JP2011227306A - Complex eye camera - Google Patents

Complex eye camera Download PDF

Info

Publication number
JP2011227306A
JP2011227306A JP2010097221A JP2010097221A JP2011227306A JP 2011227306 A JP2011227306 A JP 2011227306A JP 2010097221 A JP2010097221 A JP 2010097221A JP 2010097221 A JP2010097221 A JP 2010097221A JP 2011227306 A JP2011227306 A JP 2011227306A
Authority
JP
Japan
Prior art keywords
angle
distance
cameras
optical axis
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097221A
Other languages
Japanese (ja)
Inventor
Masao Watari
雅男 渡
Ryo Sasaki
良 佐々木
Norihiro Tsukiyama
典弘 築山
Toshiyuki Kobayashi
利行 小林
Machiko Niina
真知子 新名
Shozo Aoi
正三 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATHEMATEC CORP
Original Assignee
MATHEMATEC CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATHEMATEC CORP filed Critical MATHEMATEC CORP
Priority to JP2010097221A priority Critical patent/JP2011227306A/en
Publication of JP2011227306A publication Critical patent/JP2011227306A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a camera capable of minimizing a parallax in the case of forming an image having an enlarged view angle from a plurality of camera images, also, capable of securing overlapping of the view angles required for image synthesis, and then, capable of satisfactorily synthesizing wide view angle images upon far-distance photographing, and also, upon close-distance photographing, and enabling 3D photographing.SOLUTION: The complex eye camera includes two cameras a and b having the same horizontal viewing angle α, the cameras a and b are arranged so that optical axes of the cameras a and b cross each other at an angle of 0<θ<α on a plane including the lens centers of the cameras a and b, and a center-to-center distance of the lenses of the cameras a and b is sufficiently reduced, and then, image synthesizing processing is performed, accordingly, an image having a view angle wider than α is formed, and also, the center-to-center distance of the lenses is set small, accordingly, a parallax difference is reduced, and good synthesis of the images having the wide view angle can be achieved upon the far-distance photographing, also, upon the close-distance photographing. Besides, with the installation of a structure of automatically controlling a change of the distance between the lenses and the optical axis angle or with the installation of a manual movable part, the wide view angle images and the 3D images can simultaneously be photographed.

Description

本発明は、複眼カメラに関し、特に複数のカメラ画像から遠景および近景の撮影において良好な広視野角画像を合成可能とした複眼カメラおよび3D撮影も可能にした複眼カメラに関する。   The present invention relates to a compound eye camera, and more particularly to a compound eye camera capable of synthesizing a good wide viewing angle image from a plurality of camera images, and a compound eye camera capable of 3D photography.

広視野角のカメラを実現するには、広角レンズを用いる方法や、複眼カメラの撮像された画像を合成処理して実現する方法がある。しかし広角レンズは高価であると同時に樽型歪が生じる為の歪補正処理を必要とする問題があり、また標準レンズ向けの撮像素子で広視野画像の取得を行う為、解像度が劣化する問題がある。   In order to realize a camera with a wide viewing angle, there are a method using a wide-angle lens and a method for realizing by combining a captured image of a compound eye camera. However, wide-angle lenses are expensive and have a problem that requires distortion correction processing to cause barrel distortion. Also, since a wide-field image is acquired with an image sensor for a standard lens, there is a problem that resolution deteriorates. is there.

複眼カメラを用いる方法は、二倍の画角の画像取得する方法として二眼パノラマが多く提案されている。例えば、特許文献1で提案された「パノラマカメラの配置方法及びその構築法」では、撮像レンズを垂直方向に重なるように配置し、水平方向のレンズ中心を揃え視差の少ない方法が考案されている。しかしこの方法でも視差は残り、また垂直方向の近接画像での垂直画角のずれという大きな問題と垂直方向の視差の問題が残る。   As a method using a compound eye camera, many binocular panoramas have been proposed as a method for acquiring an image having a double angle of view. For example, in “Panorama Camera Arrangement Method and its Construction Method” proposed in Patent Document 1, a method has been devised in which imaging lenses are arranged so as to overlap in the vertical direction, the center of the lens in the horizontal direction is aligned, and there is little parallax. . However, even with this method, parallax remains, and there remains a major problem of vertical field angle shift in a close image in the vertical direction and a problem of vertical parallax.

そのため、「複眼カメラおよびカメラ応用機器」(特願2010―11707)なる特許出願を本出願と同一の出願人が行った。(以後「前出願」と呼ぶことにする。)この前出願では、広視野角画像を画像合成の方法で生成する場合に限定すると、2つのカメラの場合、光軸を平行に設定することから、カメラ画角の丁度2倍の広視野角の画像が取得でき、かつ距離測定ができる特徴がある。   Therefore, the same applicant as the present application filed a patent application entitled “Compound-eye camera and camera application device” (Japanese Patent Application No. 2010-11707). (Hereinafter referred to as “previous application.”) In this prior application, the optical axis is set in parallel in the case of two cameras when limited to the case where a wide viewing angle image is generated by the image synthesis method. The feature is that an image with a wide viewing angle that is exactly twice the camera angle of view can be acquired and the distance can be measured.

図2は、前出願の第1の実施形態の複眼カメラ構成図である。前出願では近景撮影における遠近混在問題を回避する方法としてカメラa,bのレンズ間距離をカメラの撮像素子部の大きさの影響無く、レンズとレンズ周辺の大きさの制限があるものの、レンズ間距離を小さくでき2つのカメラの共通撮影部分における視差を小さくすることが可能である。しかし、この場合十分な遠景の広視野角の映像を撮影する場合に2つのカメラで得られる画像情報の重なり部分が小さくなってしまう。   FIG. 2 is a configuration diagram of a compound eye camera according to the first embodiment of the previous application. In the previous application, the distance between the lenses of the cameras a and b is not affected by the size of the image pickup device of the camera and the size of the lens and the lens periphery is limited as a method for avoiding the problem of mixed perspective in near-field photography. It is possible to reduce the distance and to reduce the parallax in the common photographing part of the two cameras. However, in this case, when a sufficiently distant view with a wide viewing angle is taken, the overlapping portion of image information obtained by the two cameras becomes small.

一般に画像合成においては、取得画像の被写体の共通領域で特徴抽出を行い、同一特徴点と見なせる対応する特徴点の位置合わせを行うことでシームレスな画像合成を行う。そのため、前出願でレンズ間距離を小さくする場合、光軸が平行であることで、被写体の共通領域が遠景になる程少なくなる問題がある。つまり近距離または中距離向きではあっても、十分な遠距離撮影とが両立できる複眼カメラにはなっていない問題がある。   In general, in image synthesis, feature extraction is performed in a common area of a subject of an acquired image, and matching of corresponding feature points that can be regarded as the same feature point is performed, thereby performing seamless image synthesis. Therefore, when the distance between the lenses is reduced in the previous application, there is a problem in that the common area of the subject becomes farther as the optical axis is parallel. That is, there is a problem that it is not a compound-eye camera that can be compatible with sufficient long-distance shooting even if it is oriented toward short distance or medium distance.

特開2002−369060号公報JP 2002-369060 A

本発明は、複数のカメラ画像から視野角を拡大した画像を生成する時の視差を極力小さくし、かつ画像合成に必要な画角の重なりを確保でき、遠景撮影でも近景撮影でも良好な広視野角画像を合成可能とするカメラを実現すること、および3D撮影も可能とするカメラを提供することを目的とする。   The present invention makes it possible to minimize parallax when generating an image with an enlarged viewing angle from a plurality of camera images, and to ensure an overlap of viewing angles necessary for image composition, and a wide field of view that is good for both far-field photography and foreground photography. An object of the present invention is to realize a camera that can synthesize a corner image and to provide a camera that can also perform 3D shooting.

請求項1の発明においては、水平画角α(または垂直画角β)の同一の2つのカメラa、bを具備し、カメラa,bのレンズ中心を含む平面上でカメラaの光軸a2とカメラbの光軸b2を水平画角α(または垂直画角β)に対して0<θ<α(または0<λ<β)なる水平交差角度θ(または垂直交差角度λ)で交差するようにし、カメラaのレンズ中心a1とカメラbのレンズ中心b1を十分に小さな距離になるように配置する。   In the first aspect of the present invention, two optical cameras a and b having the same horizontal angle of view α (or vertical angle of view β) are provided, and the optical axis a2 of the camera a on a plane including the lens centers of the cameras a and b. And the optical axis b2 of the camera b intersect the horizontal angle of view α (or vertical angle of view β) at a horizontal crossing angle θ (or vertical crossing angle λ) of 0 <θ <α (or 0 <λ <β). Thus, the lens center a1 of the camera a and the lens center b1 of the camera b are arranged so as to have a sufficiently small distance.

請求項1の発明のように、水平画角αの2つのカメラのレンズ中心を含む平面上で2つのカメラの光軸を0<θ<αなる水平交差角度θで交差するように配置したことで、広視野角化の実現と同時に遠景画像に対して画像合成の為の重なりを実現できる。レンズ間距離を十分に小さく取れば近景に対しては視差が少ない画像を取得できる。つまり遠景撮影に対しても近景撮影に対しても必要な画像の重なり実現でき、好適な画像合成が可能な画像取得が実現できる。   As in the first aspect of the invention, the optical axes of the two cameras are arranged so as to intersect at a horizontal crossing angle θ of 0 <θ <α on a plane including the lens centers of the two cameras having a horizontal angle of view α. Thus, it is possible to realize an overlap for image composition with respect to a distant view image at the same time as realizing a wide viewing angle. If the distance between the lenses is sufficiently small, an image with little parallax can be obtained for a close-up view. In other words, it is possible to realize overlapping images necessary for both far-field photography and near-field photography, and it is possible to realize image acquisition that allows suitable image composition.

尚、2つの光軸の交差する点を通り、かつ同一平面上で2つの光軸の成す角度の内、狭い角度を二分する直線を以下では平均光軸Xabと表すことにする。   A straight line that bisects a narrow angle among the angles formed by the two optical axes on the same plane and passing through the intersection of the two optical axes will be represented as an average optical axis Xab below.

請求項2の発明においては、水平画角α、垂直画角βの4つの同一のカメラa,b,e,fを具備し、カメラa,bおよびカメラe,fの両方が請求項1記載の水平交差角度θ(または垂直交差角度λ)で交差させた複眼カメラであり、カメラa,bの平均光軸Xabとカメラe,fの平均光軸Xefの成す平面上で、βm=2arctan(|cos(θ/2)|×tan(β/2))(またはαm=2arctan(|cos(λ/2)|×tan(α/2))なる角度に対して0<λ<βmとなるように垂直交差角度λ(または0<θ<αmなる水平交差角度θ)で交差するようにし、カメラa,eとカメラb,fのレンズ間距離を十分に小さく配置する。   In the invention of claim 2, four identical cameras a, b, e, and f having a horizontal angle of view α and a vertical angle of view β are provided, and both the cameras a and b and the cameras e and f are claimed in claim 1. On the plane formed by the average optical axis Xab of the cameras a and b and the average optical axis Xef of the cameras e and f, βm = 2 arctan ( | Cos (θ / 2) | × tan (β / 2)) (or αm = 2 arctan (| cos (λ / 2) | × tan (α / 2)) where 0 <λ <βm In this way, the crossing is made at a vertical crossing angle λ (or a horizontal crossing angle θ satisfying 0 <θ <αm), and the distance between the lenses of the cameras a and e and the cameras b and f is arranged sufficiently small.

請求項2の発明のようにこれらのレンズが垂直画角βのレンズであれば、垂直方向に対しても0<λ<βmなる垂直交差角度λで交差させれば、水平方向、垂直方向ともに広視野角化が実現でき、かつ遠景撮影に対しても近景撮影に対しても好適な画像取得が実現できる。   If these lenses are lenses having a vertical angle of view β as in the invention of claim 2, both the horizontal direction and the vertical direction can be obtained by intersecting the vertical direction with a vertical crossing angle λ satisfying 0 <λ <βm. A wide viewing angle can be realized, and image acquisition suitable for both far-field photography and near-field photography can be realized.

また請求項3の発明のように、請求項1ないし請求項2の複眼カメラを少なくとも1つ具備し、これら複眼カメラ(/および1眼カメラ)を組み合わせて構成してもよい。   Further, as in the invention of claim 3, at least one compound eye camera of claim 1 or claim 2 may be provided, and these compound eye cameras (/ and single eye cameras) may be combined.

請求項3の発明のように請求項1または請求項2を組み合わせれば、画角αやβの倍数が180度未満の範囲であれば、遠景撮影に対しても近景撮影に対してもさらに広視野角の好適な画像取得が可能となる。   If the first or second aspect is combined as in the third aspect of the invention, if the multiple of the angle of view α or β is within a range of less than 180 degrees, it is further possible for both far-field photography and foreground photography. Suitable image acquisition with a wide viewing angle becomes possible.

また請求項4の発明のように、請求項1ないし請求項3の複眼カメラを設け、画像合成部を設けてもよい。   Further, as in the invention of claim 4, the compound-eye camera of claims 1 to 3 may be provided, and an image composition unit may be provided.

請求項4の発明のように画像合成部を具備すれば遠景撮影に対しても、近景撮影に対しても好適な広視野角画像を生成できる複眼カメラが可能になる。   If the image composition unit is provided as in the fourth aspect of the invention, a compound eye camera capable of generating a wide viewing angle image suitable for both far-field photography and near-field photography becomes possible.

請求項5の発明においては、ズーム機能付きカメラを複数用いる場合には請求項1ないし請求項4の光軸交差の条件を実現するため、光軸角度制御部、カメラ画角検知部および光軸交差角度算出部、光軸角度稼働部を具備する。   In a fifth aspect of the present invention, when a plurality of cameras with a zoom function are used, the optical axis angle control unit, the camera field angle detection unit, and the optical axis are used in order to realize the optical axis crossing conditions of the first to fourth aspects. An intersection angle calculation unit and an optical axis angle operation unit are provided.

また請求項5の発明のように、光軸角度制御部、カメラ画角検知部および光軸交差角度算出部、光軸角度稼働部を具備すれば、ズーム機能付きカメラ複数台の場合の画角の変化に追随して光軸の交差を変化させることが可能となり、どの画角に対しても請求項1ないし請求項4の複眼カメラが可能になる。   Further, as in the fifth aspect of the invention, if the optical axis angle control unit, the camera angle of view detection unit, the optical axis crossing angle calculation unit, and the optical axis angle operation unit are provided, the angle of view in the case of a plurality of cameras with a zoom function is provided. It is possible to change the intersection of the optical axes following the change of the above, and the compound-eye camera according to any one of claims 1 to 4 is possible for any angle of view.

請求項6の発明においては、請求項5の発明に加えレンズ間距離スライド制御部とスライド可動部を具備する。   In addition to the invention of claim 5, the invention of claim 6 includes an inter-lens distance slide control unit and a slide movable unit.

請求項6の発明のように、請求項5のカメラに加えレンズ間距離スライド制御部とスライド可動部を具備すれば、広視野角画像撮影の時には、レンズ間距離制御部の指示でスライド可動部でスライドしてレンズ間距離を、広視野角画像撮影に適した第1の距離にし、3D撮影の場合にはレンズ間距離を第1の距離より大きな第2の距離にレンズ間距離制御部の指示でスライド可動部でスライドして広げ、同時に光軸角度制御部の指示に従い光軸角度可動部で制御し3D撮影条件にあった角度に変更することで、広視野角撮影と3D撮影とを切り替えて撮影できる複眼カメラが実現できる。第1の距離は典型的には最小距離であるが、これに限定されない。第2の距離は典型的には約6.5cmであるが、これに限定されない。スライド動作は、直線に沿って行われても良いし、曲線(湾曲を含む)、複数の直線を連結した線に沿って行われても良い。   According to the sixth aspect of the present invention, if the inter-lens distance slide control unit and the slide movable unit are provided in addition to the camera of the fifth aspect, the slide movable unit is instructed by the inter-lens distance control unit at the time of photographing a wide viewing angle image. The distance between the lenses is made the first distance suitable for wide viewing angle image shooting, and the distance between the lenses is set to a second distance larger than the first distance in the case of 3D shooting. By widening the viewing angle and the 3D shooting by sliding the slide movable portion with the instruction and simultaneously changing the angle according to the 3D shooting condition by controlling with the optical axis angle moving portion according to the instruction of the optical axis angle control unit. A compound-eye camera that can be switched and photographed can be realized. The first distance is typically the minimum distance, but is not limited thereto. The second distance is typically about 6.5 cm, but is not limited to this. The sliding operation may be performed along a straight line, or may be performed along a curve (including a curve) or a line connecting a plurality of straight lines.

請求項7の発明においては、レンズ間距離光軸角度連動スライド可動部を具備する。   In the invention of claim 7, the inter-lens distance optical axis angle interlocking slide movable part is provided.

請求項7の発明にように、レンズ間距離光軸角度連動スライド可動部を具備すれば、広視野角撮影の時にはレンズ間距離を手動でスライドして、広視野角画像撮影に適した第1の距離にし、同時に請求項1の複眼カメラの光軸交差角度を実現でき、3D撮影の時にはレンズ間距離を第1の距離より大きな第2の距離に手動でスライドして広げ、同時に3D撮影条件にあった角度にし、3D撮影の視差を実現することで、広視野角撮影と3D撮影とを切り替えて撮影できる複眼カメラが実現できる。上述と同様に、第1の距離は典型的には最小距離であるが、これに限定されない。第2の距離は典型的には約6.5cmであるが、これに限定されない。スライド動作は、直線に沿って行われても良いし、曲線(湾曲を含む)、複数の直線を連結した線に沿って行われても良い。   If the inter-lens distance optical axis angle-linked slide movable portion is provided as in the invention of claim 7, the inter-lens distance is manually slid at the time of wide viewing angle photographing, and the first suitable for wide viewing angle image photographing. The optical axis crossing angle of the compound eye camera of claim 1 can be realized at the same time, and the distance between the lenses can be manually slid and expanded to a second distance larger than the first distance at the time of 3D shooting. By realizing the parallax for 3D shooting at a suitable angle, a compound eye camera that can switch between wide viewing angle shooting and 3D shooting can be realized. As above, the first distance is typically the minimum distance, but is not limited thereto. The second distance is typically about 6.5 cm, but is not limited to this. The sliding operation may be performed along a straight line, or may be performed along a curve (including a curve) or a line connecting a plurality of straight lines.

請求項1ないし請求項3の複眼カメラの場合には、カメラの水平画角α、垂直画角βに対して、光軸を水平交差角度θまたは(/および垂直交差角度λ)の倍数だけ画角を広げることができ、同時に隣合った水平画角重なりの角度をδ=α―θまたは(/および垂直画角重なり角度ε=β―λ)とすることができ、十分な遠景の場合でも画像合成で必要となる位置合わせの為の共通画角領域を確保できる。パソコンなどの画像入力用カメラとして用いればパソコン内でパノラマ合成法のような画像合成処理を行うなどで広視野角の画像を作ることが可能になる効果がある。   In the case of the compound eye camera according to claims 1 to 3, the optical axis is imaged by a multiple of a horizontal crossing angle θ or (and / or a vertical crossing angle λ) with respect to the horizontal field angle α and the vertical field angle β of the camera. The angle of the horizontal angle of view can be expanded at the same time, and the angle of the adjacent horizontal angle of view can be set to δ = α-θ or (and the vertical angle of view overlap angle ε = β-λ). A common field angle area for alignment required for image composition can be secured. When used as an image input camera such as a personal computer, an image having a wide viewing angle can be produced by performing image composition processing such as a panoramic composition method in the personal computer.

請求項4の複眼カメラでは、画像合成部を内蔵するためカメラ単独で広視野角の画像を作ることができる効果がある。   In the compound eye camera according to the fourth aspect of the present invention, since the image composition unit is built in, an image having a wide viewing angle can be produced by the camera alone.

請求項5の場合には、ズーム機能により画角が変化した場合でも広視野角画像取得に必要な適正な画角重なり角度を保証でき好適な広視野角画像所得または合成画像が可能になり、遠景をズームしたパノラマ撮影などの可能になる効果がある。   In the case of claim 5, even when the angle of view is changed by the zoom function, it is possible to guarantee an appropriate angle of view overlap necessary for obtaining a wide angle of view image, and a suitable wide angle of view image income or a composite image becomes possible. This has the effect of enabling panoramic photography with a zoomed-in distant view.

請求項6ないし請求項7の場合には、カメラの台数を増やすことなく、広視野角撮影も3D撮影も可能なカメラが実現できる効果があり、また請求項6の場合には携帯電話などにも搭載可能なレベルの小型化できる効果があり、請求項7の場合には簡単な可動部の構成であることから低価格な製品を実現できる効果がある。   In the case of Claim 6 thru | or 7, there exists an effect which can implement | achieve the camera which can perform wide viewing angle imaging | photography and 3D imaging | photography, without increasing the number of cameras, and in the case of Claim 6, in a mobile telephone etc. In the case of claim 7, since the structure of the movable part is simple, there is an effect that a low-priced product can be realized.

本発明の第1の実施形態の複眼カメラ構成図である。It is a compound eye camera lineblock diagram of a 1st embodiment of the present invention. 前出願の第1の実施形態の複眼カメラ構成図である。It is a compound eye camera lineblock diagram of a 1st embodiment of a previous application. 本発明の第1の実施形態の画角関係説明図である。It is an angle-of-view relationship explanatory drawing of the 1st Embodiment of this invention. 本発明の第1の実施例の垂直画角側面説明図である。It is a vertical view angle side explanatory view of the first embodiment of the present invention. 本発明の第1の実施例の水平画角上面説明図である。It is horizontal surface angle upper surface explanatory drawing of 1st Example of this invention. 本発明の第1の実施例の水平画角詳細上面図である。It is a detailed top view of the horizontal field angle of the first embodiment of the present invention. 本発明の第1の実施例の画角立体的説明図である。It is an angle-of-view three-dimensional explanatory drawing of 1st Example of this invention. 本発明の第2の実施形態の複眼カメラ構成図である。It is a compound eye camera block diagram of the 2nd Embodiment of this invention. 本発明の第2の実施形態の画角立体的説明図である。It is an angle-of-view three-dimensional explanatory drawing of the 2nd Embodiment of this invention. 本発明の第3の実施形態の複眼カメラ構成図である。It is a compound-eye camera block diagram of the 3rd Embodiment of this invention. 本発明の第4の実施形態のパソコンを利用した形態図The form figure using the personal computer of the 4th embodiment of the present invention 本発明の第5の実施形態の複眼カメラ構成図である。It is a compound eye camera block diagram of the 5th Embodiment of this invention. 本発明の第5の実施形態の画像合成部処理図である。It is an image composition part processing figure of a 5th embodiment of the present invention. 本発明の第6の実施形態のズームによる画角変化と光軸交差角度説明図である。It is an angle-of-view change by the zoom of the 6th Embodiment of this invention, and an optical axis crossing angle explanatory drawing. 本発明の第6の実施形態の複眼カメラ処理図である。It is a compound eye camera processing figure of the 6th Embodiment of this invention. 本発明の第6の実施形態の複眼カメラ構成図である。It is a compound eye camera block diagram of the 6th Embodiment of this invention. 本発明の第7の実施形態の複眼カメラ構成図である。It is a compound eye camera block diagram of the 7th Embodiment of this invention. 本発明の第8の実施形態の複眼カメラ処理図である。It is a compound eye camera processing figure of the 8th Embodiment of this invention. 本発明の第8の実施形態の複眼カメライメージ図である。It is a compound eye camera image figure of the 8th Embodiment of this invention. 本発明の第9の実施形態の複眼カメラ外形図である。It is a compound eye camera external view of the 9th Embodiment of this invention.

本発明の複眼カメラの実施の形態を説明する。   An embodiment of a compound eye camera of the present invention will be described.

(第1の実施形態)
図1は、請求項1に関する本発明の第1の実施形態の複眼カメラ構成図である。図1においては同じ水平画角αのレンズ中心a1のカメラaとレンズ中心b1のカメラbで構成され、それぞれの光軸はa2とb2、撮像素子はa3とb3とし、レンズ中心a1とb1を含む平面上で、光軸a2と光軸b2が0<θ<αとなる水平交差角度θで交差するように配置する。
(First embodiment)
FIG. 1 is a block diagram of a compound eye camera according to a first embodiment of the present invention relating to claim 1. In FIG. 1, the camera is composed of a camera a having a lens center a1 and a camera b having a lens center b1 having the same horizontal angle of view α. The optical axes are a2 and b2, the imaging elements are a3 and b3, and the lens centers a1 and b1 are defined. The optical axis a2 and the optical axis b2 are arranged so as to intersect at a horizontal intersection angle θ satisfying 0 <θ <α on a plane including the same.

図3は、請求項1に関する本発明の第1の実施形態の画角関係説明図である。被写体が∞遠と見なせる遠景撮影の場合には、図1のレンズ間距離を0と見なした場合と同等の画像になることから、∞遠の画角の関係を議論する時には、図1の一方のカメラをレンズ間距離が0となるように平行移動した図3で議論できる。∞遠から漸近的に被写体が近づく中距離さらには近距離になるに従い、図1から分かるように撮影画像に占める共通被写体領域は大きくなる。   FIG. 3 is an explanatory view of the angle of view of the first embodiment of the present invention relating to claim 1. In the case of distant shooting where the subject can be regarded as ∞ far, the image is equivalent to the case where the inter-lens distance in FIG. 1 is regarded as 0. Therefore, when discussing the relationship of the angle of view at ∞, FIG. It can be discussed in FIG. 3 where one camera is translated so that the distance between the lenses becomes zero. As the object becomes asymptotically approaching from ∞ farther, the common object area occupying the captured image becomes larger as shown in FIG.

図1と図3が平行移動の関係であることから分かるように、カメラaとカメラbとの撮像素子に写る水平画角の合計はα+θとなり、広視野角を実現することが可能になり、かつ∞遠を含めた遠景に対してもδ=α―θの角度の水平画角重なり角度を保証でき、撮像素子の水平の共通領域を確実に確保できる。ただし請求項1の複眼カメラを1つのカメラと見なした場合の見かけの垂直画角はβのままではない点を先ず説明する。   As can be seen from the parallel movement relationship between FIGS. 1 and 3, the sum of the horizontal angles of view reflected on the image sensors of camera a and camera b is α + θ, and a wide viewing angle can be realized. In addition, it is possible to guarantee a horizontal angle of view overlapping angle of δ = α−θ even for a distant view including ∞ far, and to ensure a horizontal common area of the image sensor. However, first, it will be described that the apparent vertical angle of view when the compound-eye camera of claim 1 is regarded as one camera is not β.

図4は、請求項1に関する本発明の第1の実施例の垂直画角側面説明図である。図4において、図1のカメラaを側面から見た図であり、レンズ中心a1を通り光軸a2に垂直でかつ垂直画角方向をZ軸とする。光軸a2を法線とする平面401における撮像範囲は、上端が402、下端が403である。光軸a2と平面401が交わる点404とレンズ中心a1との間の距離をHとしたとき、上端402のZ座標値Uは、垂直画角βをラジアンで表されていればU=H×tan(β/2)で表される。   FIG. 4 is a side view for explaining a vertical angle of view of the first embodiment of the present invention relating to claim 1. 4 is a view of the camera a of FIG. 1 as seen from the side, passing through the lens center a1 and perpendicular to the optical axis a2 and the vertical field angle direction as the Z axis. The imaging range on the plane 401 having the optical axis a2 as a normal line is 402 at the upper end and 403 at the lower end. Assuming that the distance between the point 404 where the optical axis a2 and the plane 401 intersect with the lens center a1 is H, the Z coordinate value U of the upper end 402 can be expressed as U = H × if the vertical field angle β is expressed in radians. It is represented by tan (β / 2).

図5は、請求項1に関する本発明の第1の実施例の水平画角上面説明図である。図5において、レンズ中心a1を通り平均光軸Xabと平行な方向をY軸とし、2つのカメラa,bのレンズ中心を結んだ線をX軸とした時、光軸a2がY軸から傾いているときのカメラとその撮像範囲をカメラの真上から見たときの図である。光軸a2はY軸に対して角度501を成している。以後、点501におけるZ軸方向の撮像範囲がどうなるかを示す。502は点501を通り光軸a2を法線とする平面とし、点503は当該平面と当該光軸が交わる点とする。このとき、平面502がX軸と交わる点504において平面502とX軸が成す角505は光軸a2がY軸と成す角度と等しいことが分かる。   FIG. 5 is a horizontal view angle top explanatory view of the first embodiment of the present invention relating to claim 1. In FIG. 5, when the direction passing through the lens center a1 and parallel to the average optical axis Xab is the Y axis, and the line connecting the lens centers of the two cameras a and b is the X axis, the optical axis a2 is inclined from the Y axis. It is a figure when the camera and the imaging range when viewing are viewed from directly above the camera. The optical axis a2 forms an angle 501 with respect to the Y axis. Hereinafter, what will happen to the imaging range in the Z-axis direction at the point 501 is shown. 502 is a plane passing through the point 501 and having the optical axis a2 as a normal line, and the point 503 is a point where the plane and the optical axis intersect. At this time, it can be seen that the angle 505 formed by the plane 502 and the X axis at the point 504 where the plane 502 intersects the X axis is equal to the angle formed by the optical axis a2 and the Y axis.

したがって、光軸a2がY軸と成す角度はθ/2(ラジアン)であり、レンズ中心a1と点503との間の距離をH、レンズ中心a1と点504との間の距離をKとしたとき、HとKとθ/2の間にはH=K×sin(θ/2)なる関係が成り立つ。よって、点501における撮像範囲の上端のZ座標値Uは、図4からの式を考慮し、U=K×sin(θ/2)×tan(β/2)のように表せる。   Accordingly, the angle formed by the optical axis a2 and the Y axis is θ / 2 (radian), the distance between the lens center a1 and the point 503 is H, and the distance between the lens center a1 and the point 504 is K. At this time, a relationship of H = K × sin (θ / 2) is established between H, K, and θ / 2. Therefore, the Z coordinate value U at the upper end of the imaging range at the point 501 can be expressed as U = K × sin (θ / 2) × tan (β / 2) in consideration of the equation from FIG.

次にKがどのように計算できるかを示す。点501のX座標値をPX、当該点のY座値標をPYとすれば、点504のX座標値Lは次のように計算できる。
L={cos(θ/2)/sin(θ/2)}×PY+PXと計算できる。KはLの絶対値に等しいので、結局U=|cos(θ/2)×PY+PX×sin(θ/2)|×tan(β/2)になる。ここで、|X|とはXの絶対値を表すものとする。したがって、点506から点501を見たときの見かけの垂直画角をβV(ラジアン)とすると、tan(βV/2)=|cos(θ/2)+(PX/PY)×sin(θ/2)|×tan(β/2)なる式が導かれる。
The following shows how K can be calculated. If the X coordinate value of the point 501 is PX and the Y coordinate of the point is PY, the X coordinate value L of the point 504 can be calculated as follows.
L = {cos (θ / 2) / sin (θ / 2)} × PY + PX. Since K is equal to the absolute value of L, U = | cos (θ / 2) × PY + PX × sin (θ / 2) | × tan (β / 2). Here, | X | represents the absolute value of X. Therefore, if the apparent vertical field angle when viewing the point 501 from the point 506 is βV (radian), tan (βV / 2) = | cos (θ / 2) + (PX / PY) × sin (θ / 2) The expression | × tan (β / 2) is derived.

PXを固定しPYを大きくしていくと上の式の右辺は|cos(θ/2)|×tan(β/2)に収束する。さらに、PXが0以上であれば、当該右辺は常に|cos(θ/2)|×tan(β/2)以上であり、PXが0以下の場合は、当該右辺は常に|cos(θ/2)|×tan(β/2)以下である。よって、βm=2arctan(|cos(θ/2)|×tan(β/2))としたとき、PXが0以上であれば、見かけの垂直画角βVは常にβm以上であり、PYが大きくなるに従いβmに近づいていく。一方PXが0以下であれば、見かけの画角βVは常にβm以下であり、PYが大きくなるに従い、βmに近づいていく。   When PX is fixed and PY is increased, the right side of the above formula converges to | cos (θ / 2) | × tan (β / 2). Further, when PX is 0 or more, the right side is always | cos (θ / 2) | × tan (β / 2) or more, and when PX is 0 or less, the right side is always | cos (θ / 2) | × tan (β / 2) or less. Therefore, when βm = 2 arctan (| cos (θ / 2) | × tan (β / 2)), if PX is 0 or more, the apparent vertical angle of view βV is always βm or more and PY is large. As it approaches, it approaches βm. On the other hand, if PX is 0 or less, the apparent angle of view βV is always less than or equal to βm, and approaches Pm as PY increases.

図6は、請求項1に関する本発明の第1の実施例の水平画角詳細上面図である。図6においては、図1と同様の水平画角の関係を詳細に見た図である。平均光軸Xabは2つのレンズの光軸が交わる点を通り、X軸に垂直な直線であった。平均光軸Xabに対してカメラa,bは対称な位置関係にあることから、図6の水平方向の撮像範囲である灰色の部分における見かけの垂直画角βVは常に2眼カメラ最小垂直画角
βm=2arctan(|cos(θ/2)|×tan(β/2))以上であることが保証される。
FIG. 6 is a detailed top view of the horizontal angle of view of the first embodiment of the present invention relating to claim 1. FIG. 6 is a detailed view of the relationship between horizontal angles of view similar to FIG. The average optical axis Xab is a straight line that passes through the point where the optical axes of the two lenses intersect and is perpendicular to the X axis. Since the cameras a and b are symmetrical with respect to the average optical axis Xab, the apparent vertical angle of view βV in the gray portion that is the horizontal imaging range in FIG. 6 is always the minimum vertical angle of view for the binocular camera. It is guaranteed that βm = 2arctan (| cos (θ / 2) | × tan (β / 2)) or more.

図7は、請求項1に関する本発明の第1の実施例の画角立体的説明図である。図7において、太い破線は、カメラa,bの平均光軸Xabを法線とする平面で、撮像範囲を切り取った領域を表している。太い実線はこの切り口に内接する最大の長方形を示している。この長方形を1つのカメラの撮像範囲のように見なした場合の垂直画角が
2眼カメラ最小垂直画角βm=2arctan(|cos(θ/2)|×tan(β/2))に相当する。
FIG. 7 is a three-dimensional explanatory view of the first embodiment of the present invention relating to claim 1. In FIG. 7, a thick broken line represents a region obtained by cutting out the imaging range on a plane whose normal is the average optical axis Xab of the cameras a and b. The thick solid line indicates the largest rectangle inscribed in this cut. When this rectangle is regarded as an imaging range of one camera, the vertical angle of view corresponds to the minimum vertical angle of view of the twin-lens camera βm = 2 arctan (| cos (θ / 2) | × tan (β / 2)). To do.

(第2の実施形態)
図8は、請求項2に関する本発明の第2の実施形態の複眼カメラ構成図である。図8においては、同じ水平画角α、垂直画角βの4つのカメラa,b,e,fからなり、カメラa,bおよびカメラe,fの両方が請求項1記載の水平交差角度θで交差させた複眼カメラとし、
βm=2arctan(|cos(θ/2)|×tan(β/2))なる角度に対して、カメラa,bの平均光軸Xabとカメラe、fの平均光軸Xefの成す平面上でXabとXefが0<λ<βmなる垂直交差角度λで交差するように配置する。
(Second Embodiment)
FIG. 8 is a block diagram of a compound eye camera according to the second embodiment of the present invention relating to claim 2. 8 includes four cameras a, b, e, and f having the same horizontal angle of view α and vertical angle of view β, and both of the cameras a and b and the cameras e and f have a horizontal crossing angle θ according to claim 1. With a compound eye camera crossed at
On the plane formed by the average optical axis Xab of the cameras a and b and the average optical axis Xef of the cameras e and f with respect to an angle of βm = 2 arctan (| cos (θ / 2) | × tan (β / 2)) Xab and Xef are arranged so as to intersect at a vertical intersection angle λ such that 0 <λ <βm.

カメラa,b,c,dの撮像素子に写る画角の範囲は、a,bおよびe,fのそれぞれの2眼カメラの水平画角はα+θとなるが、それぞれの2眼カメラの垂直画角は、中心辺りでは前述のようにβm=2arctan(|cos(θ/2)|×tan(β/2))なる。前述と水平画角の場合と同様の論法で分かるように、0<λ<βmなる角度λで交差させれば、2つの2眼カメラの垂直画角の重なりは保証される。この時、垂直方向の画角は垂直方向の合計がβm+λとなる。しかし同様の論法から水平画角は、中央辺りでは、
4眼カメラ最小水平画角αM=2arctan(|cos(λ/2)|×tan((α+θ)/2)になる。このαMは、0より十分に大きな0<λ<βmの値であれば、αより大きな値になることが保証される。
The range of the angle of view shown in the image sensors of the cameras a, b, c, and d is that the horizontal angle of view of each binocular camera of a, b and e, f is α + θ, but the vertical image of each binocular camera is As described above, the angle is βm = 2arctan (| cos (θ / 2) | × tan (β / 2)) around the center. As can be seen from the same reasoning as in the case of the above and the horizontal angle of view, the vertical angle of view of the two binocular cameras is guaranteed to overlap when intersecting at an angle λ satisfying 0 <λ <βm. At this time, the total angle of view in the vertical direction is βm + λ. However, from the same reasoning, the horizontal angle of view is around the center.
Four-lens camera minimum horizontal field angle αM = 2 arctan (| cos (λ / 2) | × tan ((α + θ) / 2)) If αM is a value sufficiently larger than 0, 0 <λ <βm , Α is guaranteed to be larger than α.

従って水平、垂直ともに広視野角化することが可能となる。この場合、水平方向はδ=αM―θなる角度の水平画角重なり角度を、垂直方向はε=βm―λなる角度の垂直画角重なり角度を保証することができる。   Therefore, it is possible to widen the viewing angle both horizontally and vertically. In this case, it is possible to guarantee a horizontal angle of view overlapping angle of δ = αM−θ in the horizontal direction and a vertical angle of view overlapping angle of ε = βm−λ in the vertical direction.

図9は、請求項2に関する本発明の第2の実施形態の画角立体的説明図である。図9は、カメラa,b,c,dが水平、垂直で交差した状況を各カメラの画角を示す4隅の線は、複眼カメラの4隅に相当するものだけ限定して立体的に示した図である。図9においては、太い破線は、平均光軸Xabと平均光軸Xefの成す角度の狭い方の平均とした平均光軸Xabefとした時、このXabefを法線とする平面で、撮像範囲を切り取った領域を表している。太い実線はこの切り口に内接する最大の長方形を示している。この長方形を1つのカメラの撮像範囲のように見なした場合の垂直画角がβm+λ、水平画角がαMに相当する。以上の議論は、2眼水平最小画角αm,4眼最小垂直画角βMを定義し、水平と垂直の順番を逆にして議論しても同様の関係が成りたつ。   FIG. 9 is a three-dimensional explanatory view of the field of view of the second embodiment of the present invention relating to claim 2. FIG. 9 shows the situation in which the cameras a, b, c, and d intersect horizontally and vertically, and the four corner lines indicating the angle of view of each camera are limited to those corresponding to the four corners of the compound eye camera and are three-dimensional. FIG. In FIG. 9, a thick broken line is a plane having the average optical axis Xabef as the average of the narrower angle formed by the average optical axis Xab and the average optical axis Xef, and the imaging range is cut out by a plane having this Xabef as a normal line. Represents an area. The thick solid line indicates the largest rectangle inscribed in this cut. When this rectangle is regarded as an imaging range of one camera, the vertical angle of view corresponds to βm + λ, and the horizontal angle of view corresponds to αM. The above discussion defines the two-lens horizontal minimum field angle αm and the four-lens minimum vertical field angle βM, and the same relationship holds even if the horizontal and vertical orders are reversed.

(第3の実施形態)
図10は、請求項3に関する本発明の第3の実施形態の複眼カメラ構成図である。図10においては、同一のカメラa,b,cからカメラa,bを請求項1の実施形態で配置し、さらにカメラb,cを同様に請求項1の実施形態で配置することで、水平画角の合計をα+2θにでき、水平の視野角をさらに拡大することができる。垂直画角の拡大も同様に実現でき、また水平、垂直ともにα+nθまたはβ+mλが180度を超えない範囲のn,m台のカメラを用い、本発明により画角をさらに広げた画像取得が可能になる。
(Third embodiment)
FIG. 10 is a block diagram of a compound eye camera according to a third embodiment of the present invention relating to claim 3. In FIG. 10, the cameras a, b from the same camera a, b, c are arranged in the embodiment of claim 1, and the cameras b, c are arranged in the embodiment of claim 1 in the same manner. The total angle of view can be α + 2θ, and the horizontal viewing angle can be further expanded. The enlargement of the vertical angle of view can be realized in the same way, and using the n and m cameras in the range where α + nθ or β + mλ does not exceed 180 degrees in both horizontal and vertical directions, the present invention makes it possible to acquire an image with a wider angle of view. Become.

(第4の実施形態)
図11は、本発明の請求項1ないし請求項3に関する第4の実施形態のパソコンを利用した形態図である。図11においては、複眼カメラ1101からの撮像情報1102をパソコン1103に入れ、パソコン1103でパノラマ合成手法などの画像合成ソフトで画像合成データ1104を出力する形で実施できる。
(Fourth embodiment)
FIG. 11 is a configuration diagram using a personal computer according to the fourth embodiment related to claims 1 to 3 of the present invention. In FIG. 11, the image information 1102 from the compound-eye camera 1101 can be input to the personal computer 1103, and the image synthesis data 1104 can be output by the personal computer 1103 using image synthesis software such as a panorama synthesis method.

(第5の実施形態)
図12は、本発明の請求項4に関する第5の実施形態の複眼カメラ構成図である。図12においては、複眼カメラ1201からの撮像情報1202を画像合成部1203に入れ、画像合成部1203ではパノラマ合成などの画像合成処理を行い、画像合成データ1204を出力する。このことで、ワイドな画面情報を出力することができる。
(Fifth embodiment)
FIG. 12 is a structural view of a compound eye camera according to a fifth embodiment of the present invention. In FIG. 12, imaging information 1202 from the compound-eye camera 1201 is input to the image composition unit 1203, and the image composition unit 1203 performs image composition processing such as panorama composition and outputs image composition data 1204. As a result, wide screen information can be output.

図13は、本発明の請求項4に関する第5の実施形態の画像合成部処理図である。図13においては、複眼カメラ1301からの撮像情報1302は特徴抽出部1304に入力され、特徴点情報1305は位置合せ情報生成部1306に入力され。位置合せ情報1307は位置合せ情報記憶素子1308へ、位置合せ情報1309と記憶された位置合わせ情報1310は位置合わせ情報選択部1311により選択され、撮像情報1303と選択された位置合せ情報1312は貼り合せマスク生成部へ入力され、貼り合せマスク情報と撮像情報1314は色・明るさ補正部1315へ入力され繋ぎあわされた画像データ1316が合成画像データとなって出力される。   FIG. 13 is a processing diagram of the image composition unit of the fifth embodiment related to claim 4 of the present invention. In FIG. 13, imaging information 1302 from the compound-eye camera 1301 is input to the feature extraction unit 1304, and feature point information 1305 is input to the alignment information generation unit 1306. The registration information 1307 is stored in the registration information storage element 1308, the registration information 1309 and the stored registration information 1310 are selected by the registration information selection unit 1311, and the imaging information 1303 and the selected registration information 1312 are pasted together. The image data 1316 input to the mask generation unit, the combined mask information and the imaging information 1314 are input to the color / brightness correction unit 1315, and the combined image data 1316 is output as composite image data.

(第6の実施形態)
図14は、本発明の請求項5に関する第6の実施形態のズームによる画角変化と光軸交差角度説明図である。ズーム機能付きカメラ複数台を用いた複眼カメラでは、図12のようにカメラの画角は広角撮影時画角αとズーム撮影時画角α´に変わり、その為に光軸交差角度も広角撮影時交差角度θとズーム撮影時交差角度θ´に変える。一般にズームは1段階では無く、連続的にズームできるカメラも多いことから、本発明ではアクチュエータなどを用いて交差角度を変更する。
(Sixth embodiment)
FIG. 14 is an explanatory view of the change in the angle of view by the zoom and the optical axis crossing angle according to the sixth embodiment of the present invention. In a compound eye camera using a plurality of cameras with zoom functions, as shown in FIG. 12, the angle of view of the camera is changed to a wide angle angle of view α and a zoom angle of view α ′. The crossing angle θ is changed to the crossing angle θ ′ during zoom shooting. In general, zooming is not performed in one step, and there are many cameras that can zoom continuously. In the present invention, the intersection angle is changed using an actuator or the like.

図15は、本発明の請求項5に関する第6の実施形態の複眼カメラ処理図である。図15では、ズーム機能付きカメラ複数台1501からのカメラ画角情報1502を、カメラ画角検知部1503が取り込み画角値検知し、画角情報および検知情報1504を出力する。カメラ画角情報1503はズーム機能付きカメラ複数台1501が画角を直接出力するカメラでない場合には、焦点情報または撮影画像情報から画角情報および検知情報1504を算出する。光軸交差角度検出部1505は、画角情報および検知情報1504から複数カメラ間の光軸交差角度1506を計算し、光軸角度制御部1507に送り、光軸角度制御部1507からの出力である光軸角度制御信号1508により光軸角度可動部1509を動作させ適正交差角度に変更する。このことで、ズーム機能により画角が変化した場合でも広視野角画像取得に必要な適正な画角重なり角度を保証でき好適な広視野角画像所得または合成画像が可能になる。   FIG. 15 is a compound eye camera process diagram of the sixth embodiment relating to claim 5 of the present invention. In FIG. 15, the camera angle-of-view information 1502 from a plurality of cameras 1501 with a zoom function is captured by the camera angle-of-view detection unit 1503 to detect the angle-of-view value and output the angle-of-view information and detection information 1504. If the plurality of cameras with zoom function 1501 are not cameras that directly output the angle of view, the angle of view information and detection information 1504 are calculated from the focus information or the captured image information. The optical axis crossing angle detection unit 1505 calculates an optical axis crossing angle 1506 between a plurality of cameras from the view angle information and detection information 1504, sends the calculated optical axis crossing angle 1506 to the optical axis angle control unit 1507, and is an output from the optical axis angle control unit 1507. The optical axis angle control signal 1508 operates the optical axis angle movable unit 1509 to change to an appropriate intersection angle. As a result, even when the angle of view changes due to the zoom function, an appropriate angle of view overlap required for obtaining a wide angle of view image can be guaranteed, and a suitable wide angle of view image income or composite image becomes possible.

図16は、本発明の請求項5に関する第6の実施形態の複眼カメラ構成図である。図16においては、カメラa,bのそれぞれを回転軸a4,b4を中心にカメラの画角条件に合う形で、手動(または電動)で回転させることで、ズームレンズの状況に合わせて広視野角撮影を可能にする。図16では最も広視野角の撮影時のカメラの位置を実線で示し、2つのカメラが平行光軸になる位置を破線で示している。また、この位置でのレンズ間距離Labを6.5cm程度にすれば、3D撮影に適した配置も可能になる。   FIG. 16 is a block diagram of a compound eye camera according to the sixth embodiment of the present invention. In FIG. 16, the cameras a and b are rotated manually (or electrically) around the rotation axes a4 and b4 so as to meet the angle of view of the camera, so that the wide field of view can be adjusted according to the zoom lens situation. Enables angle shooting. In FIG. 16, the position of the camera at the time of shooting at the widest viewing angle is indicated by a solid line, and the position where the two cameras are parallel optical axes is indicated by a broken line. Further, if the inter-lens distance Lab at this position is set to about 6.5 cm, an arrangement suitable for 3D imaging is possible.

(第7の実施形態)
図17は、本発明の請求項5に関する第7の実施形態の複眼カメラ構成図である。図17においては、カメラa,bおよびカメラe,fが図16の2眼の構成である計4眼のカメラを側面から観た図である。a5,b5はカメラa,bの垂直方向の角度を、e5,f5はカメラe,fの垂直方向の角度をそれぞれ変える為の回転軸である。水平方向の回転軸a4,b4,e4,f4および垂直方向の回転軸を中心にそれぞれのカメラの角度を図15の処理に従い処理することで、水平方向、垂直方向ともに広視野角が可能になる。
(Seventh embodiment)
FIG. 17 is a block diagram of a compound eye camera according to the seventh embodiment of the present invention. In FIG. 17, the cameras a and b and the cameras e and f are the two-lens configuration shown in FIG. 16 as viewed from the side. a5 and b5 are rotation axes for changing the vertical angles of the cameras a and b, and e5 and f5 are rotation axes for changing the vertical angles of the cameras e and f, respectively. By processing the camera angles around the horizontal rotation axes a4, b4, e4 and f4 and the vertical rotation axis in accordance with the processing of FIG. 15, a wide viewing angle is possible in both the horizontal and vertical directions. .

(第8の実施形態)
図18は、本発明の請求項6に関する第8の実施形態の複眼カメラ処理図である。また図19は、本発明の請求項6に関する第8の実施形態の複眼カメライメージ図である。図18では、請求項5に関する図15の構成の複眼カメラ1801に加えレンズ間距離制御部1802とスライド可動部1804を具備し、3D撮影を行う場合にはレンズ間距離制御部1802からのレンズ間指示信号1803によりスライド可動部1804を動かし、図17のようにレンズ間距離を3D撮影に適した6.5cm程度(第2の距離)にし、また広視野角撮影の場合には、レンズ間距離制御部1802からのレンズ間指示信号1803によりスライド可動部1804を動かし、図19のようにレンズ間距離を十分に近接させる(第1の距離)。このことで、広視野角撮影も3D撮影も可能な複眼カメラが可能になる。第1の距離は典型的には最小距離であるが、これに限定されない。第2の距離は6.6cmに限定されず、第1の距離より大きなものであればよい。第1の距離は広視野角撮影モードの距離であり、第2の距離は3D撮影モードの距離である。スライド動作の方向は、上述の第1の距離および第2の距離を実現できれば良く、直線に限定されず、湾曲、角度をもたせた複数の直線を連結したもの等、種々の曲線であってもよい。
(Eighth embodiment)
FIG. 18 is a compound eye camera processing diagram of the eighth embodiment relating to claim 6 of the present invention. FIG. 19 is an image of a compound eye camera according to the eighth embodiment of the present invention. In FIG. 18, in addition to the compound-eye camera 1801 having the configuration shown in FIG. 15 relating to claim 5, an inter-lens distance control unit 1802 and a slide movable unit 1804 are provided. The slide movable unit 1804 is moved by the instruction signal 1803 so that the distance between the lenses is about 6.5 cm (second distance) suitable for 3D photography as shown in FIG. The slide movable unit 1804 is moved by the inter-lens instruction signal 1803 from the control unit 1802, and the inter-lens distance is made sufficiently close as shown in FIG. 19 (first distance). This enables a compound eye camera capable of wide viewing angle shooting and 3D shooting. The first distance is typically the minimum distance, but is not limited thereto. The second distance is not limited to 6.6 cm and may be larger than the first distance. The first distance is the distance in the wide viewing angle shooting mode, and the second distance is the distance in the 3D shooting mode. The direction of the sliding motion is not limited to a straight line as long as the first distance and the second distance described above can be realized, and may be various curves such as a curved line and a plurality of straight lines having angles. Good.

(第9の実施形態)
図20は、本発明の請求項7に関する第9の実施形態の複眼カメラ外形図である。図20においては、レンズ間距離光軸角度連動スライド可動部を具備し、未使用時、3D撮影時、広視野角撮影時にそれぞれ手動によりレンズ間距離光軸角度連動スライド可動部の変化させる(広視野角撮影時に上述の第1の距離とし、3D撮影時に上述の第2の距離とする)ことで、広視野角撮影も3D撮影も可能な複眼カメラが可能になる。スライド方向は上述と同様に直線でも曲線でも良い。
(Ninth embodiment)
FIG. 20 is an external view of a compound eye camera according to a ninth embodiment relating to claim 7 of the present invention. In FIG. 20, an inter-lens distance optical axis angle-linked slide movable unit is provided, and when not in use, the inter-lens distance optical axis angle-linked slide movable unit is manually changed during 3D shooting and wide viewing angle shooting. By using the above-mentioned first distance at the time of viewing angle shooting and the above-mentioned second distance at the time of 3D shooting), a compound eye camera capable of both wide viewing angle shooting and 3D shooting becomes possible. The slide direction may be a straight line or a curved line as described above.

以上で実施例の説明を終了する。   This is the end of the description of the embodiment.

なお、この発明は上述の実施例に限定されることなく、その趣旨を逸脱しない範囲で種々変更が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

a,b,c,d,e,f カメラの識別記号
a1,b1,e1,f1 レンズ中心
a2,b2,c2,d2,e2,f2 光軸
a3,b3,e3,f3 撮像素子
a4,b4,e4,f4 水平方向回転軸
a5,b5,e5,f5 水平方向回転軸
α,α´ カメラの水平画角
β カメラの垂直画角
βV みかけ垂直画角
αm 2眼カメラ最小水平画角
βm 2眼カメラ最小垂直画角
αM 4眼カメラ最小水平画角
βM 4眼カメラ最小垂直画角
θ,θ’ 水平交差角度
λ 垂直交差角度
δ,δ’ 水平画角重なり角度
ε 垂直画角重なり角度
Xab, 光軸a2と光軸b2の平均光軸
Xef 光軸e2と光軸f2の平均光軸
Xabef 平均光軸Xabと平均光軸Xefの平均光軸
a, b, c, d, e, f Camera identification symbols a1, b1, e1, f1 Lens centers a2, b2, c2, d2, e2, f2 Optical axes a3, b3, e3, f3 Image sensors a4, b4 e4, f4 Horizontal rotation axis a5, b5, e5, f5 Horizontal rotation axis α, α ′ Camera horizontal field angle β Camera vertical field angle βV Apparent vertical field angle αm Binocular camera Minimum horizontal field angle βm Binocular camera Minimum vertical field angle αM Four-camera minimum horizontal field angle βM Four-camera minimum vertical field angle θ, θ ′ Horizontal intersection angle λ Vertical intersection angle δ, δ ′ Horizontal field angle overlap angle ε Vertical field angle overlap angle Xab, optical axis Average optical axis Xef of a2 and optical axis b2 Average optical axis Xabef of optical axis e2 and optical axis f2 Average optical axis of average optical axis Xab and average optical axis Xef

Claims (7)

水平画角α(または垂直画角β)の同一の2つのカメラa、bを具備し、カメラa,bのレンズ中心を含む平面上でカメラa,bの光軸を水平画角α(または垂直画角β)に対して0<θ<αなる水平交差角度θ(または0<λ<βなる垂直交差角度λ)で交差するように配置し、カメラa,bのレンズ中心間距離を十分に小さく配置したことを特徴とする複眼カメラ。   Two cameras a and b having the same horizontal angle of view α (or vertical angle of view β) are provided, and the optical axes of the cameras a and b are set on the plane including the lens centers of the cameras a and b. It is arranged so that it intersects the vertical field angle β) at a horizontal crossing angle θ satisfying 0 <θ <α (or a vertical crossing angle λ satisfying 0 <λ <β), and the distance between the lens centers of the cameras a and b is sufficient. A compound-eye camera characterized in that it is arranged in a small size. 水平画角α、垂直画角βの4つの同一のカメラa,b,e,fを具備し、カメラa,bおよびカメラe,fの両方が請求項1記載の水平交差角度θ(または垂直交差角度λ)で交差した複眼カメラとし、βm=2arctan(|cos(θ/2)|×tan(β/2))
(またはαm=2arctan(|cos(λ/2)|×tan(α/2)))とし、
カメラa,bの平均光軸Xabとカメラe,fの平均光軸Xefの成す平面上でXabとXefの成す角度を0<λ<βmなる垂直交差角度λ(または0<θ<αmなる水平交差角度θ)で交差するようにし、カメラa,eとカメラb,fのレンズ間距離を十分に小さく配置したことを特徴とする複眼カメラ。
The horizontal crossing angle θ (or vertical) according to claim 1, comprising four identical cameras a, b, e, and f with a horizontal field angle α and a vertical field angle β. A compound-eye camera intersected at an intersection angle λ), βm = 2 arctan (| cos (θ / 2) | × tan (β / 2))
(Or αm = 2arctan (| cos (λ / 2) | × tan (α / 2))),
On the plane formed by the average optical axis Xab of the cameras a and b and the average optical axis Xef of the cameras e and f, the angle formed by Xab and Xef is a vertical crossing angle λ satisfying 0 <λ <βm (or horizontal satisfying 0 <θ <αm). A compound-eye camera characterized in that the distance between the lenses of the cameras a and e and the cameras b and f is arranged to be sufficiently small so as to intersect at an intersection angle θ).
請求項1ないし請求項2の複眼カメラを少なくとも1つ具備し、これら複眼カメラ(/および1眼カメラ)を組み合わせて構成したことを特徴とする複眼カメラ。   A compound-eye camera comprising at least one compound-eye camera according to claim 1 or 2 and combining these compound-eye cameras (and / or single-lens cameras). 請求項1ないし請求項3の複眼カメラを具備し、画像合成部を具備したことを特徴とする複眼カメラ。   4. A compound eye camera comprising the compound eye camera according to claim 1 and an image composition unit. ズーム機能付きカメラ複数台、光軸角度制御部、カメラ画角検知部および光軸交差角度算出部、光軸角度稼働部を具備し、カメラ画角検知部でズーム機能付きカメラの画角を取得し、カメラ画角検知部からの画角情報を基に光軸交差角度算出部で各カメラ間の交差角度を算出し、光軸角度制御でカメラの光軸を制御することを特徴とする請求項1ないし請求項4の複眼カメラ。   Equipped with multiple cameras with zoom function, optical axis angle control unit, camera field angle detection unit, optical axis crossing angle calculation unit, and optical axis angle operation unit, the camera field angle detection unit obtains the angle of view of the camera with zoom function The optical axis crossing angle calculation unit calculates the crossing angle between the cameras based on the angle of view information from the camera view angle detection unit, and controls the optical axis of the camera by optical axis angle control. A compound eye camera according to any one of claims 1 to 4. レンズ間距離スライド制御部とスライド可動部を具備し、広視野角画像撮影の時には、レンズ間距離制御部の指示でスライド可動部をスライドしてレンズ間距離を第1の距離とし、3D撮影の時にはレンズ間距離を第1の距離より大きな第2の距離にレンズ間距離制御部の指示でスライド可動部をスライドして広げ、同時に光軸角度制御部の指示に従い光軸角度可動部で制御し3D撮影条件にあった角度に変更することを特徴とする請求項5の複眼カメラ。   An inter-lens distance slide control unit and a slide movable unit are provided. When shooting a wide viewing angle image, the inter-lens distance control unit slides the slide movable unit according to an instruction from the inter-lens distance control unit to set the inter-lens distance as the first distance. Sometimes the distance between the lenses is extended to the second distance larger than the first distance by sliding the movable movable part according to the instruction from the inter-lens distance control part, and at the same time controlled by the optical axis angle movable part according to the instruction from the optical axis angle control part. 6. The compound-eye camera according to claim 5, wherein the angle is changed to an angle suitable for 3D imaging conditions. レンズ間距離光軸角度連動スライド可動部を具備し、広視野角撮影の時にはレンズ間距離を手動でスライドして第1の距離にし、同時に請求項1の複眼カメラの光軸交差角度を実現し、3D撮影の時にはレンズ間距離を第1の距離より大きな第2の距離に手動でスライドして広げ、同時に3D撮影条件にあった角度にし、3D撮影の視差を実現することを特徴とする複眼カメラ。   A lens-to-lens distance optical axis angle-linked slide movable part is provided, and when shooting at a wide viewing angle, the distance between lenses is manually slid to the first distance, and at the same time, the optical axis crossing angle of the compound eye camera of claim 1 is realized. A compound eye characterized in that when performing 3D shooting, the distance between the lenses is manually slid and widened to a second distance larger than the first distance, and at the same time, an angle suitable for 3D shooting conditions is set to achieve 3D shooting parallax. camera.
JP2010097221A 2010-04-20 2010-04-20 Complex eye camera Pending JP2011227306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097221A JP2011227306A (en) 2010-04-20 2010-04-20 Complex eye camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097221A JP2011227306A (en) 2010-04-20 2010-04-20 Complex eye camera

Publications (1)

Publication Number Publication Date
JP2011227306A true JP2011227306A (en) 2011-11-10

Family

ID=45042698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097221A Pending JP2011227306A (en) 2010-04-20 2010-04-20 Complex eye camera

Country Status (1)

Country Link
JP (1) JP2011227306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007386A (en) * 2016-11-02 2018-05-08 光宝电子(广州)有限公司 3-D scanning method and its device and system based on structure light
CN108283491A (en) * 2018-01-24 2018-07-17 京东方科技集团股份有限公司 Display panel and display device
CN110764258A (en) * 2019-11-18 2020-02-07 长春理工大学 Method and device for acquiring overlapping rate of bionic optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108007386A (en) * 2016-11-02 2018-05-08 光宝电子(广州)有限公司 3-D scanning method and its device and system based on structure light
CN108007386B (en) * 2016-11-02 2021-04-20 光宝电子(广州)有限公司 Three-dimensional scanning method based on structured light and device and system thereof
CN108283491A (en) * 2018-01-24 2018-07-17 京东方科技集团股份有限公司 Display panel and display device
CN110764258A (en) * 2019-11-18 2020-02-07 长春理工大学 Method and device for acquiring overlapping rate of bionic optical system
CN110764258B (en) * 2019-11-18 2021-12-07 长春理工大学 Method and device for acquiring overlapping rate of bionic optical system

Similar Documents

Publication Publication Date Title
CN107852467B (en) Dual aperture zoom camera with video support and switching/non-switching dynamic control
TWI692967B (en) Image device
JP4643773B2 (en) Electronic zoom image input method
US9438792B2 (en) Image-processing apparatus and image-processing method for generating a virtual angle of view
JP2017524976A (en) Multi-camera system using bending optics without parallax and tilt artifacts
US20120249748A1 (en) Stereoscopic image pickup apparatus and stereoscopic image pickup method
JP6576046B2 (en) Compound eye imaging device
WO2014208230A1 (en) Coordinate computation device and method, and image processing device and method
JP6700935B2 (en) Imaging device, control method thereof, and control program
JP2011227306A (en) Complex eye camera
CN114693569A (en) Method for fusing videos of two cameras and electronic equipment
JP2012227679A (en) Twin-lens camera
KR101423154B1 (en) Imaging apparatus
JP5566164B2 (en) Lens barrel and imaging device
KR101789317B1 (en) A Multiscale imaging system
JP2011176460A (en) Imaging apparatus
JP5434065B2 (en) Imaging device
WO2020039759A1 (en) Imaging device and imaging system
JP2015191186A (en) Stereo adapter and stereo image-capturing device
JP4235683B2 (en) Electronic zoom image input method
WO2017199666A1 (en) Imaging device
JP2015106773A (en) Imaging device with array optical system
JP7330926B2 (en) Filming system and remote control system
US20220011661A1 (en) Device comprising a multi-aperture imaging device for generating a depth map
KR101957353B1 (en) Multiscale Imaging system with mirror rotation