JP2011228356A - Light source unit - Google Patents

Light source unit Download PDF

Info

Publication number
JP2011228356A
JP2011228356A JP2010094301A JP2010094301A JP2011228356A JP 2011228356 A JP2011228356 A JP 2011228356A JP 2010094301 A JP2010094301 A JP 2010094301A JP 2010094301 A JP2010094301 A JP 2010094301A JP 2011228356 A JP2011228356 A JP 2011228356A
Authority
JP
Japan
Prior art keywords
light emitting
light
substrate
emitting diode
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010094301A
Other languages
Japanese (ja)
Inventor
Hiroshi Imamura
博司 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010094301A priority Critical patent/JP2011228356A/en
Publication of JP2011228356A publication Critical patent/JP2011228356A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light source unit which can improve the color mixability while securing the heat dispersion efficiency.SOLUTION: A light source unit 1 has two LED devices 2 different in light color. Each LED device 2 has a substrate 3, and a light emitting part 4 which is formed on a mount face 30 of the substrate 3, and which emits light when brought into conduction. The substrate 3 has a main body part 31 provided with the light emitting part 4, and a heat sink part 32 extending from the main body part 31 along the mount face 30, and having an area equal to or larger than that of the light-emitting part 4 when viewed from a direction orthogonal to the mount face 30. The main body parts 31 of the substrates 3 abut on each other by the two LED devices 2. Thanks to the heat sink part 32, the heat dispersion efficiency can be secured, and the color mixability can be improved by making the distance between the light-emitting parts 4 smaller in comparison to the case where the main body parts 31 do not abut on each other.

Description

本発明は、複数色の発光ダイオード素子を用いた光源装置に関するものである。   The present invention relates to a light source device using light emitting diode elements of a plurality of colors.

従来から、複数色の発光ダイオード素子を用い、これら複数色の混色により所望の光色を得る光源装置が提供されている(例えば、特許文献1参照)。   Conventionally, there has been provided a light source device that uses light emitting diode elements of a plurality of colors and obtains a desired light color by mixing these plurality of colors (for example, see Patent Document 1).

ここで、各発光ダイオード素子は、それぞれ、基板と、基板上に形成されて通電されて発光する発光部とを有する。   Here, each light emitting diode element has a board | substrate and the light emission part which is formed on a board | substrate and is lighted and is light-emitted.

特開2007−265818号公報JP 2007-265818 A

上記のような光源装置において、混色性を改善する方法としては、各発光部をそれぞれ覆い各発光部の光をそれぞれ拡散させる拡散部材を設けるという方法と、発光部間の距離を小さくするという方法とが考えられる。   In the light source device as described above, as a method of improving the color mixing property, a method of providing a diffusing member that covers each light emitting unit and diffuses light of each light emitting unit, and a method of reducing a distance between the light emitting units You could think so.

しかし、拡散部材を使用する場合、拡散部材中での光の吸収や、発光部の内側への光の反射などにより、ロスが増加してしまい、この結果、効率が5%〜20%低下してしまう。   However, when a diffusing member is used, loss increases due to absorption of light in the diffusing member or reflection of light to the inside of the light emitting portion, and as a result, the efficiency decreases by 5% to 20%. End up.

一方、発光部間の距離を小さくするという方法であれば、上記のようなロスの増加を発生させることなく混色性を改善することができる。   On the other hand, if the method is to reduce the distance between the light emitting portions, the color mixing property can be improved without causing the increase in loss as described above.

しかしながら、発光部間の距離を小さくする配置を可能とするために、各発光ダイオード素子の基板の面積をそれぞれ発光部の面積程度まで小さくすると、基板の熱容量の低下により放熱性が低下してしまう。   However, if the area of the substrate of each light-emitting diode element is reduced to about the area of the light-emitting part in order to enable the arrangement to reduce the distance between the light-emitting parts, the heat dissipation is reduced due to the reduction of the heat capacity of the substrate. .

本発明は、上記事由に鑑みて為されたものであり、その目的は、放熱性を確保しつつも混色性を改善することができる光源装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a light source device that can improve color mixing while ensuring heat dissipation.

本発明の光源装置は、それぞれ光色が異なる発光ダイオード素子を少なくとも2個含む複数個の発光ダイオード素子を備える光源装置であって、前記各発光ダイオード素子は、それぞれ、基板と、前記基板の実装面上に形成されて通電されることにより発光する発光部とを有し、前記各発光ダイオード素子において、それぞれ、前記基板は、前記発光部が設けられた本体部と、前記実装面に沿って前記本体部から延設され前記実装面に直交する方向から見て前記発光部以上の面積を有するヒートシンク部とを有し、前記各発光ダイオード素子について、それぞれ、前記本体部は、他の全ての前記各発光ダイオード素子の前記本体部に当接していることを特徴とする。   The light source device of the present invention is a light source device including a plurality of light emitting diode elements each including at least two light emitting diode elements having different light colors, and each of the light emitting diode elements includes a substrate and a mounting of the substrate. A light emitting portion that is formed on a surface and emits light when energized, and in each of the light emitting diode elements, the substrate includes a main body portion on which the light emitting portion is provided, and the mounting surface. A heat sink portion extending from the main body portion and having an area equal to or larger than the light emitting portion when viewed from a direction orthogonal to the mounting surface, and for each of the light emitting diode elements, the main body portion includes all other The light emitting diode element is in contact with the main body of each light emitting diode element.

この光源装置において、全ての前記発光ダイオード素子の前記発光部を覆い前記各発光ダイオード素子の光を配光するレンズを備えることが望ましい。   The light source device preferably includes a lens that covers the light emitting portions of all the light emitting diode elements and distributes the light of each light emitting diode element.

さらに、前記レンズは、透光性を有する材料からなる基質と、前記基質よりも熱伝導率が高い材料からなり前記基質中に分散された微粒子とを有することが望ましい。   Furthermore, the lens preferably includes a substrate made of a light-transmitting material and fine particles made of a material having a higher thermal conductivity than the substrate and dispersed in the substrate.

本発明によれば、ヒートシンク部により放熱性を確保することができ、また、本体部同士を当接させない場合に比べ、発光部間の距離を小さくして混色性を改善することができる。   According to the present invention, heat dissipation can be ensured by the heat sink portion, and the color mixing property can be improved by reducing the distance between the light emitting portions as compared with the case where the main body portions are not brought into contact with each other.

本発明の実施形態を示す斜視図である。It is a perspective view which shows embodiment of this invention. 同上における発光ダイオード素子を示す斜視図である。It is a perspective view which shows the light emitting diode element in the same as the above. 同上の変更例における発光ダイオード素子を示す斜視図である。It is a perspective view which shows the light emitting diode element in the example of a change same as the above. 図3の発光ダイオード素子で構成された光源装置を示す斜視図である。It is a perspective view which shows the light source device comprised by the light emitting diode element of FIG. 同上の別の変更例における発光ダイオード素子を示す斜視図である。It is a perspective view which shows the light emitting diode element in another modified example same as the above. 図5の発光ダイオード素子で構成された光源装置を示す平面図である。It is a top view which shows the light source device comprised by the light emitting diode element of FIG. 同上の更に別の変更例における発光ダイオード素子を示す斜視図である。It is a perspective view which shows the light emitting diode element in another modified example same as the above. 同上の別の変更例における発光ダイオード素子を示す斜視図である。It is a perspective view which shows the light emitting diode element in another modified example same as the above. 同上の更に別の変更例における発光ダイオード素子を示す斜視図である。It is a perspective view which shows the light emitting diode element in another modified example same as the above. 同上の別の変更例を示す斜視図である。It is a perspective view which shows another example of a change same as the above. 同上の更に別の変更例を示す斜視図である。It is a perspective view which shows another example of a change same as the above. 同上の別の変更例を示す平面図である。It is a top view which shows another example of a change same as the above.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1に示すように、本実施形態の光源装置1は、互いに光色が異なる2個の発光ダイオード素子2からなる。   As shown in FIG. 1, the light source device 1 of the present embodiment includes two light emitting diode elements 2 having different light colors.

各発光ダイオード素子2は、それぞれ、図2に示すように、長方形の平板状の基板3と、基板3の厚さ方向の一面(図での上面。以下、「実装面」と呼ぶ。)30上に形成されて通電されることにより発光する発光部4とを備える。発光部4は、通電されることにより光を発生させる発光層41と、発光層41を覆い発光層41の光色を変換する蛍光体層42とを有する。また、各発光ダイオード素子2は、それぞれ、例えば金属のような導電材料からなり発光層41に電気的に接続されるとともに基板3の長手方向の一端ずつから突出する形で基板3に保持された2個の給電端子5を備える。給電端子5と発光層41との電気的接続は、基板3に設けられた導電パターン(図示せず)を介して達成されていてもよいし、ワイヤボンディングで達成されていてもよい。   As shown in FIG. 2, each light-emitting diode element 2 has a rectangular flat plate substrate 3 and one surface in the thickness direction of the substrate 3 (upper surface in the figure; hereinafter referred to as “mounting surface”) 30. And a light emitting unit 4 that emits light when energized. The light emitting unit 4 includes a light emitting layer 41 that generates light when energized, and a phosphor layer 42 that covers the light emitting layer 41 and converts the light color of the light emitting layer 41. Each of the light emitting diode elements 2 is made of a conductive material such as metal and is electrically connected to the light emitting layer 41 and held on the substrate 3 so as to protrude from one end in the longitudinal direction of the substrate 3. Two power supply terminals 5 are provided. The electrical connection between the power supply terminal 5 and the light emitting layer 41 may be achieved through a conductive pattern (not shown) provided on the substrate 3 or may be achieved by wire bonding.

基板3の材料としては、熱伝導率が高い材料が用いられることが望ましく、例えば、アルミナや、窒化アルミや、アルミナフィラー入りの熱硬化性樹脂を用いることができる。また、一般に金属材料は絶縁材料に比べて熱伝導率が高いので、例えば銅板のような金属板(図示せず)上に例えば窒化アルミのような絶縁材料からなる絶縁層(図示せず)が設けられてなりこの絶縁層上に発光部4が形成される基板3や、絶縁材料中に金属材料が埋め込まれたような構造の基板3のように、金属材料が適宜組み合わされた基板3を用いれば、絶縁材料のみで構成された基板3を用いる場合に比べて放熱性の向上が可能である。上記のような各種の基板3はいずれも周知技術で実現可能であるので、詳細な図示並びに説明は省略する。基板3の寸法は、例えば、長手方向の全長が5.0mmであり、短手方向の全長が2.4mmであり、厚さ寸法が0.8mmである。   As the material of the substrate 3, it is desirable to use a material having high thermal conductivity. For example, alumina, aluminum nitride, or a thermosetting resin containing an alumina filler can be used. In general, since a metal material has a higher thermal conductivity than an insulating material, an insulating layer (not shown) made of an insulating material such as aluminum nitride is formed on a metal plate (not shown) such as a copper plate. A substrate 3 in which metal materials are appropriately combined, such as a substrate 3 on which the light emitting portion 4 is formed on the insulating layer and a substrate 3 having a structure in which a metal material is embedded in an insulating material, is provided. If used, the heat dissipation can be improved as compared with the case where the substrate 3 made of only an insulating material is used. Since all of the various substrates 3 as described above can be realized by a well-known technique, detailed illustration and description are omitted. The dimensions of the substrate 3 are, for example, a total length in the longitudinal direction of 5.0 mm, a total length in the short direction of 2.4 mm, and a thickness dimension of 0.8 mm.

蛍光体層42の材料としては、緑色の光への変換を行うCSO蛍光体や、黄色の光への変換を行うYAG蛍光体や、赤色の光への変換を行うSCASN蛍光体や、深赤色の光への変換を行うCASN蛍光体などを用いることができる。発光層41が例えばGaNからなり青色光又は紫外光を発生させる場合、上記のような各種の蛍光体を適宜の組み合わせ及び比率で混合して用いることにより、例えば、色温度7000Kを超える昼光色、色温度5000K前後の昼白色、色温度4200K前後の白色、色温度3200K以下の電球色といった色を実現することができる。   Examples of the material of the phosphor layer 42 include a CSO phosphor that converts green light, a YAG phosphor that converts yellow light, a SCASN phosphor that converts red light, and a deep red color. For example, a CASN phosphor that converts light into light can be used. When the light emitting layer 41 is made of, for example, GaN and generates blue light or ultraviolet light, for example, a daylight color having a color temperature exceeding 7000K, a color can be obtained by using various phosphors as described above in an appropriate combination and ratio. Colors such as daylight white at a temperature of about 5000K, white at a color temperature of about 4200K, and a light bulb color at a color temperature of 3200K or less can be realized.

なお、上記のような蛍光体を用いず発光層41の光をそのまま放射する発光ダイオード素子2と、発光部4が蛍光体層42を有する発光ダイオード素子2とを混在させる場合、これらの発光ダイオード素子2間で配光特性を揃えるために、発光層41の光をそのまま放射する発光ダイオード素子2においても、蛍光体層42と同程度に発光層41の光を拡散させる拡散層(図示せず)を蛍光体層42に代えて設けることが望ましい。上記のような拡散層は、例えば、発光層41の光を通過させる基質中に、平均粒径数μmの球状シリカを分散させたもので構成することができる。   In addition, when the light emitting diode element 2 that directly emits the light of the light emitting layer 41 without using the phosphor as described above and the light emitting diode element 2 having the phosphor layer 42 in the light emitting portion 4 are mixed, these light emitting diodes are used. In order to make the light distribution characteristics uniform between the elements 2, also in the light emitting diode element 2 that emits the light of the light emitting layer 41 as it is, a diffusion layer (not shown) that diffuses the light of the light emitting layer 41 to the same extent as the phosphor layer 42. ) Is preferably provided in place of the phosphor layer 42. The diffusion layer as described above can be constituted, for example, by dispersing spherical silica having an average particle diameter of several μm in a substrate through which light from the light emitting layer 41 passes.

ここで、発光部4は、基板3の実装面30の短手方向の一端であって長手方向の中央部に形成され、基板3の厚さ方向から見ると発光部4は各辺がそれぞれ基板3の辺に平行な正方形状とされている。   Here, the light emitting unit 4 is formed at one end in the short direction of the mounting surface 30 of the substrate 3 and at the center in the longitudinal direction. When viewed from the thickness direction of the substrate 3, each side of the light emitting unit 4 is a substrate. It is a square shape parallel to the three sides.

さらに、基板3の実装面30の短手方向の他端と発光部4との距離、並びに、基板3の実装面30の長手方向の両端と発光部4との距離は、それぞれ、発光部4の寸法(すなわち上記の正方形状の一辺の長さ)よりも大きくされている。つまり、基板3において厚さ方向から見て発光部4に重なる部位とその近傍部位が本体部31であり、本体部31以外のコ字形状の部位がヒートシンク部32である。なお、本体部31は、基板3の厚さ方向から見て発光部4に完全に重なる部位だけでなく、実装面30の端と発光部4と間の領域であって既存の発光部4と同じ寸法形状の発光部を配置することができない程度に狭い領域に重なる部位をも含むものとする。   Furthermore, the distance between the other end in the short direction of the mounting surface 30 of the substrate 3 and the light emitting unit 4 and the distance between the both ends in the longitudinal direction of the mounting surface 30 of the substrate 3 and the light emitting unit 4 are respectively (That is, the length of one side of the square shape). That is, the portion of the substrate 3 that overlaps the light-emitting portion 4 when viewed from the thickness direction and the vicinity thereof are the main body portion 31, and the U-shaped portion other than the main body portion 31 is the heat sink portion 32. The main body 31 is not only a part that completely overlaps the light emitting unit 4 when viewed from the thickness direction of the substrate 3, but is a region between the end of the mounting surface 30 and the light emitting unit 4 and the existing light emitting unit 4. It also includes a portion that overlaps an area that is so narrow that a light emitting portion having the same size and shape cannot be arranged.

そして、2個の発光ダイオード素子2は、実装面30を互いに同じ方向に向けて互いの実装面30を同一平面上に位置させつつ、本体部31同士を互いに当接させて互いに一体化されている。上記のように2個の発光ダイオード素子2が一体化された状態では、基板3の厚さ方向から見て2個の発光部4及び本体部31がヒートシンク部32に囲まれた形となる。上記の一体化は、例えば接着剤によって基板3同士を互いに接着することで行われる。発光部4は発光時に発熱するので、上記の接着剤としては例えば無機接着剤やシリコーン樹脂といった耐熱性の高いものを用いることが望ましい。   The two light emitting diode elements 2 are integrated with each other by bringing the main body portions 31 into contact with each other while the mounting surfaces 30 are positioned in the same plane with the mounting surfaces 30 facing in the same direction. Yes. When the two light emitting diode elements 2 are integrated as described above, the two light emitting portions 4 and the main body portion 31 are surrounded by the heat sink portion 32 when viewed from the thickness direction of the substrate 3. The above integration is performed by bonding the substrates 3 to each other with an adhesive, for example. Since the light emitting section 4 generates heat during light emission, it is desirable to use a highly heat-resistant material such as an inorganic adhesive or a silicone resin as the adhesive.

そして、発光部4の光の色温度が互いに異なる発光ダイオード素子2同士を一体化させた光源装置1においては、個々の発光部4の光の色温度の中間の色温度を混色により実現することができる。さらに、各発光部4への入力電流の調整により発光部4間の光出力の比率を適宜調整することで、全体としての色温度を、一方の発光部4の色温度から他方の発光部4の色温度までの範囲内で調整することもできる。   In the light source device 1 in which the light emitting diode elements 2 having different light color temperatures of the light emitting units 4 are integrated, a color temperature intermediate between the light color temperatures of the individual light emitting units 4 is realized by color mixing. Can do. Further, by appropriately adjusting the ratio of the light output between the light emitting units 4 by adjusting the input current to each light emitting unit 4, the overall color temperature is changed from the color temperature of one light emitting unit 4 to the other light emitting unit 4. It is also possible to adjust within the range up to the color temperature.

上記構成によれば、例えば各発光ダイオード素子2でそれぞれヒートシンク部32が本体部31の全周にわたって設けられる場合のように、本体部31同士を当接させない場合に比べ、発光部4間の距離を小さくして光むらを低減することができる。また、ヒートシンク部32を設けない場合に比べ、放熱性を改善することができる。   According to the above configuration, for example, the distance between the light emitting units 4 as compared with the case where the main body portions 31 are not brought into contact with each other as in the case where the heat sink portions 32 are provided over the entire circumference of the main body portion 31 in each light emitting diode element 2. Can be reduced to reduce light unevenness. Moreover, heat dissipation can be improved compared with the case where the heat sink part 32 is not provided.

ここで、基板3の形状や給電端子5の配置は上記に限られず、例えば、図3に示すように本体部31の一方側にのみヒートシンク部32を設けてもよい。図3の例における基板3の寸法は、例えば、長手方向の全長が2.4mmであり、短手方向の全長が1.3mmであり、厚さ寸法が0.8mmである。図3の例では各給電端子5はそれぞれヒートシンク部32において本体部31に対し反対側の端面から突出している。この場合、2個の発光ダイオード素子2は、図4に示すように、本体部31においてヒートシンク部32に対し反対側の端面同士を互いに当接させる形で一体化される。上記構成を採用すれば、図1及び図3の例では各基板3の面積が発光部4の面積の6倍以上となるのに対し、図3及び図4の例では各基板3がそれぞれ例えば発光部4の2倍程度の面積といったように小型化されるので、図1及び図2の例に比べ、ヒートシンク部32の熱容量は低下するものの、材料費の削減による製造コストの低減や、コンパクト化が可能となる。   Here, the shape of the substrate 3 and the arrangement of the power supply terminals 5 are not limited to the above. For example, the heat sink portion 32 may be provided only on one side of the main body portion 31 as shown in FIG. The dimensions of the substrate 3 in the example of FIG. 3 are, for example, a total length in the longitudinal direction of 2.4 mm, a total length in the short direction of 1.3 mm, and a thickness dimension of 0.8 mm. In the example of FIG. 3, each power supply terminal 5 protrudes from the end surface opposite to the main body 31 in the heat sink 32. In this case, as shown in FIG. 4, the two light emitting diode elements 2 are integrated in such a manner that the opposite end surfaces of the main body 31 with respect to the heat sink 32 are brought into contact with each other. If the above configuration is adopted, the area of each substrate 3 in the example of FIGS. 1 and 3 is 6 times or more than the area of the light emitting section 4, whereas each of the substrates 3 in the example of FIGS. Since the area is about twice as large as that of the light emitting unit 4, the heat capacity of the heat sink unit 32 is lower than that of the example of FIGS. 1 and 2, but the manufacturing cost can be reduced by reducing the material cost, and the size can be reduced. Can be realized.

さらに、光源装置1を3個の発光ダイオード素子2で構成し、各発光部4の光色を赤、青、緑といった光の三原色のうちの一色ずつとすれば、各発光部4の光出力の調整により多様な光色を実現可能となる。なお、青色の光は、例えば青色の光を発生させる発光層41により実現可能なほか、紫外光を発生させる発光層41と紫外光を青色光に変換するBAM蛍光体からなる蛍光体層42との組み合わせによっても実現することができる。上記のように3個の発光ダイオード素子2を用いる場合、図4の例に対し発光ダイオード素子2を1個追加し、この発光ダイオード素子2の基板3の長手方向の端面であって本体部31側の端面を他の2個の発光ダイオード素子2の基板3の本体部31に当接させ、全体としてT字形状となるような配置としてもよいが、図5及び図6に示すような構成を採用してもよい。図5及び図6の例では、各発光ダイオード素子2において、それぞれ、基板3の長手方向の端面であって本体部31側の端面が、それぞれ実装面30に直交する平面であって互いに120°の角をなす2個の当接面31aで構成された凸面形状とされている。図5の例において、基板3の寸法は、例えば、図3での左右方向の全長が2.8mmであり、図3での上下方向での全長が1.3mmであり、厚さ寸法が0.8mmである。そして、3個の発光ダイオード素子2は、実装面30を互いに同じ方向へ向けて同一平面上に位置させる形で、各当接面31aをそれぞれ他の1個ずつの発光ダイオード素子2の当接面31aに当接させて一体化されている。また、発光部4は、基板3の厚さ方向から見て、一方の対角線を基板3の長手方向(すなわち本体部31とヒートシンク部32とが並ぶ方向)に平行とし、一個の角を基板3の当接面31a間の角の近傍に位置させている。図5及び図6のように互いに共通の構造を有する3個の発光ダイオード素子2を3回回転対称な配置とすれば、3個の発光ダイオード素子2の間で発光部4の放熱の条件を揃えることができる。上記のように発光ダイオード素子2を3個備える場合においては、2個の発光ダイオード素子2で発光部4の光色を互いに共通とし、残り1個の発光ダイオード素子2でのみ発光部4の光色を他の2個の発光ダイオード素子2と異ならせてもよい。   Furthermore, if the light source device 1 is composed of three light emitting diode elements 2 and the light color of each light emitting unit 4 is one of the three primary colors of light such as red, blue and green, the light output of each light emitting unit 4 Various light colors can be realized by adjusting this. The blue light can be realized by, for example, the light emitting layer 41 that generates blue light, the light emitting layer 41 that generates ultraviolet light, and the phosphor layer 42 made of a BAM phosphor that converts ultraviolet light into blue light. It can also be realized by a combination of the above. When three light emitting diode elements 2 are used as described above, one light emitting diode element 2 is added to the example of FIG. 4, and the main body portion 31 is the end face of the light emitting diode element 2 in the longitudinal direction of the substrate 3. The end face on the side may be brought into contact with the main body 31 of the substrate 3 of the other two light-emitting diode elements 2 to form a T shape as a whole, but the configuration shown in FIGS. May be adopted. In the example of FIGS. 5 and 6, in each light emitting diode element 2, the end surface in the longitudinal direction of the substrate 3 and the end surface on the main body portion 31 side is a plane orthogonal to the mounting surface 30 and 120 ° to each other. It is set as the convex shape comprised by the two contact surfaces 31a which make | form the corner | angular. In the example of FIG. 5, the dimensions of the substrate 3 are, for example, the total length in the left-right direction in FIG. 3 is 2.8 mm, the total length in the vertical direction in FIG. 3 is 1.3 mm, and the thickness dimension is 0. .8 mm. The three light-emitting diode elements 2 are arranged such that the mounting surfaces 30 are positioned on the same plane in the same direction, and the respective contact surfaces 31a are in contact with the other light-emitting diode elements 2 respectively. The surface 31a is brought into contact with and integrated with the surface 31a. In the light emitting unit 4, when viewed from the thickness direction of the substrate 3, one diagonal line is parallel to the longitudinal direction of the substrate 3 (that is, the direction in which the main body portion 31 and the heat sink portion 32 are arranged), and one corner is the substrate 3. It is located in the vicinity of the corner between the contact surfaces 31a. If the three light emitting diode elements 2 having a common structure as shown in FIGS. 5 and 6 are arranged rotationally symmetrical three times, the heat radiation condition of the light emitting section 4 can be changed between the three light emitting diode elements 2. Can be aligned. In the case where three light emitting diode elements 2 are provided as described above, the light colors of the light emitting section 4 are shared by the two light emitting diode elements 2, and the light of the light emitting section 4 is shared by only one remaining light emitting diode element 2. The color may be different from that of the other two light emitting diode elements 2.

さらに、図7〜図9に示すように、各発光部4において、互いに分離された複数個の発光層41を設けるとともに、これら複数個の発光層41を給電端子5間に互いに直列に接続してもよい。この構成を採用すれば、発光層41を連続一体に形成する場合に比べ、発光層41中で発光に寄与しない方向(例えば、実装面30に添った方向)に流れてしまう電流によるロスを抑えることができる。   Further, as shown in FIGS. 7 to 9, each light emitting unit 4 is provided with a plurality of light emitting layers 41 separated from each other, and the plurality of light emitting layers 41 are connected in series between the power supply terminals 5. May be. If this configuration is adopted, the loss due to the current flowing in the direction not contributing to light emission in the light emitting layer 41 (for example, the direction along the mounting surface 30) is suppressed as compared with the case where the light emitting layer 41 is formed continuously and integrally. be able to.

また、図10〜図12に示すように、各発光部4をそれぞれ覆い各発光部4から放射された光を適宜配光するレンズ6を設けてもよい。レンズ6は具体的には例えば球面レンズである。レンズ6の材料としては、発光部4の表層部(発光部4が蛍光体層42を有する場合は蛍光体層42であり、発光部4が拡散層を有する場合は拡散層であり、発光部4が発光層41のみからなる場合は発光層41)の屈折率と光源装置1の周囲の物質(例えば空気)の屈折率との中間の屈折率を有するものを用いることが望ましく、これによって光の取り出し効率を向上させることができる。上記のようなレンズ6は例えばモールドによって設けることができる。本発明者は、まず厚さ約0.5mmの半球形状のシリコーン樹脂製の外郭(図示せず)を各発光部4を覆う形で取り付け、その後に上記の外郭内にシリコーン樹脂を充填することでレンズ6を形成し、このレンズ6の形成前に比べて光束を10%向上させることに成功した。   Moreover, as shown in FIGS. 10-12, you may provide the lens 6 which covers each light emission part 4, respectively, and distributes the light radiated | emitted from each light emission part 4 suitably. Specifically, the lens 6 is a spherical lens, for example. The material of the lens 6 is a surface layer portion of the light-emitting portion 4 (a phosphor layer 42 when the light-emitting portion 4 has a phosphor layer 42, and a diffusion layer when the light-emitting portion 4 has a diffusion layer. 4 is composed of the light emitting layer 41 alone, it is desirable to use a material having a refractive index intermediate between the refractive index of the light emitting layer 41) and the refractive index of the substance (for example, air) around the light source device 1, thereby The taking-out efficiency can be improved. The lens 6 as described above can be provided by, for example, a mold. The present inventor first attaches a hemispherical silicone resin outer shell (not shown) having a thickness of about 0.5 mm so as to cover each light emitting portion 4 and then fills the outer shell with the silicone resin. Then, the lens 6 was formed, and the luminous flux was successfully improved by 10% compared to before the lens 6 was formed.

さらに、上記のレンズ6を、各発光部4の光をそれぞれ通過させる材料からなる基質と、基質の材料よりも熱伝導率の高い材料からなり基質中に分散された微粒子とで構成してもよい。この構成を採用すれば、レンズ6を基質のみで構成する場合に比べてレンズ6の熱伝導率が向上することで、放熱性が改善される。本発明者は、レンズ6において上記の微粒子として平均粒径約0.8μmの球状のアルミナを約2wt%だけ基質中に分散させた場合には、上記のような微粒子を分散させずレンズ6を基質のみで構成する場合に比べ、レンズ6の頂点の温度が約5℃低くなることを確認した。また、上記の微粒子がアルミナのように各発光部4の光をそれぞれ反射する材料からなる場合、各発光部4の光がそれぞれ上記の微粒子での反射によって拡散されることで、さらに混色性が改善される。   Further, the lens 6 may be composed of a substrate made of a material that transmits the light of each light emitting section 4 and fine particles dispersed in the substrate made of a material having a higher thermal conductivity than the material of the substrate. Good. By adopting this configuration, the heat conductivity is improved by improving the thermal conductivity of the lens 6 as compared with the case where the lens 6 is configured only by the substrate. When the spherical alumina having an average particle diameter of about 0.8 μm is dispersed in the substrate by about 2 wt% as the fine particles in the lens 6, the inventor does not disperse the fine particles as described above. It was confirmed that the temperature at the apex of the lens 6 was lowered by about 5 ° C. as compared with the case where only the substrate was used. Further, when the fine particles are made of a material that reflects the light of each light emitting portion 4 such as alumina, the light of each light emitting portion 4 is diffused by the reflection of the fine particles, thereby further improving color mixing. Improved.

1 光源装置
2 発光ダイオード素子
3 基板
4 発光部
6 レンズ
30 実装面
31 本体部
32 ヒートシンク部
DESCRIPTION OF SYMBOLS 1 Light source device 2 Light emitting diode element 3 Board | substrate 4 Light emission part 6 Lens 30 Mounting surface 31 Main-body part 32 Heat sink part

Claims (3)

それぞれ光色が異なる発光ダイオード素子を少なくとも2個含む複数個の発光ダイオード素子を備える光源装置であって、
前記各発光ダイオード素子は、それぞれ、基板と、前記基板の実装面上に形成されて通電されることにより発光する発光部とを有し、
前記各発光ダイオード素子において、それぞれ、前記基板は、前記発光部が設けられた本体部と、前記実装面に沿って前記本体部から延設され前記実装面に直交する方向から見て前記発光部以上の面積を有するヒートシンク部とを有し、
前記各発光ダイオード素子について、それぞれ、前記本体部は、他の全ての前記各発光ダイオード素子の前記本体部に当接していることを特徴とする光源装置。
A light source device comprising a plurality of light emitting diode elements each including at least two light emitting diode elements each having a different light color,
Each of the light emitting diode elements has a substrate and a light emitting portion that is formed on the mounting surface of the substrate and emits light when energized,
In each of the light emitting diode elements, the substrate includes a main body provided with the light emitting unit, and the light emitting unit as viewed from a direction perpendicular to the mounting surface and extending from the main body along the mounting surface. A heat sink portion having the above area,
For each of the light emitting diode elements, the light source device is characterized in that the main body is in contact with the main body of each of the other light emitting diode elements.
全ての前記発光ダイオード素子の前記発光部を覆い前記各発光ダイオード素子の光を配光するレンズを備えることを特徴とする請求項1記載の光源装置。   The light source device according to claim 1, further comprising a lens that covers the light emitting portions of all the light emitting diode elements and distributes the light of each light emitting diode element. 前記レンズは、透光性を有する材料からなる基質と、前記基質よりも熱伝導率が高い材料からなり前記基質中に分散された微粒子とを有することを特徴とする請求項2記載の光源装置。   3. The light source device according to claim 2, wherein the lens has a substrate made of a light-transmitting material and fine particles made of a material having a higher thermal conductivity than the substrate and dispersed in the substrate. .
JP2010094301A 2010-04-15 2010-04-15 Light source unit Withdrawn JP2011228356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094301A JP2011228356A (en) 2010-04-15 2010-04-15 Light source unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094301A JP2011228356A (en) 2010-04-15 2010-04-15 Light source unit

Publications (1)

Publication Number Publication Date
JP2011228356A true JP2011228356A (en) 2011-11-10

Family

ID=45043413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094301A Withdrawn JP2011228356A (en) 2010-04-15 2010-04-15 Light source unit

Country Status (1)

Country Link
JP (1) JP2011228356A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207209A (en) * 2013-04-16 2014-10-30 ウシオ電機株式会社 Light source unit
JP2020095939A (en) * 2018-12-12 2020-06-18 日亜化学工業株式会社 Manufacturing method of light emitting module, light emitting module, and projector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207209A (en) * 2013-04-16 2014-10-30 ウシオ電機株式会社 Light source unit
JP2020095939A (en) * 2018-12-12 2020-06-18 日亜化学工業株式会社 Manufacturing method of light emitting module, light emitting module, and projector
JP7311770B2 (en) 2018-12-12 2023-07-20 日亜化学工業株式会社 Light-emitting module manufacturing method, light-emitting module, and projector

Similar Documents

Publication Publication Date Title
US20220252228A1 (en) Light emitting bulb
CN103456869B (en) Light-emitting device, light-emitting diode chip for forming multi-directional light emission and sapphire substrate thereof
JP5049382B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
US20120256538A1 (en) Light-emitting device, light bulb shaped lamp and lighting apparatus
CN103080641A (en) Compact optically efficient solid state light source with integrated thermal management
EP2672513B1 (en) Multichip package structure for generating a symmetrical and uniform light-blending source
JP5446843B2 (en) LED light emitting device
JP2014146661A (en) Light emitting module, illumination device and luminaire
JP2011192703A (en) Light emitting device, and illumination apparatus
US8587008B2 (en) Light-emitting device
WO2011024861A1 (en) Light-emitting device and illuminating device
JP5993497B2 (en) LED lighting device
JP2015056477A (en) Light emitting module, lighting device, and lighting equipment
JP2008153466A (en) Light-emitting device
JP2009071090A (en) Light-emitting device
JP2010015749A (en) Led lamp
JP2011228356A (en) Light source unit
US8791482B2 (en) Light emitting device package
JP2013197369A (en) Light source device and led lamp
JP2015060972A (en) Light emitting module, lighting device, and lighting fitting
JP5417556B1 (en) Light bulb shaped lamp and lighting device
JP2014120660A (en) Light-emitting module
KR101291110B1 (en) Led chip pakage
JP2013201380A (en) Reflecting material and lighting device
JP2018182053A (en) Light-emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702