JP2011231168A - Shaping material - Google Patents

Shaping material Download PDF

Info

Publication number
JP2011231168A
JP2011231168A JP2010100775A JP2010100775A JP2011231168A JP 2011231168 A JP2011231168 A JP 2011231168A JP 2010100775 A JP2010100775 A JP 2010100775A JP 2010100775 A JP2010100775 A JP 2010100775A JP 2011231168 A JP2011231168 A JP 2011231168A
Authority
JP
Japan
Prior art keywords
temperature
modeling
viscoelastic resin
modeling material
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010100775A
Other languages
Japanese (ja)
Inventor
Seiki Akiyama
成希 秋山
Kazuki Morimoto
和樹 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seed Co Ltd
Original Assignee
Seed Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seed Co Ltd filed Critical Seed Co Ltd
Priority to JP2010100775A priority Critical patent/JP2011231168A/en
Publication of JP2011231168A publication Critical patent/JP2011231168A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shaping material which excels in shaping properties and shape retention and enables repeated shaping.SOLUTION: The shaping material is composed of a viscoelastic resin and has a temperature of the viscoelastic resin in the range of 80-40°C when the storage modulus G', measured with the use of a dynamic viscoelasticity measurement instrument by raising the temperature of the viscoelastic resin at a rate of temperature rise of 10°C/min from room temperature to 100°C to be maintained at this temperature for three minutes, and then allowing the temperature to cool down to room temperature, is 80,000 Pa.

Description

本発明は造形材料に関し、更に詳しくは、造形性に優れるとともに造形後の保形性に優れ、更に、加熱することにより繰り返し造形することが可能な造形材料に関する。   The present invention relates to a modeling material. More specifically, the present invention relates to a modeling material that is excellent in modeling properties, excellent in shape retention after modeling, and can be repeatedly modeled by heating.

従来、造形用粘土としては、油粘土、紙粘土、樹脂粘土等が知られている。
また、樹脂粘土の一つとして、塩化ビニルペースト樹脂とゲル化速度の異なる2種以上の可塑剤を主成分とする組成物を、一定の温度下で加熱混練時間と見掛粘度を満足するように加熱混練し、手工材料用粘土として使用できるとともに、加熱することにより字消しとなし得る塩化ビニル樹脂系粘土が提案されている(例えば、特許文献1参照)。
Conventionally, oil clay, paper clay, resin clay, etc. are known as modeling clay.
Moreover, as one of the resin clays, a composition mainly composed of two or more kinds of plasticizers having different gelation speeds from vinyl chloride paste resin so as to satisfy heat kneading time and apparent viscosity at a certain temperature. There has been proposed a vinyl chloride resin clay that can be kneaded with heat and used as a clay for handicraft materials and can be erased by heating (for example, see Patent Document 1).

特許第3011410号公報Japanese Patent No. 3011410

しかしながら、油粘土は繰り返し造形できるものの、重力等の外力により変形しやすいので形状を長期保存できず、また透明性がないので造形性に制限があり、更に手が汚れるという問題がある。
また、紙粘土は透明性がないので造形性に制限があり、手が汚れるという問題の他に、封を切ると固化し使用不可となるという問題がある。また、樹脂粘土は封を切ると固化し使用不可となるという問題がある。
更に、これらの粘土は、造形後に加熱・乾燥等により一旦固化させると、再度軟化させ造形材料として使用することができない。従って、造形の修正をしたり造形のやり直しが不可能であるため、廃棄すれば材料のロスとならざるを得ず極めて不経済である。
更にまた、これらの粘土は生地自体の強度が十分でなく、例えば花びらのような薄物の造形には不適当である。
However, although oil clay can be repeatedly modeled, it is easily deformed by an external force such as gravity, so that the shape cannot be stored for a long period of time, and since there is no transparency, there is a limitation in formability, and there is a problem that the hands get dirty.
In addition, since paper clay is not transparent, there is a limit to the formability, and there is a problem that it becomes solidified when it is sealed and becomes unusable in addition to the problem of dirty hands. In addition, the resin clay has a problem that it becomes unusable when it is sealed.
Furthermore, once these clays are solidified by heating and drying after modeling, they can be softened again and cannot be used as modeling materials. Therefore, it is impossible to correct the modeling or re-execute modeling, so if it is discarded, it must be a material loss, which is extremely uneconomical.
Furthermore, these clays do not have sufficient strength of the dough itself, and are not suitable for forming thin objects such as petals.

また、特許文献1に記載の塩化ビニル樹脂系粘土は、手工材料としての粘土として利用できるとともに、加熱することにより字消しとなし得る特徴を有するものである。
しかしながら、このような塩化ビニル樹脂系粘土も、一旦造形した後は変形させたり、造形を修正することができず、廃棄すれば材料のロスとなるという、上記樹脂粘土と同じ問題を含んでいる。また、加熱混練時間と見掛粘度との複雑な関係式を満たすように材料を配合する必要があり、必ずしも容易に製造できるものとは云い難い。
Further, the vinyl chloride resin clay described in Patent Document 1 can be used as clay as a handicraft material and has a feature that can be erased by heating.
However, such vinyl chloride resin clay also has the same problem as the above resin clay that once it is shaped, it cannot be deformed or the shape cannot be modified, and if it is discarded, it will result in material loss. . In addition, it is necessary to blend materials so as to satisfy a complicated relational expression between the heat-kneading time and the apparent viscosity, and it is not necessarily easy to manufacture.

本発明はかかる実情に鑑み、上記従来技術の問題を解消し、造形性及び保形性に優れ、繰り返し造形することができ、製造も容易な造形材料を提供するものである。   In view of such circumstances, the present invention provides a modeling material that solves the above-described problems of the prior art, is excellent in modeling and shape retention, can be repeatedly modeled, and is easy to manufacture.

本発明は、下記の発明を包含するものである。
(1)粘弾性樹脂からなり、下記の方法で測定した貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が80〜40℃の範囲にあることを特徴とする造形材料。
貯蔵弾性率G′:
動的粘弾性測定装置Rheosol-G1000T(株式会社ユービーエム製)を用い、粘弾性樹脂を10℃/分の昇温速度で室温から100℃まで昇温して3分間保持し、次いで、放冷により室温まで降温したときの80〜40℃における貯蔵弾性率G′。
(2)貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が45〜70℃の範囲であることを特徴とする上記(1)記載の造形材料。
(3)貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が50〜65℃の範囲であることを特徴とする上記(1)記載の造形材料。
(4)粘弾性樹脂が軟化剤及び/又は充填剤を含有してなることを特徴とする上記(1)〜(3)のいずれかに記載の造形材料。
(5)粘弾性樹脂がポリエチレンからなることを特徴とする上記(1)〜(4)のいずれかに記載の造形材料。
The present invention includes the following inventions.
(1) A molding material comprising a viscoelastic resin, wherein the temperature of the viscoelastic resin is 80 to 40 ° C. when the storage elastic modulus G ′ measured by the following method is 80,000 Pa.
Storage modulus G ′:
Using a dynamic viscoelasticity measuring device Rheosol-G1000T (manufactured by UBM Co., Ltd.), the temperature of the viscoelastic resin was raised from room temperature to 100 ° C. at a temperature rising rate of 10 ° C./min and held for 3 minutes, and then allowed to cool. Storage elastic modulus G ′ at 80 to 40 ° C. when the temperature is lowered to room temperature.
(2) The modeling material as described in (1) above, wherein the temperature of the viscoelastic resin when the storage elastic modulus G ′ is 80,000 Pa is in the range of 45 to 70 ° C.
(3) The modeling material as described in (1) above, wherein the temperature of the viscoelastic resin when the storage elastic modulus G ′ is 80,000 Pa is in the range of 50 to 65 ° C.
(4) The modeling material according to any one of (1) to (3) above, wherein the viscoelastic resin contains a softening agent and / or a filler.
(5) The modeling material according to any one of (1) to (4), wherein the viscoelastic resin is made of polyethylene.

本発明の造形材料は、造形性に優れているので素手により容易に造形でき、強度があるので花びらのような薄物も容易に成形できるとともに、造形後は保形性に優れ変形や形崩れすることがない。また、加熱することにより繰り返し造形が可能であり、従って、造形の修正や変更も容易で、また失敗した場合でも、廃棄することなく再造形できるのでロスとなることがなく経済的である。また、不透明なものから、メタリックなもの、更には透明なものまで様々な色調、質感の造形材料及び造形物を得ることが可能である。   Since the modeling material of the present invention is excellent in modeling properties, it can be easily modeled with bare hands, and since it has strength, thin objects such as petals can be easily molded, and after molding, it has excellent shape retention and deforms and loses its shape. There is nothing. In addition, repeated modeling is possible by heating, and therefore, correction and change of modeling are easy, and even if it fails, it can be re-modeled without being discarded, and it is economical without loss. In addition, it is possible to obtain modeling materials and modeling objects having various colors and textures from opaque to metallic and further transparent.

貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が好ましくは45〜70℃、より好ましくは50〜65℃の範囲にある場合に、より造形性及び保形性に優れた造形材料が得られる。   When the temperature of the viscoelastic resin when the storage elastic modulus G ′ is 80,000 Pa is preferably in the range of 45 to 70 ° C., more preferably in the range of 50 to 65 ° C., modeling with better moldability and shape retention A material is obtained.

粘弾性樹脂が軟化剤及び/又は充填剤を含有することにより、粘弾性樹脂の選択の自由度が大きくなり、また造形性及び保形性の調整が容易となる。また、粘弾性樹脂としては、ポリエチレンが好適である。   When the viscoelastic resin contains a softening agent and / or a filler, the degree of freedom in selecting the viscoelastic resin is increased, and it is easy to adjust the formability and shape retention. Moreover, polyethylene is suitable as the viscoelastic resin.

実施例及び比較例で得られた造形材料の貯蔵弾性率G′と温度との関係を示すグラフである。It is a graph which shows the relationship between the storage elastic modulus G 'and temperature of the modeling material obtained by the Example and the comparative example. 貯蔵弾性率G′と温度と、造形性と保形性との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between storage elastic modulus G ', temperature, modeling property, and shape retention property.

本発明の造形材料は、粘弾性樹脂からなり、下記の方法で測定した貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が80〜40℃の範囲にあることを特徴とするものである。
貯蔵弾性率G′:
動的粘弾性測定装置Rheosol-G1000T(株式会社ユービーエム製)を用い、粘弾性樹脂を10℃/分の昇温速度で室温から100℃まで昇温して3分間保持し、次いで、放冷により室温まで降温したときの80〜40℃における貯蔵弾性率G′。尚、放冷とは室温で放置することにより温度を下げることを意味する。
The modeling material of the present invention is made of a viscoelastic resin, and the temperature of the viscoelastic resin when the storage elastic modulus G ′ measured by the following method is 80,000 Pa is in the range of 80 to 40 ° C. Is.
Storage modulus G ′:
Using a dynamic viscoelasticity measuring device Rheosol-G1000T (manufactured by UBM Co., Ltd.), the temperature of the viscoelastic resin was raised from room temperature to 100 ° C. at a temperature rising rate of 10 ° C./min and held for 3 minutes, and then allowed to cool. Storage elastic modulus G ′ at 80 to 40 ° C. when the temperature is lowered to room temperature. The term “cooling” means that the temperature is lowered by leaving it to stand at room temperature.

本発明において、造形(性)とは、造形材料の塑性変形を利用して、素手(手指)で造形材料を造形すること、即ち、練ったり、ひねったり、伸ばしたり、厚くしたり、薄くしたり、重ね合わせたり、繋ぎ合わせたりして所望の形を造り上げることを云い、このときの温度を造形温度と称する。また、保形性とは、造形物を展示したり、陳列したり、ある場所に置いた際に、温度等により造形物の形状が変化せず、そのまま保持されることを云う。   In the present invention, modeling refers to modeling a modeling material with bare hands (hands) using plastic deformation of the modeling material, that is, kneading, twisting, stretching, thickening, or thinning. It is said that a desired shape is created by overlapping, overlapping, or joining, and the temperature at this time is called a modeling temperature. In addition, shape retention means that when a model is displayed, displayed, or placed in a certain place, the shape of the model does not change due to temperature or the like and is maintained as it is.

本発明の造形材料は、下記の方法で測定した貯蔵弾性率G′(Gプライム)が、80,000Paのときの粘弾性樹脂の温度が40〜80℃の範囲であることが必要である。
貯蔵弾性率G′:
動的粘弾性測定装置Rheosol-G1000T(株式会社ユービーエム製)を用い、粘弾性樹脂を10℃/分の昇温速度で室温から100℃まで昇温して3分間保持し、次いで、放冷により室温まで降温したときの80〜40℃における貯蔵弾性率G′。
The modeling material of the present invention requires that the temperature of the viscoelastic resin is 40 to 80 ° C. when the storage elastic modulus G ′ (G prime) measured by the following method is 80,000 Pa.
Storage modulus G ′:
Using a dynamic viscoelasticity measuring device Rheosol-G1000T (manufactured by UBM Co., Ltd.), the temperature of the viscoelastic resin was raised from room temperature to 100 ° C. at a temperature rising rate of 10 ° C./min and held for 3 minutes, and then allowed to cool. Storage elastic modulus G ′ at 80 to 40 ° C. when the temperature is lowered to room temperature.

本発明の造形材料は、室温では固形であり、加熱することで軟化して造形可能な状態となり、再び室温まで冷却されると固化して造形した形状を維持することが特徴である。素手(手指)で造形するためには80℃以下で塑性を有していることが好ましく、保形性の観点から40℃以下で固化することが好ましい。
図2に、造形性および保形性と温度の関係を貯蔵弾性率G′で示す。素手(手指)で造形可能な状態とは、80〜40℃の温度範囲において貯蔵弾性率G′が80,000Paよりも低くなることが必要である。即ち、貯蔵弾性率G′が80,000Paよりも低いと、軟らかく伸びが大きい餅状になり、造形に適した状態となる。一方、貯蔵弾性率G′が80,000Paよりも高いと、硬くなり、伸びが小さすぎ、練りにくくなり、また、材料と材料との繋ぎ目がうまく繋がらなくなる等の造形性が悪くなる傾向になる。また、貯蔵弾性率G′が80,000Paよりも低くなる温度が80℃を越えると、塑性や伸びが不十分であり、また熱くなりすぎて素手(手指)で造形材料を造形するのが困難となる。
一方、造形物の保形性の観点からは、40℃の時に貯蔵弾性率G′が80,000Paよりも高いことが必要であり、より高い値になるほど硬くなり保形性が優れる。貯蔵弾性率G′が80,000Paとなる温度が40℃より低いと、室温で展示したり、陳列したりした際に変形しやすく、造形物の保形性が悪くなる傾向になる。
The modeling material of the present invention is solid at room temperature, is softened by heating, becomes a modelable state, and is solidified and maintains the modeled shape when cooled to room temperature again. In order to form with bare hands (finger), it is preferable to have plasticity at 80 ° C. or lower, and it is preferable to solidify at 40 ° C. or lower from the viewpoint of shape retention.
FIG. 2 shows the relationship between the formability, shape retention, and temperature in terms of storage elastic modulus G ′. The state in which shaping can be performed with bare hands (hands) requires that the storage elastic modulus G ′ be lower than 80,000 Pa in the temperature range of 80 to 40 ° C. That is, when the storage elastic modulus G ′ is lower than 80,000 Pa, it is soft and has a large bowl shape, which is suitable for modeling. On the other hand, when the storage elastic modulus G ′ is higher than 80,000 Pa, it becomes hard, the elongation is too small, it becomes difficult to knead, and the formability such as the joint between the materials is not well connected tends to deteriorate. Become. Further, when the temperature at which the storage elastic modulus G ′ is lower than 80,000 Pa exceeds 80 ° C., the plasticity and elongation are insufficient, and it becomes too hot to form a modeling material with bare hands (hands). It becomes.
On the other hand, from the viewpoint of shape retention of the shaped article, the storage elastic modulus G ′ needs to be higher than 80,000 Pa at 40 ° C., and the higher the value, the harder the shape retention. When the temperature at which the storage elastic modulus G ′ is 80,000 Pa is lower than 40 ° C., it tends to be deformed when exhibited or displayed at room temperature, and the shape retention property of the shaped article tends to deteriorate.

造形温度への昇温時間が短く、昇温してから短時間で造形に取りかかれ、また、熱過ぎず素手(手指)での造形が容易であり、また、造形した後は、室温との温度差から造形物が変形しない観点から、好ましくは貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が45〜70℃が好ましく、50〜65℃がより好ましい。   The temperature rise time to the modeling temperature is short, and after the temperature rises, the modeling can be started in a short time, and it is easy to model with bare hands (finger) without being too hot. From the viewpoint that the shaped article is not deformed due to the temperature difference, the temperature of the viscoelastic resin when the storage elastic modulus G ′ is 80,000 Pa is preferably 45 to 70 ° C., more preferably 50 to 65 ° C.

上記のような条件を満足する粘弾性樹脂としては、オレフィン系エラストマーが挙げられる。好ましくはポリエチレンであり、チーグラー・ナッタ触媒で得られるポリエチレン、メタロセン触媒で得られるポリエチレンのいずれでもよく、必要に応じ、併用することもできる。   Examples of the viscoelastic resin that satisfies the above conditions include olefin elastomers. Polyethylene is preferable, and any of polyethylene obtained with a Ziegler-Natta catalyst and polyethylene obtained with a metallocene catalyst may be used, and these may be used together as necessary.

チーグラー・ナッタ触媒で得られるポリエチレンの市販品としては、例えば、タフマーP0080K(MFR40、比重0.87)、同P0180(MFR8.1、比重0.87)、同P0280(MFR5.4、比重0.87)、同P0480(MFR1.8、比重0.87)、同P0880(MFR0.4、比重0.87)(以上、三井化学工業株式会社製)等が挙げられ、これらは単独で又は2種以上組み合わせて用いられる。   Examples of commercially available polyethylenes obtained with the Ziegler-Natta catalyst include Tafmer P0080K (MFR40, specific gravity 0.87), P0180 (MFR8.1, specific gravity 0.87), and P0280 (MFR5.4, specific gravity 0. 87), the same P0480 (MFR1.8, specific gravity 0.87), the same P0880 (MFR0.4, specific gravity 0.87) (above, made by Mitsui Chemicals, Inc.), etc. Used in combination.

メタロセン触媒で得られるポリエチレンの市販品としては、例えば、エンゲージ8137(MFR13、比重0.86、デュポン製)、同8180(MFR0.5、比重0.86、ダウケミカル製)、同8407(MFR30、比重0.87、ダウケミカル製)、同8100(MFR1、比重0.87、ダウケミカル製)等が挙げられ、これらは単独で又は2種以上組み合わせて用いられる。   Examples of commercially available polyethylene products obtained with metallocene catalysts include Engage 8137 (MFR13, specific gravity 0.86, manufactured by DuPont), 8180 (MFR0.5, specific gravity 0.86, manufactured by Dow Chemical), 8407 (MFR30, Specific gravity 0.87, manufactured by Dow Chemical), 8100 (MFR1, specific gravity 0.87, manufactured by Dow Chemical) and the like can be mentioned, and these are used alone or in combination of two or more.

上記ポリエチレンは上記したように単独でもよいが、MFRや密度の異なるものを2種以上組み合わせることにより、所望の造形性及び保形性を有する造形材料を得ることができる。   The polyethylene may be used alone as described above, but a molding material having desired modeling properties and shape retention can be obtained by combining two or more types having different MFR and density.

本発明の造形材料は、粘弾性樹脂の他に、更に、軟化剤、充填剤、滑剤、有機・無機顔料、染料等の着色材、香料、安定剤、酸化防止剤、紫外線吸収剤、防カビ剤などの他の添加物を含有することができる。   In addition to the viscoelastic resin, the modeling material of the present invention further includes a softener, a filler, a lubricant, a coloring material such as an organic / inorganic pigment, a dye, a fragrance, a stabilizer, an antioxidant, an ultraviolet absorber, and an antifungal agent. Other additives such as agents can be included.

これらの添加物の中で、特に軟化剤、充填剤又はこれらの両方を含有させることにより、造形材料の造形性及び保形性を調整することが容易となる。
軟化剤としては、特に制限されないが、鉱物油、動植物油あるいはこれらを由来とする可塑剤が好適である。鉱物油として具体的には、パラフィン系プロセスオイル(例えば、出光興産製PW32)、ナフテン系プロセスオイル(例えば、出光興産製NP24)、芳香族系プロセスオイル等が挙げられる。動植物油として具体的には、菜種油、菜種白絞油、ひまし油、綿実油、亜麻仁油、大豆油、胡麻油、とうもろこし油、紅花油、パーム油、ヤシ油、落花生油、木蝋、ロジン、パインタール、トール油等が挙げられる。動植物油を由来とする可塑剤としてはグリセリン脂肪酸エステルが挙げられ、具体的にはグリセリンジアセトモノラウレート、グリセリントリアセテート、グリセロールジアセテート等が挙げられる。これらは単独で又は必要に応じ、2種以上組み合わせて用いられる。環境適応型観点からは、バイオマス由来の動植物油あるいはこれに由来する軟化剤を用いるのが好ましい。
軟化剤の配合量は、粘弾性樹脂自体の硬さ(又は軟らかさ)により一概に規定できないが、通常、粘弾性樹脂100重量部に対して0〜100重量部程度添加することができ、好ましくは0〜40重量部程度である。軟化剤が100重量部を越えるとブリードする場合がある。
Among these additives, it is easy to adjust the formability and shape retention of the modeling material by including a softening agent, a filler, or both of them.
Although it does not restrict | limit especially as a softening agent, Mineral oil, animal and vegetable oil, or the plasticizer derived from these is suitable. Specific examples of the mineral oil include paraffinic process oil (for example, PW32 manufactured by Idemitsu Kosan), naphthenic process oil (for example, NP24 manufactured by Idemitsu Kosan), aromatic process oil, and the like. Specific animal and vegetable oils include rapeseed oil, rapeseed white oil, castor oil, cottonseed oil, linseed oil, soybean oil, sesame oil, corn oil, safflower oil, palm oil, palm oil, peanut oil, wax, rosin, pine tar, tall Oil etc. are mentioned. Examples of plasticizers derived from animal and vegetable oils include glycerin fatty acid esters, and specific examples include glycerin diacetate monolaurate, glycerin triacetate, and glycerol diacetate. These may be used alone or in combination of two or more as required. From the viewpoint of environmental adaptation, it is preferable to use biomass-derived animal or vegetable oils or softeners derived therefrom.
The blending amount of the softening agent cannot be generally defined by the hardness (or softness) of the viscoelastic resin itself, but can be usually added in an amount of about 0 to 100 parts by weight with respect to 100 parts by weight of the viscoelastic resin. Is about 0 to 40 parts by weight. If the softener exceeds 100 parts by weight, bleeding may occur.

充填剤としては、特に制限されないが、重質炭酸カルシウム、軽質炭酸カルシウム、シリカ、マイカ、ガラスバルーン、木粉、珪藻土、酸化マグネシウム、酸化チタン、タルク、セリサイト、石英粉末、モンモリロナイト、ホタテ、カキ、しじみなどの貝殻粉末、卵殻粉末、有機中空粒子、無機中空粒子、セルロースパウダー等が挙げられる。これらは単独で又は必要に応じ、2種以上組み合わせて用いられる。環境適応型の観点からは、廃棄物として大量に発生するバイオマス由来のホタテ、カキ等の貝類粉末あるいは卵殻粉末を用いるのが好ましい。
充填剤の配合量は、粘弾性樹脂自体の硬さ(又は軟らかさ)により一概に規定できないが、通常、粘弾性樹脂100重量部に対して0〜200重量部添加することができ、好ましくは0〜100重量部である。充填剤が200重量部を越えると造形材料が硬くなり、十分な塑性が発現せず、混練性や造形性が低下する場合がある。
The filler is not particularly limited, but heavy calcium carbonate, light calcium carbonate, silica, mica, glass balloon, wood powder, diatomaceous earth, magnesium oxide, titanium oxide, talc, sericite, quartz powder, montmorillonite, scallop, oyster And shellfish powder such as shijimi, eggshell powder, organic hollow particles, inorganic hollow particles, and cellulose powder. These may be used alone or in combination of two or more as required. From the viewpoint of environmental adaptability, it is preferable to use biomass-derived scallops, oysters and other shellfish powders or eggshell powders that are generated in large quantities as waste.
The blending amount of the filler cannot be generally defined by the hardness (or softness) of the viscoelastic resin itself, but usually 0 to 200 parts by weight can be added to 100 parts by weight of the viscoelastic resin, preferably 0 to 100 parts by weight. When the filler exceeds 200 parts by weight, the modeling material becomes hard, sufficient plasticity is not exhibited, and kneadability and modeling property may be deteriorated.

本発明の造形材料は、粘弾性樹脂及び、必要に応じ、上記添加剤を1種又は2種以上添加して混練機に入れて混練される。このような混練機としては特に制限されないが、二軸押出機、バンバリーミキサー、加圧ニーダー、ミキシングロール等が挙げられ、混練温度は80〜120℃程度が好ましい。混練後、室温まで放冷又は冷却され本発明の造形材料とされる。   The modeling material of the present invention is kneaded by adding a viscoelastic resin and, if necessary, one or more of the above additives to a kneader. Although it does not restrict | limit especially as such a kneading machine, A twin screw extruder, a Banbury mixer, a pressure kneader, a mixing roll etc. are mentioned, About 80-120 degreeC kneading | mixing temperature is preferable. After kneading, the material is allowed to cool to room temperature or cooled to obtain the modeling material of the present invention.

得られた造形材料は、湯、ドライヤー、電器釜等で約40℃以上、造形可能な時間を長くし十分な造形時間を確保するためには、好ましくは80℃以上に加熱され、湯中で加熱した場合は水分を拭き取って、通常の粘土と同様にして、素手(手指)で、又は必要に応じ、ヘラ、型等を併用して所望の形に造形した後、室温まで冷却される。冷却は室内に放置(放冷)してもよく、水中、氷を含む水中や冷蔵庫等の中で冷却してもよい。   The obtained modeling material is heated to about 40 ° C. or higher with hot water, a dryer, an electric kettle, etc., and preferably to 80 ° C. or higher in order to lengthen the modeling time and ensure sufficient modeling time. When heated, the moisture is wiped off, and in the same manner as ordinary clay, after shaping into a desired shape with bare hands (hands) or, if necessary, using a spatula, a mold or the like, it is cooled to room temperature. The cooling may be left indoors (cooling), or may be cooled in water, in water containing ice, or in a refrigerator.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。
以下の実施例、比較例で用いた材料を表1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to this Example.
The materials used in the following examples and comparative examples are shown in Table 1.

Figure 2011231168
Figure 2011231168

実施例1〜9、比較例1
表2に示す材料を加圧ニーダーにより120℃で混練した後、室温(25℃)まで放冷し造形材料を得た。
得られた造形材料(粘弾性樹脂または粘弾性樹脂組成物)を動的粘弾性測定装置Rheosol-G1000T(株式会社ユービーエム製)を用い、10℃/分の昇温速度で室温から100℃まで昇温して3分間保持し、次いで、放冷して室温まで降温し、この降温過程における80〜40℃における貯蔵弾性率G′をプロットした。結果を図1に示す。また、貯蔵弾性率G′と温度と造形性との関係を模式的に図2に示す。
得られた造形材料を80℃以上のお湯の中で加温して、約80℃の造形材料を手指とヘラとでバラの花を造形した後、室内に放置して室温まで冷却した。
Examples 1-9, Comparative Example 1
The materials shown in Table 2 were kneaded at 120 ° C. with a pressure kneader, and then allowed to cool to room temperature (25 ° C.) to obtain a modeling material.
The obtained modeling material (viscoelastic resin or viscoelastic resin composition) is used from a room temperature to 100 ° C. at a temperature increase rate of 10 ° C./min using a dynamic viscoelasticity measuring device Rheosol-G1000T (manufactured by UBM). The temperature was raised and held for 3 minutes, and then allowed to cool to lower the temperature to room temperature, and the storage elastic modulus G ′ at 80 to 40 ° C. during this temperature lowering process was plotted. The results are shown in FIG. FIG. 2 schematically shows the relationship among the storage elastic modulus G ′, the temperature, and the formability.
The obtained modeling material was heated in hot water of 80 ° C. or higher, and the modeling material at about 80 ° C. was modeled with a finger and a spatula, and then allowed to stand indoors and cooled to room temperature.

上記の如く、得られた造形材料を用いて造形したときの造形性及び保形性を下記の基準により評価した。結果を表2に示す。
A:造形温度への昇温時間が短く、造形材料が熱過ぎないので素手(手指)で造形し易く、また、造形温度と室温との差が十分にあるので造形物は変形しない。
B:造形温度への昇温時間が比較的短く、造形材料が熱過ぎないので素手(手指)で造形し易く、また、室温との差があるので造形物は変形しにくい。
C1:造形温度への昇温時間が短く、造形材料が熱過ぎないので素手(手指)で造形し易いが、比較的室温との差が小さいので、夏季等の高温時には造形物が変形する場合がある。
C2:造形温度への昇温時間が長く、造形材料がやや熱いが素手(手指)での造形には特に問題はなく、また、造形温度と室温との差が非常に大きいので造形物は変形しない。
D:造形温度への昇温時間は非常に短く、造形材料が素手(手指)で造形し易いが、造形温度と室温との差が小さいので、夏季等に造形物が変形する。
As described above, the formability and shape retention when the obtained modeling material was used for modeling were evaluated according to the following criteria. The results are shown in Table 2.
A: The temperature rise time to the modeling temperature is short, the modeling material is not too hot, and it is easy to model with bare hands (hands), and there is a sufficient difference between the modeling temperature and room temperature, so the model is not deformed.
B: The temperature rising time to the modeling temperature is relatively short, and the modeling material is not too hot, so it is easy to model with bare hands (finger), and the modeled object is difficult to deform because there is a difference from room temperature.
C1: When the temperature rise time to the modeling temperature is short and the modeling material is not too hot, it is easy to model with bare hands (hands), but the model is deformed at high temperatures such as in summer because the difference from room temperature is relatively small There is.
C2: The temperature rise time to the modeling temperature is long, the modeling material is slightly hot, but there is no particular problem with modeling with bare hands (hands), and the model is deformed because the difference between the modeling temperature and room temperature is very large do not do.
D: The temperature rising time to the modeling temperature is very short and the modeling material is easy to model with bare hands (hands), but the modeled object is deformed in summer or the like because the difference between the modeling temperature and room temperature is small.

Figure 2011231168
Figure 2011231168

叙上のとおり、本発明の造形材料は、造形性及び保形性に優れるとともに、繰り返し造形できるので廃棄によるロスがなく極めて経済的である。   As described above, the modeling material of the present invention is excellent in the modeling property and the shape retaining property, and can be repeatedly modeled, so there is no loss due to disposal and is extremely economical.

Claims (5)

粘弾性樹脂からなり、下記の方法で測定した貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が80〜40℃の範囲にあることを特徴とする造形材料。
貯蔵弾性率G′:
動的粘弾性測定装置Rheosol-G1000T(株式会社ユービーエム製)を用い、粘弾性樹脂を10℃/分の昇温速度で室温から100℃まで昇温して3分間保持し、次いで、放冷により室温まで降温したときの80〜40℃における貯蔵弾性率G′。
A modeling material comprising a viscoelastic resin, wherein the temperature of the viscoelastic resin is 80 to 40 ° C. when the storage elastic modulus G ′ measured by the following method is 80,000 Pa.
Storage modulus G ′:
Using a dynamic viscoelasticity measuring device Rheosol-G1000T (manufactured by UBM Co., Ltd.), the temperature of the viscoelastic resin was raised from room temperature to 100 ° C. at a temperature rising rate of 10 ° C./min and held for 3 minutes, and then allowed to cool. Storage elastic modulus G ′ at 80 to 40 ° C. when the temperature is lowered to room temperature.
貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が45〜70℃の範囲であることを特徴とする請求項1記載の造形材料。   The modeling material according to claim 1, wherein the temperature of the viscoelastic resin when the storage elastic modulus G 'is 80,000 Pa is in the range of 45 to 70 ° C. 貯蔵弾性率G′が80,000Paのときの粘弾性樹脂の温度が50〜65℃の範囲であることを特徴とする請求項1記載の造形材料。   The modeling material according to claim 1, wherein the temperature of the viscoelastic resin when the storage elastic modulus G 'is 80,000 Pa is in the range of 50 to 65 ° C. 粘弾性樹脂が軟化剤及び/又は充填剤を含有してなることを特徴とする請求項1〜3のいずれか1項に記載の造形材料。   The modeling material according to any one of claims 1 to 3, wherein the viscoelastic resin contains a softener and / or a filler. 粘弾性樹脂がポリエチレンからなることを特徴とする請求項1〜4のいずれか1項に記載の造形材料。   The modeling material according to any one of claims 1 to 4, wherein the viscoelastic resin is made of polyethylene.
JP2010100775A 2010-04-26 2010-04-26 Shaping material Pending JP2011231168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100775A JP2011231168A (en) 2010-04-26 2010-04-26 Shaping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100775A JP2011231168A (en) 2010-04-26 2010-04-26 Shaping material

Publications (1)

Publication Number Publication Date
JP2011231168A true JP2011231168A (en) 2011-11-17

Family

ID=45320822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100775A Pending JP2011231168A (en) 2010-04-26 2010-04-26 Shaping material

Country Status (1)

Country Link
JP (1) JP2011231168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048298A (en) * 2015-09-01 2017-03-09 地方独立行政法人東京都立産業技術研究センター Molding material
JP7359018B2 (en) 2019-02-28 2023-10-11 日本ポリエチレン株式会社 resin clay

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158800A (en) * 1984-08-30 1986-03-26 川嶋 清治 Clay set for handicraft
JPH08113693A (en) * 1994-10-17 1996-05-07 Mitsubishi Chem Corp Thermoplastic resin composition
JPH0971617A (en) * 1994-12-20 1997-03-18 Mitsui Petrochem Ind Ltd Production of ethylene/alpha-olefin/non-conjugated polyene random copolymer, ethylene/alpha-olefin/non-conjugated polyene random copolymer and use of the same
JPH09286050A (en) * 1995-11-22 1997-11-04 Union Carbide Chem & Plast Technol Corp Granular elastomer and production of elastomer compound from polymer and produced article
JP3011410B2 (en) * 1988-05-20 2000-02-21 シードゴム工業株式会社 Vinyl chloride resin clay
JP2000186114A (en) * 1998-10-16 2000-07-04 Du Pont Mitsui Polychem Co Ltd Sealing compound for solar cell and solar cell module
JP2002145942A (en) * 2000-11-07 2002-05-22 Idemitsu Petrochem Co Ltd Polyolefin-based floor covering material
JP2002265790A (en) * 2001-03-13 2002-09-18 Ngk Insulators Ltd Composition for extrusion molding of inorganic material powder
JP2005213389A (en) * 2004-01-30 2005-08-11 Tokyo Printing Ink Mfg Co Ltd Polyolefin-based resin composition and its molded product
JP2007262613A (en) * 2006-03-28 2007-10-11 Mic:Kk Cosmetic mask and method for producing the same
JP2009040042A (en) * 2007-07-18 2009-02-26 Sumitomo Chemical Co Ltd Composite molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158800A (en) * 1984-08-30 1986-03-26 川嶋 清治 Clay set for handicraft
JP3011410B2 (en) * 1988-05-20 2000-02-21 シードゴム工業株式会社 Vinyl chloride resin clay
JPH08113693A (en) * 1994-10-17 1996-05-07 Mitsubishi Chem Corp Thermoplastic resin composition
JPH0971617A (en) * 1994-12-20 1997-03-18 Mitsui Petrochem Ind Ltd Production of ethylene/alpha-olefin/non-conjugated polyene random copolymer, ethylene/alpha-olefin/non-conjugated polyene random copolymer and use of the same
JPH09286050A (en) * 1995-11-22 1997-11-04 Union Carbide Chem & Plast Technol Corp Granular elastomer and production of elastomer compound from polymer and produced article
JP2000186114A (en) * 1998-10-16 2000-07-04 Du Pont Mitsui Polychem Co Ltd Sealing compound for solar cell and solar cell module
JP2002145942A (en) * 2000-11-07 2002-05-22 Idemitsu Petrochem Co Ltd Polyolefin-based floor covering material
JP2002265790A (en) * 2001-03-13 2002-09-18 Ngk Insulators Ltd Composition for extrusion molding of inorganic material powder
JP2005213389A (en) * 2004-01-30 2005-08-11 Tokyo Printing Ink Mfg Co Ltd Polyolefin-based resin composition and its molded product
JP2007262613A (en) * 2006-03-28 2007-10-11 Mic:Kk Cosmetic mask and method for producing the same
JP2009040042A (en) * 2007-07-18 2009-02-26 Sumitomo Chemical Co Ltd Composite molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048298A (en) * 2015-09-01 2017-03-09 地方独立行政法人東京都立産業技術研究センター Molding material
JP7359018B2 (en) 2019-02-28 2023-10-11 日本ポリエチレン株式会社 resin clay

Similar Documents

Publication Publication Date Title
CN101061167B (en) Shapable biodegradable polymer
JP2010532298A5 (en)
CA2996524C (en) Moldable compositions and methods of using the same
US5506290A (en) Plastic moldable composition
CN103687906A (en) Polypropylene resin composition, polyolefin resin composition containing polypropylene resin composition, and molded article of polyolefin resin composition
US20140209835A1 (en) Play Composition Including Crosslinkable Binder
JP2011231168A (en) Shaping material
TWI576384B (en) High plant-sources content eva polymer foam material, producing method and application thereof
KR101462031B1 (en) Composition of artificial clay for handicraft
JP2013527297A5 (en)
US20070116766A1 (en) Gel compositions as muscle tissue simulant and related articles and methods
KR100757790B1 (en) Modeling material having no sulfur and the manufacturing method
JP4053988B2 (en) Method for producing clay composition
CN106398086B (en) A kind of degradable thermoplastic sole and preparation method thereof containing polycarbonate alloy
CN106188980A (en) A kind of clear flexible PVC film and preparation method thereof
KR20130093413A (en) Method for manufacturing the handicraft clay and the handicraft clay made thereby
JP2006008925A (en) Transparent pressure-sensitive adhesive composition
JP6267963B2 (en) Latex sponge and method for producing the same
CN110591192A (en) Environment-friendly and flexible skin material and preparation method thereof
JP5474913B2 (en) Transparent adhesive
CN106800741B (en) Deformable material and preparation method thereof
KR20030082778A (en) Process for producing handicraft clay whose main material is wax
CN113785011A (en) Thermoplastic elastomer gel
JP2010250176A (en) Composition of lightweight clay and method for manufacturing the same
TW201725246A (en) Sports mat body which is made by the steps of: mixing 15 to 60% of plant fiber composite material and 40 to 85% content of foaming material based on the overall weight

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422