JP2011228607A - Method and device for increasing electromotive force of solar power generating panel - Google Patents

Method and device for increasing electromotive force of solar power generating panel Download PDF

Info

Publication number
JP2011228607A
JP2011228607A JP2010110615A JP2010110615A JP2011228607A JP 2011228607 A JP2011228607 A JP 2011228607A JP 2010110615 A JP2010110615 A JP 2010110615A JP 2010110615 A JP2010110615 A JP 2010110615A JP 2011228607 A JP2011228607 A JP 2011228607A
Authority
JP
Japan
Prior art keywords
photovoltaic
far
increasing
infrared region
power generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010110615A
Other languages
Japanese (ja)
Inventor
Hiroto Muneta
寛人 棟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANADA CO Ltd
Yamabishi Industry Co Ltd
Original Assignee
HANADA CO Ltd
Yamabishi Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANADA CO Ltd, Yamabishi Industry Co Ltd filed Critical HANADA CO Ltd
Priority to JP2010110615A priority Critical patent/JP2011228607A/en
Publication of JP2011228607A publication Critical patent/JP2011228607A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for increasing a photoelectromotive force of an inexpensive solar power generating panel with simple construction since a conventional solar power generating panel has a problem for popularization in low conversion efficiency for converting solar energy into electricity to be about 15% and in high cost as a photovoltaic power generation is noticed as an effective countermeasure for preventing global warming in recent years.SOLUTION: A sheet or a plate-like object such as an aluminum deposition sheet is irradiated with an electromagnetic wave of a far-infrared region, which is oscillated from a heated/compressed air with a prescribed pressure and temperature, a sodium complex where a plurality of carboxyl groups are set to be ligands, a metal and a ceramic, which are heated at a prescribed temperature. The solar power generating panel is irradiated with the electromagnetic wave radiated from the object under a prescribed temperature condition. Thus, the method and the device for inexpensively and easily increasing the photoelectromotive force of the solar power generating panel are provided.

Description

本発明は、5〜50テラヘルツの遠赤外線領域の共鳴電磁波を発振する天然石、金属、セラミック、加熱圧縮空気、金属錯体等から発振される電磁波を、太陽光発電パネルやその光起電材料であるシリコンインゴットやウエハーやセルや膜材に照射することにより、光起電半導体の電子を励起し開放電圧と短絡電流を高め、結果として起電力を大幅に高める方法と装置を提供する。  The present invention is a photovoltaic power generation panel and a photovoltaic material thereof for generating electromagnetic waves oscillated from natural stone, metal, ceramic, heated compressed air, metal complexes, etc. that oscillate resonance electromagnetic waves in the far infrared region of 5 to 50 terahertz. By irradiating a silicon ingot, a wafer, a cell, or a film material, an electron of a photovoltaic semiconductor is excited to increase an open-circuit voltage and a short-circuit current, and as a result, a method and an apparatus for greatly increasing electromotive force are provided.

近年、遠赤外線領域の電磁波を利用した商品や応用技術が数多く開発されているが、効果の安定性や均一性に問題があるものがほとんどである。その主な理由として遠赤外線領域電磁波の発生源や周波数が特定されておらず、また現在の技術レベルでその周波数や効果を定量的に解析することが難しいためと考えられる。  In recent years, many products and applied technologies using electromagnetic waves in the far infrared region have been developed, but most of them have problems in stability and uniformity of effects. The main reason for this is that the source and frequency of electromagnetic waves in the far-infrared region are not specified, and it is difficult to quantitatively analyze the frequency and effect at the current technical level.

また一方で、生命体やDNA二重螺旋構造、超伝導エネルギーギャップ、固体中の電子の散乱等の重要な現象に遠赤外線領域の電磁波が深い関係を持っているとされているが、電子デバイスとしての利用可能な上限周波数以上であり、水に対しての吸収性が大きい事から利用困難な未開拓領域とされてきた。近年になり、100ギガヘルツから100テラヘルツの遠赤外線領域の共鳴電磁波を利用した各種製品や装置が提案され始めている。(例えば特願2006−298315号参照)
特開2006−298315
On the other hand, it is said that electromagnetic waves in the far-infrared region are deeply related to important phenomena such as life forms, DNA double helix structure, superconducting energy gap, and scattering of electrons in solids. It has been considered as an unexplored area that is difficult to use because it is above the upper limit frequency that can be used and has high water absorption. In recent years, various products and devices using resonance electromagnetic waves in the far infrared region from 100 gigahertz to 100 terahertz have been proposed. (For example, see Japanese Patent Application No. 2006-298315)
JP 2006-298315 A

近年、地球温暖化防止の有効な対策として太陽光発電が注目されている。しかし太陽エネルギーを電気に変換する変換効率が、現在の技術レベルでは、15%程度と低く、太陽光発電パネルが高価であることが、広く普及するための問題点となっている。  In recent years, photovoltaic power generation has attracted attention as an effective measure for preventing global warming. However, the conversion efficiency for converting solar energy into electricity is as low as about 15% at the current technical level, and the fact that solar panels are expensive is a problem for widespread use.

また、太陽光発電パネルの光起電用半導体の電子を励起する可能性のある遠赤外線領域の電磁波を放射する方法として、30℃から250℃の範囲内の適当な温度及び1気圧から10気圧の範囲内の適当な圧力の加熱圧縮空気により、遠赤外線領域の電磁波を放射する装置も開発されているが、装置が大型で高価なためと遠赤外線領域の電磁波の発振源が高温空気であるため遠赤外線領域の電磁波を照射する装置としての汎用性に問題があった。  Further, as a method of emitting electromagnetic waves in the far infrared region that may excite the electrons of the photovoltaic semiconductor of the photovoltaic power generation panel, an appropriate temperature within the range of 30 ° C. to 250 ° C. and 1 atm to 10 atm. A device that emits electromagnetic waves in the far-infrared region using heated compressed air with an appropriate pressure within the range of the above-mentioned range has been developed, but because the device is large and expensive, the oscillation source of electromagnetic waves in the far-infrared region is hot air Therefore, there was a problem in versatility as a device for irradiating electromagnetic waves in the far infrared region.

また、金属イオンに配位子と呼ばれる分子やイオンを結合している金属錯体の中には、機能錯体と呼ばれて、遠赤外線領域の電磁波を吸収または発振するものもあるが、対象物体に含浸または塗布する必要があり、物体種類が限定されたり、処理工程が複雑化したり、安定して持続的に遠赤外線領域の電磁波を放射することに問題があった。  In addition, some metal complexes that bind molecules or ions called ligands to metal ions are called functional complexes that absorb or oscillate electromagnetic waves in the far-infrared region. It is necessary to impregnate or apply, and there are problems in that the types of objects are limited, the processing steps are complicated, and electromagnetic waves in the far infrared region are stably and continuously emitted.

このような課題を解決するために本発明者は、地球の表面積の70%が水に覆われ、人体の60%以上が水で構成されていることに着目し、水に共鳴共振する遠赤外線領域の電磁波を発振する物体を研究した。一つの方法として、30℃〜250℃で1気圧〜10気圧の加熱圧縮空気を2時間以上放射したアルミ蒸着シートを、通常の水道水の入った容器に密着させ2時間以上放置したところ、当該シートから発振される遠赤外線領域の電磁波で、通常の水道水が活性化され、PHが2ポイント程度上昇し、酸化還元電位が還元側になり、溶存酸素が増えることを見出し、本発明をなすに至った。また、複数のカルボキシル基を配位子とするナトリューム錯体水溶液を塗布しアルミ蒸着シートを、通常の水道水の入った容器に密着させ、2時間以上放置することにより、前述の効果と同様の効果が得られることも発見した。  In order to solve such a problem, the present inventor paid attention to the fact that 70% of the surface area of the earth is covered with water and 60% or more of the human body is composed of water, and far infrared rays that resonate and resonate with water. We studied objects that oscillate electromagnetic waves in the region. As one method, when an aluminum vapor-deposited sheet irradiated with heated compressed air of 1 to 10 atmospheres at 30 to 250 ° C. for 2 hours or more is closely attached to a container containing ordinary tap water and left for 2 hours or more, The electromagnetic wave in the far-infrared region oscillated from the sheet activates normal tap water, raises the PH by about 2 points, finds that the redox potential is on the reduction side, and increases dissolved oxygen. It came to. Also, by applying an aqueous solution of sodium complex having a plurality of carboxyl groups as ligands, the aluminum vapor-deposited sheet is brought into close contact with a container containing ordinary tap water, and left for 2 hours or more, thereby achieving the same effect as described above. I also found that

すなわち、本発明では、5〜50テラヘルツの遠赤外線領域の電磁波を発振する加熱圧縮空気やナトリューム錯体水溶液や天然石の周辺に、アルミニュームや銅のような自由電子の多い高伝導素材やガラスのように非晶質または結晶構造の不安定な物質や水素結合を含む分子構造を有する物質や炭素原子を構造の基本骨格に持つ化合物質を配し、30℃〜250℃の範囲で周辺温度を制御することにより、当該物質が5〜50テラヘルツの遠赤外線領域の電磁波と共鳴共振し、当該物質自身から5〜50テラヘルツの遠赤外線領域の電磁波を発振する遠赤外線領域の電磁波の発振体が得られる。  That is, in the present invention, a high-conductivity material such as aluminum or copper or a high-conductivity material with many free electrons, such as glass, around heated compressed air that oscillates electromagnetic waves in the far-infrared region of 5 to 50 terahertz, a sodium complex aqueous solution, or natural stone An amorphous or unstable substance of crystal structure, a substance having a molecular structure containing hydrogen bonds, or a compound having a carbon atom in the basic skeleton of the structure is arranged, and the ambient temperature is controlled in the range of 30 ° C to 250 ° C. As a result, the substance resonates with an electromagnetic wave in the far-infrared region of 5 to 50 terahertz, and an oscillator of an electromagnetic wave in the far-infrared region that oscillates the electromagnetic wave in the far-infrared region of 5 to 50 terahertz is obtained from the substance itself. .

上記のように5〜50テラヘルツの遠赤外線領域の電磁波を一定時間、規定の温度条件下で照射された上記物質から放射される電磁波を放射された物質を、通常の水道水の入った容器に2〜4時間密着放置すると、当該物質から放射された共鳴電磁波で水の水素結合の電子が励起され水中に放出され水の酸化還元電位を還元側になることが確認された。また水中に放出された電子は、空気中にも放出され、空気中の窒素の外郭に取り込まれ、その結果、窒素がマイナスイオン化して活性化される。  As described above, electromagnetic waves in the far infrared region of 5 to 50 terahertz are radiated from the above substances irradiated under a specified temperature condition for a certain period of time. It was confirmed that, when left in contact for 2 to 4 hours, electrons of hydrogen bonds in water were excited by the resonance electromagnetic wave radiated from the substance and released into water, and the redox potential of water became the reduction side. The electrons released into the water are also released into the air and taken into the outline of nitrogen in the air. As a result, the nitrogen is negatively ionized and activated.

また、5〜50テラヘルツの遠赤外線領域の電磁波で水素結合を切り離された単分子化した水は、水分子間の空隙が微細化され、水分子間に安定して、大量に酸素が溶存されることが確認されている。  In addition, monomolecular water in which hydrogen bonds are separated by electromagnetic waves in the far-infrared region of 5 to 50 terahertz has fine pores between water molecules, and stable, large amounts of oxygen are dissolved between water molecules. It has been confirmed that

さらに、5〜50テラヘルツの遠赤外線領域の電磁波で励起された電子を受け取ることによりマイナスイオン化した窒素は水素結合が分離して空気中に存在する水素イオンと結合しアミノ基(NH基)となり、水に溶解して水のPHを上昇させることが確認されている。  Furthermore, nitrogen ionized negatively by receiving electrons excited by electromagnetic waves in the far-infrared region of 5 to 50 terahertz is separated into hydrogen bonds and combined with hydrogen ions present in the air to become amino groups (NH groups). It has been confirmed that it dissolves in water and raises the pH of water.

また以上のように、本発明によれば、太陽光発電パネルの光起電半導体材料の電子を励起し起電力を増加するための遠赤外線領域の電磁波を放射するアルミ蒸着シート等の自由電子の多いシートや板状材料を、水を媒体としてPHや溶存酸素量や酸化還元電位を測定することにより一定品質で製造することが可能となる。  Further, as described above, according to the present invention, free electrons such as an aluminum vapor deposition sheet that emits electromagnetic waves in the far infrared region for exciting the electrons of the photovoltaic semiconductor material of the photovoltaic power generation panel and increasing the electromotive force can be obtained. A large number of sheets and plate-like materials can be produced with a constant quality by measuring PH, the amount of dissolved oxygen and the oxidation-reduction potential using water as a medium.

本発明によれば、効果が明確で持続性の高い5〜50テラヘルツの遠赤外線領域の電磁波を放射する太陽光発電パネルの起電力増加方法と装置を低コストで、大量に提供できる。  According to the present invention, it is possible to provide a large amount of an electromotive force increasing method and apparatus for a photovoltaic power generation panel that emits electromagnetic waves in the far-infrared region of 5 to 50 terahertz that have a clear effect and high durability.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は、遠赤外線領域の電磁波を他の物体に転写する方式の概念を示す。
図2は、遠赤外線領域の電磁波をソーラーパネルに照射する装置の概念の縦断面を示す。
図3は、図2のA矢視を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows the concept of a system for transferring electromagnetic waves in the far infrared region to another object.
FIG. 2 shows a longitudinal section of the concept of an apparatus for irradiating a solar panel with electromagnetic waves in the far infrared region.
FIG. 3 shows an A arrow view of FIG.

図1に示すように、遠赤外線領域の電磁波を発振源から他の物体に転写する方式において、30℃〜250℃で1〜10気圧の加熱圧縮空気や複数のカルボキシル基を配位子とするナトリューム錯体や30℃〜250℃で処理された高伝導金属や天然石のように5〜50テラヘルツの遠赤外線領域の電磁波2を発振する発振源を第1次発振源1とし、当該第1次発振源1から発振される5〜50テラヘルツの遠赤外線領域の第1次遠赤外線電磁波2を、第1次受振及び第2次共鳴電磁波発振体3に2〜4時間程度照射する。  As shown in FIG. 1, in a method of transferring electromagnetic waves in the far-infrared region from an oscillation source to another object, heated compressed air of 1 to 10 atm or a plurality of carboxyl groups at 30 ° C. to 250 ° C. is used as a ligand. An oscillation source that oscillates electromagnetic waves 2 in the far-infrared region of 5 to 50 terahertz, such as a sodium complex, a high-conductivity metal processed at 30 ° C. to 250 ° C., or natural stone, is a primary oscillation source 1, and the primary oscillation The primary far-infrared electromagnetic wave 2 oscillated from the source 1 in the far-infrared region of 5 to 50 terahertz is irradiated to the primary vibration receiving and secondary resonant electromagnetic wave oscillator 3 for about 2 to 4 hours.

当該電磁波2を照射された当該第1次受振及び第2共鳴電磁波次発振体3から5〜50テラヘルツの遠赤外線領域の第2次共鳴電磁波4が放射される。  A secondary resonance electromagnetic wave 4 in the far-infrared region of 5 to 50 terahertz is emitted from the primary vibration receiving and second resonance electromagnetic wave secondary oscillator 3 irradiated with the electromagnetic wave 2.

当該第2次共鳴電磁波4を第2次受振及び第3次共鳴電磁波発振体5に、2〜4時間照射することにより、5〜50テラヘルツの固有振動数を有するアルミニュームや銅のような自由電子の多い高伝導素材やガラスのように非晶質または結晶構造の不安定な物質や水素結合を含む分子構造を有する物質や炭素原子を構造の基本骨格に持つ化合物質のような共鳴電磁波発振材5の分子の軌道を回る電子や格子の振動が共振励起され、様々な遠赤外線効果を発揮するようになる。  By irradiating the second resonance electromagnetic wave 4 to the second vibration receiving and third resonance electromagnetic wave oscillator 5 for 2 to 4 hours, a free frequency such as aluminum or copper having a natural frequency of 5 to 50 terahertz is obtained. Resonant electromagnetic oscillation such as highly conductive materials with many electrons, materials that are amorphous or unstable in crystal structure, such as glass, materials that have a molecular structure containing hydrogen bonds, and compounds that have carbon atoms in the basic skeleton of the structure Vibrations of electrons and lattices traveling around the molecular orbit of the material 5 are resonantly excited, and various far infrared effects are exhibited.

具体的には、図2及び図3に示すように、第1次受振及び第2次共鳴電磁波発振体3として、アルミ蒸着シートのように自由電子を多く有するシートまたは板状の共鳴電磁波照射シート31を太陽光発電パネル51に密着するようにして配置し、当該シート31から放射される5〜50テラヘルツの遠赤外線領域の電磁波を当該パネル51に2〜24時間照射する。  Specifically, as shown in FIGS. 2 and 3, as the primary vibration receiving and secondary resonance electromagnetic wave oscillator 3, a sheet having a large number of free electrons such as an aluminum vapor deposition sheet or a plate-like resonance electromagnetic wave irradiation sheet. 31 is arranged in close contact with the photovoltaic power generation panel 51, and the panel 51 is irradiated with electromagnetic waves in the far infrared region of 5 to 50 terahertz emitted from the sheet 31 for 2 to 24 hours.

当該シート31の上には30℃〜250℃の温度調節が可能な面ヒーター12が設けられていて、5〜50テラヘルツの遠赤外線領域の共鳴電磁波を当該パネル51に効率良く放射できる。  A surface heater 12 capable of adjusting the temperature of 30 ° C. to 250 ° C. is provided on the sheet 31 and can radiate resonance electromagnetic waves in the far infrared region of 5 to 50 terahertz to the panel 51 efficiently.

当該シート31の基材として5〜50テラヘルツの固有振動数を有するアルミニュームや銅のような自由電子の多い高伝導素材やガラスのように非晶質または結晶構造の不安定な物質や水素結合を含む分子構造を有する物質や炭素原子を構造の基本骨格に持つ化合物質が考えられるが、本発明では、コストや使いやすさを配慮して主にアルミ蒸着シートを使用している。  The base material of the sheet 31 is a highly conductive material with many free electrons such as aluminum or copper having a natural frequency of 5 to 50 terahertz, or an amorphous or unstable crystal structure material such as glass or hydrogen bonding. Although a substance having a molecular structure including a chemical substance having a carbon atom in the basic skeleton of the structure can be considered, in the present invention, an aluminum vapor deposition sheet is mainly used in consideration of cost and ease of use.

当該シート31に密着して、太陽光発電パネル51やその光起電半導体材料を配置し、面ヒーター21の温度を材質や大きさに合わせて調節して、当該シート31から発振される5〜50テラヘルツの遠赤外線領域の電磁波を2〜4時間照射する。  The solar power generation panel 51 and its photovoltaic semiconductor material are arranged in close contact with the sheet 31, and the temperature of the surface heater 21 is adjusted according to the material and size to be oscillated from the sheet 31. Irradiate electromagnetic waves in the far-infrared region of 50 terahertz for 2 to 4 hours.

当該電磁波を規定時間照射された当該パネル51は、シリコン等の光起電材料の分子の軌道を回る電子が励起され、軌道から飛び出る。当該軌道から飛び出た電子は高速で光起電半導体材料中を移動し、光起電の電圧を高める。  The panel 51 that has been irradiated with the electromagnetic wave for a specified time is excited by electrons that travel around the molecular orbit of a photovoltaic material such as silicon, and jumps out of the orbit. The electrons flying out of the orbit move at high speed in the photovoltaic semiconductor material and increase the voltage of the photovoltaic.

また遠赤外線領域の電磁波で共鳴励起され光起電材料の分子の軌道から飛び出た電子は、光起電半導体材料中の他の分子や原子と衝突する回数が増え、その衝突エネルギーにより当該分子や原子の軌道を飛び出す電子量が相乗的に増加し、禁制帯を飛び越えて自由電子となり、光起電の電流を増加させる。  Electrons that are resonantly excited by electromagnetic waves in the far-infrared region and jump out of the orbit of molecules in the photovoltaic material have a higher number of collisions with other molecules and atoms in the photovoltaic semiconductor material, and the collision energy increases the number of The amount of electrons that jump out of the orbit of atoms increases synergistically, jumps over the forbidden band and becomes free electrons, increasing the photovoltaic current.

尚、すでに屋外に設置されている太陽光発電パネルを、設置されたままの状態で、本発明による起電力増加方法を処置する場合には、防水処理された養生シート11により面ヒーター21を覆い、太陽光発電パネルに遠赤外線領域の電磁波を照射すると良い。  In the case where the photovoltaic power generation panel already installed outdoors is installed and the electromotive force increasing method according to the present invention is treated, the surface heater 21 is covered with the waterproof curing sheet 11. The solar power generation panel may be irradiated with electromagnetic waves in the far infrared region.

2009年の12月から2010年の2月にかけて、冬の快晴時を選び下表の単結晶シリコン、多結晶シリコン、アモルファスシリコンの3種類の太陽光発電モジュール5枚に、本発明による遠赤外線領域電磁波の照射方法により24時間、5〜50テラヘルツの電磁波を規定温度条件下で照射した後、当該パネルを太陽光に正対させて実際の光起電力を計測した。

Figure 2011228607
From December 2009 to February 2010, select the best weather in winter. The far-infrared region according to the present invention is applied to five types of photovoltaic modules of monocrystalline silicon, polycrystalline silicon and amorphous silicon shown in the table below. After irradiating an electromagnetic wave of 5 to 50 terahertz under a specified temperature condition for 24 hours by an electromagnetic wave irradiation method, the panel was directly opposed to sunlight and an actual photovoltaic power was measured.
Figure 2011228607

上記の計測結果を下表に示す。下表に述記するFIRは、本発明の方法にて照射される遠赤外線領域の電磁波を示し、単結晶、多結晶、アモルファスシリコンの太陽光発電パネルすべてで、当該電磁波の照射により、17%から28%の起電力の増加がみられている。

Figure 2011228607
The measurement results are shown in the table below. The FIR described in the table below indicates electromagnetic waves in the far-infrared region irradiated by the method of the present invention. All of the single-crystal, polycrystalline, and amorphous silicon photovoltaic power generation panels are 17% by irradiation with the electromagnetic waves. As a result, an increase in electromotive force of 28% is observed.
Figure 2011228607

産業上の利用可能な分野Industrially available fields

本発明は、太陽光発電パネルの生産工程で原材料、半加工品、完成品のいかなる段階でも対応出来るばかりでなく、すでに据え付けられ稼動中の太陽光発電パネルの起電力増加にも利用できる。  The present invention can be applied not only to any stage of raw materials, semi-processed products, and finished products in the production process of photovoltaic panels, but also to increase the electromotive force of photovoltaic panels that are already installed and in operation.

は、遠赤外線領域の電磁波を他の物体に照射する方式の概念を示す。Shows the concept of a method of irradiating other objects with electromagnetic waves in the far infrared region. は、遠赤外線領域の電磁波をソーラーパネルに照射する装置の概念の縦断面を示す。These show the longitudinal cross-section of the concept of the apparatus which irradiates the electromagnetic wave of a far infrared region to a solar panel. は、図2のA矢視を示す。Shows the A arrow view of FIG.

1 第1次発振源
2 第1次遠赤外線電磁波
3 第1次受振及び第2次共鳴電磁波発振体
4 第2次共鳴電磁波
5 第2次受振及び第3次共鳴電磁波発振体
6 第3次共鳴電磁波
11 養生カバー
21 面ヒーター
31 共鳴電磁波照射シート
51 太陽光発電パネル
DESCRIPTION OF SYMBOLS 1 1st oscillation source 2 1st primary far-infrared electromagnetic wave 3 1st receiving and 2nd resonance electromagnetic wave oscillator 4 2nd resonance electromagnetic wave 5 2nd receiving and 3rd resonance electromagnetic wave oscillator 6 3rd resonance Electromagnetic wave 11 Curing cover 21 Surface heater 31 Resonance electromagnetic wave irradiation sheet 51 Solar power generation panel

Claims (5)

特定の物体から発振される規定の周波数の遠赤外線領域の電磁波を、一定時間、一定温度条件下で太陽光発電パネルまたはその光起電材料に照射することにより、当該太陽光発電パネルやその光起電材料の分子の軌道を回る電子を励起し、当該太陽光発電パネルや光起電材料の起電力を高めることを特徴とする光起電力増加方法と装置。  By irradiating a far-infrared electromagnetic wave of a specified frequency oscillated from a specific object to the photovoltaic panel or its photovoltaic material for a certain period of time under a certain temperature condition, the photovoltaic panel or its light A method and apparatus for increasing photovoltaic power, which excites electrons traveling around the molecular orbital of the photovoltaic material to increase the electromotive force of the photovoltaic panel or photovoltaic material. 請求項1に記載の特定の物体を、30℃〜250℃で1〜10気圧の加熱圧縮空気や複数のカルボキシル基を配位子とするナトリューム錯体や30℃〜250℃で処理された高伝導金属や天然石から放射される電磁波を照射された高電導材料やガラスのように非晶質または結晶構造の不安定な材料や水素結合を含む分子構造を有する物質や炭素原子を基本骨格に持つ化合物質とすることを特徴とする光起電力増加方法と装置。  The specific object according to claim 1 is heated at 30 ° C. to 250 ° C. at 1 to 10 atmospheres of heated compressed air, a sodium complex having a plurality of carboxyl groups as a ligand, or high conductivity treated at 30 ° C. to 250 ° C. Highly conductive materials irradiated with electromagnetic waves radiated from metals and natural stones, amorphous materials such as glass, unstable materials such as glass, materials with molecular structures containing hydrogen bonds, and compounds with carbon atoms in the basic skeleton Photovoltaic increase method and apparatus characterized by 請求項1に記載の遠赤外線領域の共鳴電磁波の規定の周波数を5〜50テラヘルツとすることを特徴とする光起電力増加方法と装置。  A method and an apparatus for increasing photovoltaic power, wherein the prescribed frequency of resonant electromagnetic waves in the far infrared region according to claim 1 is set to 5 to 50 terahertz. 請求項1に記載の一定時間を2時間以上とすることを特徴とする光起電力増加方法と装置。  2. The photovoltaic power increasing method and apparatus according to claim 1, wherein the predetermined time is 2 hours or more. 請求項1に記載の一定温度を30℃〜250℃とすることを特徴とする光起電力増加方法と装置。  The method and apparatus for increasing photovoltaic power, characterized in that the constant temperature according to claim 1 is set to 30 ° C to 250 ° C.
JP2010110615A 2010-04-21 2010-04-21 Method and device for increasing electromotive force of solar power generating panel Pending JP2011228607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110615A JP2011228607A (en) 2010-04-21 2010-04-21 Method and device for increasing electromotive force of solar power generating panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110615A JP2011228607A (en) 2010-04-21 2010-04-21 Method and device for increasing electromotive force of solar power generating panel

Publications (1)

Publication Number Publication Date
JP2011228607A true JP2011228607A (en) 2011-11-10

Family

ID=45043604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110615A Pending JP2011228607A (en) 2010-04-21 2010-04-21 Method and device for increasing electromotive force of solar power generating panel

Country Status (1)

Country Link
JP (1) JP2011228607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045812A (en) * 2011-08-22 2013-03-04 Fujifilm Corp Organic electroluminescent element, material for the same, and light-emitting device, display device and luminaire using the same
CN106505264A (en) * 2017-01-05 2017-03-15 梁伟 A kind of simple method and high-effect battery durable patch for efficiently improving chargeable battery endurance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045812A (en) * 2011-08-22 2013-03-04 Fujifilm Corp Organic electroluminescent element, material for the same, and light-emitting device, display device and luminaire using the same
CN106505264A (en) * 2017-01-05 2017-03-15 梁伟 A kind of simple method and high-effect battery durable patch for efficiently improving chargeable battery endurance

Similar Documents

Publication Publication Date Title
Wu et al. Enhanced pyroelectric catalysis of BaTiO3 nanowires for utilizing waste heat in pollution treatment
Jin et al. Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis
Zeng et al. Fabrication of pn heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties
Bai et al. Universal synthesis of single-phase pyrite FeS2 nanoparticles, nanowires, and nanosheets
Chen et al. Doped semiconductor nanomaterials
Van et al. Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement
Zhu et al. A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation
Liu et al. Development of a Seedless Floating Growth Process in Solution for Synthesis of Crystalline ZnO Micro/Nanowire Arrays on Graphene: Towards High‐Performance Nanohybrid Ultraviolet Photodetectors
Xie et al. Phosphate-bridged TiO2–BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting
Rathi et al. Tin-catalyzed plasma-assisted growth of silicon nanowires
US9738529B2 (en) Method to reduce CO2 to CO using plasmon-enhanced photocatalysis
Li et al. In situ growth of α-Fe 2 O 3@ Co 3 O 4 core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction
CN105824138A (en) Light-operated terahertz modulator based on graphene/silicon-doped compound double-layer structure
JP2011120854A (en) Oscillating and transferring device of resonant electromagnetic wave in far-infrared region
Wang et al. Surface density of cobalt single atoms manipulating hydroxyl radical generation via dual pathways: Electrons supply and active sites
Wang et al. Functionalized biomass-derived composites for solar vapor generation
Li et al. Perovskite Cs3Bi2I9 hexagonal prisms with ordered geometry for enhanced photocatalytic hydrogen evolution
Long et al. Surface-state-mediated interfacial charge dynamics between carbon dots and ZnO toward highly promoting photocatalytic activity
Lee et al. Biocatalyzed artificial photosynthesis by hydrogen-terminated silicon nanowires
JP2011228607A (en) Method and device for increasing electromotive force of solar power generating panel
Su et al. Sponge‐Supported Reduced Graphene Oxides Enable Synergetic Photothermal and Electrothermal Conversion for Water Purification Coupling Hydrogen Peroxide Production
Sengunthar et al. Core–shell hybrid structured rGO decorated ZnO nanorods synthesized via a facile chemical route with photosensitive properties
Smerdov et al. Nanostructured porous silicon and graphene-based materials for PETE electrode synthesys
Zhu et al. BN bonds between SrBi2B2O7 and humic acid composites enhance polarized electric field for efficient piezocatalytic degradation of oxytetracycline in water
CN104843769B (en) By the controlled method preparing indium sulfide ultra-thin two-dimension nano material of metal ion and the purposes of this material