好ましい。
また、熱間加工の加工時の温度がh−BNが固溶した状態で行われる場合には、熱間加工後急冷することで、BとNが過飽和に固溶した状態を作ることも可能である。このような加工温度条件の場合には、1200℃以上の温度でのh−BN固溶化の熱処理が不要になることは言うまでもない。
Therefore, the selection of the tempering temperature is important for precipitating h-BN having a particle size and a distribution state that provides good machinability. As a result of the trial experiment, the tempering temperature at which a particle size and a distribution state such that the machinability is good is obtained is preferably in the range of 950 to 1100C.
Moreover, when the temperature at the time of hot working is performed in a state where h-BN is dissolved, it is possible to make a state where B and N are dissolved in supersaturation by quenching after hot working. It is. In the case of such processing temperature conditions, it goes without saying that the heat treatment for h-BN solid solution at a temperature of 1200 ° C. or higher becomes unnecessary.

更に、焼戻しの保持時間に関しては、温度が高いほどBとNの拡散速度が速いため短時間ですみ、その範囲は0.5〜3時間、好ましくは1〜2時間で十分である。この焼もどし熱処理は、一般的なステンレス鋼に対して行われる溶体化熱処理を兼ねることができるため、溶体化熱処理時に行われる冷却速度で冷却する。   Further, regarding the tempering holding time, the higher the temperature, the faster the diffusion rate of B and N, so that a shorter time is required, and the range is 0.5 to 3 hours, preferably 1 to 2 hours. Since this tempering heat treatment can also serve as a solution heat treatment performed on general stainless steel, cooling is performed at a cooling rate performed during the solution heat treatment.

Bの含有量を0.003mass%から0.1mass%にするのは、含有量が0.003mass%以下であると切削性に目立った効果がなくなり、0.1mass%を超え、多量のh−BNが析出することにより複数個のh−BN粒子が凝集する傾向が高まり、切削性は大きく向上するが、逆に表面粗さに悪影響を及ぼすためである。   When the content of B is changed from 0.003 mass% to 0.1 mass%, if the content is 0.003 mass% or less, there is no noticeable effect on machinability, and the content of B exceeds 0.1 mass%. This is because the precipitation of BN increases the tendency of a plurality of h-BN particles to aggregate and the machinability is greatly improved, but adversely affects the surface roughness.

Nの含有量をモル比でN/Bが1以上にするのは、1に満たないと過飽和に固溶しているBとNの熱処理時のh−BNの再析出が十分に達成できないのと、Bが過剰に存在するため塑性加工がし難くなるためである。   The reason why N / B is 1 or more in the molar ratio of N is that if it is less than 1, reprecipitation of h-BN during heat treatment of B and N, which are solid solution in supersaturation, cannot be sufficiently achieved. This is because plastic processing becomes difficult because B exists excessively.

(実施例1) 市販のオーステナイト系ステンレス鋼(SUS304)丸棒(重量2kg)を溶解原料として、コールドクルーシブル浮揚溶解炉を用いて溶解した。溶解原料の成分組成(mass%)は、0.06%C、0.28%Si、1.33%Mn、0.035%P、0.025%S、8.05%Ni、18.39%Crであった。溶融時に真空誘導溶解炉にNを0.07MPa封入し、溶鋼中のN濃度の調整を行った。溶融後、溶湯に市販のフェロボロン(19.2mass%B)を所定量添加し、B濃度の調整を行い、弱減圧N雰囲気中で溶け落ち後、1600℃で10min保持し、コールドクルーシブル中で凝固し、鋳塊を製造した。
鋳塊は、1200℃で、鍛造、圧延を施し、14mm角の棒材に加工し、空冷した。棒材を1250℃で0.5時間保持した後、水冷し、更に、1100℃で1時間保持した後水冷する熱処理を施した。
(Example 1) A commercially available austenitic stainless steel (SUS304) round bar (weight 2 kg) was melted as a melting raw material using a cold crucible flotation melting furnace. The component composition (mass%) of the melting raw material was 0.06% C, 0.28% Si, 1.33% Mn, 0.035% P, 0.025% S, 8.05% Ni, 18.39. % Cr. At the time of melting, 0.07 MPa of N was sealed in a vacuum induction melting furnace, and the N concentration in the molten steel was adjusted. After melting, a predetermined amount of commercially available ferroboron (19.2 mass% B) is added to the molten metal, the B concentration is adjusted, melted down in a low-pressure N atmosphere, held at 1600 ° C. for 10 min, and solidified in a cold crucible And ingots were produced.
The ingot was forged and rolled at 1200 ° C., processed into a 14 mm square bar, and air-cooled. The rod was held at 1250 ° C. for 0.5 hours, then cooled with water, and further heat treated by holding at 1100 ° C. for 1 hour and then water cooling.

溶製した開発鋼の分析値を表1に示した。
また、比較材1として、実施例1の溶解原料に使用した市販材のSUS304ステンレス鋼、比較材2として市販材の硫黄快削SUS303ステンレス鋼をいずれも径55mmの丸棒より切り出して表面粗さ試験の試料とした。
溶製した材料のB、N及びSの分析値(単位mass%)を表1に示す。
Table 1 shows the analytical values of the newly developed steel.
Further, as the comparative material 1, the commercially available SUS304 stainless steel used for the melting raw material of Example 1 and the commercially available sulfur free-cutting SUS303 stainless steel as the comparative material 2 were both cut out from a round bar having a diameter of 55 mm and surface roughness was obtained. A test sample was obtained.
Table 1 shows analysis values (unit: mass%) of B, N, and S of the melted material.

表面粗さの評価試験として、試料から切り出した丸棒材試料について、走査型レーザー顕微鏡を用いて、表面粗さ(10点平均粗さRz)を測定した。試料は、いずれも、同一の旋削条件(切削速度、切り込み深さ、工具送り速度)で径が7.6mmまで旋削した。最終の切削条件は、切削速度:16m/min、切り込み深さ:0.2mm、工具送り速度:0.08mm/rev、工具材質:M30、工具形状:正三角形、チップブレーカーあり、切削液:不使用であった。表面粗さの測定結果を表2に示した。 As a surface roughness evaluation test, the surface roughness (10-point average roughness Rz) of a round bar sample cut out from the sample was measured using a scanning laser microscope. Each sample was turned to a diameter of 7.6 mm under the same turning conditions (cutting speed, cutting depth, tool feed speed). The final cutting conditions were cutting speed: 16 m / min, cutting depth: 0.2 mm, tool feed speed: 0.08 mm / rev, tool material: M30, tool shape: equilateral triangle, chip breaker, cutting fluid: non It was use. The measurement results of the surface roughness are shown in Table 2.

表2より、開発された精密加工用快削ステンレス鋼素材の表面粗さは、比較材1(SUS304)のそれよりも向上しており、比較材2の快削ステンレス鋼のSUS303に比較し表面粗さが1/3程度にまで減少し、はるかに向上している。この理由は、開発鋼では、微細h‐BN粒子が単対状態で分散しているのに対し、比較材2では、快削付与物質としてのMnS粒子が、粗大でかつ針状に伸長している金属組織を形成していることに起因している。図1に、開発鋼2から切り出した試料の折断面のSEM観察写真を示した。図1(a)は、1250℃で0.5時間保持した後水冷し、更に、1100℃で1時間保持した後水冷する熱処理を、図1(b)は、1250℃で0.5時間保持した後水冷し、更に、850℃で2時間保持した後水冷する熱処理を施したものである。図中の白色の球状粒子は全て、EDS分析により、h‐BN粒子であることが認められた。図1(a)の観察面では、3μm以下でh‐BN粒子が単体状態で分散しているのが認められ、更に、再析出温度が低い状態で析出させるとh‐BN粒子径がより小さくなる傾向があることが観察された。 From Table 2, the surface roughness of the developed free-cutting stainless steel material for precision machining is improved compared to that of the comparative material 1 (SUS304), and the surface roughness compared to SUS303 of the free-cutting stainless steel of the comparative material 2 The roughness has been reduced to about 1/3, which is much improved. This is because, in the developed steel, the fine h-BN particles are dispersed in a single pair state, whereas in the comparative material 2, the MnS particles as the free-cutting imparting substance are coarse and extend like needles. This is due to the formation of a metal structure. In FIG. 1, the SEM observation photograph of the broken cross section of the sample cut out from the development steel 2 was shown. FIG. 1 (a) shows a heat treatment in which water is cooled after holding at 1250 ° C. for 0.5 hour, and further, water cooling is carried out after holding at 1100 ° C. for 1 hour, and FIG. 1 (b) is held at 1250 ° C. for 0.5 hour. Then, it is cooled with water, and further subjected to a heat treatment of holding at 850 ° C. for 2 hours and then cooling with water. All the white spherical particles in the figure were found to be h-BN particles by EDS analysis. In the observation surface of FIG. 1 (a), it is recognized that h-BN particles are dispersed in a single state at 3 μm or less, and the h-BN particle diameter is smaller when precipitated at a low reprecipitation temperature. It was observed that there was a tendency to

図2に比較材2(SUS303)の試料の折断面のSEM観察写真を示した。矢印で示されるのは、鋼中に繊維状に存在する径が数μm、長さ数十μmの伸長したMnS粒子であることがEDS分析で確認された。切削加工の際、伸長したMnS粒子が加工表面に出て、抜け落ちるため、抜け落ちたMnSの形状に相当する表面粗さが表2でも示されている。   FIG. 2 shows a SEM observation photograph of the cross section of the sample of the comparative material 2 (SUS303). It was confirmed by EDS analysis that the arrows indicate the elongated MnS particles having a diameter of several μm and a length of several tens of μm, which are present in the form of fibers in the steel. Table 2 also shows the surface roughness corresponding to the shape of the dropped MnS because the elongated MnS particles appear on the processed surface and fall off during the cutting process.

もちろん、この発明は以上の例に限定されるものではなく、細部に付いては様々な態様が可能であることは言うまでもない。 Of course, the present invention is not limited to the above examples, and it goes without saying that various aspects are possible in detail.

以上詳しく説明した通り、この発明によって、切削加工精度と被削性に優れ、かつ耐食性、対環境性にも優れた精密加工用快削ステンレス鋼素材が容易に提供できるようになり、ステンレス鋼を用いた各種加工分野に優れた利用性をもたらすことができた。   As explained in detail above, the present invention makes it possible to easily provide a free-cutting stainless steel material for precision machining that has excellent cutting accuracy and machinability, as well as excellent corrosion resistance and environmental resistance. It was possible to bring excellent usability to the various processing fields used.

開発鋼試料の折断面のSEM観察写真で、(a)は、熱処理条件が、1250℃、0.5時間保持後水冷、1100℃、1時間保持後水冷、(b)は、熱処理条件が、1250℃0.5時間保持後水冷、850℃、2時間保持後水冷である。In the SEM observation photograph of the folded cross section of the developed steel sample, (a) is the heat treatment condition of 1250 ° C., water cooling after holding for 0.5 hour, 1100 ° C., water cooling after holding for 1 hour, (b) is the heat treatment condition, Water cooling after holding at 1250 ° C. for 0.5 hour and water cooling after holding at 850 ° C. for 2 hours. 比較材2の試料の折断面のSEM観察写真。The SEM observation photograph of the broken cross section of the sample of the comparative material 2. FIG.

特開2002−38238号公報JP 2002-38238 A 特開2001−234298号公報JP 2001-234298 A 国際特許出願WO2008/016158International patent application WO2008 / 016158

Claims (8)

ミクロンメーターレベルの表面粗さで切削加工をなす精密加工用快削ステンレス鋼素材であって、粒径が200nmから5μmの球状のh−BN粒子が快削付与材として単体状態で分散していることを特徴とする精密加工用ステンレス鋼素材。 A free-cutting stainless steel material for precision machining that performs cutting with a micrometer-level surface roughness, and spherical h-BN particles having a particle size of 200 nm to 5 μm are dispersed as a free-cutting imparting material in a single state. A stainless steel material for precision machining. 請求項1に記載の精密加工用ステンレス鋼素材において、そのB含有量が0.003〜0.1mass%であることを特徴とする精密加工用ステンレス鋼素材。 The stainless steel material for precision machining according to claim 1, wherein the B content is 0.003 to 0.1 mass%. 請求項1に記載の精密加工用ステンレス鋼素材において、そのN含有量がモル比において、B含有量と同等かそれ以上であることを特徴とする精密加工用ステンレス鋼素材。 The stainless steel material for precision machining according to claim 1, wherein the N content is equal to or higher than the B content in molar ratio. 請求項1〜3のいずれかに記載の精密加工用快削ステンレス鋼素材において、その旋削加工面の表面粗さの10点平均粗さ(Rz)が5μm以下となる旋削表面特性を有することを特徴とする精密加工用ステンレス鋼素材。 The free-cutting stainless steel material for precision machining according to any one of claims 1 to 3, which has a turning surface characteristic in which the 10-point average roughness (Rz) of the surface roughness of the turning surface is 5 μm or less. Stainless steel material for precision machining. 請求項4に記載の精密加工用快削ステンレス鋼素材において、前記旋削表面特性は、直径8mmの丸棒を以下の条件で旋削して得られたものであることを特徴とする精密加工用快削ステンレス鋼素材。
切削速度:16m/min、切り込み深さ:0.2mm、工具送り速度:0.08mm/rev、工具材質:M30、工具形状:正三角形、チップブレーカーあり、切削液:不使用。
5. The precision machining free-cutting stainless steel material according to claim 4, wherein the turning surface characteristics are obtained by turning a round bar having a diameter of 8 mm under the following conditions. Stainless steel material.
Cutting speed: 16 m / min, cutting depth: 0.2 mm, tool feed speed: 0.08 mm / rev, tool material: M30, tool shape: equilateral triangle, with chip breaker, cutting fluid: not used.
請求項1〜5のいずれかに記載の精密加工用快削ステンレス鋼素材の製造方法であって、Bは、フェロボロン又は金属ボロンの添加により、Nは、原料ステンレス鋼の溶解雰囲気を不活性ガスと窒素又は減圧した窒素とすることにより添加することを特徴とする精密加工用快削ステンレス鋼素材の製造方法。 The method for producing a free-cutting stainless steel material for precision machining according to any one of claims 1 to 5, wherein B is an addition of ferroboron or metal boron, and N is an inert gas that dissolves the raw stainless steel. And a method of producing a free-cutting stainless steel material for precision machining, characterized by adding nitrogen or reduced-pressure nitrogen. 請求項1〜5のいずれかに記載の精密加工用快削ステンレス鋼素材の製造方法であって、ステンレス溶鋼へBNの原料としてのBは、フェロボロン又は金属ボロンの添加により、Nは窒素含有化合物の添加により、ステンレス溶鋼にB及びNを添加することを特徴とする精密加工用快削ステンレス鋼素材の製造方法。 A method for producing a free-cutting stainless steel material for precision machining according to any one of claims 1 to 5, wherein B as a raw material of BN is added to the molten stainless steel by adding ferroboron or metal boron, and N is a nitrogen-containing compound. A process for producing a free-cutting stainless steel material for precision machining, characterized in that B and N are added to molten stainless steel by the addition of. 請求項1〜5のいずれかに記載の精密加工用快削ステンレス鋼素材の製造方法であって、請求項6又は7に記載の方法により得られた組織中にh−BN粒子が不均一に析出しているステンレス鋼を1200℃以上の温度まで加熱した後に急冷して、h−BN粒子を一旦固溶消滅させ、その後950〜1100℃の温度での焼もどし熱処理を行うことにより、h−BN粒子を再度分散析出させることを特徴とする精密加工用快削ステンレス鋼素材の製造方法。 It is a manufacturing method of the free-cutting stainless steel raw material for precision processing in any one of Claims 1-5, Comprising: h-BN particle | grains are heterogeneous in the structure | tissue obtained by the method of Claim 6 or 7. By heating the precipitated stainless steel to a temperature of 1200 ° C. or higher and then rapidly cooling it, the h-BN particles are once dissolved to disappear, and then subjected to a tempering heat treatment at a temperature of 950 to 1100 ° C. A method for producing a free-cutting stainless steel material for precision machining, wherein BN particles are dispersed and precipitated again.
JP2010104780A 2010-04-30 2010-04-30 Free-cutting stainless steel material for precision machining and its manufacturing method Expired - Fee Related JP6044037B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010104780A JP6044037B2 (en) 2010-04-30 2010-04-30 Free-cutting stainless steel material for precision machining and its manufacturing method
PCT/JP2011/053330 WO2011135897A1 (en) 2010-04-30 2011-02-17 Free-cutting stainless-steel material for precision processing and process for producing same
EP11774682.6A EP2565286A4 (en) 2010-04-30 2011-02-17 Free-cutting stainless-steel material for precision processing and process for producing same
CN201180021615.7A CN102906290B (en) 2010-04-30 2011-02-17 Free-cutting stainless-steel material for precision processing and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104780A JP6044037B2 (en) 2010-04-30 2010-04-30 Free-cutting stainless steel material for precision machining and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2011231387A true JP2011231387A (en) 2011-11-17
JP6044037B2 JP6044037B2 (en) 2016-12-14

Family

ID=44861218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104780A Expired - Fee Related JP6044037B2 (en) 2010-04-30 2010-04-30 Free-cutting stainless steel material for precision machining and its manufacturing method

Country Status (4)

Country Link
EP (1) EP2565286A4 (en)
JP (1) JP6044037B2 (en)
CN (1) CN102906290B (en)
WO (1) WO2011135897A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040645A (en) * 2012-08-23 2014-03-06 National Institute For Materials Science Free-cutting iron based shape memory alloy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537952B1 (en) * 2010-07-27 2016-12-28 National Institute for Materials Science Free-cutting stainless-steel cast product and process for producing same
KR102010052B1 (en) * 2017-10-19 2019-08-12 주식회사 포스코 Medium carbon free cutting steel having excellent hot workability and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332021A (en) * 2003-05-01 2004-11-25 Sanyo Special Steel Co Ltd Pb-FREE FREE-CUTTING STAINLESS STEEL WITH EXCELLENT OUTGAS CHARACTERISTICS
JP2006291296A (en) * 2005-04-11 2006-10-26 Nisshin Steel Co Ltd Austenitic stainless steel having excellent deep drawability
WO2008016158A1 (en) * 2006-07-31 2008-02-07 National Institute For Materials Science Free-cutting stainless steel and process for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425124B2 (en) 2000-07-21 2003-07-07 清仁 石田 Ferritic free-cutting stainless steel
JP3791664B2 (en) 2000-02-24 2006-06-28 山陽特殊製鋼株式会社 Austenitic Ca-added free-cutting stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004332021A (en) * 2003-05-01 2004-11-25 Sanyo Special Steel Co Ltd Pb-FREE FREE-CUTTING STAINLESS STEEL WITH EXCELLENT OUTGAS CHARACTERISTICS
JP2006291296A (en) * 2005-04-11 2006-10-26 Nisshin Steel Co Ltd Austenitic stainless steel having excellent deep drawability
WO2008016158A1 (en) * 2006-07-31 2008-02-07 National Institute For Materials Science Free-cutting stainless steel and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040645A (en) * 2012-08-23 2014-03-06 National Institute For Materials Science Free-cutting iron based shape memory alloy

Also Published As

Publication number Publication date
JP6044037B2 (en) 2016-12-14
EP2565286A4 (en) 2014-05-07
CN102906290A (en) 2013-01-30
WO2011135897A1 (en) 2011-11-03
EP2565286A1 (en) 2013-03-06
CN102906290B (en) 2015-01-14

Similar Documents

Publication Publication Date Title
KR100808432B1 (en) Titanium copper alloy with exellent press formability
CN109943772B (en) Steel material for graphite steel and graphite steel with improved machinability
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
TW201713785A (en) Steel for mold and mold
CN108291285B (en) Steel, carburized steel part, and method for producing carburized steel part
JP6787238B2 (en) Manufacturing method of steel for machine structure
KR101657790B1 (en) Steel material for graphitization and graphite steel with excellent machinability and cold forging characteristic
JP5954483B2 (en) Lead free cutting steel
JP6044037B2 (en) Free-cutting stainless steel material for precision machining and its manufacturing method
JP5713299B2 (en) Free-cutting stainless steel cast steel product and manufacturing method thereof
JP6683075B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP5142289B2 (en) Free-cutting stainless steel and manufacturing method thereof
KR101657792B1 (en) Steel material for graphitization and graphite steel with excellent machinability
JP2014208870A (en) High speed tool steel, material for tip and cutting tool, and method of manufacturing material for tip
TW574382B (en) Steel article
JP2016069728A (en) Cold tool material and method of manufacturing cold tool
JP4687617B2 (en) Steel for machine structure
JP4278060B2 (en) Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same
JP2006057139A (en) Spheroidal graphite cast iron having excellent machinability and mechanical property
CN109790604A (en) Cold Forging Steel and its manufacturing method
JP2003313642A (en) Steel for high-speed tool and manufacturing method therefor
JP3183447B2 (en) Free cutting cast steel for flame quenching
CN109680216A (en) The excellent middle carbon easy-cutting steel of hot rolling and its manufacturing method
JP2005206894A (en) White cast iron for cutting tool, and its production method
JPH04371548A (en) Boron nitride containing machine structural steel excellent in machinability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 6044037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees