JP2011230085A - Centrifugal separator - Google Patents

Centrifugal separator Download PDF

Info

Publication number
JP2011230085A
JP2011230085A JP2010104653A JP2010104653A JP2011230085A JP 2011230085 A JP2011230085 A JP 2011230085A JP 2010104653 A JP2010104653 A JP 2010104653A JP 2010104653 A JP2010104653 A JP 2010104653A JP 2011230085 A JP2011230085 A JP 2011230085A
Authority
JP
Japan
Prior art keywords
temperature
vacuum pump
oil
heater
oil diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010104653A
Other languages
Japanese (ja)
Other versions
JP5598076B2 (en
Inventor
Shinichi Haruki
慎一 春木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2010104653A priority Critical patent/JP5598076B2/en
Publication of JP2011230085A publication Critical patent/JP2011230085A/en
Application granted granted Critical
Publication of JP5598076B2 publication Critical patent/JP5598076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)
  • Centrifugal Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely control an oil diffusion vacuum pump in a centrifugal separator which makes the inside of a rotation chamber in a high vacuum state by using the oil diffusion vacuum pump.SOLUTION: The centrifugal separator 1 includes: a rotor 2 which is rotated by a driving device 8 and retains a sample; the rotation chamber 3 which houses the rotor 2; and the oil diffusion vacuum pump 5 and an oil rotation vacuum pump 4 which decrease pressure the inside of the rotation chamber 3 to prescribed vacuum; wherein a first and a second temperature sensors 10, 11 are disposed on two sites which are located in a cooling part of diffusion oil of the oil diffusion vacuum pump 5 and generate a temperature difference therebetween, and the electricity conduction to a heater 54 of the oil diffusion vacuum pump 5 is controlled by using the temperature difference detected by the temperature sensors 10, 11. The temperature sensors 10, 11 are disposed on the two sites separated in the vertical direction of the outer wall of a tubular cooling part 56, and the drive of the heater 54 is feed-back controlled by using the detected temperature difference.

Description

本発明は、ロータを高速回転させる遠心分離機のように、ロータの風損による温度上昇を防止するために、回転室内を油拡散真空ポンプによって高真空まで減圧させる機器に関するものである。   The present invention relates to an apparatus for reducing the pressure in a rotating chamber to a high vacuum by an oil diffusion vacuum pump in order to prevent temperature rise due to windage loss of the rotor, such as a centrifuge that rotates a rotor at high speed.

遠心分離機は、分離する試料をチューブやボトルを介してロータに挿入しロータを高速に回転させることで試料の分離、精製を行う。回転速度は用途によって異なり、用途に合わせて低速(最高回転速度は毎分数千回転)から高速(最高回転速度は毎分150,000回転程度)までのものがある。中でも超遠心機と呼ばれる回転速度が毎分約40,000回転以上の遠心分離機は、酵素、タンパクなどの試料を分離する場合に試料の温度を低温に保つ必要があるため、ロータの回転中に試料の温度が上昇しないように冷却装置で回転室内を一定の温度に制御している。さらに超遠心機では、ロータを高速で回転させるため、空気との摩擦熱でロータの温度が上昇しないように回転室を真空ポンプにより高真空まで減圧できる構造となっている。従来から回転室を高真空状態に減圧するための真空ポンプとして、油拡散真空ポンプが広く用いられている。   A centrifuge separates and refines a sample by inserting a sample to be separated into a rotor through a tube or a bottle and rotating the rotor at a high speed. The rotational speed varies depending on the application, and ranges from low speed (the maximum rotational speed is several thousand revolutions per minute) to high speed (the maximum rotational speed is about 150,000 revolutions per minute). Among them, a centrifuge with a rotational speed of about 40,000 revolutions or more per minute called an ultracentrifuge needs to keep the temperature of the sample low when separating a sample such as an enzyme or protein. The rotating chamber is controlled at a constant temperature by a cooling device so that the temperature of the sample does not rise. Furthermore, in the ultracentrifuge, since the rotor is rotated at a high speed, the rotary chamber can be decompressed to a high vacuum by a vacuum pump so that the temperature of the rotor does not rise due to frictional heat with air. Conventionally, an oil diffusion vacuum pump has been widely used as a vacuum pump for reducing the pressure of a rotating chamber to a high vacuum state.

遠心分離機の油拡散真空ポンプの制御方法には、遠心分離機内の室温(筐体内部の温度)を測定してヒータへの通電をオン/オフする方法が知られているが、この方法により制御開始時のみ一定時間常時通電して油拡散真空ポンプのヒータを駆動すると、不具合が生ずるおそれがある。例えば、制御開始時にヒータの温度が高い場合には、ボイラが過温度になり気化した油分子が冷却部で液化しきれずに回転室に逆流するため真空度の悪化を招いたり、ボディー自体が高温になるため接続部においてOリングや真空ホース等の非金属部品の劣化を招く恐れがある。このような不具合を防ぐためにヒータの通電方法(駆動方法)を種々工夫してきたが、特許文献1の技術では、室温に加えて、温度センサにより油拡散真空ポンプの温度を測定することにより油拡散真空ポンプのヒータの制御することが提案された。この技術では、室温を基に油拡散真空ポンプの目標温度を設定し、目標温度になるように制御装置がヒータの通電を制御する。   As a method of controlling the oil diffusion vacuum pump of the centrifuge, a method of measuring the room temperature in the centrifuge (the temperature inside the housing) and turning on / off the heater is known. If the heater of the oil diffusion vacuum pump is driven by always energizing for a certain time only at the start of control, there is a risk of malfunction. For example, if the heater temperature is high at the start of control, the boiler will be overheated, and the oil molecules that have vaporized will not be liquefied in the cooling section and will flow back into the rotating chamber, leading to a deterioration in the degree of vacuum or the body itself being hot. Therefore, there is a risk of deteriorating non-metallic parts such as an O-ring and a vacuum hose at the connection portion. In order to prevent such problems, various methods of energizing the heater (driving method) have been devised. However, in the technique of Patent Document 1, in addition to room temperature, the temperature of the oil diffusion vacuum pump is measured by a temperature sensor. It was proposed to control the heater of the vacuum pump. In this technique, the target temperature of the oil diffusion vacuum pump is set based on the room temperature, and the control device controls the energization of the heater so that the target temperature is reached.

ここで図8を用いて特許文献1で開示された従来技術による遠心分離機101について説明する。遠心分離機101は、試料を入れるロータ102と、ロータ102を回転させる駆動装置108と、ロータ102を入れる回転室103と、回転室103内を高真空まで減圧する2つの真空ポンプ(油回転真空ポンプ104、油拡散真空ポンプ105)と、回転室103と油拡散真空ポンプ105を結ぶ真空配管107と、油拡散真空ポンプ105と油回転真空ポンプ104を結ぶ真空配管106が配置され、駆動装置108や油拡散真空ポンプ105や油回転真空ポンプ104などを制御する制御装置109、その制御装置109を操作するための操作部113等から構成される。油拡散真空ポンプ105を制御するために、遠心分離機101の筐体内には、室温(筐体内の温度)を測定するための温度センサ114が設けられ、回転室103の内部の真空度を測定する真空計112が設けられる。また、油拡散真空ポンプ105の冷却フィンの一部には、その温度を測定する温度センサ110が一つ設けられる。油回転真空ポンプ104は油拡散真空ポンプ105を機能させるための補助真空ポンプとしての役割を果たすもので、真空配管106を介して油拡散真空ポンプ105の下流側に設けられる。   Here, a conventional centrifugal separator 101 disclosed in Patent Document 1 will be described with reference to FIG. The centrifuge 101 includes a rotor 102 for containing a sample, a driving device 108 for rotating the rotor 102, a rotating chamber 103 for inserting the rotor 102, and two vacuum pumps (oil rotating vacuum for reducing the pressure inside the rotating chamber 103 to a high vacuum. The pump 104, the oil diffusion vacuum pump 105), the vacuum pipe 107 connecting the rotary chamber 103 and the oil diffusion vacuum pump 105, and the vacuum pipe 106 connecting the oil diffusion vacuum pump 105 and the oil rotary vacuum pump 104 are arranged, and the driving device 108 And a control device 109 for controlling the oil diffusion vacuum pump 105, the oil rotary vacuum pump 104, and the like, an operation unit 113 for operating the control device 109, and the like. In order to control the oil diffusion vacuum pump 105, a temperature sensor 114 for measuring room temperature (temperature in the casing) is provided in the casing of the centrifuge 101, and the degree of vacuum inside the rotating chamber 103 is measured. A vacuum gauge 112 is provided. In addition, a part of the cooling fin of the oil diffusion vacuum pump 105 is provided with one temperature sensor 110 that measures the temperature. The oil rotary vacuum pump 104 serves as an auxiliary vacuum pump for causing the oil diffusion vacuum pump 105 to function, and is provided on the downstream side of the oil diffusion vacuum pump 105 via the vacuum pipe 106.

特許第3870626号公報Japanese Patent No. 3870626

近年、超高速回転の遠心分離機において、遠心分離機の電源を入れてから遠心分離を開始するまでの時間を短くしたいというニーズが高まっている。そのニーズに応じるためには、短時間で回転室の圧力を高真空状態にすることが重要であり、そのために回転室内を高真空にするために使用している油拡散真空ポンプのヒータにハイパワーのものを使用したり、ヒータに加熱効率の良いカートリッジヒータを使用したりして、短時間で油拡散真空ポンプの性能が発揮できる油温度に到達するようにしている。さらに、油拡散真空ポンプの性能が発揮できるまで油の温度が達した場合、油が必要以上の温度に上昇しないように、ヒータをPIDフィードバック制御やパルス幅制御で精度良く制御するようにしている。特に、短時間で油を目標温度に到達させるべくヒータ154を100%のパワーで加熱している状態から目標温度近傍になったときには、例えば目標温度に対して5%又は5℃低い時からPIDフィードバック制御やパルス幅制御に切り替えて、油の温度が必要以上に上昇しないように制御している。   In recent years, there has been a growing need for shortening the time from when the centrifuge is turned on until the start of the centrifuge in an ultrahigh speed centrifuge. In order to meet these needs, it is important to set the pressure in the rotating chamber to a high vacuum state in a short time. For this reason, the heater of the oil diffusion vacuum pump used to make the rotating chamber high vacuum is high. A power heater or a cartridge heater with good heating efficiency is used to reach the oil temperature at which the performance of the oil diffusion vacuum pump can be demonstrated in a short time. Furthermore, when the temperature of the oil reaches the level at which the performance of the oil diffusion vacuum pump can be exhibited, the heater is controlled with high accuracy by PID feedback control and pulse width control so that the oil does not rise to an unnecessarily high temperature. . In particular, when the heater 154 is heated at 100% power so that the oil reaches the target temperature in a short time, when the temperature approaches the target temperature, for example, the PID starts when the temperature is 5% or 5 ° C. lower than the target temperature. By switching to feedback control or pulse width control, the oil temperature is controlled not to rise more than necessary.

しかしながら、油の温度が目標温度近傍にあるときに、温度管理の基準となる遠心分離機の室温が変動すると制御条件が変動する。例えば室温が低下すると一般に目標温度も低下し、温度によっては即時にオーバーヒートとなってしまう。オーバーヒートになると目標温度の許容範囲に戻るまでヒータ154による加熱を停止するが、加熱が停止されることで油拡散真空ポンプ105の能力がダウンするので回転室の圧力は上昇する。この圧力上昇の度合いによっては圧力エラーとなり開始した遠心分離を中止せざる得ない状況に到ることもあり得るので、これらの不具合が出ないような制御が重要となる。   However, when the temperature of the oil is in the vicinity of the target temperature, the control conditions vary if the room temperature of the centrifuge serving as a reference for temperature management varies. For example, when the room temperature decreases, the target temperature generally decreases, and depending on the temperature, overheating occurs immediately. When overheating occurs, heating by the heater 154 is stopped until the target temperature returns to the allowable range. However, since the capability of the oil diffusion vacuum pump 105 is reduced by stopping the heating, the pressure in the rotating chamber increases. Depending on the degree of the pressure increase, a pressure error may occur and the centrifugal separation that has started must be stopped. Therefore, control that does not cause these problems is important.

本発明は、上記の背景に鑑みてなされたもので、その目的は、油拡散真空ポンプを使用して回転室内を高真空にする遠心分離機において、油拡散真空ポンプを精度良く制御することにある。   The present invention has been made in view of the above background, and an object thereof is to accurately control an oil diffusion vacuum pump in a centrifuge that uses an oil diffusion vacuum pump to make a high vacuum in a rotating chamber. is there.

本発明の他の目的は、遠心分離機の周囲温度が変動しても、目標温度が変動せずに安定して油拡散真空ポンプを制御することができる遠心分離機を提供することにある。   Another object of the present invention is to provide a centrifuge capable of stably controlling an oil diffusion vacuum pump without changing the target temperature even if the ambient temperature of the centrifuge varies.

本発明のさらに他の目的は、油拡散真空ポンプの油の急激温度上昇時から温度安定時に到る過程において、油拡散真空ポンプの油の加熱停止による回転室内の急激な圧力上昇が生じないように制御を可能とする遠心分離機を提供することである。   Still another object of the present invention is to prevent a sudden pressure increase in the rotating chamber due to the stop of heating of the oil of the oil diffusion vacuum pump during the process from the sudden temperature rise of the oil of the oil diffusion vacuum pump to the temperature stabilization. It is to provide a centrifuge capable of being controlled.

本願において開示される発明のうち代表的なものの特徴を説明すれば次の通りである。   The characteristics of representative ones of the inventions disclosed in the present application will be described as follows.

本発明の一つの特徴によれば、駆動装置と、駆動装置によって回転され試料を保持するロータと、ロータを収容する回転室と、回転室内を所定の真空まで減圧する油拡散真空ポンプを有する遠心分離機において、油拡散真空ポンプの拡散油の冷却部であって温度差の生ずる2箇所に第1及び第2の温度センサを設け、第1及び第2の温度センサによる検出温度差を用いて油拡散真空ポンプのヒータへの通電を制御するように構成した。油拡散真空ポンプには補助ポンプとして油回転真空ポンプが直列に接続され、回転室が第1の真空度まで到達したらロータを設定された回転数まで加速させるように制御する。第1及び第2の温度センサは、筒状の冷却部外壁の上下方向に隔てた2箇所に設けるのが好ましい。   According to one aspect of the present invention, a centrifugal separator having a driving device, a rotor that is rotated by the driving device to hold a sample, a rotating chamber that houses the rotor, and an oil diffusion vacuum pump that depressurizes the rotating chamber to a predetermined vacuum. In the separator, the first and second temperature sensors are provided at two locations where the temperature difference occurs in the cooling unit for the diffusion oil of the oil diffusion vacuum pump, and the temperature difference detected by the first and second temperature sensors is used. The power supply to the heater of the oil diffusion vacuum pump was controlled. An oil rotary vacuum pump is connected in series as an auxiliary pump to the oil diffusion vacuum pump, and the rotor is controlled to be accelerated to a set number of rotations when the rotation chamber reaches the first vacuum degree. The first and second temperature sensors are preferably provided at two locations separated in the vertical direction of the outer wall of the cylindrical cooling section.

本発明の他の特徴によれば、冷却部の上下方向の略中央部には、径方向に延びる複数の冷却フィンが設けられ、第1の温度センサは冷却フィンよりも下側の冷却部外壁に設けられ、第2の温度センサは冷却フィンよりも上側の冷却部外壁に設けられるように構成した。また温度センサの別の設置位置として、第1の温度センサは下側の冷却フィンに設けられ、第2の温度センサは上側の冷却フィンに設けられる様にしても良い。     According to another feature of the present invention, a plurality of cooling fins extending in the radial direction are provided at a substantially central portion in the vertical direction of the cooling unit, and the first temperature sensor is provided on the outer wall of the cooling unit below the cooling fins. The second temperature sensor is configured to be provided on the outer wall of the cooling unit above the cooling fin. As another installation position of the temperature sensor, the first temperature sensor may be provided on the lower cooling fin, and the second temperature sensor may be provided on the upper cooling fin.

本発明のさらに他の特徴によれば、油拡散真空ポンプを起動してから第1及び第2の温度センサによる検出温度差が所定値に達するまでヒータへのフルパワーの通電を行い、検出温度差が所定値に達したら、ヒータへの通電を調整することにより検出温度差を所定値に保つように制御する。この所定値に保つ制御は、ヒータへの通電をフィードバック制御することにより行うことができる。ヒータへの通電開始後一定時間が経過しても、第1及び第2の温度センサによる検出温度差が所定の温度差に達しない場合は、何らかの異常が発生している恐れがあるのでヒータへの通電を中止する。   According to still another aspect of the present invention, the heater is fully energized until the temperature difference detected by the first and second temperature sensors reaches a predetermined value after the oil diffusion vacuum pump is started, and the detected temperature When the difference reaches a predetermined value, control is performed so as to keep the detected temperature difference at the predetermined value by adjusting energization to the heater. The control for maintaining the predetermined value can be performed by feedback control of energization to the heater. If the temperature difference detected by the first and second temperature sensors does not reach a predetermined temperature difference even after a certain time has elapsed after the start of energization of the heater, there is a possibility that some abnormality has occurred. Stop energizing.

請求項1の発明によれば、油拡散真空ポンプの冷却部の低温部と高温部に温度センサを設け、その温度差を使用してヒータの制御することにより、遠心分離機の周囲温度に関係なく油拡散真空ポンプの温度制御が可能になる。また、遠心分離機の設置環境温度の温度変化に影響受けず安定した遠心分離運転が可能になる。   According to the first aspect of the present invention, the temperature sensor is provided in the low-temperature part and the high-temperature part of the cooling part of the oil diffusion vacuum pump, and the heater is controlled using the temperature difference, thereby relating to the ambient temperature of the centrifuge. This makes it possible to control the temperature of the oil diffusion vacuum pump. Further, a stable centrifugal operation can be performed without being affected by the temperature change of the installation environment temperature of the centrifuge.

請求項2の発明によれば、第1及び第2の温度センサは、筒状の冷却部外壁の上下方向に隔てた2箇所に設けられので、従来の構造から外壁部に温度センサを1つ追加するだけで、遠心分離機の周囲温度に関係なく油拡散真空ポンプの温度制御が可能になる。   According to the second aspect of the present invention, the first and second temperature sensors are provided at two locations separated from each other in the vertical direction of the outer wall of the cylindrical cooling unit, so that one temperature sensor is provided on the outer wall from the conventional structure. Only by adding, it becomes possible to control the temperature of the oil diffusion vacuum pump regardless of the ambient temperature of the centrifuge.

請求項3の発明によれば、冷却部の上下方向の略中央部には、径方向に延びる複数の冷却フィンが設けられ、第1の温度センサは冷却フィンよりも下側の冷却部外壁に設けられ、第2の温度センサは冷却フィンよりも上側の冷却部外壁に設けられるので、冷却フィンによる冷却作用が働く前と後の部分の温度を効果的に検出でき、第1及び第2の温度センサから十分な温度差を得られることができ、精度の良い温度管理を行うことができる。   According to the invention of claim 3, a plurality of cooling fins extending in the radial direction are provided at a substantially central portion in the vertical direction of the cooling section, and the first temperature sensor is provided on the cooling section outer wall below the cooling fin. Since the second temperature sensor is provided on the outer wall of the cooling unit above the cooling fin, the temperature of the part before and after the cooling action by the cooling fin can be detected effectively. A sufficient temperature difference can be obtained from the temperature sensor, and accurate temperature management can be performed.

請求項4の発明によれば、冷却部の上下方向の略中央部には、径方向に延びる複数の冷却フィンが設けられ、第1の温度センサは下側の冷却フィンに設けられ、第2の温度センサは上側の冷却フィンに設けられるので、筒状の冷却部外壁に温度センサを取り付けるのが難しい場合であっても、本願発明を実現することができる。   According to the invention of claim 4, a plurality of cooling fins extending in the radial direction are provided at a substantially central portion in the vertical direction of the cooling portion, the first temperature sensor is provided on the lower cooling fin, and the second Since the temperature sensor is provided on the upper cooling fin, the present invention can be realized even when it is difficult to attach the temperature sensor to the outer wall of the cylindrical cooling part.

請求項5の発明によれば、油拡散真空ポンプを起動してから第1及び第2の温度センサによる検出温度差が所定値に達するまでヒータへのフルパワーの通電をするので、最短時間で効率よく油拡散真空ポンプの拡散油を加熱することができ、短時間で回転室を高真空状態まで減圧できる。   According to the invention of claim 5, since the heater is energized with full power until the temperature difference detected by the first and second temperature sensors reaches a predetermined value after the oil diffusion vacuum pump is started, the shortest time is required. The diffusion oil of the oil diffusion vacuum pump can be efficiently heated, and the rotation chamber can be decompressed to a high vacuum state in a short time.

請求項6の発明によれば、検出温度差が所定値に保たれるようにヒータへの通電をフィードバック制御するので、遠心分離機の周囲温度が変動しても目標温度が変動せず、油の加熱停止やそれによる回転室内の圧力上昇が生じない制御を実現できる。   According to the sixth aspect of the present invention, since the energization to the heater is feedback controlled so that the detected temperature difference is maintained at a predetermined value, the target temperature does not vary even if the ambient temperature of the centrifuge varies, It is possible to realize the control that does not cause the heating stop and the pressure increase in the rotating chamber due to this.

請求項7の発明によれば、ヒータへの通電開始後一定時間が経過しても検出温度差が所定の温度差に達しない場合は、ヒータへの通電を中止させるので、油拡散真空ポンプの拡散油の量が必要量存在しない場合や、拡散油の劣化等による不具合を早期に発見することができる。   According to the seventh aspect of the present invention, when the detected temperature difference does not reach the predetermined temperature difference even after a certain time has elapsed after the start of energization to the heater, the energization to the heater is stopped. When the required amount of diffusion oil does not exist, problems due to deterioration of diffusion oil can be detected early.

請求項8の発明によれば、油拡散真空ポンプと直列に油回転真空ポンプを設け、回転室が第1の真空度まで到達したらロータを設定された回転数まで加速させるので、補助真空ポンプを用いて効率よく回転室を減圧することができる。   According to the eighth aspect of the present invention, the oil rotary vacuum pump is provided in series with the oil diffusion vacuum pump, and when the rotation chamber reaches the first vacuum degree, the rotor is accelerated to the set number of rotations. It is possible to efficiently depressurize the rotating chamber.

本発明の上記及び他の目的ならびに新規な特徴は、以下の明細書の記載及び図面から明らかになるであろう。   The above and other objects and novel features of the present invention will become apparent from the following description and drawings.

本発明の実施例に係る遠心分離機1の全体構成を示す図である。It is a figure which shows the whole structure of the centrifuge 1 which concerns on the Example of this invention. 図1の油拡散真空ポンプ5を示す全体構成図であり、左半分が側面図で示し、右半分を部分断面図で示している。It is a whole block diagram which shows the oil diffusion vacuum pump 5 of FIG. 1, The left half is shown with the side view, and the right half is shown with the fragmentary sectional view. 油拡散真空ポンプ5と油回転真空ポンプ4を稼働させた際の、経過時間と回転室3内の圧力との関係を示すグラフである。It is a graph which shows the relationship between elapsed time and the pressure in the rotation chamber 3 at the time of operating the oil diffusion vacuum pump 5 and the oil rotary vacuum pump 4. FIG. 油拡散真空ポンプ5を稼働させた際の温度センサ10と11による検出温度と経過時間の関係を示すグラフである。It is a graph which shows the relationship between the detection temperature by the temperature sensors 10 and 11 at the time of operating the oil diffusion vacuum pump 5, and elapsed time. 温度センサ10と11の温度差(Δt)と経過時間(min)の関係を示す図である。It is a figure which shows the relationship between the temperature difference ((DELTA) t) of the temperature sensors 10 and 11, and elapsed time (min). 図1で示した遠心分離機の温度センサ検知温度差と回転室圧力の測定例を示した特性図である。It is the characteristic view which showed the example of a measurement of the temperature sensor detection temperature difference and rotation chamber pressure of the centrifuge shown in FIG. 本発明の実施例に係る遠心分離機1の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the centrifuge 1 which concerns on the Example of this invention. 従来技術に係る遠心分離機101の全体構成を示す図である。It is a figure which shows the whole structure of the centrifuge 101 which concerns on a prior art.

以下、本発明の実施例を図面に基づいて説明する。なお、以下の図において、同一の部分には同一の符号を付し、繰り返しの説明は省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same portions are denoted by the same reference numerals, and repeated description is omitted.

図1は本発明に係る遠心分離機1の全体構成を示す図である。遠心分離機1は、試料を入れるロータ2と、ロータ2を回転させる駆動装置8と、ロータ2を収容する回転室3と、回転室3内を高真空まで減圧する油拡散真空ポンプ5と、油拡散真空ポンプ5を機能させるための補助真空ポンプとして作用する油回転真空ポンプ4と、回転室3と油拡散真空ポンプ5を結ぶ真空配管7と、油拡散真空ポンプ5と油回転真空ポンプ4を結ぶ真空配管6を含んで構成される。駆動装置8、油拡散真空ポンプ5、油回転真空ポンプ4は制御装置9により制御され、その制御装置9の操作するために操作部13が設けられる。また、制御装置9には、遠心分離機1の室温を測るための温度センサ14が設けられる。回転室3は図示しない開閉可能なドアにより密閉され、その状態で減圧される。回転室3の側面には回転室3内の圧力を測定する真空計12が設けられ、その出力は制御装置9に入力される。   FIG. 1 is a diagram showing the overall configuration of a centrifuge 1 according to the present invention. The centrifuge 1 includes a rotor 2 for putting a sample, a driving device 8 that rotates the rotor 2, a rotating chamber 3 that houses the rotor 2, an oil diffusion vacuum pump 5 that depressurizes the rotating chamber 3 to a high vacuum, An oil rotary vacuum pump 4 acting as an auxiliary vacuum pump for causing the oil diffusion vacuum pump 5 to function, a vacuum pipe 7 connecting the rotary chamber 3 and the oil diffusion vacuum pump 5, an oil diffusion vacuum pump 5 and an oil rotation vacuum pump 4 And a vacuum pipe 6 connecting the two. The drive device 8, the oil diffusion vacuum pump 5, and the oil rotary vacuum pump 4 are controlled by the control device 9, and an operation unit 13 is provided for operating the control device 9. Further, the control device 9 is provided with a temperature sensor 14 for measuring the room temperature of the centrifuge 1. The rotating chamber 3 is sealed by an openable / closable door (not shown) and decompressed in that state. A vacuum gauge 12 for measuring the pressure in the rotating chamber 3 is provided on the side surface of the rotating chamber 3, and its output is input to the control device 9.

油拡散真空ポンプ5は、大気圧から真空引きができないため、初めに油回転真空ポンプ4である程度の真空度まで真空引きをし、その後、油拡散真空ポンプ5が動作し、所定の真空度に到達するまで2つの真空ポンプを用いて回転室3を減圧する。油拡散真空ポンプ5は、オイルを貯留するボイラと、ボイラを加熱するヒータと、ボイラで気化したオイル分子を一定方向に噴射させるジェットと、気化したオイル分子を冷却して液化するための冷却筒とで構成される。油拡散真空ポンプ5の冷却筒56の高温側(ヒータ54に近い側)に温度センサ(第1の温度センサ)10を、低温側(ヒータ54から遠い側)に温度センサ(第2の温度センサ)11を設けた。   Since the oil diffusion vacuum pump 5 cannot be evacuated from the atmospheric pressure, the oil rotary vacuum pump 4 is first evacuated to a certain degree of vacuum, and then the oil diffusion vacuum pump 5 is operated to reach a predetermined degree of vacuum. The rotary chamber 3 is depressurized using two vacuum pumps until it reaches. The oil diffusion vacuum pump 5 includes a boiler for storing oil, a heater for heating the boiler, a jet for injecting oil molecules vaporized in the boiler in a certain direction, and a cooling cylinder for cooling and liquefying the vaporized oil molecules. It consists of. A temperature sensor (first temperature sensor) 10 is provided on the high temperature side (side near the heater 54) of the cooling cylinder 56 of the oil diffusion vacuum pump 5, and a temperature sensor (second temperature sensor) is provided on the low temperature side (side far from the heater 54). ) 11.

次に図2を用いて油拡散真空ポンプ5の原理を説明する。図2は図1の油拡散真空ポンプ5を示す全体構成図であり、左半分を側面図で示し、右半分を部分断面図で示している。油拡散真空ポンプ5は、油蒸気を発生させるボイラ51と、ボイラから上方に延びる煙突部52a、52bと、煙突部52a、52bの上方に設けられ油の蒸気を噴射するノズル55a、55bと、噴射された蒸気を凝縮させる冷却筒56を含んで構成される。ボイラ51には、中央内部に延在するように拡散油53を加熱するためのヒータ54が設けられ、ヒータ54のオンオフは制御装置9により制御される。ヒータ54には任意のヒータを用いることができるが、例えば、アルミ鋳込みヒータやカートリッジヒータを使用できる。冷却筒56は例えば円筒形であり、その壁部を冷却するために、外周壁に径方向に放射状に延びる複数の冷却用のフィン57が設けられる。尚、本実施例においては、フィン57からの放熱作用により冷却筒56を空気冷却しているが、図示されないファンで空気を吹き付けて冷やす強制空冷方式や、フィン57の代わりに水冷パイプを巻いて冷却する水冷方式を採用することも可能である。   Next, the principle of the oil diffusion vacuum pump 5 will be described with reference to FIG. FIG. 2 is an overall configuration diagram showing the oil diffusion vacuum pump 5 of FIG. 1, showing the left half as a side view and the right half as a partial cross-sectional view. The oil diffusion vacuum pump 5 includes a boiler 51 for generating oil vapor, chimney portions 52a and 52b extending upward from the boiler, nozzles 55a and 55b provided above the chimney portions 52a and 52b, and jetting oil vapor, A cooling cylinder 56 that condenses the injected steam is included. The boiler 51 is provided with a heater 54 for heating the diffusion oil 53 so as to extend inside the center, and on / off of the heater 54 is controlled by the control device 9. Although any heater can be used as the heater 54, for example, an aluminum cast heater or a cartridge heater can be used. The cooling cylinder 56 has, for example, a cylindrical shape, and a plurality of cooling fins 57 extending radially in the radial direction are provided on the outer peripheral wall in order to cool the wall portion. In this embodiment, the cooling cylinder 56 is air-cooled by the heat radiation action from the fins 57. However, a forced air cooling system in which air is blown and cooled by a fan (not shown), or a water-cooled pipe is wound instead of the fins 57. It is also possible to adopt a water cooling method for cooling.

制御装置9の制御によりヒータ54に通電が開始されると拡散油53が加熱され、加熱された拡散油53は蒸発(気化)し、煙突52a、52bの内部を上昇し、その上に設けられたノズル55a、55bから径方向外側かつ斜め下方向に超音速で噴出する。拡散油53の噴流に飛び込んだ空気等の気体分子は、油という運動量の大きい重い蒸気分子と衝突しボイラ51方向にはね飛ばされ、その結果としてボイラ51近傍に設けられた排出口59に流され、排出口59から排出される。排出口59には、真空配管6を介して油回転真空ポンプ4が直列に接続されるので、油回転真空ポンプ4によって空気の排出が効果的に補助される。一方、冷却筒56に達した超音速の油蒸気噴流は冷却筒56の内壁に衝突すると衝撃波を作って一度に圧力を回復し正常な蒸気状態にもどる。同時に冷却筒56の内壁と衝突することにより、ほとんどの蒸気が液化して落下し、ボイラ51の内部に戻る。これらを繰り返すことにより、油拡散真空ポンプ5は接続された回転室3の中を減圧(真空化)することができる。従って、油拡散真空ポンプ5には、油を加熱するヒータ54と、油蒸気噴流を正常な蒸気又は液状に戻す冷却筒56を設けて、加熱された拡散油が効率よく蒸発するように制御することが重要である。   When energization of the heater 54 is started by the control of the control device 9, the diffusion oil 53 is heated, and the heated diffusion oil 53 evaporates (vaporizes), rises inside the chimneys 52a and 52b, and is provided thereon. The nozzles 55a and 55b are ejected at a supersonic speed radially outward and obliquely downward. Gas molecules such as air that have jumped into the jet of the diffusion oil 53 collide with heavy vapor molecules having a large momentum of oil and are splashed in the direction of the boiler 51, and as a result, flow into the discharge port 59 provided in the vicinity of the boiler 51. And is discharged from the discharge port 59. Since the oil rotary vacuum pump 4 is connected in series to the discharge port 59 via the vacuum pipe 6, the oil rotary vacuum pump 4 effectively assists the discharge of air. On the other hand, when the supersonic oil vapor jet reaching the cooling cylinder 56 collides with the inner wall of the cooling cylinder 56, a shock wave is generated and the pressure is recovered at once to return to a normal vapor state. At the same time, by colliding with the inner wall of the cooling cylinder 56, most of the steam is liquefied and falls, and returns to the inside of the boiler 51. By repeating these steps, the oil diffusion vacuum pump 5 can depressurize (evacuate) the connected rotary chamber 3. Therefore, the oil diffusion vacuum pump 5 is provided with a heater 54 that heats the oil and a cooling cylinder 56 that returns the oil vapor jet to normal vapor or liquid, and controls the heated diffusion oil to evaporate efficiently. This is very important.

本願の発明者が上述した油拡散真空ポンプ5の運転制御において着目したのが、円筒形の冷却筒56のフィン57を挟んだ上下の温度差である。本実施例のよる油拡散真空ポンプ5では、冷却筒56の下側(ボイラ51に近い側)部分に温度センサ10を設け、さらに、冷却筒56の上側(反ボイラ51側)部分に温度センサ11を設けた。これらの温度センサ10、11の検出値をモニターすると、ヒータ54の通電時には拡散油53が満たされたボイラ51に近い温度センサ10の方が高い温度値を示す。また、フィン57による放熱作用により温度センサ11は、温度センサ10よりも低い温度値を示す。発明者は、これら温度センサ10、11の温度差は、室温(温度センサ14によって検出された温度)によらずにほぼ一定の関係となることを見いだした。この現象を以下説明する。   The inventors of the present application focused on the above-described operation control of the oil diffusion vacuum pump 5 in the temperature difference between the upper and lower sides sandwiching the fins 57 of the cylindrical cooling cylinder 56. In the oil diffusion vacuum pump 5 according to the present embodiment, the temperature sensor 10 is provided on the lower side (side closer to the boiler 51) of the cooling cylinder 56, and the temperature sensor is further provided on the upper side (counter boiler 51 side) of the cooling cylinder 56. 11 was provided. When the detection values of the temperature sensors 10 and 11 are monitored, the temperature sensor 10 close to the boiler 51 filled with the diffusion oil 53 exhibits a higher temperature value when the heater 54 is energized. Further, the temperature sensor 11 exhibits a temperature value lower than that of the temperature sensor 10 due to the heat radiation action by the fins 57. The inventor has found that the temperature difference between the temperature sensors 10 and 11 is substantially constant regardless of the room temperature (the temperature detected by the temperature sensor 14). This phenomenon will be described below.

図3は、油拡散真空ポンプ5と油回転真空ポンプ4を稼働させた際の、経過時間と回転室3内の圧力との関係を示すグラフである。実線31は室温(図1の温度センサ14で検出される温度)が35℃の時の状態であり、破線32は室温が25℃の時の状態であり、点線33は室温が15℃の時の状態であり、一点鎖線34は室温が5℃の時の状態である。本図から理解できるように、いずれの室温においても油拡散真空ポンプ5と油回転真空ポンプ4を稼働させた際に順調にほぼ同等に回転室3内の圧力が減圧され、室温に関係なく5分前後で、回転室3内の圧力が1.33Paに到達している。ある所定の気圧にまで減圧された後(時間t付近以降)に、室温によって減圧の変化が異なるが、この辺りの圧力が使用した圧力計(例えばピラニ真空計)の精度限界であったためである。発明者の実験によると、時間t付近ではピラニ真空計の表示値が、室温35℃の時は0.6Pa、室温25℃の時は0.4Pa、室温15℃の時は0.2Pa、室温5℃の時は0.0Paであった。このように発明者の実験により、室温に関係なく油拡散真空ポンプ5と油回転真空ポンプ4を稼働させた際の減圧状態が同等であることが判明した。 FIG. 3 is a graph showing the relationship between the elapsed time and the pressure in the rotating chamber 3 when the oil diffusion vacuum pump 5 and the oil rotary vacuum pump 4 are operated. A solid line 31 is a state when the room temperature (temperature detected by the temperature sensor 14 in FIG. 1) is 35 ° C., a broken line 32 is a state when the room temperature is 25 ° C., and a dotted line 33 is a state when the room temperature is 15 ° C. The one-dot chain line 34 is a state when the room temperature is 5 ° C. As can be understood from this figure, when the oil diffusion vacuum pump 5 and the oil rotary vacuum pump 4 are operated at any room temperature, the pressure in the rotary chamber 3 is reduced smoothly and equally, regardless of the room temperature. Around the minute, the pressure in the rotating chamber 3 reaches 1.33 Pa. After the pressure is reduced to a predetermined pressure (after the time t 1 ), the change in the pressure reduction varies depending on the room temperature. This is because the pressure around this was the accuracy limit of the pressure gauge used (for example, Pirani gauge). is there. According to the inventor's experiment, the display value of the Pirani gauge near the time t 1 is 0.6 Pa when the room temperature is 35 ° C., 0.4 Pa when the room temperature is 25 ° C., 0.2 Pa when the room temperature is 15 ° C., It was 0.0 Pa at room temperature of 5 ° C. As described above, the inventors' experiments have revealed that the reduced pressure state is the same when the oil diffusion vacuum pump 5 and the oil rotary vacuum pump 4 are operated regardless of the room temperature.

通常、遠心分離機1は空調装置の整った室内に配置されることが多いので、一定の温度下で動作することが多いが、空調装置が停止していた後のように温度変化が激しい状態で稼働させる場合もあり得る。例えば真夏の休日明けの朝のように、空調が十分働いておらずに遠心分離機1がおかれる外気温度(空調により制御される部分の気温)が高い状態で遠心分離機1の運転が開始された場合は、運転開始後に空調設備の稼働により徐々に外気温度と共に遠心分離機1の室温が下がってくる。従って、稼働後に時間t1だけ経過した頃には室温の変動もあり、従来の技術では、その室温の変化を考慮した制御をしないと適切な減圧状態の適切な管理ができない恐れがあった。同様に、真冬の休日明けの朝のような場合も同様な自体が起こりうる。このような短時間の室温の変化に対応するために発明者は、油拡散真空ポンプ5の温度差の生ずるさまざまな箇所に温度センサを設けて、それらの温度の関係等を検証した結果、図4のような事実を発見した。   Usually, since the centrifuge 1 is often placed in a room with an air conditioner, the centrifuge 1 often operates at a constant temperature, but the temperature change is severe as after the air conditioner has stopped. In some cases, it can be operated at For example, the operation of the centrifuge 1 is started in a state where the outside air temperature (the temperature of the part controlled by the air conditioner) is high because the air conditioner is not sufficiently operated and the centrifuge 1 is placed, as in the morning after a midsummer holiday. In such a case, the room temperature of the centrifuge 1 gradually decreases with the outside air temperature due to the operation of the air conditioning equipment after the start of operation. Accordingly, there is a change in the room temperature when the time t1 has passed after the operation, and in the conventional technology, there is a possibility that appropriate management of an appropriate reduced pressure state cannot be performed unless control is performed in consideration of the change in the room temperature. Similarly, the same situation can occur in the morning after a mid-winter holiday. In order to cope with such a short-time change in room temperature, the inventor has provided temperature sensors at various locations where the temperature difference of the oil diffusion vacuum pump 5 occurs, and as a result of verifying the relationship between those temperatures, FIG. I found a fact like 4.

図4は、油拡散真空ポンプ5を稼働させた際の温度センサ10と11による検出温度と経過時間の関係を示すグラフである。出力群39は温度センサ10によって検出された温度のグラフであり、実線35は室温(図1の温度センサ14で検出される温度)が35℃の時の状態であり、破線36は室温が25℃の時の状態であり、点線37は室温が15℃の時の状態であり、一点鎖線38は室温が5℃の時の状態である。一方、出力群45は温度センサ11によって検出された温度のグラフであり、実線41は室温(図1の温度センサ14で検出される温度)が35℃の時の状態であり、破線42は室温が25℃の時の状態であり、点線43は室温が15℃の時の状態であり、一点鎖線44は室温が5℃の時の状態である。   FIG. 4 is a graph showing the relationship between the temperature detected by the temperature sensors 10 and 11 and the elapsed time when the oil diffusion vacuum pump 5 is operated. The output group 39 is a graph of the temperature detected by the temperature sensor 10, the solid line 35 is the state when the room temperature (the temperature detected by the temperature sensor 14 in FIG. 1) is 35 ° C., and the broken line 36 is the room temperature 25 The dotted line 37 is the state when the room temperature is 15 ° C, and the alternate long and short dash line 38 is the state when the room temperature is 5 ° C. On the other hand, the output group 45 is a graph of the temperature detected by the temperature sensor 11, the solid line 41 is the state when the room temperature (the temperature detected by the temperature sensor 14 in FIG. 1) is 35 ° C., and the broken line 42 is the room temperature. Is a state when the room temperature is 15 ° C., and a one-dot chain line 44 is a state when the room temperature is 5 ° C.

本グラフをみて理解できることは、室温が上昇するにつれて温度センサ10と11のいずれもが矢印40や46に見られるように上昇することである。しかしながら、発明者はその上昇の度合いは温度センサ10と11の温度の差がほぼ同じように推移することを見いだした。この関係を検証するために再プロットしたのが図5のグラフである。図5は、温度センサ10と11の温度差(Δt)と経過時間(min)の関係を示す図である。油拡散真空ポンプ5を稼働させた直後には温度センサ10と11の温度差Δtはほぼゼロである。稼働後の時間経過と共に温度差が大きくなるが、図5から理解できるように、室温がいずれの場合であってもほぼ同じ温度差に落ち着くようになる。従って、これら2つの温度センサ10、11の出力差を用いて油拡散真空ポンプ5の制御を行えば、温度センサ14によって検出される室温を考慮することなく油拡散真空ポンプ5の制御を適切に行うことが可能となる。本実施例ではこの特性を利用して、温度センサ10と11の温度差Δtが目標値になるように油拡散真空ポンプ5の制御を行うものである。尚、本実施例の油拡散真空ポンプ5の制御では、温度センサ14によって検出される室温データを用いる必要はないが、室温データは図示しない冷却装置の制御等で用いられるので、遠心分離機1から温度センサ14を省くことは好ましくないものである。   What can be understood from this graph is that both the temperature sensors 10 and 11 rise as seen by arrows 40 and 46 as the room temperature rises. However, the inventor has found that the degree of the rise is almost the same as the temperature difference between the temperature sensors 10 and 11. The graph of FIG. 5 is re-plotted to verify this relationship. FIG. 5 is a diagram showing the relationship between the temperature difference (Δt) between the temperature sensors 10 and 11 and the elapsed time (min). Immediately after the oil diffusion vacuum pump 5 is operated, the temperature difference Δt between the temperature sensors 10 and 11 is almost zero. Although the temperature difference increases with the lapse of time after the operation, as can be understood from FIG. 5, the temperature difference is settled to be almost the same regardless of the room temperature. Therefore, if the oil diffusion vacuum pump 5 is controlled using the output difference between the two temperature sensors 10 and 11, the oil diffusion vacuum pump 5 is appropriately controlled without considering the room temperature detected by the temperature sensor 14. Can be done. In this embodiment, this characteristic is used to control the oil diffusion vacuum pump 5 so that the temperature difference Δt between the temperature sensors 10 and 11 becomes a target value. In the control of the oil diffusion vacuum pump 5 of the present embodiment, it is not necessary to use room temperature data detected by the temperature sensor 14, but the room temperature data is used for control of a cooling device (not shown) and the like. It is not preferable to omit the temperature sensor 14.

図6は遠心分離機1の温度センサ検知温度差分と回転室圧力の測定例を示した特性グラフある。このグラフでは、複数の測定値をとってその上限値65aと下限値65bをある範囲で示しており、その範囲を斜線65にて示している。図6に示すように、回転室3内をある圧力以下に減圧するためにはボイラ温度と冷却壁の間にある一定の温度差が必要である。例えば回転室3の内部の気圧を13.3Pa以下にするためにはT13.3以上の温度差が必要である。逆に、温度差ΔtがT13.3以上に到達している場合は回転室3の内部の気圧が13.3Pa以下に到達していることがわかる。同様にして、回転室3の内部の気圧を1.33Pa以下にするためには、T1.33以上の温度差が必要にする。このT1.33の際の温度差Δtは、例えば53度である。温度差ΔtがT1.33に到達した場合は、この温度差Δtを下回らないように油拡散真空ポンプ5を制御すればよいことになる。 FIG. 6 is a characteristic graph showing a measurement example of the temperature difference detected by the temperature sensor of the centrifuge 1 and the rotation chamber pressure. In this graph, a plurality of measured values are taken, and the upper limit value 65a and the lower limit value 65b are shown in a certain range, and the ranges are indicated by hatched lines 65. As shown in FIG. 6, a certain temperature difference between the boiler temperature and the cooling wall is necessary to reduce the pressure inside the rotary chamber 3 to a certain pressure or less. For example, a temperature difference of T 13.3 or more is necessary in order to make the pressure inside the rotating chamber 3 13.3 Pa or less. Conversely, when the temperature difference Δt has reached T 13.3 or more, it can be seen that the atmospheric pressure inside the rotating chamber 3 has reached 13.3 Pa or less. Similarly, in order to make the atmospheric pressure inside the rotation chamber 3 1.33 Pa or less, a temperature difference of T 1.33 or more is required. The temperature difference Δt at T 1.33 is, for example, 53 degrees. When the temperature difference Δt reaches T 1.33 , the oil diffusion vacuum pump 5 may be controlled so as not to fall below the temperature difference Δt.

発明者の実験によりこれらT13.3やT1.33の値は、油拡散真空ポンプの寸法構造が同じならば室温の変動によらずに、ほぼ一定の幅内に存在することが判明した。よって、冷却筒56のフィン57を挟んだボイラ51側と反ボイラ51側に温度センサ10と温度センサ11側を設置し、その2つの温度センサからの信号から温度差を読み取り、その温度差が所定の温度差となるようにヒータ54の温度をフィードバック制御することにより、遠心分離機1の置かれた環境の温度(設置温度)に関係なく安定した回転室3内の真空化が可能となる。 The inventors' experiments have shown that these T13.3 and T1.33 values are within a substantially constant range regardless of variations in room temperature if the dimensional structure of the oil diffusion vacuum pump is the same. . Therefore, the temperature sensor 10 and the temperature sensor 11 side are installed on the boiler 51 side and the anti-boiler 51 side across the fins 57 of the cooling cylinder 56, and the temperature difference is read from the signals from the two temperature sensors. By performing feedback control of the temperature of the heater 54 so as to achieve a predetermined temperature difference, it is possible to stably evacuate the rotating chamber 3 regardless of the temperature (installation temperature) of the environment where the centrifuge 1 is placed. .

次に、本発明の遠心分離機における油拡散真空ポンプ5の制御手順を図7に示すフローチャートを用いて説明する。まず、操作部13の運転開始を指示するスイッチを押すと(ステップ71)、運転開始信号が制御装置9に入力され、油回転真空ポンプ4の運転を開始し、回転室3内を減圧し始める。同時に油拡散真空ポンプ5のヒータ54がフルパワーで拡散油53を加熱し始める(ステップ72)。2つの真空ポンプの動作を開始させると、回転室3内の圧力(真空度)は、大気圧から徐々に低下する。一方、油拡散真空ポンプ5のヒータ54がONにされるため、時間の経過と共にボイラ51の温度が上昇する。油拡散真空ポンプ5が動作を始めるのには2つの条件があり、その一つは必要な背圧(臨界背圧)以下の真空度に達していることであり、もう一つはボイラの温度が一定値、即ち内部の油の沸騰温度に到達していることである。従って、油拡散真空ポンプ5が動作を始めるためには、早期にボイラ温度を十分加熱することが重要である。この時間は、例えば、当日最初に遠心分離機1を稼働させたときのように、油拡散真空ポンプ(DP)のボイラ温度が室温程度まで下がっているときは時間が長くなる。逆に、遠心分離動作を続けて行うときのように、直前の遠心分離動作によりボイラ温度が十分高いときは短くなる。   Next, the control procedure of the oil diffusion vacuum pump 5 in the centrifuge of the present invention will be described with reference to the flowchart shown in FIG. First, when a switch instructing the operation start of the operation unit 13 is pressed (step 71), an operation start signal is input to the control device 9, the operation of the oil rotary vacuum pump 4 is started, and the inside of the rotary chamber 3 is started to be depressurized. . At the same time, the heater 54 of the oil diffusion vacuum pump 5 begins to heat the diffusion oil 53 with full power (step 72). When the operations of the two vacuum pumps are started, the pressure (degree of vacuum) in the rotating chamber 3 gradually decreases from the atmospheric pressure. On the other hand, since the heater 54 of the oil diffusion vacuum pump 5 is turned on, the temperature of the boiler 51 rises with time. There are two conditions for the oil diffusion vacuum pump 5 to start operation, one of which is that the degree of vacuum is below the required back pressure (critical back pressure), and the other is the boiler temperature. Has reached a certain value, that is, the boiling temperature of the internal oil. Therefore, in order for the oil diffusion vacuum pump 5 to start operation, it is important to sufficiently heat the boiler temperature at an early stage. This time becomes longer when the boiler temperature of the oil diffusion vacuum pump (DP) is lowered to about room temperature, for example, when the centrifuge 1 is first operated on the day. On the contrary, when the boiler temperature is sufficiently high due to the immediately preceding centrifugal separation operation as in the case where the centrifugal separation operation is continuously performed, the time is shortened.

次に、駆動装置8を駆動してロータ2を低速にて回転開始させる(ステップ73)。ロータ2の回転は、真空計12により回転室3の内部がある程度減圧(例えば13.3Pa)されたことを確認した後に設定された高速回転まで増速される。また拡散油53が加熱され始めると、制御装置9による温度センサ10、11の温度検知と、ヒータ54への加熱時間のカウントを始める(ステップ74)。本実施例では、拡散油53は温度センサ10と11の検出値の差が所定の値になるまでヒータ54のフルパワーで加熱され、検出値の差が所定の範囲になるとヒータ54への通電はPIDフィードバック制御及びパルス幅制御により温度差がある一定の幅となるように制御される。このように拡散油53の加熱時にはフルパワーでヒータ54を動作させるので、最短時間で拡散油53を加熱することができる。   Next, the drive device 8 is driven to start the rotation of the rotor 2 at a low speed (step 73). The rotation of the rotor 2 is increased to the set high-speed rotation after confirming that the inside of the rotation chamber 3 is depressurized to some extent (for example, 13.3 Pa) by the vacuum gauge 12. When the diffusion oil 53 starts to be heated, temperature detection of the temperature sensors 10 and 11 by the control device 9 and counting of the heating time to the heater 54 are started (step 74). In this embodiment, the diffusion oil 53 is heated at the full power of the heater 54 until the difference between the detection values of the temperature sensors 10 and 11 reaches a predetermined value, and when the difference between the detection values reaches a predetermined range, the heater 54 is energized. Is controlled by PID feedback control and pulse width control so that the temperature difference has a certain width. Thus, since the heater 54 is operated with full power when the diffusion oil 53 is heated, the diffusion oil 53 can be heated in the shortest time.

次に、ヒータ54により拡散油53の加熱を開始して所定の時間が経過した否かを判定する(ステップ75)。所定の時間が経過しても所定の温度差が得られない場合は、拡散油53の量が必要量存在しないか、拡散油53の劣化等による不具合の発生が考えられる。従って、所定時間経過の場合は、操作部13においてエラー表示を行い(ステップ80)、ロータ2の回転を停止させるべくステップ80に進む。   Next, it is determined whether or not a predetermined time has elapsed since the heater 54 started heating the diffusion oil 53 (step 75). If the predetermined temperature difference cannot be obtained even after the predetermined time has elapsed, there is a possibility that the required amount of the diffusion oil 53 does not exist, or that a malfunction due to deterioration of the diffusion oil 53 occurs. Therefore, if the predetermined time has elapsed, an error is displayed on the operation unit 13 (step 80), and the process proceeds to step 80 to stop the rotation of the rotor 2.

ステップ75でヒータの加熱が所定時間経過していない場合は、温度センサ10と11で検出された温度差が所定値よりも小さいか否かを判定する(ステップ76)。ここで所定値には図6のT1.33で示す温度を設定すると良い。所定置としてT1.33を設定することにより、この温度差に到達するまでは回転室3の内部の気圧が1.33Paよりも高いことが間接的に判定できる。ステップ76で、温度センサ10と11で検出された温度差が所定値と等しくなった場合は、ヒータ54への加熱パワー100%の状態を継続したままステップ74に戻る(ステップ77)。ステップ76において温度センサ10と11で検出された温度差が所定値に到達した場合は、温度センサ10と11で検出された温度差が所定値と等しくなるようにヒータ54の通電を制御する(ステップ78)。この際、ヒータ54の制御のしかたは任意であるが、例えばPIDフィードバック制御やパルス幅制御に切り替えて、油の温度が所定位置を中心とした一定の範囲にとどまるように制御すれば良い。 If the heater has not been heated for a predetermined time in step 75, it is determined whether the temperature difference detected by the temperature sensors 10 and 11 is smaller than a predetermined value (step 76). Here, the temperature indicated by T1.33 in FIG. 6 may be set as the predetermined value. By setting T1.33 as the predetermined position, it can be indirectly determined that the pressure inside the rotating chamber 3 is higher than 1.33 Pa until this temperature difference is reached. When the temperature difference detected by the temperature sensors 10 and 11 becomes equal to the predetermined value in step 76, the process returns to step 74 while maintaining the state where the heating power to the heater 54 is 100% (step 77). When the temperature difference detected by the temperature sensors 10 and 11 reaches a predetermined value in step 76, the energization of the heater 54 is controlled so that the temperature difference detected by the temperature sensors 10 and 11 becomes equal to the predetermined value ( Step 78). At this time, the method of controlling the heater 54 is arbitrary, but for example, switching to PID feedback control or pulse width control may be performed so that the oil temperature stays within a certain range centered on a predetermined position.

次に、ロータ2が設定速度にて所定の時間(=遠心分離時間)だけ回転したか否かを判定し、経過していない場合はステップ78に戻り、経過した場合は遠心分離運転が終了したことを意味するのでステップ81に進む(ステップ79)。ステップ81では、駆動装置8の回転を停止させることによりロータ2の回転を停止させ(ステップ81)、操作部13の真空解除スイッチ(図示せず)が押されたら(ステップ82)、油拡散真空ポンプ5のヒータ54への通電を停止させることにより拡散油53の加熱を停止する(ステップ83)。同様にして、油回転真空ポンプ4の運転を停止させて(ステップ84)、回転室内に大気を入れるためにリークバルブ(図示せず)を開けて回転室3内を大気と同じ気圧に戻し、処理を終了する。   Next, it is determined whether or not the rotor 2 has rotated at a set speed for a predetermined time (= centrifugation time). If it has not elapsed, the process returns to step 78, and if it has elapsed, the centrifugation operation is terminated. This means that the process proceeds to step 81 (step 79). In step 81, the rotation of the drive device 8 is stopped to stop the rotation of the rotor 2 (step 81). When a vacuum release switch (not shown) of the operation unit 13 is pressed (step 82), the oil diffusion vacuum is performed. The heating of the diffusion oil 53 is stopped by stopping energization of the heater 54 of the pump 5 (step 83). Similarly, the operation of the oil rotary vacuum pump 4 is stopped (step 84), a leak valve (not shown) is opened to bring the atmosphere into the rotation chamber, and the inside of the rotation chamber 3 is returned to the same atmospheric pressure as the atmosphere. The process ends.

以上本発明の実施例によれば、油拡散真空ポンプの冷却部の低温部と高温部に温度センサを設け、その温度差を使用してヒータの制御することにより、遠心分離機の周囲温度に関係なく油拡散真空ポンプの温度制御が可能になった。また、遠心分離機の設置環境温度の温度変化に影響受けず安定した遠心分離運転が可能になった。   As described above, according to the embodiment of the present invention, the temperature sensor is provided in the low temperature part and the high temperature part of the cooling part of the oil diffusion vacuum pump, and the temperature difference is used to control the heater so that the ambient temperature of the centrifuge is adjusted. Regardless of the temperature, the oil diffusion vacuum pump can be controlled. In addition, a stable centrifuge operation is possible without being affected by the temperature change of the installation environment temperature of the centrifuge.

本実施例による効果を確認するために、発明者は遠心分離機1を恒温室に入れ室温を30℃から10℃へ毎分1℃ずつ下げていき、20℃の時点で遠心分離機1を動作させて室温低下時の回転室3内の圧力を測定した。従来の室温を基準とした油拡散真空ポンプ5の制御方法では、2回に1回の割合でヒータ温度上昇時から安定化時に回転室の圧力上昇が見られたが、本発明に基づく油拡散真空ポンプ5の冷却筒56の低温側温度センサ10と高温側温度センサ11による制御の場合は回転室3内の圧力上昇は見られなかった。これにより本発明による油拡散真空ポンプの制御方法が、室温の変化に影響されないことが確認できた。   In order to confirm the effect of the present embodiment, the inventor puts the centrifuge 1 in a constant temperature room and lowers the room temperature from 30 ° C. to 10 ° C. by 1 ° C. per minute. The pressure in the rotating chamber 3 when the room temperature was lowered was measured. In the conventional control method of the oil diffusion vacuum pump 5 based on the room temperature, the pressure of the rotating chamber was increased from the time when the heater temperature was increased to the time of stabilization at a rate of once every two times. In the case of control by the low temperature side temperature sensor 10 and the high temperature side temperature sensor 11 of the cooling cylinder 56 of the vacuum pump 5, no pressure increase in the rotating chamber 3 was observed. Thereby, it was confirmed that the control method of the oil diffusion vacuum pump according to the present invention is not affected by the change in room temperature.

以上、本発明を実施例に基づいて説明したが、本発明は上述の実施例に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の変更が可能である。例えば上述の実施例では油拡散真空ポンプ5で温度センサ10、11を設置する場所は、低温側の温度センサの位置はフィンや冷却筒による冷却効果が得られる位置なら比較的任意であり、高温側の温度センサをボイラにより近い位置に設けても良いし、ボイラの筐体に取り付けるのであっても良い。さらに、温度センサ10を図8の温度センサ110のように冷却用のフィンに取り付け、温度センサ11を冷却用のフィンのうちいちばん上のフィンに取り付けるようにしても良い。   As mentioned above, although this invention was demonstrated based on the Example, this invention is not limited to the above-mentioned Example, A various change is possible within the range which does not deviate from the meaning. For example, in the above-described embodiment, the location where the temperature sensors 10 and 11 are installed by the oil diffusion vacuum pump 5 is relatively arbitrary as long as the position of the temperature sensor on the low temperature side is a position where a cooling effect can be obtained by fins or cooling cylinders. The temperature sensor on the side may be provided at a position closer to the boiler, or may be attached to the boiler casing. Further, the temperature sensor 10 may be attached to a cooling fin like the temperature sensor 110 of FIG. 8, and the temperature sensor 11 may be attached to the uppermost fin among the cooling fins.

1 遠心分離機 2 ロータ 3 回転室
4 油回転真空ポンプ 5 油拡散真空ポンプ
6、7 真空配管 8 駆動装置 9 制御装置
10、11 温度センサ 12 真空計 13 操作部
14 温度センサ 51 ボイラ 52a、52b 煙突
53 拡散油 54 ヒータ 55a、55b ノズル
56 冷却筒 57 フィン 59 排出口
101 遠心分離機 102 ロータ 103 回転室
104 油回転真空ポンプ 105 油拡散真空ポンプ
106、107 真空配管 108 駆動装置
109 制御装置 110 温度センサ 112 真空計
113 操作部 114 温度センサ 154 ヒータ
1 Centrifuge 2 Rotor 3 Rotating chamber
DESCRIPTION OF SYMBOLS 4 Oil rotary vacuum pump 5 Oil diffusion vacuum pump 6, 7 Vacuum piping 8 Drive apparatus 9 Control apparatus 10, 11 Temperature sensor 12 Vacuum gauge 13 Operation part 14 Temperature sensor 51 Boiler 52a, 52b Chimney 53 Diffusion oil 54 Heater 55a, 55b Nozzle 56 Cooling cylinder 57 Fin 59 Discharge port 101 Centrifugal machine 102 Rotor 103 Rotating chamber 104 Oil rotary vacuum pump 105 Oil diffusion vacuum pump 106, 107 Vacuum piping 108 Drive device 109 Control device 110 Temperature sensor 112 Vacuum gauge 113 Operation unit 114 Temperature sensor 154 Heater

Claims (8)

駆動装置と、該駆動装置によって回転され試料を保持するロータと、該ロータを収容する回転室と、前記回転室内を所定の真空まで減圧する油拡散真空ポンプを有する遠心分離機において、
前記油拡散真空ポンプの拡散油の冷却部であって温度差の生ずる2箇所に第1及び第2の温度センサを設け、
前記第1及び第2の温度センサによる検出温度差を用いて前記油拡散真空ポンプのヒータへの通電を制御することを特徴とする遠心分離機。
In a centrifuge having a drive device, a rotor that is rotated by the drive device and holds a sample, a rotary chamber that houses the rotor, and an oil diffusion vacuum pump that depressurizes the rotary chamber to a predetermined vacuum,
First and second temperature sensors are provided at two locations in the oil diffusion vacuum pump where the temperature difference occurs in the cooling section of the diffusion oil,
The centrifugal separator characterized by controlling energization to the heater of the oil diffusion vacuum pump using the temperature difference detected by the first and second temperature sensors.
前記第1及び第2の温度センサは、筒状の前記冷却部外壁の上下方向に隔てた2箇所に設けられることを特徴とする請求項1に記載の遠心分離機。   2. The centrifugal separator according to claim 1, wherein the first and second temperature sensors are provided at two locations separated in a vertical direction of the outer wall of the cooling portion in a cylindrical shape. 前記冷却部の上下方向の略中央部には、径方向に延びる複数の冷却フィンが設けられ、
前記第1の温度センサは前記冷却フィンよりも下側の冷却部外壁に設けられ、前記第2の温度センサは前記冷却フィンよりも上側の冷却部外壁に設けられることを特徴とする請求項2に記載の遠心分離機。
A plurality of cooling fins extending in the radial direction are provided at a substantially central portion in the vertical direction of the cooling unit,
The first temperature sensor is provided on a cooling unit outer wall below the cooling fin, and the second temperature sensor is provided on a cooling unit outer wall above the cooling fin. The centrifuge described in 1.
前記冷却部の上下方向の略中央部には、径方向に延びる複数の冷却フィンが設けられ、
前記第1の温度センサは下側の前記冷却フィンに設けられ、前記第2の温度センサは上側の前記冷却フィンに設けられることを特徴とする請求項2に記載の遠心分離機。
A plurality of cooling fins extending in the radial direction are provided at a substantially central portion in the vertical direction of the cooling unit,
The centrifuge according to claim 2, wherein the first temperature sensor is provided in the lower cooling fin, and the second temperature sensor is provided in the upper cooling fin.
前記油拡散真空ポンプを起動してから前記第1及び第2の温度センサによる検出温度差が所定値に達するまで前記ヒータへのフルパワーの通電を行い、
前記検出温度差が所定値に達したら、前記ヒータへの通電を調整することにより前記検出温度差を所定値に保つように制御することを特徴とする請求項1から4のいずれか一項に記載の遠心分離機。
After starting the oil diffusion vacuum pump, energizing the heater with full power until the temperature difference detected by the first and second temperature sensors reaches a predetermined value,
5. The control according to claim 1, wherein when the detected temperature difference reaches a predetermined value, control is performed so as to maintain the detected temperature difference at a predetermined value by adjusting energization to the heater. The centrifuge described.
前記検出温度差が所定値に保たれるように前記ヒータへの通電をフィードバック制御することを特徴とする請求項5に記載の遠心分離機。   6. The centrifugal separator according to claim 5, wherein the energization to the heater is feedback controlled so that the detected temperature difference is maintained at a predetermined value. 前記ヒータへの通電開始後一定時間が経過しても、前記第1及び第2の温度センサによる検出温度差が所定の温度差に達しない場合は、前記ヒータへの通電を中止させることを特徴とする請求項6に記載の遠心分離機。   Even if a certain time has elapsed after the start of energization of the heater, if the temperature difference detected by the first and second temperature sensors does not reach a predetermined temperature difference, the energization of the heater is stopped. The centrifuge according to claim 6. 前記油拡散真空ポンプと直列に油回転真空ポンプを設け、
前記回転室が第1の真空度まで到達したら前記ロータを設定された回転数まで加速させることを特徴とする請求項1から7のいずれか一項に記載の遠心分離機。
An oil rotary vacuum pump is provided in series with the oil diffusion vacuum pump,
The centrifuge according to any one of claims 1 to 7, wherein when the rotation chamber reaches a first degree of vacuum, the rotor is accelerated to a set number of rotations.
JP2010104653A 2010-04-29 2010-04-29 centrifuge Expired - Fee Related JP5598076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104653A JP5598076B2 (en) 2010-04-29 2010-04-29 centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104653A JP5598076B2 (en) 2010-04-29 2010-04-29 centrifuge

Publications (2)

Publication Number Publication Date
JP2011230085A true JP2011230085A (en) 2011-11-17
JP5598076B2 JP5598076B2 (en) 2014-10-01

Family

ID=45319982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104653A Expired - Fee Related JP5598076B2 (en) 2010-04-29 2010-04-29 centrifuge

Country Status (1)

Country Link
JP (1) JP5598076B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110021332A1 (en) * 2009-07-27 2011-01-27 Hitachi Koki Co., Ltd. Centrifuge and control method thereof
US20130184140A1 (en) * 2012-01-18 2013-07-18 Hitachi Koki Co., Ltd. Centrifuge
CN103212491A (en) * 2012-01-24 2013-07-24 日立工机株式会社 Centrifuge
CN104259144A (en) * 2014-09-05 2015-01-07 天润曲轴股份有限公司 Disc part energy-saving oil removing machine
CN108339674A (en) * 2018-02-09 2018-07-31 刘伟 A kind of novel foodstuff enzyme preparation facilities
CN108889455A (en) * 2018-06-22 2018-11-27 黄媛容 A kind of orthopaedics control laboratory constant temperature centrifugal device
CN109078764A (en) * 2018-07-18 2018-12-25 无锡市瑞江分析仪器有限公司 A kind of radiator of centrifuge
CN111686949A (en) * 2020-07-16 2020-09-22 苏州创新通用色谱仪器有限公司 High-speed vacuum positioning centrifuge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149113A (en) * 2015-07-28 2015-12-16 伟本机电(上海)有限公司 Automatic oil removing equipment used for hydraulic valve body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138199U (en) * 1980-03-21 1981-10-19
JPS58124100A (en) * 1982-01-18 1983-07-23 Anelva Corp Method of confirming start of oil diffusion pump
JPS62188600U (en) * 1986-05-20 1987-12-01
JP2001104826A (en) * 1999-10-04 2001-04-17 Hitachi Koki Co Ltd Centrifugal separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138199U (en) * 1980-03-21 1981-10-19
JPS58124100A (en) * 1982-01-18 1983-07-23 Anelva Corp Method of confirming start of oil diffusion pump
JPS62188600U (en) * 1986-05-20 1987-12-01
JP2001104826A (en) * 1999-10-04 2001-04-17 Hitachi Koki Co Ltd Centrifugal separator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409068B2 (en) * 2009-07-27 2013-04-02 Hitachi Koki Co., Ltd. Centrifuge with vacuum pump and control method thereof
US20110021332A1 (en) * 2009-07-27 2011-01-27 Hitachi Koki Co., Ltd. Centrifuge and control method thereof
US20130184140A1 (en) * 2012-01-18 2013-07-18 Hitachi Koki Co., Ltd. Centrifuge
JP2013146667A (en) * 2012-01-18 2013-08-01 Hitachi Koki Co Ltd Centrifuge
US8852069B2 (en) * 2012-01-18 2014-10-07 Hitachi Koki Co., Ltd. Centrifuge with vacuum pump configured of auxiliary vacuum pump and oil diffusion pump
CN103212491B (en) * 2012-01-24 2017-03-01 日立工机株式会社 Centrifuge
CN103212491A (en) * 2012-01-24 2013-07-24 日立工机株式会社 Centrifuge
CN104259144A (en) * 2014-09-05 2015-01-07 天润曲轴股份有限公司 Disc part energy-saving oil removing machine
CN108339674A (en) * 2018-02-09 2018-07-31 刘伟 A kind of novel foodstuff enzyme preparation facilities
CN108339674B (en) * 2018-02-09 2019-03-08 江苏德邦多菱健康科技有限公司 A kind of novel foodstuff enzyme preparation facilities
CN108889455A (en) * 2018-06-22 2018-11-27 黄媛容 A kind of orthopaedics control laboratory constant temperature centrifugal device
CN109078764A (en) * 2018-07-18 2018-12-25 无锡市瑞江分析仪器有限公司 A kind of radiator of centrifuge
CN111686949A (en) * 2020-07-16 2020-09-22 苏州创新通用色谱仪器有限公司 High-speed vacuum positioning centrifuge

Also Published As

Publication number Publication date
JP5598076B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5598076B2 (en) centrifuge
JP6253464B2 (en) Cryopump and method for regenerating cryopump
JP5218857B2 (en) centrifuge
JP6287475B2 (en) Vacuum pump
US8800303B2 (en) Cold trap and cold trap regeneration method
US7963748B2 (en) Centrifugal air compressor
TWI609131B (en) A vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system
JP6375631B2 (en) Turbo molecular pump
JP2011085071A (en) Waste heat regeneration system
JP6339242B2 (en) Method for warming up or keeping warm of steam turbine
JP5028188B2 (en) Heat pump system and operation method thereof
KR20160119758A (en) Vacuum pump and heat insulating spacer used for said vacuum pump
JP2005083316A (en) Motor control system and vacuum pump mounting the same
JP5288114B2 (en) centrifuge
JP6119365B2 (en) Heat pump water heater
JP6151593B2 (en) Operation method of heat pump type concentrator
JP2017020688A (en) Heat pump type water heater
JP5854216B2 (en) centrifuge
CN108412561B (en) Heat energy recovery device
JP3870626B2 (en) centrifuge
JP2007278192A (en) Turbo-molecular pump
JP2003097500A (en) Operation method of oil diffusing pump and control device of oil diffusing pump and evacuation device and its control method
JP6208633B2 (en) Heat pump water heater
JP5569304B2 (en) Noise reduction device for start-up of water-sealed vacuum pump
KR102002066B1 (en) Improved Pumping Unit And Method For Controlling Such a Pumping Unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

R150 Certificate of patent or registration of utility model

Ref document number: 5598076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees