JP2011228320A - Separator for solid electrolytic capacitor, and solid electrolytic capacitor using the same - Google Patents

Separator for solid electrolytic capacitor, and solid electrolytic capacitor using the same Download PDF

Info

Publication number
JP2011228320A
JP2011228320A JP2010093647A JP2010093647A JP2011228320A JP 2011228320 A JP2011228320 A JP 2011228320A JP 2010093647 A JP2010093647 A JP 2010093647A JP 2010093647 A JP2010093647 A JP 2010093647A JP 2011228320 A JP2011228320 A JP 2011228320A
Authority
JP
Japan
Prior art keywords
separator
solid electrolytic
electrolytic capacitor
fiber
esr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010093647A
Other languages
Japanese (ja)
Other versions
JP5520123B2 (en
Inventor
Takahiro Tsukuda
貴裕 佃
Tomohiro Sato
友洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010093647A priority Critical patent/JP5520123B2/en
Publication of JP2011228320A publication Critical patent/JP2011228320A/en
Application granted granted Critical
Publication of JP5520123B2 publication Critical patent/JP5520123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paper (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a solid electrolytic capacitor hard to cause loosening of a record roll, capable of lowering a carbonization temperature, and excellent in carrying property of a conductive polymer, and the solid electrolyte capacitor having a low short circuit failure rate, a low ESR, and limited variations of the ESR.SOLUTION: The separator for the solid electrolytic capacitor is made of a wet type nonwoven fabric containing a solvent spun cellulose fiber and a synthetic fiber as essential components, containing no coating, and having a porosity of 60.0-86.0%, and the freeness variation of the solvent spun cellulose fiber measured based on JIS P8121 except that sample concentration is set at 0.1% by using a 80 mesh wire net having a wire diameter of 0.14 mm and an opening of 0.18 mm as a sieve plate is 0-250 ml. The solid electrolytic capacitor is equipped with the separator.

Description

本発明は、固体電解コンデンサ用セパレータ及び固体電解コンデンサに関する。   The present invention relates to a separator for a solid electrolytic capacitor and a solid electrolytic capacitor.

導電性高分子を用いる固体電解コンデンサ用セパレータとして、ビニロン繊維のみからなるセパレータ、ビニロン繊維を主体とする合繊セパレータ(例えば、特許文献1参照)が開示されている。また、ポリエステル樹脂を含有する湿式不織布からなるセパレータを用いた固体電解コンデンサも開示されている(例えば、特許文献2参照)。これらのセパレータは、繊維間の隙間が大きく、緻密性に欠けるため、セパレータ内部における導電性高分子の担持性が不十分で、固体電解コンデンサの静電容量が小さくなる、ESRのばらつきが大きくなる等の問題と、電極のバリがセパレータを貫通しやすく、ショート不良率が高くなる問題があった。また、ビニロン繊維が皮膜を形成するため、導電性高分子の導通が悪くなり、ESRが高くなる問題があった。担持性が不十分とは、セパレータ中の導電性高分子の充填量が不十分なことを意味する。   As a separator for a solid electrolytic capacitor using a conductive polymer, a separator made only of vinylon fibers and a synthetic fiber separator mainly composed of vinylon fibers (for example, see Patent Document 1) are disclosed. Moreover, the solid electrolytic capacitor using the separator which consists of a wet nonwoven fabric containing a polyester resin is also disclosed (for example, refer patent document 2). Since these separators have large gaps between fibers and lack in denseness, the conductive polymer is not sufficiently carried inside the separator, the capacitance of the solid electrolytic capacitor is reduced, and the ESR variation is increased. And the problem that the burrs of the electrode easily penetrate the separator and the short-circuit defect rate increases. In addition, since the vinylon fiber forms a film, there is a problem that conduction of the conductive polymer is deteriorated and ESR is increased. Insufficient support means that the filling amount of the conductive polymer in the separator is insufficient.

固体電解コンデンサ用セパレータとして最も一般的に使用されているのは、エスパルトや麻パルプなどのセルロース繊維100%からなる紙セパレータである。紙セパレータは、導電性高分子を重合する際に用いる酸化剤と反応し、導電性高分子の重合を阻害してしまうという欠点がある。重合を阻害しないように、紙セパレータには予め炭化処理が施される。炭化処理は一般的に280℃以上の温度で行われることが多い。そのため、固体電解コンデンサの製造工程が煩雑になる、炭化処理によって紙セパレータが脆くなり、崩れやすくなる、電極のバリがセパレータを貫通しやすくなり、ショート不良率が高くなる、リード線や封止材などのコンデンサ部品が劣化する等の問題があった。   The most commonly used separator for a solid electrolytic capacitor is a paper separator made of 100% cellulose fiber such as esparto or hemp pulp. The paper separator has a drawback that it reacts with an oxidant used when polymerizing the conductive polymer to inhibit the polymerization of the conductive polymer. The paper separator is preliminarily carbonized so as not to inhibit the polymerization. In general, carbonization is often performed at a temperature of 280 ° C. or higher. Therefore, the production process of the solid electrolytic capacitor becomes complicated, the paper separator becomes brittle and easily broken by carbonization treatment, the burr of the electrode easily penetrates the separator, and the short-circuit defect rate becomes high. There were problems such as deterioration of capacitor parts.

また、フィブリル化アクリル繊維を含有させた固体電解コンデンサ用セパレータも開示されている(例えば、特許文献3参照)。このフィブリル化アクリル繊維を含有させたセパレータは、フィブリル化アクリル繊維の配合量が少ない場合には、繊維間の隙間が大きすぎるために、セパレータ内部における導電性高分子の担持性が不十分で、固体電解コンデンサの静電容量が小さくなる、ESRのばらつきが大きくなる等の問題と、電極のバリがセパレータを貫通しやすく、ショート不良率が高くなる問題があった。反対に、フィブリル化アクリル繊維の配合量が多い場合には、フィブリルの存在により、導電性高分子の導通が悪くなり、ESRが高くなる問題があった。   Moreover, the separator for solid electrolytic capacitors containing the fibrillated acrylic fiber is also disclosed (for example, refer patent document 3). When the amount of the fibrillated acrylic fiber is small, the separator containing the fibrillated acrylic fiber has insufficient support for the conductive polymer inside the separator because the gap between the fibers is too large. There are problems such as a decrease in the capacitance of the solid electrolytic capacitor and a large variation in ESR, and a problem that the burr of the electrode easily penetrates the separator and the short-circuit defect rate increases. On the other hand, when the amount of fibrillated acrylic fiber is large, there is a problem that the conduction of the conductive polymer is deteriorated due to the presence of the fibril and the ESR is increased.

ポリアミド繊維を主体繊維とするセパレータを具備した電解コンデンサが開示されている(例えば、特許文献4参照)。ポリアミド繊維を主体繊維とするセパレータは、隙間が大きすぎるために、セパレータ内部における導電性高分子の担持性が不十分で、固体電解コンデンサの静電容量が小さくなる、ESRのばらつきが大きくなる等の問題、電極のバリがセパレータを貫通しやすく、ショート不良率が高くなる問題があった。また、湿熱融着樹脂を含有する場合には、該樹脂が皮膜を形成するため、導電性高分子の導通が悪くなり、ESRが高くなる問題があった。   An electrolytic capacitor provided with a separator having a polyamide fiber as a main fiber is disclosed (for example, see Patent Document 4). A separator mainly composed of polyamide fiber has a gap that is too large, so that the conductive polymer is not sufficiently supported inside the separator, the capacitance of the solid electrolytic capacitor is reduced, and the ESR variation is increased. There is a problem that the burr of the electrode easily penetrates the separator and the short-circuit defect rate is increased. Further, when the wet heat fusion resin is contained, since the resin forms a film, there is a problem that the conduction of the conductive polymer is deteriorated and the ESR is increased.

本発明者らは、アクリル短繊維とフィブリル化セルロースとを含有するセパレータ(例えば特許文献5参照)、セルロース繊維、フィブリル状耐熱性繊維、アクリル短繊維を必須成分とするセパレータ(例えば、特許文献6参照)、フィブリル化セルロース、非フィブリル化繊維、軟化点、融点、熱分解温度の何れもが250℃以上、700℃以下のフィブリル化耐熱性繊維を含有する湿式不織布からなり、該湿式不織布を250℃で50時間熱処理したときのMD(マシンディレクション)とCD(MDに対して直角の方向)の寸法変化率が何れも−3%〜+1%であることを特徴とする電気化学素子用セパレータ(例えば、特許文献7参照)を開示している。これらのセパレータは何れもセルロース繊維の種類と濾水度が最適化されていなかったため、導電性高分子の担持性が不十分な場合があり、静電容量やESRに改善の余地があった。特許文献6及び7のセパレータは、炭化温度を低くすることができていなかった。   The present inventors include a separator containing acrylic short fibers and fibrillated cellulose (see, for example, Patent Document 5), a separator containing cellulose fibers, fibril-like heat-resistant fibers, and acrylic short fibers as essential components (for example, Patent Document 6). Reference), fibrillated cellulose, non-fibrillated fiber, softening point, melting point, and thermal decomposition temperature are all made of a wet non-woven fabric containing fibrillated heat-resistant fiber of 250 ° C. or higher and 700 ° C. or lower. Electrochemical element separator characterized by having a dimensional change rate of MD (machine direction) and CD (direction perpendicular to MD) both of −3% to + 1% when heat-treated at 50 ° C. for 50 hours. For example, Patent Document 7) is disclosed. In any of these separators, the type of cellulose fiber and the freeness were not optimized, so that the carrying ability of the conductive polymer might be insufficient, and there was room for improvement in capacitance and ESR. The separators of Patent Documents 6 and 7 have not been able to lower the carbonization temperature.

さらに、特許文献1〜7のセパレータは、何れもセパレータ表面が滑りやすく、腰がないため、例えば3mm程度以下の巾にスリットして、レコード巻きといわれる同一位置で同心状に巻き取るロールに仕上げた場合、取り扱い時に巻き崩れが起きるという問題があった。   Furthermore, since the separators of Patent Documents 1 to 7 are all slippery and have no waist, for example, they are slit to a width of about 3 mm or less and finished into a roll that is wound concentrically at the same position called record winding. In such a case, there was a problem that the roll would collapse during handling.

特許第3319501号公報Japanese Patent No. 3319501 特許第3606137号公報Japanese Patent No. 3606137 特開2006−344742号公報JP 2006-344742 A 特開2002−198263号公報JP 2002-198263 A 特開2009−59730号公報JP 2009-59730 A 特開2009−141047号公報JP 2009-1441047 A 国際公開第2005/101432号パンフレットInternational Publication No. 2005/101432 Pamphlet

本発明の課題は、上記実情を鑑みたものであって、レコード巻きの巻き崩れが起きず、炭化温度を低くでき、導電性高分子の担持性に優れる固体電解コンデンサ用セパレータ及びショート不良率とESRが低く、ESRのばらつきが小さい固体電解コンデンサを提供することである。   The object of the present invention is to solve the above-mentioned situation, and the winding of the record winding does not occur, the carbonization temperature can be lowered, and the separator for the solid electrolytic capacitor excellent in the carrying property of the conductive polymer, and the short-circuit defect rate, To provide a solid electrolytic capacitor having low ESR and small variations in ESR.

本発明者らは、この課題を解決するために鋭意研究を行った結果、特定範囲の変法濾水度を有する溶剤紡糸セルロース繊維と合成短繊維とを必須成分として含有し、特定範囲の空孔率を有する湿式不織布からなる固体電解コンデンサ用セパレータが、レコード巻きの巻き崩れが起きず、炭化温度を低くでき、導電性高分子の担持性に優れること、該セパレータを具備した固体電解コンデンサはショート不良率とESRが低く優れ、ESRのばらつきが小さいことを見出し、本発明に至ったものである。   As a result of diligent research to solve this problem, the inventors of the present invention contain solvent-spun cellulose fibers and synthetic short fibers having modified freeness in a specific range as essential components, A separator for a solid electrolytic capacitor made of a wet non-woven fabric having a porosity does not cause the winding of the record winding, the carbonization temperature can be lowered, and the conductive polymer is highly supported. The solid electrolytic capacitor equipped with the separator is The present inventors have found that the short-circuit defect rate and ESR are low and excellent, and that the variation of ESR is small, and have reached the present invention.

即ち、本発明は、合成短繊維と、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mlの溶剤紡糸セルロース繊維とを必須成分として含有してなり、皮膜を含有せず、空孔率が60.0〜86.0%である湿式不織布からなることを特徴とする固体電解コンデンサ用セパレータである。   That is, the present invention was measured in accordance with JIS P8121, except that a synthetic short fiber and an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm were used as a sieve plate, and the sample concentration was 0.1%. It contains a solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml as an essential component, does not contain a film, and consists of a wet nonwoven fabric having a porosity of 60.0 to 86.0%. It is a solid electrolytic capacitor separator.

本発明は、本発明の固体電解コンデンサ用セパレータを具備してなる固体電解コンデンサである。   The present invention is a solid electrolytic capacitor comprising the solid electrolytic capacitor separator of the present invention.

本発明の固体電解コンデンサ用セパレータは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mlの溶剤紡糸セルロース繊維と合成短繊維とを必須成分として含有してなり、皮膜を含有せず、空孔率が60.0〜86.0%である湿式不織布からなるため、セパレータの空孔が均一に形成され、適度な緻密性を有し、モノマー溶液や重合溶液がセパレータ中に偏ることなく満遍なく含浸されるため、導電性高分子の担持性に優れ、導電性高分子を均一に十分な量で形成させることができる。また、導電性高分子を重合した後のセパレータの強度も強く、破れにくい。そのため、該セパレータを具備してなる固体電解コンデンサはショート不良率とESRとが低く、ESRのばらつきが小さく、優れている。本発明の固体電解コンデンサ用セパレータは、合成短繊維を含有するため、炭化温度を低くでき、溶剤紡糸セルロース繊維を含有するため、表面が滑りにくく、静電気を帯びにくいため、レコード巻きの巻き崩れが起きない。   The separator for a solid electrolytic capacitor of the present invention is a variable measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. A wet nonwoven fabric containing solvent-spun cellulose fibers and synthetic short fibers having a freeness of 0 to 250 ml as essential components, no film, and a porosity of 60.0 to 86.0% Therefore, the pores of the separator are uniformly formed, have an appropriate denseness, and the monomer solution and the polymerization solution are uniformly impregnated in the separator without unevenness. Can be formed uniformly in sufficient amount. Moreover, the strength of the separator after polymerizing the conductive polymer is strong and hardly broken. Therefore, the solid electrolytic capacitor provided with the separator is excellent in that the short-circuit defect rate and the ESR are low, the variation of the ESR is small. Since the separator for a solid electrolytic capacitor of the present invention contains synthetic short fibers, the carbonization temperature can be lowered, and since the solvent-spun cellulose fibers are contained, the surface is not slippery and is not easily charged with static electricity. I don't get up.

本発明の実施例3で作製したセパレータの表面の電子顕微鏡写真(500倍率)である。It is an electron micrograph (500 magnifications) of the surface of the separator produced in Example 3 of this invention. 本発明の比較例11で作製したセパレータの表面の電子顕微鏡写真(100倍率)である。It is an electron micrograph (100 magnifications) of the surface of the separator produced in the comparative example 11 of this invention.

本発明において、「セパレータ」と表記する場合は、固体電解コンデンサ用セパレータを意味する。本発明における皮膜とは、繊維形状ではなく、平面的に不定形に形成された膜で、貫通孔のない部分の面積が少なくとも2500μm以上である膜を指す。 In the present invention, the expression “separator” means a solid electrolytic capacitor separator. The film in the present invention refers to a film that is not in the form of a fiber but is formed in an indefinite shape in a plan view, and has an area of a portion having no through hole of at least 2500 μm 2 or more.

本発明における合成短繊維は、繊維長0.5〜10mmのものが用いられ、1〜6mmが好ましく用いられる。繊維長が0.5mm未満だと、セパレータから脱落しやすくなる場合があり、10mmより長いと繊維同士がよれて、地合や厚みが不均一になる場合がある。合成短繊維の繊度は0.001〜1.7dtexが好ましく、0.05〜1.1dtexがより好ましい。0.001dtex未満では繊維自身の強度が弱く、セパレータが破断しやすくなる場合がある。1.7dtexより太くなると、セパレータの厚みを薄くしにくくなる場合がある。本発明における合成短繊維としては、ポリエステル類、アクリル類、ポリアミド類の樹脂を紡糸して得られる短繊維が挙げられる。   The synthetic short fiber in the present invention has a fiber length of 0.5 to 10 mm, and preferably 1 to 6 mm. If the fiber length is less than 0.5 mm, it may be easy to fall off from the separator, and if it is longer than 10 mm, the fibers may come apart and the formation and thickness may become uneven. The fineness of the synthetic short fiber is preferably 0.001 to 1.7 dtex, more preferably 0.05 to 1.1 dtex. If it is less than 0.001 dtex, the strength of the fiber itself is weak and the separator may be easily broken. If it is thicker than 1.7 dtex, it may be difficult to reduce the thickness of the separator. Examples of the synthetic short fibers in the present invention include short fibers obtained by spinning resins of polyesters, acrylics, and polyamides.

ポリエステル類としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレートなどが挙げられる。アクリル類としては、アクリロニトリル100%の重合体からなるもの、アクリロニトリルに対して、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等の(メタ)アクリル酸誘導体、酢酸ビニルなどを共重合させたものが挙げられる。ポリアミド類としては、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミドが挙げられる。ポリエステル類とアクリル類からなる合成短繊維は、低ESRが得られる傾向がある。全芳香族ポリアミドからなる合成短繊維は、セパレータの耐熱性を向上させ、炭化処理を不要にできる場合がある。   Examples of polyesters include polyethylene terephthalate, polybutylene terephthalate, and polyethylene isophthalate. As acrylics, those made of a 100% acrylonitrile polymer, acrylonitrile was copolymerized with (meth) acrylic acid derivatives such as acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, vinyl acetate, etc. Things. Examples of polyamides include aliphatic polyamides, aromatic polyamides, and wholly aromatic polyamides. Synthetic short fibers made of polyesters and acrylics tend to provide low ESR. Synthetic short fibers made of wholly aromatic polyamide can improve the heat resistance of the separator and can eliminate the need for carbonization.

本発明における変法濾水度とは、JIS P8121のカナダ標準濾水度の測定方法に規定されているふるい板の代わりに80メッシュの金網を用い、試料濃度を0.1%にして測定した濾水度である。80メッシュの線径は直径0.14mmで、目開き0.18mmの金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を使用した。変法濾水度を用いる理由は、溶剤紡糸セルロース繊維を微細化していき、ある程度繊維長が短くなると、JIS P8121に規定されているふるい板を溶剤紡糸セルロース繊維自体がすり抜けてしまい、正確なカナダ標準濾水度が計測されないからである。   The modified freeness in the present invention is measured by using an 80-mesh wire mesh instead of the sieve plate defined in the Canadian standard freeness measurement method of JIS P8121, and setting the sample concentration to 0.1%. Freeness. The wire diameter of 80 mesh was 0.14 mm in diameter, and a wire mesh (manufactured by PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having an opening of 0.18 mm was used. The reason for using the modified freeness is that when solvent-spun cellulose fibers are refined and the fiber length is shortened to some extent, the solvent-spun cellulose fibers themselves slip through the sieve plate defined in JIS P8121, and the accurate Canadian This is because the standard freeness is not measured.

変法濾水度が0〜250mlの溶剤紡糸セルロース繊維は、繊維径が細く、均一性が高いため、セパレータの孔径が比較的均一に形成され、セパレータ中でのモノマー溶液や重合溶液の偏りを防ぐことができ、導電性高分子がセパレータ上に満遍なく形成される。本発明の溶剤紡糸セルロース繊維は、変法濾水度が0〜200mlであることがより好ましく、0〜160mlであることがさらに好ましい。変法濾水度が250mlを超える場合は、微細化処理が不十分で、繊維の分割が十分に進まず、元の太い繊維径のまま残る割合が多くなるため、セパレータに大きな貫通孔ができ、導電性高分子を形成した後でも電極箔のエッジ部分のバリが貫通しやすくなり、ショート不良率が高くなる。   The solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml has a thin fiber diameter and high uniformity, so that the pore diameter of the separator is relatively uniform, and the monomer solution and polymerization solution in the separator are biased. The conductive polymer can be uniformly formed on the separator. The solvent-spun cellulose fiber of the present invention preferably has a modified freeness of 0 to 200 ml, more preferably 0 to 160 ml. If the modified freeness exceeds 250 ml, the refinement process is insufficient, the fiber division does not proceed sufficiently, and the proportion of the original thick fiber diameter remains large, so a large through-hole is formed in the separator. Even after the conductive polymer is formed, the burrs at the edge portions of the electrode foil are likely to penetrate, and the short-circuit defect rate is increased.

変法濾水度0〜250mlの溶剤紡糸セルロース繊維を得るには、溶剤紡糸セルロースの短繊維を適度な濃度で水などに分散させ、これをリファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、高圧ホモジナイザーなどに通して、刃の形状、試料濃度、流量、処理回数、処理速度などの条件を調節して微細化処理すれば良い。   To obtain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, disperse solvent-spun cellulose short fibers in water at an appropriate concentration, and use this as refiner, beater, mill, milling device, high-speed rotating Rotating blade type homogenizer that gives shearing force by blade, double-cylindrical high-speed homogenizer that generates shearing force between a cylindrical inner blade that rotates at high speed and a fixed outer blade. It may be finely processed by passing through an ultrasonic crusher, a high-pressure homogenizer, or the like and adjusting conditions such as the shape of the blade, the sample concentration, the flow rate, the number of treatments, and the treatment speed.

本発明における変法濾水度0〜250mlの溶剤紡糸セルロース繊維の長さ加重平均繊維長は0.2〜3.0mmが好ましく、0.2〜2.0mmがより好ましい。0.2mm未満だと、繊維長が短すぎて、セパレータから脱落しやすくなる場合がある。3.0mm超では、微細化が不十分で、太い繊維径の割合が多くなり、セパレータに大きな貫通孔が開きやすくなる場合や、繊維のよれが生じ、地合と厚みのばらつきが生じ、ESRのばらつきが大きくなる場合がある。本発明における溶剤紡糸セルロース繊維の長さ加重平均繊維長は、繊維にレーザー光を当てて得られる偏向特性を利用して求める市販の繊維長測定器を用いて測定することができる。   The length-weighted average fiber length of solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml in the present invention is preferably 0.2 to 3.0 mm, and more preferably 0.2 to 2.0 mm. If it is less than 0.2 mm, the fiber length is too short, and it may be easy to fall off the separator. If it exceeds 3.0 mm, the refinement is insufficient, the ratio of the thick fiber diameter increases, a large through-hole tends to open in the separator, or the fiber is kinked, resulting in variations in formation and thickness, and ESR. In some cases, the variation in the size of the image becomes large. The length-weighted average fiber length of the solvent-spun cellulose fiber in the present invention can be measured using a commercially available fiber length measuring device that is obtained by utilizing the deflection characteristics obtained by applying laser light to the fiber.

本発明のセパレータ中の合成短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維の合計含有率は、40〜100質量%が好ましく、60〜100質量%がより好ましく、80〜100質量%がさらに好ましい。40質量%未満だと、導電性高分子の含浸性が不十分になる場合や、該セパレータを具備した固体電解コンデンサのESRが高くなる場合やESRのばらつきが大きくなる場合がある。本発明のセパレータ中の合成短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維の質量比率は、1:9〜9:1が好ましく、1:5〜5:1がより好ましい。合成短繊維の比率が1:9より少ないと、セパレータの炭化温度を十分低くできなくなる場合があり、9:1より多いと、レコード巻きの巻き崩れが生じる場合やESRが高くなる場合がある。   The total content of the synthetic short fiber and the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator of the present invention is preferably 40 to 100% by mass, more preferably 60 to 100% by mass, and 80 to 100% by mass. % Is more preferable. If it is less than 40% by mass, the impregnation property of the conductive polymer may be insufficient, the ESR of the solid electrolytic capacitor equipped with the separator may be high, or the variation of ESR may be large. The mass ratio of the synthetic short fiber and the solvent-spun cellulose fiber having a modified freeness of 0 to 250 ml in the separator of the present invention is preferably 1: 9 to 9: 1, more preferably 1: 5 to 5: 1. If the ratio of the synthetic short fibers is less than 1: 9, the carbonization temperature of the separator may not be sufficiently lowered. If it is more than 9: 1, the record winding may be unrolled or the ESR may be increased.

本発明のセパレータは、合成短繊維、変法濾水度0〜250mlの溶剤紡糸セルロース繊維以外の繊維を含有しても良い。例えば、溶剤紡糸セルロースや再生セルロースの短繊維、天然セルロース繊維、天然セルロース繊維のパルプ化物やフィブリル化物、変法濾水度250ml超の溶剤紡糸セルロース繊維、ガラス、アルミナ、シリカ、ロックウールなどからなる無機繊維などである。溶剤紡糸セルロース、再生セルロースの短繊維の繊度は0.001〜2.0dtexが好ましい。繊度が0.001dtex未満だと、繊維自身の強度が弱く、セパレータが破断しやすくなる場合があり、2.0dtexより太いと、セパレータの厚みを薄くしにくくなる場合や、厚みむらが生じる場合がある。無機繊維の平均繊維径は0.1〜10μmが好ましく、0.1〜5μmがより好ましく、0.1〜3μmがさらに好ましい。無機繊維の平均繊維径が0.1μm未満だと、無機繊維が折れやすいため、セパレータから脱落しやすくなる場合があり、セパレータの空隙を閉塞する場合があり、10μmより太いと、取り扱い時にセパレータから脱落する場合がある。無機繊維の平均繊維長は0.1〜10mmが好ましく、0.1〜5mmがより好ましい。平均繊維長が0.1mm未満では、無機繊維がセパレータから脱落しやすくなる場合があり、10mmより長いと、セパレータの地合や厚みが不均一になりやすい場合がある。   The separator of the present invention may contain fibers other than synthetic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml. For example, it consists of solvent-spun cellulose and regenerated cellulose short fibers, natural cellulose fibers, pulped and fibrillated natural cellulose fibers, solvent-spun cellulose fibers with a modified freeness of more than 250 ml, glass, alumina, silica, rock wool, etc. Inorganic fibers. The fineness of solvent-spun cellulose and regenerated cellulose short fibers is preferably 0.001 to 2.0 dtex. If the fineness is less than 0.001 dtex, the strength of the fiber itself is weak and the separator may be easily broken. If it is thicker than 2.0 dtex, it may be difficult to reduce the thickness of the separator or uneven thickness may occur. is there. The average fiber diameter of the inorganic fibers is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and further preferably 0.1 to 3 μm. If the average fiber diameter of the inorganic fibers is less than 0.1 μm, the inorganic fibers are likely to be broken, so that they may easily fall off from the separator, and the gaps in the separator may be blocked. May fall off. The average fiber length of the inorganic fibers is preferably 0.1 to 10 mm, and more preferably 0.1 to 5 mm. When the average fiber length is less than 0.1 mm, the inorganic fibers may easily fall off from the separator. When the average fiber length is longer than 10 mm, the formation and thickness of the separator may be easily uneven.

天然セルロース繊維のパルプ化物やフィブリル化物を含有させる場合、その変法濾水度は0〜400mlであることが好ましい。変法濾水度が400mlを超えると、太い繊維径の割合が多くなり、セパレータに厚みむらが生じやすくなる場合がある。   When the pulped product or fibrillated product of natural cellulose fiber is contained, the modified drainage is preferably 0 to 400 ml. When the modified freeness exceeds 400 ml, the ratio of the thick fiber diameter increases, and the thickness unevenness is likely to occur in the separator.

図1は、本発明のセパレータの表面の電子顕微鏡写真である。皮膜を含有していないことがわかる。図2は、本発明外のセパレータの表面の電子顕微鏡写真である。0.4mm程度の皮膜が存在していることがわかる。ポリビニルアルコールからなる繊維や粉末などの湿熱融着樹脂が皮膜を形成する。本発明のセパレータは、これらの湿熱融着樹脂を含有しないため、皮膜を有さない。 FIG. 1 is an electron micrograph of the surface of the separator of the present invention. It turns out that the film is not contained. FIG. 2 is an electron micrograph of the surface of a separator outside the present invention. It can be seen that a film of about 0.4 mm 2 is present. A wet heat fusion resin such as fiber or powder made of polyvinyl alcohol forms a film. Since the separator of the present invention does not contain these wet heat fusion resins, it does not have a film.

本発明のセパレータは空孔率が60.0〜86.0%である。より好ましくは、62.0〜80.0%であり、さらに好ましくは65.0〜80.0%である。空孔率は、セパレータの比重からセパレータの密度を差し引いて得られる値をセパレータの比重で除して100倍した値を意味する。セパレータの比重は、セパレータを構成する繊維の比重と比率から算出される。空孔率が60.0%未満では、導電性高分子の導通が悪くなり、固体電解コンデンサのESRが高くなる。また、表面が滑りやすくなり、レコード巻きの巻き崩れが起きる。空孔率が86.0%より大きいと、導電性高分子の担持性が不十分になり、固体電解コンデンサの容量が小さくなり、電極のバリが貫通しやすく、ショート不良率が高くなる。   The separator of the present invention has a porosity of 60.0 to 86.0%. More preferably, it is 62.0-80.0%, More preferably, it is 65.0-80.0%. The porosity means a value obtained by dividing the value obtained by subtracting the density of the separator from the specific gravity of the separator by the specific gravity of the separator and multiplying by 100. The specific gravity of the separator is calculated from the specific gravity and ratio of the fibers constituting the separator. When the porosity is less than 60.0%, the conduction of the conductive polymer is deteriorated, and the ESR of the solid electrolytic capacitor is increased. In addition, the surface becomes slippery and the roll of the record roll collapses. When the porosity is larger than 86.0%, the supporting property of the conductive polymer becomes insufficient, the capacity of the solid electrolytic capacitor is reduced, the burr of the electrode is easily penetrated, and the short-circuit defect rate is increased.

本発明のセパレータは、湿式抄紙法で製造することができる。1層でも良いし、2層以上の漉き合わせで製造しても良い。具体的には所定の繊維を所定濃度に分散させたスラリーを調製し、円網抄紙機、長網抄紙機、傾斜型抄紙機、短網抄紙機、傾斜短網抄紙機、これらを組み合わせたコンビネーション抄紙機の何れかを用いて湿式抄紙すれば良い。湿式抄紙した後は、必要に応じて熱処理、カレンダー処理、熱カレンダー処理などが施される。   The separator of the present invention can be produced by a wet papermaking method. One layer may be used, or two or more layers may be combined. Specifically, a slurry in which a predetermined fiber is dispersed at a predetermined concentration is prepared, and a circular paper machine, a long paper machine, an inclined paper machine, a short paper machine, an inclined short paper machine, and a combination thereof are combined. What is necessary is just to make wet paper using any of a paper machine. After wet papermaking, heat treatment, calendering, thermal calendering, etc. are performed as necessary.

本発明のセパレータの空孔率を60.0〜86.0%にするには、セパレータの比重を基にして、所望の空孔率になるようにセパレータの密度を調節すれば良い。太い繊維の含有率を高くすると、セパレータの密度は小さくなる方向になり、空孔率は大きくなる方向になる。カレンダー処理により厚みを薄くしてセパレータの密度を大きくすると、空孔率は小さくなる方向になる。比重の重い繊維の含有率を多くすると、空孔率を大きくする方向になる。   In order to set the porosity of the separator of the present invention to 60.0 to 86.0%, the density of the separator may be adjusted so as to obtain a desired porosity based on the specific gravity of the separator. When the content of thick fibers is increased, the density of the separator is reduced and the porosity is increased. When the thickness is reduced by calendering to increase the density of the separator, the porosity decreases. Increasing the content of fibers with a high specific gravity tends to increase the porosity.

本発明のセパレータは、厚みが15〜100μmが好ましく、20〜60μmがより好ましい。厚みが15μm未満では、取り扱い時や加工時に破れたり、穴が開いたりする場合がある。100μmより厚いと、固体電解コンデンサのESRが高くなる場合がある。   The separator of the present invention preferably has a thickness of 15 to 100 μm, more preferably 20 to 60 μm. If the thickness is less than 15 μm, it may be broken during handling or processing, or a hole may be formed. If it is thicker than 100 μm, the ESR of the solid electrolytic capacitor may increase.

本発明のセパレータは、ガーレー透気度が0.01〜3.00s/100mlが好ましく、0.05〜2.00s/100mlがより好ましく、0.10〜2.00s/100mlがさらに好ましい。ガーレー透気度はJIS P8117に準拠して測定される。ガーレー透気度が0.02s/100ml未満では、電極箔のエッジのバリが貫通しやすくなり、固体電解コンデンサのショート不良率が高くなる場合がある。3.00s/100mlより大きいと、固体電解コンデンサのESRが高くなる場合がある。   The separator of the present invention preferably has a Gurley air permeability of 0.01 to 3.00 s / 100 ml, more preferably 0.05 to 2.00 s / 100 ml, and even more preferably 0.10 to 2.00 s / 100 ml. The Gurley air permeability is measured according to JIS P8117. If the Gurley air permeability is less than 0.02 s / 100 ml, burrs on the edge of the electrode foil are likely to penetrate, and the short-circuit defect rate of the solid electrolytic capacitor may be increased. If it is larger than 3.00 s / 100 ml, the ESR of the solid electrolytic capacitor may become high.

本発明における固体電解コンデンサとは、電解質として導電性高分子を用いる固体電解コンデンサを指す。導電性高分子としては、ポリピロール、ポリチオフェン、ポリアニリン、ポリアセチレン、これらの誘導体が挙げられる。本発明においては、固体電解コンデンサが導電性高分子と電解液とを併用したものでも良い。   The solid electrolytic capacitor in the present invention refers to a solid electrolytic capacitor using a conductive polymer as an electrolyte. Examples of the conductive polymer include polypyrrole, polythiophene, polyaniline, polyacetylene, and derivatives thereof. In the present invention, the solid electrolytic capacitor may be a combination of a conductive polymer and an electrolytic solution.

以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to an Example.

表1に示したスラリー1〜22を調製し、湿式抄紙用のスラリーとした。   Slurries 1 to 22 shown in Table 1 were prepared and used as wet papermaking slurries.

実施例1、3、7
表2に示した通り、実施例1、3、7に対応するスラリーを所定濃度に希釈して、円網抄紙機を用いて湿式抄紙し、180℃に加熱した金属ロールに両面を接触させて熱処理し、さらに、カレンダー処理して厚みを調整し、実施例1、3、7のセパレータを作製した。
Examples 1, 3, and 7
As shown in Table 2, the slurry corresponding to Examples 1, 3, and 7 was diluted to a predetermined concentration, wet-made using a circular paper machine, and both sides were brought into contact with a metal roll heated to 180 ° C. The separators of Examples 1, 3, and 7 were manufactured by heat treatment and calendering to adjust the thickness.

実施例2、4〜6、8〜14
表2に示した通り、実施例2、4〜6、8〜14に対応するスラリーを所定濃度に希釈して、円網抄紙機を用いて湿式抄紙し、さらに、カレンダー処理して厚みを調整し、実施例2、4〜6、8〜14のセパレータを作製した。実施例8のカレンダー圧力は実施例7のカレンダー圧力より高くした。実施例11のカレンダー圧力は実施例10のカレンダー圧力より高くした。実施例14のカレンダー圧力は実施例13のカレンダー圧力より強くした。
Examples 2, 4-6, 8-14
As shown in Table 2, the slurry corresponding to Examples 2, 4 to 6 and 8 to 14 was diluted to a predetermined concentration, wet papermaking was performed using a circular net paper machine, and the thickness was adjusted by calendering. And the separator of Examples 2, 4-6, and 8-14 was produced. The calendar pressure in Example 8 was higher than the calendar pressure in Example 7. The calendar pressure in Example 11 was higher than the calendar pressure in Example 10. The calendar pressure of Example 14 was made stronger than the calendar pressure of Example 13.

(比較例1、2、4〜8、10〜13)
表2に示した通り、比較例1、2、4〜8、10〜13に対応するスラリーを所定濃度に希釈して、円網抄紙機を用いて湿式抄紙し、カレンダー処理して厚みを調整し、比較例1、2、4〜8、10〜13のセパレータを作製した。
(Comparative Examples 1, 2, 4-8, 10-13)
As shown in Table 2, the slurry corresponding to Comparative Examples 1, 2, 4 to 8, and 10 to 13 was diluted to a predetermined concentration, wet-made using a circular net paper machine, and calendered to adjust the thickness. And the separator of Comparative Examples 1, 2, 4-8, and 10-13 was produced.

(比較例3)
表2に示した通り、比較例3に対応するスラリーを所定濃度に希釈して、円網抄紙機を用いて湿式抄紙し、180℃に加熱した金属ロールに両面を接触させて熱処理し、さらにカレンダー処理して厚みを調整し、比較例3のセパレータを作製した。
(Comparative Example 3)
As shown in Table 2, the slurry corresponding to Comparative Example 3 was diluted to a predetermined concentration, wet papermaking was performed using a circular net paper machine, both surfaces were brought into contact with a metal roll heated to 180 ° C., and heat-treated. Calendering was performed to adjust the thickness, and the separator of Comparative Example 3 was produced.

(比較例9)
表2に示した通り、比較例9に対応するスラリーを所定濃度に希釈して、円網抄紙機を用いて湿式抄紙し、カレンダー処理せずにそのまま比較例9のセパレータとした。
(Comparative Example 9)
As shown in Table 2, the slurry corresponding to Comparative Example 9 was diluted to a predetermined concentration, wet papermaking was performed using a circular net paper machine, and the separator of Comparative Example 9 was used as it was without calendar treatment.

表1中のA1〜A6は溶剤紡糸セルロース繊維を意味し、その変法濾水度は表1に示した通りである。B1は繊度0.1dtex、繊維長3mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル)、B2は繊度0.4dtex、繊維長5mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル)、B3は繊度1.0dtex、繊維長5mmのアクリル短繊維(三菱レイヨン製、商品名:ボンネル)、B4は繊度0.06dtex、繊維長3mmのポリエステル短繊維(帝人ファイバー製、商品名:TP04N)、B5は繊度0.1dtex、繊維長3mmのポリエステル短繊維(帝人ファイバー製、商品名:TM04PN)、B6は繊度0.5dtex、繊維長5mmのポリエステル短繊維(帝人ファイバー製、商品名:TA04N)、B7は繊度1.1dtex、繊維長5mmのポリエステル短繊維(帝人ファイバー製、商品名:TJ04CN)、B8は繊度0.3dtex、繊維長3mmのナイロン6,6短繊維、B9はカナダ標準濾水度100mlのフィブリル化アクリル繊維、B10はポリビニルアルコール樹脂粉末(電気化学工業製、商品名:デンカポバールK−VG)、B11はカナダ標準濾水度80mlのフィブリル化全芳香族ポリアミド繊維(フィブリル状耐熱性繊維)を意味する。C1は繊度1.7dtex、繊維長4mmの溶剤紡糸セルロース短繊維(レンチング社製、商品名:テンセル)、C2は変法濾水度270ml、長さ加重平均繊維長0.21mmのリンター繊維を意味する。D1はカナダ標準濾水度640mlのマニラ麻を意味し、D2はカナダ標準濾水度640mlのエスパルトパルプを意味する。D1、D2の変法濾水度は何れも800mlであった。各種変法濾水度の溶剤紡糸セルロース繊維、溶剤紡糸セルロース短繊維、リンター繊維、マニラ麻、エスパルトパルプの比重は1.50とした。アクリル短繊維の比重は1.17とした。ポリエステル短繊維の比重は1.40とした。ナイロン6,6繊維の比重は1.14とした。ポリビニルアルコール樹脂粉末の比重は1.25とした。フィブリル化全芳香族ポリアミド繊維の比重は1.44とした。   A1 to A6 in Table 1 mean solvent-spun cellulose fibers, and their modified freeness is as shown in Table 1. B1 is acrylic short fiber having a fineness of 0.1 dtex and a fiber length of 3 mm (product name: Bonnell), B2 is acrylic short fiber having a fineness of 0.4 dtex and a fiber length of 5 mm (product name: Bonnell), B3 is an acrylic short fiber having a fineness of 1.0 dtex and a fiber length of 5 mm (product name: Bonnell), and B4 is a polyester short fiber having a fineness of 0.06 dtex and a fiber length of 3 mm (product name: TP04N), B5 is a polyester short fiber having a fineness of 0.1 dtex and a fiber length of 3 mm (trade name: TM04PN), B6 is a polyester short fiber having a fineness of 0.5 dtex and a fiber length of 5 mm (product name: TA04N), B7 is a polyester short fiber having a fineness of 1.1 dtex and a fiber length of 5 mm (manufactured by Teijin Fibers, trade name: J04CN), B8 has a fineness of 0.3 dtex, nylon 6 and 6 short fibers with a fiber length of 3 mm, B9 is a fibrillated acrylic fiber with a Canadian standard freeness of 100 ml, and B10 is a polyvinyl alcohol resin powder (manufactured by Denki Kagaku Kogyo, trade name: Denkapoval K-VG), B11 means a fibrillated wholly aromatic polyamide fiber (fibril-like heat-resistant fiber) having a Canadian freeness of 80 ml. C1 is a solvent-spun cellulose short fiber having a fineness of 1.7 dtex and a fiber length of 4 mm (trade name: Tencel, manufactured by Lenzing), and C2 is a linter fiber having a modified freeness of 270 ml and a length-weighted average fiber length of 0.21 mm. To do. D1 means Manila hemp with a Canadian standard freeness of 640 ml, and D2 means esparto pulp with a Canadian standard freeness of 640 ml. The modified freeness of D1 and D2 were both 800 ml. The specific gravity of solvent-spun cellulose fiber, solvent-spun cellulose short fiber, linter fiber, Manila hemp, and esparto pulp with various modified freeness values was 1.50. The specific gravity of the acrylic short fiber was 1.17. The specific gravity of the polyester short fiber was 1.40. The specific gravity of nylon 6,6 fiber was 1.14. The specific gravity of the polyvinyl alcohol resin powder was 1.25. The specific gravity of the fibrillated wholly aromatic polyamide fiber was 1.44.

実施例及び比較例のセパレータについて、下記の試験方法により評価を行い、結果を表2に示した。   The separators of Examples and Comparative Examples were evaluated by the following test methods, and the results are shown in Table 2.

<厚み>
セパレータの厚みをJIS C2111に準拠して測定した。
<Thickness>
The thickness of the separator was measured according to JIS C2111.

<密度>
セパレータの密度をJIS C2111に準拠して測定した。
<Density>
The density of the separator was measured according to JIS C2111.

<空孔率>
セパレータの空孔率は、セパレータの比重からセパレータの密度を差し引いて得られる値をセパレータの比重で除した後100倍して算出した。
<Porosity>
The porosity of the separator was calculated by dividing the value obtained by subtracting the density of the separator from the specific gravity of the separator by the specific gravity of the separator and multiplying by 100.

<透気度>
外径28.6mmの円孔を有するガーレー透気度計を用いて、100mlの空気がセパレータを通過するに要した時間を1試料につき任意の5箇所以上で計測し、その平均値とした。
<Air permeability>
Using a Gurley permeability meter having a circular hole with an outer diameter of 28.6 mm, the time required for 100 ml of air to pass through the separator was measured at any five or more locations per sample, and the average value was obtained.

<巻き崩れ>
セパレータを2.8mm巾にスリット加工し、長さ500mのレコード巻きを作製した。セパレータの先端をテープで留め、レコード巻きの側面を指で押さえたときにセパレータ表面が滑って巻き崩れが生じるか否か調べた。
<Crumbling>
The separator was slit to a width of 2.8 mm to produce a record winding having a length of 500 m. The tip of the separator was fixed with tape, and it was examined whether or not the separator surface slipped and collapsed when the side of the record winding was pressed with a finger.

<皮膜>
セパレータの表面を電子顕微鏡で観察し、皮膜の有無を調べた。貫通孔のない膜面積が2500μm以上である膜を皮膜とし、任意の観察領域40000μm当りに皮膜が1つ以上ある場合を「あり」、ない場合を「なし」とした。
<Film>
The surface of the separator was observed with an electron microscope to examine the presence or absence of a film. A film having a through-hole-free film area of 2500 μm 2 or more was defined as a film, and “Yes” was given when there was one or more films per arbitrary observation region of 40000 μm 2 , and “None” was given.

<担持性>
50mm角に切り取ったセパレータを、3,4−エチレンジオキシチオフェン液に浸漬した後、濾紙で余剰液を吸い取り、そのままp−トルエンスルホン酸第二鉄の50質量%ブタノール溶液に浸して十分しみ込ませた後、余剰液を濾紙で吸い取り、100℃に加熱してポリエチレンジオキシチオフェンを重合した。重合回数は1回とした。重合後、メタノールで洗浄して、未反応物を除去し、乾燥後のセパレータの質量W1を秤量した。W1からセパレータの元の質量W0を差し引いて得られる値W2をW0で除して100倍した値(%)を担持性とした。
<Supportability>
After the separator cut into 50 mm squares is immersed in 3,4-ethylenedioxythiophene solution, the excess liquid is sucked off with filter paper and immersed in a 50% by weight butanol solution of ferric p-toluenesulfonate as it is soaked sufficiently. After that, the excess liquid was sucked with a filter paper and heated to 100 ° C. to polymerize polyethylenedioxythiophene. The number of polymerizations was one. After polymerization, washing with methanol was performed to remove unreacted substances, and the mass W1 of the separator after drying was weighed. The value (%) obtained by subtracting the original mass W0 of the separator from W1 and dividing the value W2 by W0 and multiplying it by 100 was defined as the supportability.

<重合強度>
<担持性>の評価において、ポリエチレンジオキシチオフェンを重合し、乾燥後のセパレータをピンセットでつまんだときのセパレータ強度を判定した。セパレータが切断することや破れることなく持ち上げられた場合を○、セパレータが脆く、破れた場合や崩れた場合を×とした。
<Polymerization strength>
In the evaluation of <supportability>, polyethylene dioxythiophene was polymerized, and the separator strength when the dried separator was pinched with tweezers was determined. The case where the separator was lifted without being cut or torn was rated as ◯, and the case where the separator was brittle and was torn or collapsed was marked as x.

<固体電解コンデンサ>
厚み50μm、エッチング孔1〜5μmのアルミニウム箔の表面を酸化処理して、酸化アルミニウム誘電体を形成させ、これを陽極として用いた。酸化処理する前のアルミニウム箔を陰極として用いた。固体電解コンデンサ用セパレータを陽極の誘電体上に配置し、陰極と合わせて巻き取り、固体電解コンデンサ素子を作製した。この素子を所定の温度で一定時間加熱してセパレータを炭化処理した後、該素子を3,4−エチレンジオキシチオフェン:p−トルエンスルホン酸第二鉄の50質量%ブタノール溶液を質量比で1:20になるように混合した溶液(重合溶液)に浸漬し、引き上げて200℃で5分加熱してポリエチレンジオキシチオフェンを重合した。この素子をメタノールで洗浄してセパレータに残留している未反応の3,4−エチレンジオキシチオフェンとp−トルエンスルホン酸第二鉄を除去した後、120℃で乾燥させた。同様に、ポリエチレンジオキシチオフェンの重合作業をもう1回繰り返した後、素子をアルミニウム製外装缶に収納して封口し、定格電圧25V、定格静電容量33μFの固体電解コンデンサを作製した。実施例及び比較例のセパレータの炭化処理条件は表3に示した通りである。
<Solid electrolytic capacitor>
The surface of an aluminum foil having a thickness of 50 μm and etching holes of 1 to 5 μm was oxidized to form an aluminum oxide dielectric, which was used as an anode. The aluminum foil before the oxidation treatment was used as the cathode. A solid electrolytic capacitor separator was placed on the anode dielectric and wound together with the cathode to produce a solid electrolytic capacitor element. After heating the device at a predetermined temperature for a certain time to carbonize the separator, the device was mixed with a 50% by weight butanol solution of 3,4-ethylenedioxythiophene: ferric p-toluenesulfonate in a mass ratio of 1 by weight. : It was immersed in the solution (polymerization solution) mixed so that it might become 20, and it pulled up and heated at 200 degreeC for 5 minute (s), and polymerized polyethylene dioxythiophene. This element was washed with methanol to remove unreacted 3,4-ethylenedioxythiophene and ferric p-toluenesulfonate remaining in the separator, and then dried at 120 ° C. Similarly, after the polymerization of polyethylenedioxythiophene was repeated once more, the device was housed in an aluminum outer can and sealed to produce a solid electrolytic capacitor with a rated voltage of 25 V and a rated capacitance of 33 μF. The carbonization conditions for the separators of the examples and comparative examples are as shown in Table 3.

実施例及び比較例の固体電解コンデンサについて、下記の試験方法により評価を行い、その結果を表3に示した。   The solid electrolytic capacitors of Examples and Comparative Examples were evaluated by the following test methods, and the results are shown in Table 3.

<静電容量>
固体電解コンデンサの静電容量を測定し、1000個の平均値を算出した。
<Capacitance>
The capacitance of the solid electrolytic capacitor was measured, and an average value of 1000 was calculated.

<ESR>
固体電解コンデンサのESRを20℃、100kHzの周波数でLCRメーターを用いて測定し、1000個の平均値を算出した。
<ESR>
The ESR of the solid electrolytic capacitor was measured using an LCR meter at a frequency of 20 ° C. and 100 kHz, and an average value of 1000 pieces was calculated.

<ばらつき>
固体電解コンデンサのESRの標準偏差をばらつきの指標とした。標準偏差の値が小さいほどばらつきが小さく優れている。
<Variation>
The standard deviation of the ESR of the solid electrolytic capacitor was used as an index of variation. The smaller the standard deviation value, the smaller the variation and the better.

<ショート不良率>
固体電解コンデンサの導通の有無をテスターで確認した。固体電解コンデンサ1000個中に占める導通した個体の割合をショート不良率とした。
<Short defective rate>
The presence or absence of conduction of the solid electrolytic capacitor was confirmed with a tester. The proportion of the solids in 1000 solid electrolytic capacitors was defined as the short-circuit defect rate.

実施例1〜14のセパレータは、合成短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維とを必須成分として含有してなり、皮膜を含有せず、空孔率60.0〜86.0%の湿式不織布からなるため、レコード巻きの巻き崩れがなく、導電性高分子の担持性に優れていた。実施例1〜14のセパレータを具備した固体電解コンデンサは、ショート不良率とESRが低く、ESRのばらつきが小さく、優れていた。実施例2〜14のセパレータは炭化温度を大幅に低くすることができ、実施例1は炭化処理が不要であった。   The separators of Examples 1 to 14 contain synthetic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml as essential components, do not contain a film, and have a porosity of 60.0 to 86. Since it is made of 0.0% wet nonwoven fabric, there was no collapse of the record winding, and the carrying property of the conductive polymer was excellent. The solid electrolytic capacitors equipped with the separators of Examples 1 to 14 were excellent in that the short-circuit defect rate and ESR were low, and the variation in ESR was small. The separators of Examples 2 to 14 can significantly reduce the carbonization temperature, and Example 1 did not require carbonization.

比較例1のセパレータは、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、変法濾水度260mlの溶剤紡糸セルロース繊維を含有してなるため、セパレータの貫通孔が大きくなり、電極箔のバリが貫通しやすくなったため、該セパレータを具備した比較例1の固体電解コンデンサはショート不良率がやや高かった。また、繊維径の太い溶剤紡糸セルロース繊維が多く混在することにより、セパレータの地合むらや厚みむらがあり、導電性高分子の重合が不均一であったため、該セパレータを具備した比較例1の固体電解コンデンサは、ESRのばらつきが大きくなった。   Since the separator of Comparative Example 1 does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml and contains solvent-spun cellulose fibers having a modified freeness of 260 ml, the separator has a large through-hole. Since the burr of the electrode foil became easy to penetrate, the solid electrolytic capacitor of Comparative Example 1 equipped with the separator had a slightly high short-circuit defect rate. Moreover, since a lot of solvent-spun cellulose fibers having a large fiber diameter coexist, the formation of the separator is uneven and the thickness is uneven, and the polymerization of the conductive polymer is not uniform. The solid electrolytic capacitor has a large variation in ESR.

比較例2のセパレータは、合成短繊維を含有せず、セルロース繊維100%からなるため、炭化処理温度を低くすることができない。また、炭化処理後の強度が著しく弱く、導電性高分子を重合した後も強度が著しく弱く、該セパレータを具備した比較例2の固体電解コンデンサはショート不良率が高かった。   Since the separator of Comparative Example 2 does not contain synthetic short fibers and consists of 100% cellulose fibers, the carbonization temperature cannot be lowered. Further, the strength after carbonization treatment was remarkably weak, and the strength was remarkably weak after polymerization of the conductive polymer. The solid electrolytic capacitor of Comparative Example 2 equipped with the separator had a high short-circuit defect rate.

比較例3のセパレータは、合成短繊維100%からなるため、表面が滑りやすく、3mm以下の巾にスリットして作製したレコード巻きの巻き崩れが生じた。また、セパレータ中の繊維間の隙間が大きすぎて、導電性高分子の担持性が悪く、該セパレータを具備した比較例3の固体電解コンデンサは、容量が小さく、ESRのばらつきが大きかった。また、電極箔のバリが貫通しやすく、該セパレータを具備した比較例3の固体電解コンデンサは、ショート不良率が高かった。   Since the separator of Comparative Example 3 was composed of 100% synthetic short fibers, the surface was slippery, and the winding of the record winding produced by slitting to a width of 3 mm or less occurred. Moreover, the gap between the fibers in the separator was too large, and the conductive polymer was poorly supported. The solid electrolytic capacitor of Comparative Example 3 equipped with the separator had a small capacity and a large variation in ESR. Moreover, the burr | flash of electrode foil penetrated easily and the solid electrolytic capacitor of the comparative example 3 which comprised this separator had a high short circuit defect rate.

比較例4のセパレータは、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、アクリル短繊維を主体としてなるため、表面が滑りやすく、3mm以下の巾にスリットして作製したレコード巻きの巻き崩れが生じた。また、セパレータ中の繊維間の隙間が大きすぎて、導電性高分子の担持性が悪く、該セパレータを具備した比較例4の固体電解コンデンサは容量が小さく、ESRのばらつきが大きかった。   The separator of Comparative Example 4 does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, and is mainly composed of acrylic short fibers, so that the surface is slippery and is made by slitting to a width of 3 mm or less. The roll collapsed. Further, the gap between the fibers in the separator was too large, and the conductive polymer was poorly supported. The solid electrolytic capacitor of Comparative Example 4 equipped with the separator had a small capacity and a large variation in ESR.

比較例5のセパレータは、合成短繊維を含有せず、変法濾水度80mlの溶剤紡糸セルロース繊維100%からなるため、炭化処理温度を低くすることができない。また、炭化処理後の強度が著しく弱く、導電性高分子を重合した後も強度が著しく弱く、該セパレータを具備した比較例5の固体電解コンデンサはショート不良率が高かった。   Since the separator of Comparative Example 5 does not contain synthetic short fibers and consists of 100% solvent-spun cellulose fibers having a modified freeness of 80 ml, the carbonization temperature cannot be lowered. Further, the strength after carbonization treatment was remarkably weak and the strength was remarkably weak after polymerizing the conductive polymer, and the solid electrolytic capacitor of Comparative Example 5 equipped with the separator had a high short-circuit defect rate.

比較例6のセパレータは、合成短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、カナダ標準濾水度640ml(変法濾水度800ml)のマニラ麻とエスパルトからなるため、炭化処理温度を低くすることができない。また、炭化処理後の強度が著しく弱く、導電性高分子を重合した後も強度が著しく弱く、該セパレータを具備した比較例6の固体電解コンデンサはショート不良率が高かった。   Since the separator of Comparative Example 6 does not contain synthetic short fibers and solvent-spun cellulose fibers with a modified freeness of 0 to 250 ml, it consists of Manila hemp and esparto with a Canadian standard freeness of 640 ml (modified freeness of 800 ml). The carbonization temperature cannot be lowered. Further, the strength after carbonization treatment was remarkably weak, and the strength was remarkably weak after polymerization of the conductive polymer. The solid electrolytic capacitor of Comparative Example 6 equipped with the separator had a high short-circuit defect rate.

比較例7のセパレータは、フィブリル化アクリル繊維とアクリル短繊維からなるため、表面が滑りやすく、3mm以下の巾にスリットして作製したレコード巻きの巻き崩れが生じた。また、フィブリル化アクリル繊維の配合率が80%と多いため、導電性高分子の導通が悪くなり、該セパレータを具備した比較例7の固体電解コンデンサは、ESRが高かった。   Since the separator of Comparative Example 7 was composed of fibrillated acrylic fibers and acrylic short fibers, the surface was slippery, and the winding of the record winding produced by slitting to a width of 3 mm or less occurred. Further, since the blending ratio of the fibrillated acrylic fiber was as high as 80%, the conductive polymer was poorly conductive, and the solid electrolytic capacitor of Comparative Example 7 equipped with the separator had a high ESR.

比較例8のセパレータは、合成短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維とを含有するが、空孔率が60.0%未満だったため、導電性高分子の導通が悪くなり、該セパレータを具備した比較例8の固体電解コンデンサはESRが高かった。   The separator of Comparative Example 8 contains synthetic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml. However, since the porosity was less than 60.0%, the conductivity of the conductive polymer was poor. Thus, the solid electrolytic capacitor of Comparative Example 8 equipped with the separator had a high ESR.

比較例9のセパレータは、合成短繊維と変法濾水度0〜250mlの溶剤紡糸セルロース繊維とを含有するが、空孔率が86.0%を超えていたため、電極のバリが貫通しやすく、該セパレータを具備した比較例9の固体電解コンデンサは、同スラリーから作製され、空孔率が60.0〜86.0%である実施例13及び14のセパレータよりもショート不良率が高かった。また、導電性高分子の担持性が不十分になり、容量が小さく、ESRのばらつきが大きかった。   The separator of Comparative Example 9 contains synthetic short fibers and solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml. However, since the porosity exceeded 86.0%, the burrs of the electrodes easily penetrated. The solid electrolytic capacitor of Comparative Example 9 equipped with the separator was produced from the same slurry and had a higher short-circuit defect rate than the separators of Examples 13 and 14 having a porosity of 60.0 to 86.0%. . Moreover, the carrying | support property of the conductive polymer became inadequate, the capacity | capacitance was small and the dispersion | variation in ESR was large.

比較例10のセパレータは、ポリアミド繊維と湿熱融着性樹脂からなるため、湿熱融着性樹脂が皮膜を形成しており、導電性高分子の担持性と導通が悪く、該セパレータを具備した比較例10の固体電解コンデンサは、容量が小さく、ESRが高く、ESRのばらつきが大きかった。また、セパレータ表面が滑りやすく、3mm以下の巾にスリットして作製したレコード巻きの巻き崩れが生じた。   Since the separator of Comparative Example 10 is made of polyamide fiber and a wet heat fusible resin, the wet heat fusible resin forms a film, and the conductive polymer is poorly supported and electrically conductive. The solid electrolytic capacitor of Example 10 had a small capacity, a high ESR, and a large variation in ESR. Further, the separator surface was slippery, and the roll of the record winding produced by slitting to a width of 3 mm or less occurred.

比較例11のセパレータは、湿熱融着性樹脂を含有するため、該樹脂が皮膜を形成しており、導電性高分子の担持性と導通が悪く、該セパレータを具備した比較例11の固体電解コンデンサは、容量が小さく、ESRが高く、ESRのばらつきが大きかった。このように炭化温度230℃では、静電容量やESRで十分な特性が得られなかったことから、比較例11のセパレータは、炭化温度を低くすることができないといえる。   Since the separator of Comparative Example 11 contains a wet heat fusible resin, the resin forms a film, the conductive polymer is poorly supported and conductive, and the solid electrolytic of Comparative Example 11 having the separator is provided. The capacitor had a small capacitance, a high ESR, and a large variation in ESR. Thus, at the carbonization temperature of 230 ° C., sufficient characteristics were not obtained with the electrostatic capacity and ESR, and thus it can be said that the separator of Comparative Example 11 cannot lower the carbonization temperature.

比較例12のセパレータは、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、セルロース繊維、フィブリル状耐熱性繊維、アクリル短繊維からなるため、フィブリル状耐熱繊維の存在により、導電性高分子の導通が悪く、該セパレータを具備した比較例12の固体電解コンデンサは、ESRが高かった。このように炭化温度230℃では、静電容量やESRで十分な特性が得られなかったことから、比較例12のセパレータは、炭化温度を低くすることができないといえる。さらにフィブリル状耐熱性繊維を多く含有するため、スリット作業の際に静電気を帯び、レコード巻きの巻き崩れが生じた。   The separator of Comparative Example 12 does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, and is composed of cellulose fibers, fibril heat resistant fibers, and acrylic short fibers. Conductive polymer was poor in conduction, and the solid electrolytic capacitor of Comparative Example 12 equipped with the separator had high ESR. Thus, at the carbonization temperature of 230 ° C., sufficient characteristics were not obtained with the capacitance and ESR, and therefore it can be said that the separator of Comparative Example 12 cannot lower the carbonization temperature. Further, since it contains a large amount of fibril-like heat-resistant fibers, it was charged with static electricity during the slitting operation, and the roll of the record winding collapsed.

比較例13のセパレータは、変法濾水度0〜250mlの溶剤紡糸セルロース繊維を含有せず、セルロース繊維、フィブリル状耐熱性繊維、アクリル短繊維からなり、繊維間の隙間が大きすぎたため、導電性高分子の担持性が不十分で、該セパレータを具備した比較例13の固体電解コンデンサは、容量が小さく、ESRのばらつきが大きかった。このように炭化温度230℃では、静電容量やESRで十分な特性が得られなかったことから、比較例13のセパレータは、炭化温度を低くすることができないといえる。   The separator of Comparative Example 13 does not contain solvent-spun cellulose fibers having a modified freeness of 0 to 250 ml, and is composed of cellulose fibers, fibrillar heat-resistant fibers, short acrylic fibers, and the gap between the fibers is too large. The solid electrolytic capacitor of Comparative Example 13 provided with the separator had a small capacity and a large variation in ESR. Thus, at the carbonization temperature of 230 ° C., sufficient characteristics could not be obtained with the capacitance and ESR, so it can be said that the separator of Comparative Example 13 cannot lower the carbonization temperature.

Claims (2)

ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mlの溶剤紡糸セルロース繊維と合成短繊維とを必須成分として含有してなり、皮膜を含有せず、空孔率が60.0〜86.0%である湿式不織布からなることを特徴とする固体電解コンデンサ用セパレータ。   A solvent having a modified freeness of 0 to 250 ml measured according to JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as the sieve plate, and the sample concentration is 0.1%. A solid electrolytic capacitor characterized by comprising a spun cellulose fiber and a synthetic short fiber as essential components, a wet nonwoven fabric having no porosity and a porosity of 60.0 to 86.0% Separator. 請求項1に記載の固体電解コンデンサ用セパレータを具備してなる固体電解コンデンサ。   A solid electrolytic capacitor comprising the separator for a solid electrolytic capacitor according to claim 1.
JP2010093647A 2010-04-15 2010-04-15 Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same Active JP5520123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093647A JP5520123B2 (en) 2010-04-15 2010-04-15 Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093647A JP5520123B2 (en) 2010-04-15 2010-04-15 Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2011228320A true JP2011228320A (en) 2011-11-10
JP5520123B2 JP5520123B2 (en) 2014-06-11

Family

ID=45043385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093647A Active JP5520123B2 (en) 2010-04-15 2010-04-15 Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same

Country Status (1)

Country Link
JP (1) JP5520123B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171905A (en) * 2012-02-20 2013-09-02 Mitsubishi Paper Mills Ltd Separator for capacitor, and capacitor including the same
WO2017195690A1 (en) * 2016-05-09 2017-11-16 三菱製紙株式会社 Separator for electrochemical elements, and electrochemical element using same
WO2018074442A1 (en) * 2016-10-17 2018-04-26 三菱製紙株式会社 Separator for electrochemical elements, and electrochemical element comprising same
JP6411689B1 (en) * 2018-03-29 2018-10-24 ニッポン高度紙工業株式会社 Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor.
CN113316830A (en) * 2019-03-26 2021-08-27 三菱制纸株式会社 Spacer for solid electrolytic capacitor
CN114687247A (en) * 2022-03-16 2022-07-01 湖南艾华集团股份有限公司 Electrolytic paper for low-temperature aluminum electrolytic capacitor and preparation method thereof
US11721492B2 (en) 2019-03-26 2023-08-08 Mitsubishi Paper Mills Limited Capacitor block having a spacer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
WO2007061108A1 (en) * 2005-11-28 2007-05-31 Mitsubishi Paper Mills Limited Separator for electric double layer capacitor
JP2008166308A (en) * 2006-12-26 2008-07-17 Mitsubishi Paper Mills Ltd Separator for solid electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093350A1 (en) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separator for electrochemical device and method for producing the same, and electrochemical device
WO2007061108A1 (en) * 2005-11-28 2007-05-31 Mitsubishi Paper Mills Limited Separator for electric double layer capacitor
JP2008166308A (en) * 2006-12-26 2008-07-17 Mitsubishi Paper Mills Ltd Separator for solid electrolytic capacitor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171905A (en) * 2012-02-20 2013-09-02 Mitsubishi Paper Mills Ltd Separator for capacitor, and capacitor including the same
US10818898B2 (en) 2016-05-09 2020-10-27 Mitsubishi Paper Mills Limited Separator for electrochemical elements and electrochemical element including separator for electrochemical elements
WO2017195690A1 (en) * 2016-05-09 2017-11-16 三菱製紙株式会社 Separator for electrochemical elements, and electrochemical element using same
CN109155205A (en) * 2016-05-09 2019-01-04 三菱制纸株式会社 Electro chemical elements use spacer and use electrochemical element made of it
CN109155205B (en) * 2016-05-09 2020-12-18 三菱制纸株式会社 Separator for electrochemical element and electrochemical element using same
EP3457420A4 (en) * 2016-05-09 2020-01-22 Mitsubishi Paper Mills Limited Separator for electrochemical elements, and electrochemical element using same
WO2018074442A1 (en) * 2016-10-17 2018-04-26 三菱製紙株式会社 Separator for electrochemical elements, and electrochemical element comprising same
JP6349021B1 (en) * 2016-10-17 2018-06-27 三菱製紙株式会社 Electrochemical element separator and electrochemical element including the same
JP2019046776A (en) * 2016-10-17 2019-03-22 三菱製紙株式会社 Separator for electrochemical element and electrochemical element including the same
US10964986B2 (en) 2016-10-17 2021-03-30 Mitsubishi Paper Mills Limited Separator for electrochemical elements, and electrochemical element comprising same
JP6411689B1 (en) * 2018-03-29 2018-10-24 ニッポン高度紙工業株式会社 Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor.
CN111919272A (en) * 2018-03-29 2020-11-10 日本高度纸工业株式会社 Diaphragm for aluminum electrolytic capacitor and aluminum electrolytic capacitor
JP2019176073A (en) * 2018-03-29 2019-10-10 ニッポン高度紙工業株式会社 Separator for solid or hybrid electrolytic capacitor, and solid or hybrid electrolytic capacitor
WO2019188659A1 (en) * 2018-03-29 2019-10-03 ニッポン高度紙工業株式会社 Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
EP3780046A4 (en) * 2018-03-29 2022-01-05 Nippon Kodoshi Corporation Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
CN113316830A (en) * 2019-03-26 2021-08-27 三菱制纸株式会社 Spacer for solid electrolytic capacitor
US11721492B2 (en) 2019-03-26 2023-08-08 Mitsubishi Paper Mills Limited Capacitor block having a spacer
CN114687247A (en) * 2022-03-16 2022-07-01 湖南艾华集团股份有限公司 Electrolytic paper for low-temperature aluminum electrolytic capacitor and preparation method thereof

Also Published As

Publication number Publication date
JP5520123B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5520123B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same
KR102662350B1 (en) Separator for electrochemical devices and electrochemical devices
JP2015065153A (en) Separator for electrochemical element, method of manufacturing separator for electrochemical element, and electrochemical element
JP2016025211A (en) Separator for power storage device, and power storage device arranged by use thereof
JP4938640B2 (en) separator
JP6339869B2 (en) Capacitor separator
JP5876373B2 (en) Electrochemical element separator and electrochemical element using the same
JP2014056953A (en) Separator for capacitor and capacitor
JP2009076486A (en) Separator for electrochemical element
JP2017174928A (en) Separator for solid electrolytic capacitor
JP5695474B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same
JP4740034B2 (en) Electrochemical element separator
JP2004235293A (en) Separator for solid-state electrolytic capacitor
JP3971905B2 (en) Separator for electrochemical device and method for producing the same
JP2010239028A (en) Separator for electric storage device
JP2013191780A (en) Separator for solid electrolytic capacitor, and solid electrolytic capacitor including the same
JP2020088024A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP7273497B2 (en) Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor using the same
JP2020053425A (en) Separator for solid electrolytic capacitor or hybrid electrolytic capacitor and solid electrolytic capacitor or hybrid electrolytic capacitor including the same
WO2021166570A1 (en) Separator for aluminum electrolytic capacitors, and aluminum electrolytic capacitor
JP4999609B2 (en) Solid electrolytic capacitor separator
JP2014175588A (en) Separator for solid electrolyte capacitor use, and solid electrolyte capacitor arranged by use thereof
JP2020088089A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP2023058329A (en) Separator for solid electrolytic capacitor
JP2020088049A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5520123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250