JP2011230103A - Solid-shaped adsorbent and method of refining hydrocarbon - Google Patents

Solid-shaped adsorbent and method of refining hydrocarbon Download PDF

Info

Publication number
JP2011230103A
JP2011230103A JP2010105635A JP2010105635A JP2011230103A JP 2011230103 A JP2011230103 A JP 2011230103A JP 2010105635 A JP2010105635 A JP 2010105635A JP 2010105635 A JP2010105635 A JP 2010105635A JP 2011230103 A JP2011230103 A JP 2011230103A
Authority
JP
Japan
Prior art keywords
adsorbent
hydrocarbon
solid
solid molded
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105635A
Other languages
Japanese (ja)
Other versions
JP5523924B2 (en
Inventor
Nobuhiro Kimura
信啓 木村
Kazuo Kawai
和男 川井
Hiroyuki Hoshino
廣行 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010105635A priority Critical patent/JP5523924B2/en
Publication of JP2011230103A publication Critical patent/JP2011230103A/en
Application granted granted Critical
Publication of JP5523924B2 publication Critical patent/JP5523924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solid-shaped adsorbent having superior adsorptivity and capable of being reused many times by proper regeneration treatment, and to provide a method of refining hydrocarbon using the same.SOLUTION: In the solid-shaped adsorbent, the content of X-type zeolite including sodium cation is 50 mass% or more, the mean particle diameter is 2.5 mm or less, and the wear rate is 2.5% or less.

Description

本発明は、固体成型吸着剤及び炭化水素の精製方法に関する。   The present invention relates to a solid molding adsorbent and a hydrocarbon purification method.

軽質の炭化水素は、石油精製における流動接触分解装置や接触改質装置、石油化学におけるスチームクラッカーなど分解装置等から製造されるものが多く、各装置から製造された軽質の炭化水素は、水や含酸素化合物、含硫黄化物等の様々な不純物が含まれている。これらの不純物が例えば、オレフィン重合反応に用いられるメタロセン触媒やオレフィンの不均化反応に用いられるメタセシス触媒に極めて感受性を示して反応すること(触媒毒)が知られている(非特許文献1)。この結果、触媒の活性は低減され、かつ使用される触媒の寿命が顕著に短縮される。   Light hydrocarbons are often produced from cracking equipment such as fluid catalytic cracking equipment and catalytic reforming equipment in petroleum refining, steam crackers in petrochemicals, etc. Light hydrocarbons produced from each equipment contain water and Various impurities such as oxygen-containing compounds and sulfur-containing products are contained. It is known that these impurities react with high sensitivity to a metallocene catalyst used in an olefin polymerization reaction or a metathesis catalyst used in an olefin disproportionation reaction (catalyst poison) (Non-Patent Document 1). . As a result, the activity of the catalyst is reduced and the life of the catalyst used is significantly shortened.

これらの不純物を除去するために、種々の技術が使用可能である。含硫黄化合物に関しては、例えば、ジエタノールアミン、ジプロパノールアミン等のアミン系化合物、カセイソーダ水溶液等と接触洗浄後に水洗する方法で精製することができる。また、含酸素化合物については、水洗浄によりそれらを低減することが可能である。   Various techniques can be used to remove these impurities. The sulfur-containing compound can be purified by a method of washing with water after contact washing with an amine compound such as diethanolamine or dipropanolamine, an aqueous caustic soda solution, or the like. In addition, oxygen-containing compounds can be reduced by washing with water.

しかしながら、洗浄による精製では液化石油ガス中に洗浄剤が微量に残留する。例えば、アルカリ金属塩、特に、水酸化ナトリウム、塩化ナトリウム等のナトリウム塩等が残留することもある。また、洗浄による精製では必ず水が残留するため、水に対しても感受性の高いメタロセン触媒やメタセシス触媒を使用する際は、別途水を除去する等の工程が必要となる。   However, purification by washing leaves a trace amount of cleaning agent in the liquefied petroleum gas. For example, alkali metal salts, particularly sodium salts such as sodium hydroxide and sodium chloride may remain. In addition, since water always remains in the purification by washing, when using a metallocene catalyst or a metathesis catalyst that is highly sensitive to water, a process of removing water separately is required.

洗浄後に微量の洗浄剤が残留することを回避するためには、洗浄による不純物の除去を行わずに吸着剤を用いて物理吸着によって除去することが望ましい。例えば、公知のオリゴマー化方法においても、使用された触媒が、出発材料中に存在する不純物に対して敏感であるといった欠点を有する。この不純物を、吸着剤を使用することにより除去するための方法は、例えば、特許文献1及び特許文献2に記載されている。これらは、遷移金属触媒を使用する場合には、大抵、ニッケルをベース上で担持するものである。   In order to avoid a trace amount of cleaning agent remaining after cleaning, it is desirable to remove by physical adsorption using an adsorbent without removing impurities by cleaning. For example, the known oligomerization process also has the disadvantage that the catalyst used is sensitive to impurities present in the starting material. Methods for removing this impurity by using an adsorbent are described in, for example, Patent Document 1 and Patent Document 2. These often carry nickel on the base when transition metal catalysts are used.

また、吸着剤としては、例えば、ゼオライト構造を有するものが挙げられる。ゼオライト構造を吸着剤として用いる吸着分離は気体混合物分解の先行技術で公知のものである。また、液状の炭化水素中の不純物の除去に関するものとしては、特許文献3に例示されている。   Examples of the adsorbent include those having a zeolite structure. Adsorption separation using a zeolite structure as adsorbent is well known in the prior art of gas mixture decomposition. Patent Document 3 exemplifies the removal of impurities in liquid hydrocarbons.

これらのゼオライトの調製法は、種々知られており、例えば、特許文献4及び特許文献5には、X型ゼオライトの製法が開示されている。   Various methods for preparing these zeolites are known. For example, Patent Document 4 and Patent Document 5 disclose methods for producing X-type zeolite.

また、工業的に慣用な吸着剤の再生としては、200〜250℃の温度での脱着(「熱スイング吸着」ともいう)、減圧による脱着(「圧力スイング吸着」ともいう)による方法が開示されている(非特許文献2)。また、より激しい条件下での再生として、特許文献6には、吸着剤を酸化的雰囲気内で800℃までの温度で再生させる、モノオレフィンをオリゴマー化する方法が記載されている。また、特許文献7には、吸着床を200〜600℃で、酸素含有雰囲気下で再生させるアルコールの製造方法が記載されている。   In addition, as industrially regenerated adsorbents, methods of desorption at a temperature of 200 to 250 ° C. (also referred to as “thermal swing adsorption”) and desorption under reduced pressure (also referred to as “pressure swing adsorption”) are disclosed. (Non-Patent Document 2). Further, as regeneration under more severe conditions, Patent Document 6 describes a method of oligomerizing a monoolefin in which an adsorbent is regenerated at a temperature up to 800 ° C. in an oxidative atmosphere. Patent Document 7 describes a method for producing alcohol in which an adsorption bed is regenerated at 200 to 600 ° C. in an oxygen-containing atmosphere.

独国特許第19845857号明細書German Patent No. 1845857 独国特許第3914817号明細書German Patent No. 3914817 特開2002−253959号公報JP 2002-253959 A 米国特許第2883244号明細書U.S. Pat. No. 2,883,244 米国特許第3862900号明細書US Pat. No. 3,862,900 独国特許第19845857号明細書German Patent No. 1845857 欧州特許第1280749号明細書EP 1 280 749

「Industrielle Organische Chemie」、第4版、VCH、Weinheim 1994;Weissermehl,K.、Arpe,H.−J.、Chapt.3.4「Olefin−Metathese」“Industrielle Organische Chemie”, 4th edition, VCH, Weinheim 1994; Weissermehl, K. et al. Arpe, H .; -J. , Chapter. 3.4 “Olefin-Metatheses” 「Sylobead」、Fa.Grace GmbH&Co.KG,In der Hollerhecke 1,67545 Worms/Germany“Sylobead”, Fa. Grace GmbH & Co. KG, Inder Hollerheke 1, 67545 Worms / Germany

本発明は、吸着能力に優れ、且つ適切な再生処理によって多数回にわたって再使用可能な、固体成型吸着剤を提供することを目的とする。また、本発明は、上記固体成型吸着剤を用いた炭化水素の精製方法を提供することを目的とする。   An object of the present invention is to provide a solid molded adsorbent that is excellent in adsorption capability and can be reused many times by appropriate regeneration treatment. Another object of the present invention is to provide a hydrocarbon purification method using the solid molded adsorbent.

すなわち本発明は、ナトリウムカチオンを有するX型ゼオライトの含有量が50質量%以上であり、平均粒子直径が2.5mm以下であり、摩耗率が2.5%以下である固体成型吸着剤を提供する。   That is, the present invention provides a solid molded adsorbent in which the content of the X-type zeolite having sodium cations is 50% by mass or more, the average particle diameter is 2.5 mm or less, and the wear rate is 2.5% or less. To do.

本発明の固体成型吸着剤は、150〜350℃の加熱により活性化することにより、優れた吸着性能を示す。また、本発明の固体成型吸着剤は、再使用に際して150〜300℃の加熱により再生処理により、多数回の吸着と再生処理とを繰り返した場合でも良好な吸着性能が維持される。   The solid molded adsorbent of the present invention exhibits excellent adsorption performance when activated by heating at 150 to 350 ° C. Further, the solid molded adsorbent of the present invention maintains good adsorption performance even when repeated adsorption and regeneration treatments are repeated by heating at 150 to 300 ° C. during reuse.

本発明の固体成型吸着剤は、上記X型ゼオライトの含有量が70質量%以上であることが好ましい。このような固体成型吸着剤は吸着性能に一層優れる。   In the solid molded adsorbent of the present invention, the content of the X-type zeolite is preferably 70% by mass or more. Such a solid molded adsorbent is further excellent in adsorption performance.

また本発明は、上記固体成型吸着剤を、150〜350℃で加熱する活性化工程と、炭素数2〜5の炭化水素と含酸素化合物及び含硫黄化合物からなる群より選ばれる少なくとも一種の極性化合物との混合液を、上記活性化工程を経た上記固体成型吸着剤に、100℃以下で接触させて、上記極性化合物の少なくとも一部を上記固体成型吸着剤に吸着させる接触工程と、を備える、炭化水素の精製方法を提供する。   In addition, the present invention provides at least one polarity selected from the group consisting of an activation step of heating the solid molded adsorbent at 150 to 350 ° C., and a hydrocarbon having 2 to 5 carbon atoms, an oxygen-containing compound, and a sulfur-containing compound. A contact step in which a liquid mixture with a compound is brought into contact with the solid molded adsorbent that has undergone the activation step at 100 ° C. or less to adsorb at least a part of the polar compound to the solid molded adsorbent. A method for purifying hydrocarbons is provided.

本発明の炭化水素の精製方法によれば、上記活性化工程を経た固体成型吸着剤を用いているため、極性化合物が十分に除去された炭化水素を得ることができる。   According to the hydrocarbon purification method of the present invention, since the solid molded adsorbent that has been subjected to the activation step is used, a hydrocarbon from which polar compounds have been sufficiently removed can be obtained.

本発明の炭化水素の精製方法において、上記活性化工程は、上記固体成型吸着剤を、200〜300℃で加熱することが好ましい。このような活性化工程を経た固体成型吸着剤は、吸着性能に一層優れるようになる。   In the hydrocarbon purification method of the present invention, the activation step is preferably performed by heating the solid molded adsorbent at 200 to 300 ° C. The solid molded adsorbent that has undergone such an activation step is further improved in adsorption performance.

本発明の炭化水素の精製方法は、上記極性化合物が吸着した上記固体成型吸着剤を、150〜300℃で加熱して、上記固体成型吸着剤から上記極性化合物を除去する除去工程を、さらに備えることが好ましい。このような除去工程によれば、上記固体成型吸着剤の吸着性能を著しく劣化させることなく、当該固体成型吸着剤を再生することができる。さらに、上記固体成型吸着剤は、複数回にわたって上記接触工程と上記除去工程とを繰り返し行った場合であっても良好な吸着性能を長期間維持することができる。そのため、このような除去工程を備える精製方法は、工業的に使用可能で経済的に優れる。   The hydrocarbon purification method of the present invention further includes a removal step of removing the polar compound from the solid molded adsorbent by heating the solid molded adsorbent adsorbed with the polar compound at 150 to 300 ° C. It is preferable. According to such a removal step, the solid molded adsorbent can be regenerated without significantly deteriorating the adsorption performance of the solid molded adsorbent. Furthermore, the solid molded adsorbent can maintain good adsorption performance for a long time even when the contact step and the removal step are repeated a plurality of times. Therefore, the purification method provided with such a removal step is industrially usable and economically excellent.

上記除去工程は、上記極性化合物が吸着した上記固体成型吸着剤を、150〜240℃で加熱することが好ましい。   In the removing step, the solid molded adsorbent adsorbed by the polar compound is preferably heated at 150 to 240 ° C.

上記炭化水素は、不飽和炭化水素を含有していてもよく、イソオレフィンを含有していてもよい。本発明の炭化水素の精製方法によれば、不飽和炭化水素の重合や分解等をほとんど生じさせることなく上記極性化合物を除去することができる。   The hydrocarbon may contain an unsaturated hydrocarbon or may contain an isoolefin. According to the hydrocarbon purification method of the present invention, the polar compound can be removed with little polymerization or decomposition of the unsaturated hydrocarbon.

上記接触工程は、上記固体成型吸着剤が充填された吸着塔に、上記混合液を、液線速度1m/h以上で流通させることにより行われることが好ましい。このような接触工程においては、上記固体成型吸着剤により上記極性化合物が一層高効率で吸着される。   The contacting step is preferably performed by circulating the mixed solution at a liquid linear velocity of 1 m / h or more through an adsorption tower filled with the solid molded adsorbent. In such a contact step, the polar compound is adsorbed with higher efficiency by the solid molded adsorbent.

本発明によれば、吸着能力に優れ、且つ適切な再生処理によって多数回にわたって再使用可能な固体成型吸着剤、及びそれを用いた炭化水素の精製方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the solid shaping | molding adsorption agent which is excellent in adsorption | suction capability and can be reused many times by appropriate reproduction | regeneration processing, and the purification method of hydrocarbons using the same are provided.

本発明に係る固体成型吸着剤及び炭化水素の精製方法の好適な実施形態について、以下に説明する。   Preferred embodiments of the solid molded adsorbent and hydrocarbon purification method according to the present invention will be described below.

(固体成型吸着剤)
本実施形態に係る固体成型吸着剤は、ナトリウムカチオンを有するX型ゼオライトの含有量が50質量%以上であり、平均粒子直径が2.5mm以下であり、摩耗率が2.5%以下である。
(Solid molded adsorbent)
In the solid molded adsorbent according to the present embodiment, the content of the X-type zeolite having sodium cations is 50% by mass or more, the average particle diameter is 2.5 mm or less, and the wear rate is 2.5% or less. .

このような固体成型吸着剤は、後述する活性化工程により活性化することで、優れた吸着性能を示す。また、後述する除去工程により再生することで、吸着性能を著しく劣化させることなく再使用することができる。そして、後述する接触工程と除去工程とを繰り返し行った場合であっても、良好な吸着性能を長期間維持することができる。   Such a solid molded adsorbent exhibits excellent adsorption performance when activated by an activation process described later. Moreover, it can re-use without remarkably deteriorating adsorption | suction performance by reproducing | regenerating by the removal process mentioned later. And even if it is a case where the contact process mentioned later and a removal process are performed repeatedly, favorable adsorption | suction performance can be maintained for a long period of time.

固体成型吸着剤は、上記X型ゼオライトの含有量が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。上記X型ゼオライトは後述する接触工程における極性化合物との吸着性が優れるため、このような固体成型吸着剤は一層良好な吸着性能を示すことができる。   In the solid molded adsorbent, the content of the X-type zeolite is preferably 70% by mass or more, and more preferably 90% by mass or more. Since the X-type zeolite has excellent adsorptivity with a polar compound in the contact step described later, such a solid molded adsorbent can exhibit even better adsorption performance.

上記X型ゼオライトは、例えば、カチオン種としてプロトンを有するX型ゼオライトに対して、プロトンとナトリウムカチオンとのイオン交換を行うことにより、得ることができる。ナトリウムカチオンによるイオン交換率が低い場合は、オレフィンの重合反応が進行しやすくなる場合があるため、好ましくない。   The X-type zeolite can be obtained, for example, by performing ion exchange between a proton and a sodium cation on an X-type zeolite having a proton as a cation species. When the ion exchange rate by the sodium cation is low, the olefin polymerization reaction may easily proceed, which is not preferable.

固体成型吸着剤の平均粒子直径は、2.5mm以下であり、1.0〜2.5mmであることが好ましい。平均粒子直径が2.5mmを超える場合には、境膜の厚みが増すため液拡散が遅くなり、十分な吸着性能を発揮出来ない場合がある。また、平均粒子直径が1.0未満の場合には、例えば固体成型吸着剤を吸着塔に充填して用いる場合に、吸着塔の差圧が大きくなり実用的に使用し難くなる場合がある。   The average particle diameter of the solid molded adsorbent is 2.5 mm or less, preferably 1.0 to 2.5 mm. When the average particle diameter exceeds 2.5 mm, the thickness of the boundary film increases, so that the liquid diffusion becomes slow, and sufficient adsorption performance may not be exhibited. In addition, when the average particle diameter is less than 1.0, for example, when a solid molded adsorbent is packed in an adsorption tower, the differential pressure of the adsorption tower becomes large and it may be difficult to use practically.

なお、ここで平均粒子直径とは、50個の粒子について直径を測定し、その測定値を平均することにより得られる値である。   Here, the average particle diameter is a value obtained by measuring the diameter of 50 particles and averaging the measured values.

固体成型吸着剤の摩耗率は、2.5%以下であり、1.0%以下であることが好ましい。摩耗率が2.5%を超える場合は、例えば固体成型吸着剤を吸着塔に充填して用いる場合に、吸着塔に固体成型吸着剤の粉が堆積して、吸着塔の差圧が大きくなり、吸着塔の運転が困難になる場合がある。   The wear rate of the solid molded adsorbent is 2.5% or less, and preferably 1.0% or less. When the wear rate exceeds 2.5%, for example, when a solid molded adsorbent is packed in an adsorption tower and used, the powder of the solid molded adsorbent accumulates on the adsorption tower and the differential pressure in the adsorption tower increases. The operation of the adsorption tower may be difficult.

なお、ここで摩耗率とは、湿式アトリッション法により得られる値であり、例えば特公昭54−44111号公報に開示されている方法に従って測定することができる。   Here, the wear rate is a value obtained by a wet attrition method, and can be measured, for example, according to a method disclosed in Japanese Patent Publication No. 54-44111.

固体成型吸着剤は、例えば、上記X型ゼオライトを含有する組成物を、打錠成形、押出成形、スプレードライ、転動造粒、油中造粒等の方法により成型することによって製造することができる。粒子形状は、粒状、板状、ペレット状等とすることができる。   The solid molded adsorbent can be produced, for example, by molding a composition containing the above X-type zeolite by a method such as tableting, extrusion, spray drying, rolling granulation, or granulation in oil. it can. The particle shape can be granular, plate-shaped, pellet-shaped, or the like.

(炭化水素の精製方法)
本実施形態に係る炭化水素の精製方法は、以下に示す活性化工程と、接触工程とを備える。また、以下に示す除去工程を備えていてもよい。
(Hydrocarbon purification method)
The hydrocarbon purification method according to the present embodiment includes an activation step and a contact step described below. Moreover, you may provide the removal process shown below.

(活性化工程)
活性化工程においては、本実施形態に係る固体成型吸着剤を、150〜350℃で加熱する。このような活性化工程によれば、固体成型吸着剤が優れた吸着性能を有するものとなる。
(Activation process)
In the activation step, the solid molded adsorbent according to the present embodiment is heated at 150 to 350 ° C. According to such an activation step, the solid molded adsorbent has excellent adsorption performance.

活性化工程においては、固体成型吸着剤に付着した水分が除去されて固体成型吸着剤が活性化する。このとき、加熱温度が150℃未満であると、水分が十分に除去されない場合がある。また、加熱温度が350℃より高いと、特に多量の水が付着している場合に、X型ゼオライトの脱アルミニウムが進行してしまい、それにより十分な吸着性能が得られなくなると考えられる。   In the activation step, moisture adhering to the solid molded adsorbent is removed and the solid molded adsorbent is activated. At this time, if the heating temperature is less than 150 ° C., moisture may not be sufficiently removed. Further, when the heating temperature is higher than 350 ° C., it is considered that dealumination of the X-type zeolite proceeds particularly when a large amount of water is adhered, thereby making it impossible to obtain sufficient adsorption performance.

活性化工程における加熱温度は、好ましくは200〜300℃である。加熱温度が高くなると、それに伴う熱源を確保するための加熱炉が必要となり、経済的に好ましくない。一方、加熱温度が低いと、固体成型吸着剤に付着した水分の除去に時間がかかる場合がある。そのため、上記温度範囲で加熱を行うことにより、経済性良く短時間で固体成型吸着剤を活性化することができる。   The heating temperature in the activation step is preferably 200 to 300 ° C. When heating temperature becomes high, the heating furnace for ensuring the heat source accompanying it will be needed, and it is economically unpreferable. On the other hand, when the heating temperature is low, it may take time to remove the water adhering to the solid molded adsorbent. Therefore, by heating within the above temperature range, the solid molded adsorbent can be activated in a short time with good economic efficiency.

活性化工程は、上記温度範囲で、固体成型吸着剤に付着した水分が除去されなくなるまで行うことが好ましい。なお、固体成型吸着剤に付着した水分が除去されているか否かは、例えば、活性化に際して使用した活性化ガス中の露点を測定することにより、容易に調べることができる。   The activation step is preferably performed in the above temperature range until the moisture attached to the solid molded adsorbent is not removed. In addition, it can be easily investigated whether the water | moisture content adhering to the solid shaping | molding adsorption agent was removed, for example by measuring the dew point in the activated gas used at the time of activation.

活性化工程は、活性化ガス雰囲気下、固体成型吸着剤を加熱することにより行うことが好ましい。活性化ガスとしては、酸素及び硫黄を含有しないものが好ましく、例えば、水素、二酸化炭素、窒素、アルゴン、ヘリウム、メタン、エタン、エチレン、プロパン及びブタンからなる群より選ばれる少なくとも一種のガスが好ましい。   The activation step is preferably performed by heating the solid molded adsorbent in an activated gas atmosphere. As the activation gas, those not containing oxygen and sulfur are preferable, and for example, at least one gas selected from the group consisting of hydrogen, carbon dioxide, nitrogen, argon, helium, methane, ethane, ethylene, propane and butane is preferable. .

(接触工程)
接触工程は、炭素数2〜5の炭化水素と含酸素化合物及び含硫黄化合物からなる群より選ばれる少なくとも一種の極性化合物との混合液を、活性化工程を経た固体成型吸着剤に、100℃以下で接触させることによって行われる。接触工程においては、極性化合物の少なくとも一部が固体成型吸着剤に吸着されるため、精製された炭素数2〜5の炭化水素が得られる。
(Contact process)
In the contacting step, a mixed liquid of a hydrocarbon having 2 to 5 carbon atoms and at least one polar compound selected from the group consisting of an oxygen-containing compound and a sulfur-containing compound is applied to a solid molded adsorbent that has been subjected to an activation step at 100 ° C. It is performed by contacting in the following. In the contacting step, since at least a part of the polar compound is adsorbed on the solid molding adsorbent, a purified hydrocarbon having 2 to 5 carbon atoms is obtained.

炭素数2〜5の炭化水素としては、不飽和炭化水素を含有することが好ましく、イソオレフィンを含有していてもよい。また、炭素数2〜5の炭化水素としては、エチレン、プロピレン、ブテン、炭素数3の炭化水素製品、炭素数4の炭化水素製品、それらの混合物等が挙げられる。   The hydrocarbon having 2 to 5 carbon atoms preferably contains an unsaturated hydrocarbon, and may contain an isoolefin. Examples of the hydrocarbon having 2 to 5 carbon atoms include ethylene, propylene, butene, hydrocarbon products having 3 carbon atoms, hydrocarbon products having 4 carbon atoms, and mixtures thereof.

極性化合物としては、水、アルコール類、ケトン類、アルデヒド類、チオール類、スルフィド類、チオフェン類等が挙げられる。これらの極性化合物の上記混合液中の濃度は、一般的には合計1〜1000質量ppmである。   Examples of the polar compound include water, alcohols, ketones, aldehydes, thiols, sulfides, and thiophenes. The concentration of these polar compounds in the mixed solution is generally 1 to 1000 mass ppm in total.

接触温度が100℃を超えると、物理吸着効果が薄れるために吸着能力が低下するので好ましくない。また、不飽和炭化水素、特にイソオレフィンを含有する炭化水素液を接触させる場合は、100℃を超えると重合しやすくなるため好ましくない。接触温度の下限は特に制限されないが、常温(例えば、20℃)以下の温度ではクーリング設備や高価な冷媒が必要となるため好ましくない。   When the contact temperature exceeds 100 ° C., the physical adsorption effect is weakened and the adsorption capacity is lowered, which is not preferable. Moreover, when making it contact with the hydrocarbon liquid containing unsaturated hydrocarbon, especially an isoolefin, when it exceeds 100 degreeC, since it will become easy to superpose | polymerize, it is not preferable. The lower limit of the contact temperature is not particularly limited, but a temperature of room temperature (for example, 20 ° C.) or lower is not preferable because a cooling facility or an expensive refrigerant is required.

接触工程は、固定床による連続プロセスで行われることが好ましい。固定床が用いられる場合、上記混合液、は昇流、降流のいずれの方向でも流動させることができるが、一般的には昇流が好ましい。さらに、固定床が用いられる場合、多重床を用いることができ、1つ又は複数の反応容器内に入れることができる。   The contacting step is preferably performed in a continuous process using a fixed bed. When a fixed bed is used, the mixed liquid can be flowed in either the upward flow or the downward flow, but generally the upward flow is preferable. In addition, if a fixed bed is used, multiple beds can be used and can be placed in one or more reaction vessels.

接触工程における接触条件は、温度は100℃以下であり、圧力は大気圧程度から1.01×10kPa(100気圧)までの範囲であることが好ましく、時間基準の液空間速度(LHSV)で表現した接触時間は、0.1〜10h−1であることが好ましい。 As for the contact conditions in the contact step, the temperature is 100 ° C. or less, the pressure is preferably in the range from about atmospheric pressure to 1.01 × 10 4 kPa (100 atm), and the time-based liquid space velocity (LHSV) Is preferably 0.1 to 10 h −1 .

接触工程は、固体成型吸着剤が充填された吸着塔に、混合液を、液線速度1m/h以上で流通させることにより行われることが好ましい。このような接触工程によれば、極性化合物が一層高効率で除去される。液線速度は、5m/h以上であることがより好ましい。また、液線速度は、吸着塔の差圧が高くなり運転が困難である場合があることから、液線速度は100m/h以下であることが好ましい。さらに、接触工程を一般的な実プラントにおいて行う場合には、液線速度の上昇に伴う接触工程での差圧の上昇を抑制するため、液線速度は50m/h以下とすることが好ましく、30m/h以下とすることがより好ましい。   The contacting step is preferably performed by circulating the mixed solution at a liquid linear velocity of 1 m / h or more through an adsorption tower filled with a solid molded adsorbent. According to such a contact process, polar compounds are removed with higher efficiency. The liquid linear velocity is more preferably 5 m / h or more. Further, the liquid linear velocity is preferably 100 m / h or less because the differential pressure of the adsorption tower becomes high and the operation may be difficult. Furthermore, when the contact step is performed in a general actual plant, the liquid linear velocity is preferably 50 m / h or less in order to suppress an increase in the differential pressure in the contact step accompanying an increase in the liquid linear velocity. More preferably, it is 30 m / h or less.

(除去工程)
除去工程では、例えば接触工程を経て極性化合物が吸着した固体成型吸着剤を、150〜300℃で加熱して、固体成型吸着剤から極性化合物を除去する。加熱温度は、好ましくは150〜240℃である。また、加熱時間は、5時間以上であることが好ましい。
(Removal process)
In the removal step, for example, the solid molded adsorbent on which the polar compound is adsorbed through the contact step is heated at 150 to 300 ° C. to remove the polar compound from the solid molded adsorbent. The heating temperature is preferably 150 to 240 ° C. The heating time is preferably 5 hours or longer.

このような除去工程によれば、固体成型吸着剤の吸着性能を著しく劣化させることなく、当該固体成型吸着剤を再生することができる。さらに、固体成型吸着剤は、複数回にわたって接触工程と除去工程とを繰り返し行った場合であっても良好な吸着性能を長期間維持することができる。そのため、このような除去工程を備える精製方法は、工業的に使用可能で経済的に優れる。   According to such a removing step, the solid molded adsorbent can be regenerated without significantly deteriorating the adsorption performance of the solid molded adsorbent. Furthermore, the solid molded adsorbent can maintain good adsorption performance for a long time even when the contact step and the removal step are repeated a plurality of times. Therefore, the purification method provided with such a removal step is industrially usable and economically excellent.

除去工程は、再生ガス雰囲気下、固体成型吸着剤を加熱することにより行うことが好ましい。再生ガスとしては、酸素原子及び硫黄原子を分子中に含有しないものが好ましく、例えば、水素、二酸化炭素、窒素、アルゴン、ヘリウム、メタン、エタン、エチレン、プロパン及びブタンからなる群より選ばれる少なくとも一種のガスが好ましい。再生ガスが酸素原子を含有する化合物であると、固体成型吸着剤上に生成したコーク等が燃焼し、この燃焼に際して局所的に生じるスチームによって、固体成型吸着剤におけるX型ゼオライトの脱アルミニウムが進行してしまう場合がある。   The removing step is preferably performed by heating the solid molded adsorbent in a regeneration gas atmosphere. The regeneration gas preferably contains no oxygen atom and sulfur atom in the molecule, for example, at least one selected from the group consisting of hydrogen, carbon dioxide, nitrogen, argon, helium, methane, ethane, ethylene, propane and butane. The gas is preferred. If the regeneration gas is a compound containing oxygen atoms, coke generated on the solid molded adsorbent burns, and steam generated locally during the combustion progresses dealumination of the X-type zeolite in the solid molded adsorbent. May end up.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to an Example.

(実施例1)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト60重量%とバインダーとしてアルミナ40重量%とを混練し、直径1.7mmの粒子状の押し出し成型体を得た。
Example 1
[Production of solid molded adsorbent]
60% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 40% by weight of alumina as a binder were kneaded to obtain a particulate extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は9.2kg、特公昭54−44111号公報に開示されている方法に従って測定した湿式アトリッション法による摩耗率は0.7%であった。   The resulting molded body had a pressure resistance strength of 9.2 kg using a Kiyama hardness tester and a wear rate of 0.7% as measured by the method disclosed in Japanese Patent Publication No. 54-44111.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、乾燥吸着剤充填部を炭化水素液で満たした後、下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは417重量ppmであった。すなわち、アセトンの分子量を58とすると、単位吸着剤あたりのアセトンの吸着量は6.1mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part and the dry adsorbent filling part was filled with the hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and acetone was 417 ppm by weight. That is, assuming that the molecular weight of acetone is 58, the adsorption amount of acetone per unit adsorbent was 6.1 mmol / g.

[吸着剤の再生]
窒素ガスによって270℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge with nitrogen gas at 270 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度アセトン吸着量を測定したところ、2.7mmol/gとなり、初期値の44%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the acetone adsorption amount was measured again by the same method as described above. As a result, it was 2.7 mmol / g, which was 44% of the initial value. .

(実施例2)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Example 2)
[Production of solid molded adsorbent]
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.8kg、湿式アトリッション法による摩耗率は1.5%であった。   The obtained molded body had a pressure resistance strength of 4.8 kg using a Kiyama hardness tester and a wear rate of 1.5% by a wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは375重量ppmであった。すなわち、アセトンの分子量を58とすると、単位吸着剤あたりのアセトンの吸着量は7.0mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. After 72 hours, when the hydrocarbon liquid was analyzed, water was less than 1 ppm by weight and acetone was 375 ppm by weight. That is, assuming that the molecular weight of acetone is 58, the adsorption amount of acetone per unit adsorbent was 7.0 mmol / g.

[吸着剤の再生]
窒素ガスによって270℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge with nitrogen gas at 270 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度アセトン吸着量を測定したところ、3.1mmol/gとなり、初期値の44%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the acetone adsorption amount was measured again by the same method as described above, and found to be 3.1 mmol / g, which was 44% of the initial value. .

(実施例3)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.2mmの押し出し成型体を得た。
(Example 3)
[Production of solid molded adsorbent]
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.2 mm.

得られた成型体の木屋式硬度計による耐圧強度は3.2kg、湿式アトリッション法による摩耗率は0.9%であった。   The obtained molded body had a pressure resistance strength of 3.2 kg as measured by the Kiyama-type hardness meter, and an abrasion rate of 0.9% as determined by the wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは320重量ppmであった。すなわち、アセトンの分子量を58とすると、単位吸着剤あたりのアセトンの吸着量は8.2mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with top and bottom cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and acetone was 320 ppm by weight. That is, assuming that the molecular weight of acetone is 58, the adsorption amount of acetone per unit adsorbent was 8.2 mmol / g.

[吸着剤の再生]
窒素ガスによって270℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge with nitrogen gas at 270 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度アセトン吸着量を測定したところ、3.6mmol/gとなり、初期値の43%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the acetone adsorption amount was measured again by the same method as described above. As a result, it was 3.6 mmol / g, which was 43% of the initial value. .

(実施例4)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径2.2mmの押し出し成型体を得た。
Example 4
[Production of solid molded adsorbent]
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 2.2 mm.

得られた成型体の木屋式硬度計による耐圧強度は8.6kg、湿式アトリッション法による摩耗率は2.1%であった。   The obtained molded body had a pressure resistance strength of 8.6 kg using a Kiyama hardness tester and a wear rate of 2.1% by a wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは389重量ppmであった。すなわち、アセトンの分子量を58とすると、単位吸着剤あたりのアセトンの吸着量は6.7mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and acetone was 389 ppm by weight. That is, when the molecular weight of acetone was 58, the adsorption amount of acetone per unit adsorbent was 6.7 mmol / g.

[吸着剤の再生]
窒素ガスによって270℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge with nitrogen gas at 270 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度アセトン吸着量を測定したところ、3.0mmol/gとなり、初期値の44%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the amount of acetone adsorbed was measured again by the same method as described above, which was 3.0 mmol / g, which was 44% of the initial value. .

(実施例5)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト95重量%とバインダーとして粘土鉱物5重量%を混練し、直径1.5mmの押し出し成型体を得た。
(Example 5)
[Production of solid molded adsorbent]
95% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 5% by weight of clay mineral as a binder were kneaded to obtain an extruded product having a diameter of 1.5 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.0kg、湿式アトリッション法による摩耗率は0.2%であった。   The resulting molded body had a pressure resistance strength of 4.0 kg as measured by a Kiyama hardness tester, and a wear rate of 0.2% as determined by the wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは259重量ppmであった。すなわち、アセトンの分子量を58とすると、単位吸着剤あたりのアセトンの吸着量は9.5mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. After 72 hours, when the hydrocarbon liquid was analyzed, water was less than 1 ppm by weight and acetone was 259 ppm by weight. That is, when the molecular weight of acetone was 58, the adsorption amount of acetone per unit adsorbent was 9.5 mmol / g.

[吸着剤の再生]
窒素ガスによって270℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge with nitrogen gas at 270 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度アセトン吸着量を測定したところ、4.2mmol/gとなり、初期値の44%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the amount of adsorbed acetone was measured again by the same method as described above, which was 4.2 mmol / g, which was 44% of the initial value. .

(実施例6)
吸着剤の再生における窒素ガスによるパージを、200℃で24時間行ったこと以外は、実施例2と同様の方法で、炭化水素液の精製及び吸着剤の再生を行った。炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、再度アセトン吸着量を測定したところ、3.8mmol/gとなり、初期値の54%であった。
(Example 6)
The hydrocarbon liquid was purified and the adsorbent was regenerated in the same manner as in Example 2 except that purging with nitrogen gas in the regeneration of the adsorbent was performed at 200 ° C. for 24 hours. After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the acetone adsorption amount was measured again, which was 3.8 mmol / g, which was 54% of the initial value.

(実施例7)
吸着剤の再生における窒素ガスによるパージを、150℃で24時間行ったこと以外は、実施例2と同様の方法で、炭化水素液の精製及び吸着剤の再生を行った。炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、再度アセトン吸着量を測定したところ、3.9mmol/gとなり、初期値の56%であった。
(Example 7)
The hydrocarbon liquid was purified and the adsorbent was regenerated in the same manner as in Example 2 except that purging with nitrogen gas during regeneration of the adsorbent was performed at 150 ° C. for 24 hours. After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the acetone adsorption amount was measured again to find 3.9 mmol / g, 56% of the initial value.

(実施例8)
吸着剤の再生における窒素ガスによるパージを、200℃で24時間行ったこと以外は、実施例5と同様の方法で、炭化水素液の精製及び吸着剤の再生を行った。炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、再度アセトン吸着量を測定したところ、5.2mmol/gとなり、初期値の54%であった。
(Example 8)
The hydrocarbon liquid was purified and the adsorbent was regenerated in the same manner as in Example 5, except that the purge with nitrogen gas in the regeneration of the adsorbent was performed at 200 ° C. for 24 hours. After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the acetone adsorption amount was measured again, which was 5.2 mmol / g, which was 54% of the initial value.

(実施例9)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.7mmの押し出し成型体を得た。
Example 9
[Production of solid molded adsorbent]
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.8kg、湿式アトリッション法による摩耗率は1.5%であった。   The obtained molded body had a pressure resistance strength of 4.8 kg using a Kiyama hardness tester and a wear rate of 1.5% by a wet attrition method.

[炭化水素液の精製]
次にこの成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、ジメチルジスルフィド150重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、ジメチルジスルフィドは98重量ppmであった。すなわち、ジメチルジスルフィドの分子量を94とすると、単位吸着剤あたりのジメチルジスルフィドの吸着量は0.69mmol/gであった。
[Purification of hydrocarbon liquid]
Next, this molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The dry adsorbent thus obtained was filled in 0.2 g in a 500 ml reaction tube with top and bottom cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 150 wt ppm of dimethyl disulfide as impurities (normal butane 50 wt%, normal 250 g of butene (40 wt%, isobutene 10 wt%) were introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and dimethyl disulfide was 98 ppm by weight. That is, when the molecular weight of dimethyl disulfide was 94, the adsorption amount of dimethyl disulfide per unit adsorbent was 0.69 mmol / g.

[吸着剤の再生]
窒素ガスによって200℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge with nitrogen gas at 200 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度ジメチルジスルフィド吸着量を測定したところ、0.37mmol/gとなり、初期値の53%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the amount of dimethyldisulfide adsorbed was measured again by the same method as described above, which was 0.37 mmol / g, which was 53% of the initial value. It was.

(実施例10)
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Example 10)
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.8kg、湿式アトリッション法による摩耗率は1.5%であった。   The obtained molded body had a pressure resistance strength of 4.8 kg using a Kiyama hardness tester and a wear rate of 1.5% by a wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水250重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は122重量ppmであった。すなわち、水の分子量を18とすると、単位吸着剤あたりの水の吸着量は8.9mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The dry adsorbent thus obtained was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 250 ppm by weight of water as impurities (normal butane 50 wt%, normal butene 40 wt%, isobutene 10 wt%) 250 g was introduced from the lower part, and the adsorbent filling part was filled with the hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. After 72 hours, when the hydrocarbon liquid was analyzed, water was 122 ppm by weight. That is, when the molecular weight of water was 18, the amount of water adsorbed per unit adsorbent was 8.9 mmol / g.

[吸着剤の再生]
窒素ガスによって240℃で24時間パージを行い、反応管中の乾燥吸着剤の再生を行った。
[Regeneration of adsorbent]
Purge was performed with nitrogen gas at 240 ° C. for 24 hours to regenerate the dry adsorbent in the reaction tube.

上記の炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、上記と同様の方法で再度アセトン吸着量を測定したところ、5.7mmol/gとなり、初期値の64%であった。   After the purification of the hydrocarbon liquid and the regeneration of the adsorbent were repeated 75 times, the amount of acetone adsorbed was measured again by the same method as described above, which was 5.7 mmol / g, which was 64% of the initial value. .

(実施例11)
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Example 11)
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.8kg、湿式アトリッション法による摩耗率は1.5%であった。   The obtained molded body had a pressure resistance strength of 4.8 kg using a Kiyama hardness tester and a wear rate of 1.5% by a wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を内径15mmの反応管に91g充填し、不純物としてアセトン29重量ppm、メチルメルカプタン10重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)を温度25℃、圧力1.0Mpaの条件下、毎時900cc(液線速度:毎時5m)でフィードし、4時間後の反応器出口の炭化水素液を分析したところ、アセトン、メチルメルカプタンともに検出限界(0.1重量ppm)以下であった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was charged in a reaction tube having an inner diameter of 15 mm in an amount of 91 g, and an olefin-containing C4 raw material containing 29 weight ppm of acetone and 10 weight ppm of methyl mercaptan as impurities (normal butane 50 weight%, normal butene 40 weight%, isobutene 10 Weight%) was fed at a temperature of 25 ° C. and a pressure of 1.0 Mpa at 900 cc / hour (liquid linear velocity: 5 m / hour), and the hydrocarbon liquid at the outlet of the reactor after 4 hours was analyzed. Acetone, methyl mercaptan Both were below the detection limit (0.1 ppm by weight).

(実施例12)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Example 12)
[Production of solid molded adsorbent]
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.8kg、湿式アトリッション法による摩耗率は1.5%であった。   The obtained molded body had a pressure resistance strength of 4.8 kg using a Kiyama hardness tester and a wear rate of 1.5% by a wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を内径45mmの反応管に353g充填し、不純物としてアセトン29重量ppm、メチルメルカプタン10重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)を温度25℃、圧力1.0Mpaの条件下、毎時3500cc(液線速度:毎時20m)でフィードし、4時間後の反応器出口の炭化水素液を分析したところ、アセトン、メチルメルカプタンともに検出限界(0.1重量ppm)以下であった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was packed in a reaction tube having an inner diameter of 45 mm in an amount of 353 g, and an olefin-containing C4 raw material containing 29 weight ppm of acetone and 10 weight ppm of methyl mercaptan as impurities (normal butane 50 weight%, normal butene 40 weight%, isobutene 10 Weight%) was fed at a temperature of 25 ° C. and a pressure of 1.0 Mpa at 3500 cc / hour (liquid linear velocity: 20 m / hour), and the hydrocarbon liquid at the outlet of the reactor after 4 hours was analyzed. As a result, acetone and methyl mercaptan were analyzed. Both were below the detection limit (0.1 ppm by weight).

(比較例1)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト60重量%とバインダーとしてアルミナ40重量%を混練し、直径3.0mmの押し出し成型体を得た。
(Comparative Example 1)
[Production of solid molded adsorbent]
60% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 40% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 3.0 mm.

得られた成型体の木屋式硬度計による耐圧強度は12.2kg、湿式アトリッション法による摩耗率は3.0%であった。   The obtained molded body had a pressure resistance strength of 12.2 kg according to the Kiyama hardness tester and a wear rate of 3.0% according to the wet attrition method.

[炭化水素液の精製]
この成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは436重量ppmであった。すなわち、単位吸着剤あたりのアセトンの吸着量は5.7mmol/gであった。
[Purification of hydrocarbon liquid]
This molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and acetone was 436 ppm by weight. That is, the adsorption amount of acetone per unit adsorbent was 5.7 mmol / g.

(比較例2)
金属陽イオンとしてNaでイオン交換したX型ゼオライト40重量%とバインダーとしてアルミナ60重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Comparative Example 2)
40% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 60% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は14.1kg、湿式アトリッション法による摩耗率は0.1%であった。   The resulting molded body had a pressure resistance strength of 14.1 kg as determined by the Kiyama-type hardness meter and a wear rate of 0.1% as determined by the wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは468重量ppmであった。すなわち、単位吸着剤あたりのアセトンの吸着量は5.0mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and acetone was 468 ppm by weight. That is, the adsorption amount of acetone per unit adsorbent was 5.0 mmol / g.

(比較例3)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト60重量%とバインダーとしてアルミナ40重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Comparative Example 3)
[Production of solid molded adsorbent]
60% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 40% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は9.2kg、湿式アトリッション法による摩耗率は0.7%であった。   The obtained molded body had a pressure resistance strength of 9.2 kg as measured by the Kiyama-type hardness meter and a wear rate of 0.7% as determined by the wet attrition method.

[炭化水素液の精製]
次にこの成型体を窒素流通下、温度100℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度25℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは522重量ppmであった。すなわち、単位吸着剤あたりのアセトンの吸着量は3.8mmol/gであった。
[Purification of hydrocarbon liquid]
Next, this molded body was heat-treated at a temperature of 100 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The mixture was left for 48 hours under the conditions of a temperature of 25 ° C. and a pressure of 3.0 Mpa. When the hydrocarbon liquid was analyzed after 72 hours, water was less than 1 ppm by weight and acetone was 522 ppm by weight. That is, the adsorption amount of acetone per unit adsorbent was 3.8 mmol / g.

(比較例4)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト60重量%とバインダーとしてアルミナ40重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Comparative Example 4)
[Production of solid molded adsorbent]
60% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 40% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は9.2kg、湿式アトリッション法による摩耗率は0.7%であった。   The obtained molded body had a pressure resistance strength of 9.2 kg as measured by the Kiyama-type hardness meter and a wear rate of 0.7% as determined by the wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥吸着剤を得た。得られた乾燥吸着剤を上下にコックを付した500mlの反応管に0.2g充填し、不純物として水30重量ppm、アセトン700重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)250gを下部より導入し、吸着剤充填部を炭化水素液で満たした後下部のコックを閉じた。温度110℃、圧力3.0Mpaの条件下、48時間放置した。72時間後、炭化水素液を分析したところ、水は1重量ppm未満、アセトンは603重量ppmであった。すなわち、単位吸着剤あたりのアセトンの吸着量は2.1mmol/gであった。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a dry adsorbent. The obtained dry adsorbent was filled in 0.2 g in a 500 ml reaction tube with upper and lower cocks, and an olefin-containing C4 raw material containing 30 wt ppm of water and 700 wt ppm of acetone as impurities (normal butane 50 wt%, normal butene). (40 wt%, isobutene 10 wt%) was introduced from the lower part, the adsorbent filling part was filled with a hydrocarbon liquid, and then the lower cock was closed. The sample was left for 48 hours under the conditions of a temperature of 110 ° C. and a pressure of 3.0 Mpa. After 72 hours, when the hydrocarbon liquid was analyzed, water was less than 1 ppm by weight and acetone was 603 ppm by weight. That is, the adsorption amount of acetone per unit adsorbent was 2.1 mmol / g.

(比較例5)
吸着剤の再生における窒素ガスによるパージを、330℃で24時間行ったこと以外は、実施例1と同様の方法で、炭化水素液の精製及び吸着剤の再生を行った。炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、再度アセトン吸着量を測定したところ、2.1mmol/gとなり、初期値の35%であった。
(Comparative Example 5)
Purification of the hydrocarbon liquid and regeneration of the adsorbent were performed in the same manner as in Example 1 except that purging with nitrogen gas in regeneration of the adsorbent was performed at 330 ° C. for 24 hours. After refining the hydrocarbon liquid and regenerating the adsorbent 75 times, the amount of acetone adsorbed was measured again, and found to be 2.1 mmol / g, 35% of the initial value.

(比較例6)
吸着剤の再生における窒素ガスによるパージを、100℃で24時間行ったこと以外は、実施例2と同様の方法で、炭化水素液の精製及び吸着剤の再生を行った。炭化水素液の精製及び吸着剤の再生を75回繰り返し行った後、再度アセトン吸着量を測定したところ、2.3mmol/gとなり、初期値の38%であった。
(Comparative Example 6)
The hydrocarbon liquid was purified and the adsorbent was regenerated in the same manner as in Example 2 except that purging with nitrogen gas during regeneration of the adsorbent was performed at 100 ° C. for 24 hours. After refining the hydrocarbon liquid and regenerating the adsorbent 75 times, the acetone adsorption amount was measured again to find 2.3 mmol / g, 38% of the initial value.

(比較例7)
[固体成型吸着剤の製造]
金属陽イオンとしてNaでイオン交換したX型ゼオライト70重量%とバインダーとしてアルミナ30重量%を混練し、直径1.7mmの押し出し成型体を得た。
(Comparative Example 7)
[Production of solid molded adsorbent]
70% by weight of X-type zeolite ion-exchanged with Na as a metal cation and 30% by weight of alumina as a binder were kneaded to obtain an extruded product having a diameter of 1.7 mm.

得られた成型体の木屋式硬度計による耐圧強度は4.8kg、湿式アトリッション法による摩耗率は1.5%であった。   The obtained molded body had a pressure resistance strength of 4.8 kg using a Kiyama hardness tester and a wear rate of 1.5% by a wet attrition method.

[炭化水素液の精製]
得られた成型体を窒素流通下、温度300℃、48時間加熱処理し、乾燥剤を得た。得られた乾燥吸着剤を内径15mmの反応管に13g充填し、不純物としてアセトン29重量ppm、メチルメルカプタン10重量ppmを含むオレフィン含有C4原料(ノルマルブタン50重量%、ノルマルブテン40重量%、イソブテン10重量%)を温度25℃、圧力1.0Mpaの条件下、毎時130cc(液線速度:毎時0.7m)でフィードし、4時間後の反応器出口の炭化水素液を分析したところ、アセトンは検出限界(0.1重量ppm)以下であったが、0.3重量ppmのメチルメルカプタンが検出された。
[Purification of hydrocarbon liquid]
The obtained molded body was heat-treated at a temperature of 300 ° C. for 48 hours under a nitrogen flow to obtain a desiccant. 13 g of the obtained dry adsorbent was packed into a reaction tube having an inner diameter of 15 mm, and an olefin-containing C4 raw material containing 29 weight ppm of acetone and 10 weight ppm of methyl mercaptan as impurities (50% by weight of normal butane, 40% by weight of normal butene, 10% of isobutene) Weight%) was fed at a temperature of 25 ° C. and a pressure of 1.0 Mpa at 130 cc / hour (liquid linear velocity: 0.7 m / hour), and the hydrocarbon liquid at the reactor outlet after 4 hours was analyzed. Although it was below the detection limit (0.1 ppm by weight), 0.3 ppm by weight of methyl mercaptan was detected.

Claims (9)

ナトリウムカチオンを有するX型ゼオライトの含有量が50質量%以上であり、平均粒子直径が2.5mm以下であり、摩耗率が2.5%以下である固体成型吸着剤。   A solid molded adsorbent having a content of an X-type zeolite having a sodium cation of 50% by mass or more, an average particle diameter of 2.5 mm or less, and a wear rate of 2.5% or less. 前記X型ゼオライトの含有量が70質量%以上である、請求項1に記載の固体成型吸着剤。   The solid molded adsorbent according to claim 1, wherein the content of the X-type zeolite is 70% by mass or more. 請求項1又は2に記載の固体成型吸着剤を、150〜350℃で加熱する活性化工程と、
炭素数2〜5の炭化水素と含酸素化合物及び含硫黄化合物からなる群より選ばれる少なくとも一種の極性化合物との混合液を、前記活性化工程を経た前記固体成型吸着剤に、100℃以下で接触させて、前記極性化合物の少なくとも一部を前記固体成型吸着剤に吸着させる接触工程と、を備える、炭化水素の精製方法。
An activation step of heating the solid molded adsorbent according to claim 1 or 2 at 150 to 350 ° C;
A mixed liquid of a hydrocarbon having 2 to 5 carbon atoms and at least one polar compound selected from the group consisting of an oxygen-containing compound and a sulfur-containing compound is added to the solid molded adsorbent that has undergone the activation step at 100 ° C. or less. And a contacting step of adsorbing at least a part of the polar compound to the solid molded adsorbent.
前記活性化工程は、前記固体成型吸着剤を、200〜300℃で加熱する、請求項3に記載の炭化水素の精製方法。   The said activation process is a purification method of the hydrocarbon of Claim 3 which heats the said solid shaping | molding adsorbent at 200-300 degreeC. 前記極性化合物が吸着した前記固体成型吸着剤を、150〜300℃で加熱して、前記固体成型吸着剤から前記極性化合物を除去する除去工程を、さらに備える、請求項3又は4に記載の炭化水素の精製方法。   The carbonization according to claim 3 or 4, further comprising a removing step of removing the polar compound from the solid molded adsorbent by heating the solid molded adsorbent to which the polar compound has been adsorbed at 150 to 300 ° C. Hydrogen purification method. 前記除去工程は、前記極性化合物が吸着した前記固体成型吸着剤を、150〜240℃で加熱する、請求項5に記載の炭化水素の精製方法。   The said removal process is a purification method of the hydrocarbon of Claim 5 which heats the said solid shaping | molding adsorption agent which the said polar compound adsorb | sucked at 150-240 degreeC. 前記炭化水素は、不飽和炭化水素を含有する、請求項3〜6のいずれか一項に記載の炭化水素の精製方法。   The method for purifying a hydrocarbon according to any one of claims 3 to 6, wherein the hydrocarbon contains an unsaturated hydrocarbon. 前記炭化水素は、イソオレフィンを含有する、請求項3〜7のいずれか一項に記載の炭化水素の精製方法。   The said hydrocarbon contains the isoolefin, The purification method of the hydrocarbon as described in any one of Claims 3-7. 前記接触工程は、前記固体成型吸着剤が充填された吸着塔に、前記混合液を、液線速度1m/h以上で流通させることにより行われる、請求項3〜8のいずれか一項に記載の炭化水素の精製方法。   The said contact process is performed by distribute | circulating the said liquid mixture with the liquidus velocity of 1 m / h or more to the adsorption tower with which the said solid shaping | molding adsorption agent was filled. Of hydrocarbon purification.
JP2010105635A 2010-04-30 2010-04-30 Solid molding adsorbent and hydrocarbon purification method Active JP5523924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105635A JP5523924B2 (en) 2010-04-30 2010-04-30 Solid molding adsorbent and hydrocarbon purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105635A JP5523924B2 (en) 2010-04-30 2010-04-30 Solid molding adsorbent and hydrocarbon purification method

Publications (2)

Publication Number Publication Date
JP2011230103A true JP2011230103A (en) 2011-11-17
JP5523924B2 JP5523924B2 (en) 2014-06-18

Family

ID=45319999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105635A Active JP5523924B2 (en) 2010-04-30 2010-04-30 Solid molding adsorbent and hydrocarbon purification method

Country Status (1)

Country Link
JP (1) JP5523924B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170035934A (en) * 2014-07-16 2017-03-31 바스프 코포레이션 Regeneration loop clean-up
CN111655658A (en) * 2017-12-13 2020-09-11 Ifp 新能源公司 Method for the simultaneous removal of isobutyraldehyde and acetone from olefinic feedstocks by adsorption on zeolitic materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144111B1 (en) * 1969-07-24 1976-11-26
JPH11314913A (en) * 1998-05-07 1999-11-16 Tosoh Corp High strength low wear zeolite granule and its production
JP2002068732A (en) * 2000-06-16 2002-03-08 Tosoh Corp Binder-less zeolite bead moldings, method for manufacturing the same, and adsorption removal method by using the same
JP2002253959A (en) * 2000-12-08 2002-09-10 Uop Llc Composite adsorbent for refining hydrocarbon stream

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144111B1 (en) * 1969-07-24 1976-11-26
JPH11314913A (en) * 1998-05-07 1999-11-16 Tosoh Corp High strength low wear zeolite granule and its production
JP2002068732A (en) * 2000-06-16 2002-03-08 Tosoh Corp Binder-less zeolite bead moldings, method for manufacturing the same, and adsorption removal method by using the same
JP2002253959A (en) * 2000-12-08 2002-09-10 Uop Llc Composite adsorbent for refining hydrocarbon stream

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170035934A (en) * 2014-07-16 2017-03-31 바스프 코포레이션 Regeneration loop clean-up
JP2017521450A (en) * 2014-07-16 2017-08-03 ビーエーエスエフ コーポレーション Purification of regeneration loop
KR102599853B1 (en) * 2014-07-16 2023-11-09 바스프 코포레이션 Regeneration loop clean-up
CN111655658A (en) * 2017-12-13 2020-09-11 Ifp 新能源公司 Method for the simultaneous removal of isobutyraldehyde and acetone from olefinic feedstocks by adsorption on zeolitic materials

Also Published As

Publication number Publication date
JP5523924B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US8680344B2 (en) Molecular sieve adsorbent blends and uses thereof
KR100608474B1 (en) Olefin purification by adsorption of acethylenics and regeneration of adsorbent
KR100499972B1 (en) Olefin purification by adsorption of acetylenics and regeneration of adsorbent
KR101017697B1 (en) Adsorbents for purification of C2-C3 olefins
JPS6358612B2 (en)
US20100234662A1 (en) Process for Reducing Carbon Monoxide in Olefin-Containing Hydrocarbon Feedstocks
CA1208141A (en) Removal of carbon dioxide from olefin containing streams
CN107530614B (en) Process for removing contaminants from dehydrogenation effluent
JP2017524519A (en) Alumina-based adsorbent containing sodium and doped with alkali elements for trapping acidic molecules
JP2591663B2 (en) Method for simultaneous removal of arsenic and carbon oxysulfide from liquid phase unsaturated hydrocarbon fraction
JP5523924B2 (en) Solid molding adsorbent and hydrocarbon purification method
US7651550B2 (en) Method for sulfur compounds removal from contaminated gas and liquid streams
KR20160107253A (en) Method for removing sulfur compounds from hydrocarbon streams
KR102348345B1 (en) Improved adsorption of acid gases
CA2027605C (en) Process for treating a spent nickel-based absorbent
US6680419B2 (en) Process enhancing adsorbent capacity for acetylenic compounds
US20030105378A1 (en) Process for recovery of diene-free feedstocks from olefinic process streams
US20030105379A1 (en) Treatment of adsorbent to enhance adsorbent capacity for acetylenic compounds
CS255361B1 (en) Method of silver catalysts' service life prolongation
JPH10296001A (en) Method for simultaneous removal of mercury and water from liquid propylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5523924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250