JP2011226993A - Method for detecting solidification structure of steel - Google Patents

Method for detecting solidification structure of steel Download PDF

Info

Publication number
JP2011226993A
JP2011226993A JP2010098985A JP2010098985A JP2011226993A JP 2011226993 A JP2011226993 A JP 2011226993A JP 2010098985 A JP2010098985 A JP 2010098985A JP 2010098985 A JP2010098985 A JP 2010098985A JP 2011226993 A JP2011226993 A JP 2011226993A
Authority
JP
Japan
Prior art keywords
steel
solidified structure
sample
section
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010098985A
Other languages
Japanese (ja)
Other versions
JP5409499B2 (en
Inventor
Akifumi Seze
昌文 瀬々
Masahiro Tani
雅弘 谷
Shinichi Fukunaga
新一 福永
Kenichi Uemura
賢一 上村
Takumi Nishimoto
工 西本
Shota Sueyoshi
翔太 末吉
Ikuo Sakura
生男 櫻
Kenji Takamune
賢司 高宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Nippon Steel Corp
Original Assignee
Astec Irie Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd, Nippon Steel Corp filed Critical Astec Irie Co Ltd
Priority to JP2010098985A priority Critical patent/JP5409499B2/en
Publication of JP2011226993A publication Critical patent/JP2011226993A/en
Application granted granted Critical
Publication of JP5409499B2 publication Critical patent/JP5409499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting solidification structure of a type of steel which has relatively low differences in concentrations of solute elements due to segregation during solidification, particularly of a low-carbon steel which has a carbon concentration of 0.01 mass% or less.SOLUTION: After a cross section of a sample of steel cast slab is polished, the cross section of the sample is corroded to cause solidification structure of the steel to appear while applying supersonic waves of 30 kHz to 3 MHz to a corrosive liquid 15 in which microbubble-containing water is used as a solvent to subject the corrosive liquid 15 to water resonance. The sample is then washed and dried, and corroded holes formed in the cross section of the sample are filled with polishing powder. After transparent adhesive tape is stuck on the cross section of the sample to adhere the polishing powder in the corroded holes to the transparent adhesive tape, the transparent adhesive tape is removed and then stuck on a white mount.

Description

本発明は、鋼の凝固組織の検出方法に関する。   The present invention relates to a method for detecting a solidified structure of steel.

鋼の製造工程において、鋳造後の鋼材(鋳片)の凝固組織を検出することは、鋳片の割れ発生状況や中心偏析などのマクロ偏析等の内部欠陥を評価し後工程への品質保証を行う上で重要である。また、これらの内部欠陥の発生状況から鋳造工程、鋳造機の異常を判断して適正な状態に修正、整備し、内部欠陥の発生を未然に防止する上でも重要である。さらに、デンドライトと呼ばれている樹枝状組織の傾きや間隔から、凝固中の内部溶鋼の流動状況や鋳片の冷却速度を推定することは、操業条件の適正化を行う上で重要である。   In the steel manufacturing process, detecting the solidification structure of the steel material (slab) after casting evaluates internal defects such as macro segregation such as crack occurrence of the slab and central segregation, and guarantees the quality of the subsequent process. Important to do. In addition, it is important to judge the abnormality of the casting process and the casting machine from the state of occurrence of these internal defects and correct and maintain them in an appropriate state to prevent the occurrence of internal defects. Furthermore, it is important to estimate the flow condition of the internal molten steel during solidification and the cooling rate of the slab from the inclination and interval of the dendritic structure called dendrites in order to optimize the operating conditions.

腐食による鋼材組織の観察は、原理上、次の2つに大別される。
(1)試料中の各位置の溶質濃度差による電位差を利用した電気化学的腐食法。
(2)化学ポテンシアルの異なる相や表面の結晶方位による結晶粒の化学ポテンシアル差を利用した化学的腐食法。
Observation of the steel structure by corrosion is roughly divided into the following two in principle.
(1) An electrochemical corrosion method using a potential difference due to a difference in solute concentration at each position in the sample.
(2) A chemical corrosion method using a chemical potential difference of crystal grains depending on phases having different chemical potentials and crystal orientations on the surface.

(1)は、例えば、凝固中の溶質元素の偏析による濃度差を利用して樹枝状組織や内部割れ、中心偏析の検出に用いられており、(2)はFeCとフェライトとの化学ポテンシアル差を利用したパーライト組織の観察や粗大フェライト粒の表面方位による化学ポテンシアル差を利用したマクロ腐食等がある。 (1) is used to detect dendritic structures, internal cracks, and center segregation by utilizing, for example, concentration differences due to segregation of solute elements during solidification, and (2) is the chemistry of Fe 3 C and ferrite. There are observation of pearlite structure using potential difference and macro corrosion using chemical potential difference due to surface orientation of coarse ferrite grains.

したがって、鋳片の凝固組織を検出するためには、(2)の化学的腐食を抑制し、(1)の電気化学的腐食を生じさせる必要がある。   Therefore, in order to detect the solidified structure of the slab, it is necessary to suppress the chemical corrosion of (2) and cause the electrochemical corrosion of (1).

鋳片の凝固組織を検出する方法として、ピクリン酸を主成分とする腐食液等を用いて、試料表面を腐食させる方法が一般に実施されている(非特許文献1)。また、検出された凝固組織を記録する方法としてエッチプリント法が提案されている(特許文献1〜4)。   As a method for detecting a solidified structure of a slab, a method of corroding a sample surface using a corrosive liquid containing picric acid as a main component is generally implemented (Non-Patent Document 1). Further, an etch print method has been proposed as a method for recording the detected solidified structure (Patent Documents 1 to 4).

本発明の重要な構成要件となるマイクロバブルについては、非特許文献2で述べられている。マイクロバブルとは微細な気泡(本明細書では直径が150μm以下のものをマイクロバブルと称する。)であり、内部のガスはマイクロバブル製造時の雰囲気であり、空気等の混合ガス、その他のガス等、特に種類は問わず、水質浄化や水産養殖の他、各種の産業分野での応用・活用が試行・注目されている。マイクロバブルの作用として、水中のさまざまな汚れを除去する等の界面洗浄作用、医療分野での細胞破壊等の衝撃圧力作用、難分解性の有害物質などを分解することが可能となる等のフリーラジカル発生と酸化作用、生体の安心・安全な発育を促す生体活性化等の生理活性作用などがある。なお、非特許文献2には、マイクロバブルについて、凝固組織の腐食処理に適用する記載はない。   Non-patent document 2 describes microbubbles that are important constituent elements of the present invention. Microbubbles are fine bubbles (in this specification, those having a diameter of 150 μm or less are referred to as microbubbles), and the internal gas is an atmosphere during the production of microbubbles, such as a mixed gas such as air, and other gases. Regardless of the type, etc., in addition to water purification and aquaculture, application and utilization in various industrial fields has been tried and attracted attention. Microbubbles can be used to clean interfaces such as removing various contaminants in water, impact pressure effects such as cell destruction in the medical field, and the ability to decompose refractory harmful substances. Examples include radical generation and oxidation, and physiological activity such as bioactivation that promotes safe and safe growth of the living body. Non-Patent Document 2 does not describe the application of microbubbles to the corrosion treatment of a solidified structure.

特公昭64−2212号公報Japanese Patent Publication No. 64-2212 特開昭61−170581号公報JP 61-170581 A 特開平1−227943号公報Japanese Patent Laid-Open No. 1-227943 特開平7−198565号公報JP-A-7-198565

「鉄鋼便覧、第III版、基礎編」、p.205−208(日本鉄鋼協会編)1981年、丸善株式会社発行“Steel Handbook, Version III, Basics”, p. 205-208 (Japan Steel Association), published in 1981 by Maruzen Co., Ltd. 「マイクロバブルのすべて、大成博文」、2006年、日本実業出版社発行"All about microbubbles, Hirofumi Taisei", 2006, published by Nihon Jitsugyo Publishing Co., Ltd.

しかしながら、前記特許文献1〜4、非特許文献1に記載の方法においては、凝固中の溶質元素の偏析による濃度差が比較的大きな鋼種では明瞭な凝固組織を検出できるが、凝固中の溶質元素の偏析による濃度差が比較的小さな鋼種、特に炭素濃度が0.01mass%以下の低炭素鋼においては、明瞭に凝固組織を検出することは困難であることが、本発明者らの研究調査の結果から判明してきた。また、特許文献1〜4、非特許文献1記載の方法では、腐食時間を長時間必要とするため、腐食時間の短縮も課題である。   However, in the methods described in Patent Documents 1 to 4 and Non-Patent Document 1, a clear solidified structure can be detected in steel types having a relatively large concentration difference due to segregation of solute elements during solidification. It is difficult to detect solidified structure clearly in steel types with a relatively small concentration difference due to segregation, especially in low carbon steel with a carbon concentration of 0.01 mass% or less. It has become clear from the results. Further, in the methods described in Patent Documents 1 to 4 and Non-Patent Document 1, since the corrosion time is required for a long time, it is a problem to shorten the corrosion time.

本発明は上述したように、より明瞭に凝固組織を検出する方法、あるいは明瞭さが同じ場合には腐食時間を短縮できる検出方法を提供することを課題とする。更には、上述したような凝固中の溶質元素の偏析による濃度差が比較的小さな鋼種、特に炭素濃度が0.01mass%以下の低炭素鋼の凝固組織の検出方法を提供することを目的とする。   As described above, an object of the present invention is to provide a method for detecting a solidified structure more clearly, or a detection method capable of reducing the corrosion time when the clarity is the same. It is another object of the present invention to provide a method for detecting a solidified structure of a steel type having a relatively small concentration difference due to segregation of solute elements during solidification as described above, particularly a low carbon steel having a carbon concentration of 0.01 mass% or less. .

前記目的に沿う本発明に係る鋼の凝固組織の検出方法は、鋼鋳片の試料断面を研磨した後で、該試料断面を腐食させる鋼の凝固組織検出方法において、溶媒としてマイクロバブルを含む水を用いた腐食液に、30kHz〜3MHzの超音波を印加し該腐食液を水共振させながら、該試料断面を腐食させて鋼の凝固組織を現出させることを特徴とする鋼の凝固組織検出方法である。これにより、超音波を腐食液全体に効率的に印加でき、明瞭な凝固組織の検出が可能となる。   A method for detecting a solidified structure of steel according to the present invention in accordance with the above object is a method for detecting a solidified structure of steel in which a sample cross section of a steel slab is ground and then corrodes the sample cross section. Solidified structure detection of steel characterized in that an ultrasonic wave of 30 kHz to 3 MHz is applied to a corrosive liquid using a water to cause the cross section of the sample to corrode and reveal a solidified structure of the steel while causing the corrosive liquid to resonate with water. Is the method. Thereby, an ultrasonic wave can be efficiently applied to the entire corrosive liquid, and a clear solidified structure can be detected.

前記超音波が、30kHz〜3MHzの範囲の互いに異なる2種類以上の周波数の超音波であることが好ましい。これにより、更に超音波を腐食液全体に効率的に印加でき、より明瞭な凝固組織の検出や腐食時間の短縮が可能となる。さらに、前記溶媒中にピクリン酸を含むことが好ましい。これにより、確実に明瞭な凝固組織の検出や腐食時間の短縮が可能となる。   It is preferable that the ultrasonic wave is an ultrasonic wave having two or more different frequencies within a range of 30 kHz to 3 MHz. As a result, it is possible to efficiently apply ultrasonic waves to the entire corrosive liquid, and it is possible to detect a more solidified structure and shorten the corrosive time. Furthermore, it is preferable that the solvent contains picric acid. This makes it possible to reliably detect a solidified structure and shorten the corrosion time.

鋼鋳片の試料断面を研磨した後で、該試料断面を上記のいずれかの方法で腐食させた後、洗浄、乾燥し、前記試料断面に形成された腐食孔に研磨粉を埋め込み、前記試料断面に透明粘着テープを貼り、前記腐食孔中の研磨粉を前記透明粘着テープに粘着せしめた後、前記透明粘着テープをはがし、次いで前記透明粘着テープを白色台紙上へ貼り付けることを特徴とする鋼の凝固組織検出方法を提供する。この方法によれば、明瞭に検出した凝固組織を簡易に記録することができる。   After the sample cross section of the steel slab has been polished, the sample cross section is corroded by any of the methods described above, then washed and dried, and abrasive powder is embedded in the corrosion holes formed in the sample cross section. A transparent adhesive tape is applied to the cross section, and after the abrasive powder in the corrosion holes is adhered to the transparent adhesive tape, the transparent adhesive tape is peeled off, and then the transparent adhesive tape is applied onto a white mount. A method for detecting a solidified structure of steel is provided. According to this method, the clearly detected solidified tissue can be easily recorded.

前記鋼鋳片が炭素含有量0.01mass%以下の鋼でもよい。従来の方法では不可能であった鋼種を対象として、明瞭な凝固組織の検出が可能となる。   The steel slab may be steel having a carbon content of 0.01 mass% or less. It is possible to detect a solidified structure clearly for a steel type that is impossible with the conventional method.

本発明によれば、超音波を腐食液全体に効率的に印加でき、凝固中の溶質元素の偏析の程度によらず、明瞭な凝固組織の検出が可能となる。また、従来に比べて腐食時間を短縮できる。   According to the present invention, ultrasonic waves can be efficiently applied to the entire corrosive liquid, and a clear solidified structure can be detected regardless of the degree of segregation of solute elements during solidification. Further, the corrosion time can be shortened as compared with the conventional case.

試料中の各位置による溶質濃度差による電位差を利用した電気化学的腐食を示す説明図である。It is explanatory drawing which shows the electrochemical corrosion using the electrical potential difference by the solute concentration difference by each position in a sample. 本発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention.

従来、鋼の凝固組織検出においては、腐食面での反応を促進させ短時間で明瞭な凝固組織を検出するため、界面活性剤や腐食助剤の使用が試みられてきた。例えば、特許文献2に記載されているように、ピクリン酸飽和水溶液を主腐食液とし、界面活性剤として「ライポンF」(登録商標)や腐食調整助剤として塩化第II銅などが用いられてきた。   Conventionally, in detecting the solidified structure of steel, attempts have been made to use surfactants and corrosion aids in order to accelerate the reaction on the corroded surface and detect a clear solidified structure in a short time. For example, as described in Patent Document 2, a saturated aqueous solution of picric acid is used as a main corrosive solution, “Lypon F” (registered trademark) as a surfactant, and cupric chloride as a corrosion adjusting aid have been used. It was.

しかし、これらを用いた場合、腐食が進むにつれ腐食面に老廃物が堆積し、腐食面と腐食液との接触が阻害されるなどの理由で腐食が停滞することが問題であった。このため、明瞭な凝固組織が得られない場合があり、あるいは明瞭な凝固組織が得られても腐食処理に長時間を要していた。   However, when these materials are used, wastes accumulate on the corroded surface as the corrosion progresses, and the problem is that the corrosion is stagnated because the contact between the corroded surface and the corrosive liquid is hindered. For this reason, a clear solidified structure may not be obtained, or even if a clear solidified structure is obtained, a long time is required for the corrosion treatment.

この問題を解決するための一手段として、腐食中の試料と腐食液に超音波振動を付与し、腐食面での老廃物を除去し活性化させる方法などが行われてきた。ただし、単に超音波を印加した場合、超音波は直進性が高く一次元的に伝達されるため、例えば超音波の伝達域よりも小さな試料を用いる場合はそれ相応の効果を得ることもできるが、凝固組織を検出する試料(例えば、連続鋳造鋳片などの大型の試料)を用いた場合は、超音波振動が腐食面全体に均一に伝達されず局部的に伝達(超音波の一次元的な伝達)されるため、逆に腐食ムラが起こりやすい欠点があった。とくに、強い超音波が局部的に印加された場合は、エロージョンすなわち超音波特有のキャビティー効果による腐食面の物理的な腐食が起こりやすい欠点があった。   As a means for solving this problem, there has been performed a method in which ultrasonic vibration is applied to a corroding sample and a corrosive solution to remove and activate waste products on the corroded surface. However, when an ultrasonic wave is simply applied, the ultrasonic wave is highly linear and is transmitted in a one-dimensional manner. For example, when using a sample smaller than the ultrasonic wave transmission range, a corresponding effect can be obtained. When a sample that detects the solidification structure (for example, a large sample such as a continuous cast slab) is used, the ultrasonic vibration is not transmitted uniformly to the entire corroded surface but is transmitted locally (one-dimensional ultrasonic On the contrary, there is a defect that uneven corrosion tends to occur. In particular, when strong ultrasonic waves are applied locally, there is a drawback that erosion, that is, physical corrosion of the corroded surface easily occurs due to the cavity effect peculiar to ultrasonic waves.

以上のように、腐食中の試料と腐食液に直接超音波振動を付与した場合、明瞭な凝固組織が得られても、試料の腐食ムラが生成する場合や、エロージョンによって明瞭な凝固組織が得られない場合があり、しかも腐食処理時間の短縮ができなかった。   As described above, when ultrasonic vibration is applied directly to the corroding sample and the corrosive liquid, even if a clear solidified structure is obtained, uneven corrosion of the sample is generated, or a clear solidified structure is obtained by erosion. In some cases, the corrosion treatment time could not be shortened.

以上の問題を解決するために、試料の腐食ムラやエロージョンを抑制し、明瞭な凝固組織が得られる超音波の印加方法を本発明者らは研究した。その結果、腐食液にマイクロバブルを含ませることに想到した。   In order to solve the above problems, the present inventors have studied a method of applying an ultrasonic wave that suppresses uneven corrosion and erosion of a sample and obtains a clear solidified structure. As a result, the inventors have conceived that microbubbles are included in the corrosive liquid.

マイクロバブルを含む水溶液(腐食液)に超音波を印加すると、超音波の周波数とマイクロバブルの直径が共振関係にある場合に、水溶液が水共振状態となることが知られている。   It is known that when an ultrasonic wave is applied to an aqueous solution (corrosive liquid) containing microbubbles, the aqueous solution enters a water resonance state when the ultrasonic frequency and the diameter of the microbubbles are in a resonance relationship.

本発明者らは、水溶液が水共振状態になると、腐食槽内の試料の腐食面全体に概ね均等に超音波が伝達される、すなわち超音波が三次元的に伝達し、腐食液全体と試料を好適に振動させ、明瞭な凝固組織が安定的に得られ、試料の腐食ムラやエロージョンも抑制することが可能となることに新たに想到した。   When the aqueous solution is in a water resonance state, the present inventors transmit ultrasonic waves almost uniformly to the entire corroded surface of the sample in the corrosion tank, that is, transmit ultrasonic waves three-dimensionally, and the entire corrosive liquid and the sample As a result, it was newly conceived that a clear solidified structure can be stably obtained, and the corrosion unevenness and erosion of the sample can be suppressed.

本発明の重要な構成要件であるマイクロバブルの発生方法としては、気泡のせん断、超音波、電気分解、化学反応等があるが、本発明の作用効果は、マイクロバブル発生方法には依存しない。例えば、水溶液と空気を超高速で旋回させることでマイクロバブルを発生させるせん断方式では、ポンプ内のプロペラを旋回させることにより、旋回している箇所で空洞となる部分を形成させ、その空洞となった部分が旋回することにより切断され、マイクロバブルを発生させるものである。   Microbubble generation methods, which are important constituent elements of the present invention, include shearing of bubbles, ultrasonic waves, electrolysis, chemical reaction, and the like, but the operational effects of the present invention do not depend on the microbubble generation method. For example, in a shearing method in which microbubbles are generated by swirling an aqueous solution and air at an ultra-high speed, a hollow portion is formed at the swirling portion by swirling the propeller in the pump. The part is cut by turning to generate microbubbles.

マイクロバブルの目視可能な最小直径は概ね150μm程度であり、一般にマイクロバブルの存在は目視で確認しにくいが、発生直後のマイクロバブルは、一般に直径が約150μm以下と考えられる。直径が大きくなるほど気泡は液内で顕著に浮上する傾向があり、150μm程度の気泡は液内で浮上する傾向が見られ、マイクロバブルの寿命(液中での存在期間)が短くなると考えられる。そのため、少なくともマイクロバブルの直径は150μm以下を主体とすることが好ましい。本発明者らは、マイクロバブルの直径を106μm以下としたところ、好適な効果を得た。なお、マイクロバブル内部の気体が液中に溶解し得ることから、一般にマイクロバブル発生直後の最小直径は0.01μm程度と想定される。   The minimum visible diameter of the microbubbles is about 150 μm, and it is generally difficult to visually confirm the presence of the microbubbles. However, the microbubbles immediately after the generation are generally considered to have a diameter of about 150 μm or less. As the diameter increases, bubbles tend to rise remarkably in the liquid, and bubbles of about 150 μm tend to rise in the liquid, and the lifetime of microbubbles (existence period in the liquid) is considered to be shortened. Therefore, it is preferable that at least the diameter of the microbubble is mainly 150 μm or less. The inventors obtained a suitable effect when the diameter of the microbubbles was set to 106 μm or less. In addition, since the gas inside a microbubble can melt | dissolve in a liquid, generally the minimum diameter immediately after microbubble generation is assumed to be about 0.01 micrometer.

ここで、上記したマイクロバブルの直径(例えば106μm以下)は、以下のように定義した。JIS Z8801−1記載のふるい目(例えば公称目開き106μm)を用い、マイクロバブル含有液体を、ふるい目を通過させ、通過したのちの液体中のマイクロバブルの直径を公称目開きの寸法以下(106μm以下)と定義した。JIS Z8801−1の公称目開き(単位:μm)には、例えば150、125、106、90、75があり、適宜選択できる。またJISに限らず、任意の公称目開きでふるい目を作成してマイクロバブルの最大直径を制御してもよい。また、上記したふるい目を用いずに、マイクロバブル発生装置の気泡せん断条件、超音波印加条件、電気分解条件、化学反応条件、等を調整して、気泡の存在がほとんど視認できない状況とすれば、直径150μm以下のマイクロバブルを主体としていると判断することができる。また、市販の装置(パーティクルカウンターや気泡分布計測装置等)によりマイクロバブルの濃度(個/mL)を計測してもよい。   Here, the diameter (for example, 106 micrometers or less) of the above-mentioned microbubble was defined as follows. Using a sieve described in JIS Z8801-1 (for example, nominal opening 106 μm), the liquid containing microbubbles is passed through the sieve, and the diameter of the microbubbles in the liquid after passing through the sieve is less than the size of the nominal opening (106 μm). Defined below). The nominal openings (unit: μm) of JIS Z8801-1 include, for example, 150, 125, 106, 90, and 75, and can be appropriately selected. In addition, the maximum diameter of the microbubbles may be controlled by creating a sieve with an arbitrary nominal opening. Also, without using the above sieves, adjust the bubble shearing conditions, ultrasonic application conditions, electrolysis conditions, chemical reaction conditions, etc. of the microbubble generator so that the presence of bubbles is almost invisible. It can be determined that the microbubbles having a diameter of 150 μm or less are mainly used. Further, the concentration of microbubbles (pieces / mL) may be measured with a commercially available device (particle counter, bubble distribution measuring device, etc.).

マイクロバブルの濃度(個/mL)としては、マイクロバブルを含まない水をマイクロバブル発生装置に通液してマイクロバブルを含む水を生成すると、少なくとも水中の初期濃度が約20(個/mL)〜100(個/mL)未満程度のマイクロバブルが発生し、このマイクロバブルを含む水を溶媒とした腐食液を使用すると、本発明者らの実験では効果が得られた。   Concentration (number / mL) of microbubbles is such that when water containing microbubbles is generated by passing water not containing microbubbles through a microbubble generator, the initial concentration in water is at least about 20 (number / mL). When microbubbles of less than about 100 (pieces / mL) were generated and a corrosive solution using water containing these microbubbles as a solvent was used, an effect was obtained in the experiments of the present inventors.

また本発明者らの知見では、生成したマイクロバブルを含む水を再度マイクロバブル発生装置に供給して通液する構成で、マイクロバブル発生装置の通液時間(例えば水槽の水容量の1倍超の量を通液する時間)の調整により100(個/mL)以上の濃度にすると、さらに明瞭な視認し易い凝固組織を得られた。逆に、濃度が高すぎる場合は、通液時間が長時間化するうえ、マイクロバブル発生装置が大型になり個数を整えてマイクロバブルを供給するのが難しくなる。そのため、マイクロバブル効果の発現と作業性を考慮すると、水中の初期濃度で100個/mL〜5000個/mLが好ましい。   Further, according to the knowledge of the present inventors, in a configuration in which the water containing the generated microbubbles is supplied again to the microbubble generator and passed therethrough, the passing time of the microbubble generator (for example, more than 1 times the water capacity of the water tank) When the concentration was adjusted to 100 (pieces / mL) or more by adjusting the amount of time required to pass through the liquid, a clearer and easier-to-view solidified structure was obtained. On the other hand, when the concentration is too high, the liquid passing time becomes longer, and the microbubble generator becomes large and it becomes difficult to supply the microbubbles by adjusting the number. Therefore, when the expression of microbubble effect and workability are taken into consideration, the initial concentration in water is preferably 100 / mL to 5000 / mL.

本発明者らの研究では、前記した腐食液の溶媒としてマイクロバブルを含む水溶液(水、腐食液等)に、超音波を印加して該腐食液を水共振させるに際し、印加する超音波の周波数としては、150μm以下や0.01〜106μmの直径を有するマイクロバブルを含有させた水溶液(水、腐食液等)の場合、30kHz〜3MHzが適正で、水溶液液面が大きく振動し、水共振することを知見した。このとき、互いに異なる2種類以上の周波数の超音波(例えば一方の超音波周波数が、他方の超音波周波数の2倍以上)を印加するとさらに効果的である。   In the research of the present inventors, when applying ultrasonic waves to an aqueous solution (water, corrosive liquid, etc.) containing microbubbles as the solvent of the corrosive liquid, the ultrasonic liquid is resonated with water, and the frequency of the ultrasonic waves to be applied. In the case of an aqueous solution (water, corrosive liquid, etc.) containing microbubbles having a diameter of 150 μm or less or 0.01 to 106 μm, 30 kHz to 3 MHz is appropriate, the aqueous solution liquid surface greatly vibrates, and water resonates. I found out. At this time, it is more effective to apply ultrasonic waves having two or more different frequencies (for example, one ultrasonic frequency is twice or more the other ultrasonic frequency).

上記の通り本発明者らは、腐食液の溶媒中にマイクロバブルを含有させることで、凝固組織明瞭度の向上(あるいはエッチング時間の短縮)、腐食ムラやエロージョンの抑制、を実現できることを知見した。   As described above, the present inventors have found that the inclusion of microbubbles in the solvent of the corrosive liquid can realize improvement in the clarity of the solidified structure (or shortening of the etching time) and suppression of corrosion unevenness and erosion. .

この効果が発現する理由については、一般に腐食界面におけるFe+2H→Fe2++Hで示される腐食反応により凝固組織が明瞭にエッチングされる過程において、以下の点が理由として考えられる。腐食反応を阻害する腐食界面で生じるHガスに対し、マイクロバブルがHガス気泡の除去を促して実質的に腐食反応を促進した点、負に帯電しやすく相互に反発して液内を動くマイクロバブルが腐食液中に均一に分散し、その分散や前記したHガス気泡の除去に伴い腐食界面での腐食液の置換を促してHイオンの腐食界面への供給を促進する点、等である。 The reason why this effect is manifested is considered to be as follows because the solidified structure is clearly etched by the corrosion reaction generally indicated by Fe + 2H + → Fe 2+ + H 2 at the corrosion interface. In contrast to the H 2 gas generated at the corrosion interface that inhibits the corrosion reaction, the microbubbles promote the removal of the H 2 gas bubbles to substantially accelerate the corrosion reaction. The moving micro bubbles are uniformly dispersed in the corrosive liquid, and the supply of H + ions to the corrosive interface is promoted by promoting the replacement of the corrosive liquid at the corrosive interface with the dispersion and removal of the H 2 gas bubbles. , Etc.

これは、図1に示すように、腐食反応は偏析部1(アノード)と非偏析部2(カソード)からなる局部電池(ローカルセル)によって反応が進み、偏析部1(アノード)ではFeがFe2+イオンとなり、非偏析部2(カソード)ではHイオンが水素ガス(H)となる反応が起きる。ここで、偏析部1では局所的にFe2+イオンが濃化するが、マイクロバブルの均一拡散効果によってFe2+イオンが偏析部1から拡散・希薄化し、一方非偏析部2では水素ガス(H)が発生して腐食反応が進みにくくなるところ、マイクロバブルと水素ガス(H)気泡の集合合体によって水素ガス(H)が除去されやすくなる、と理解でき、この現象がマイクロバブルを用いることによる凝固組織エッチング時間の短縮、及び明瞭度の向上の理由と考えられる。 As shown in FIG. 1, the corrosion reaction proceeds by a local cell (local cell) composed of a segregation part 1 (anode) and a non-segregation part 2 (cathode). In the segregation part 1 (anode), Fe is Fe. A reaction in which H + ions become hydrogen gas (H 2 ) occurs in the non-segregated portion 2 (cathode). Here, Fe 2+ ions locally concentrate in the segregation part 1, but Fe 2+ ions diffuse and dilute from the segregation part 1 due to the uniform diffusion effect of microbubbles, while hydrogen gas (H 2) in the non-segregation part 2. ) Is generated and the corrosion reaction is difficult to proceed, it can be understood that hydrogen gas (H 2 ) is easily removed by the combined coalescence of micro bubbles and hydrogen gas (H 2 ) bubbles, and this phenomenon uses micro bubbles. This is considered to be the reason for shortening the time for etching the solidified structure and improving the clarity.

マイクロバブルを含む水を用いた腐食液に、超音波を印加して該腐食液を水共振させる方法が鋼の凝固組織検出に有効な理由は、前述のマイクロバブルを含む腐食液による単独の効果に加えて、以下の理由が考えられる。すなわち、水共振により液内に分散しているマイクロバブルが振動し、腐食液および試料が3次元的に均一に微細振動し、腐食界面からの老廃物の除去促進や腐食界面の活性化(Fe2+イオンの偏析部からの拡散促進、水素ガス(H)気泡の除去促進)を促進するため等である。 The reason why the method of applying the ultrasonic wave to the corrosive liquid containing water containing microbubbles and resonating the corrosive liquid with water is effective in detecting the solidified structure of steel is that the single effect of the corrosive liquid containing microbubbles described above is used. In addition, the following reasons can be considered. That is, the microbubbles dispersed in the liquid vibrate due to water resonance, and the corrosion liquid and the sample vibrate uniformly and three-dimensionally to promote the removal of waste from the corrosion interface and the activation of the corrosion interface (Fe This is to promote diffusion promotion of 2+ ions from the segregation part, promotion of removal of hydrogen gas (H 2 ) bubbles), and the like.

また、互いに異なる2種類以上の周波数の超音波を印加することでさらに効果が上がる理由は、振動モードが複数になり腐食界面での微細振動の偏りが低減されるためと推定される。さらに、超音波の周波数に対応して共振するマイクロバブルの直径があり、2種類以上の周波数を採用することによって、共振するマイクロバブルの個数が増加し、腐食液や試料がより強く振動するため、より明瞭な凝固組織が得られたと考えられる。   The reason why the effect is further improved by applying ultrasonic waves having two or more different frequencies is presumed to be that there are a plurality of vibration modes and the bias of fine vibrations at the corrosion interface is reduced. Furthermore, there is a diameter of microbubbles that resonates according to the frequency of the ultrasonic wave, and by adopting two or more frequencies, the number of resonating microbubbles increases, and the corrosive liquid and sample vibrate more strongly. It is considered that a clearer solidified structure was obtained.

以上説明したように、マイクロバブルを用いると、マイクロバブルを用いない場合に比べて、腐食して得られる凝固組織の明瞭さが改善することが明確であるが、試料を腐食させる腐食槽に入れる腐食液については、ピクリン酸を主体とした腐食液が、最も安定で明瞭な凝固組織が得られる。また、ピクリン酸を含む腐食液に、界面活性剤として「ライポンF」(商標登録)や腐食調整助剤として塩化第II銅などを加えてもよい。   As explained above, when microbubbles are used, it is clear that the clarity of the solidified structure obtained by corrosion is improved compared to the case where microbubbles are not used. As for the corrosive liquid, the corrosive liquid mainly composed of picric acid provides the most stable and clear solidified structure. Further, “Lypon F” (registered trademark) as a surfactant and cupric chloride as a corrosion control aid may be added to a corrosive solution containing picric acid.

また、本発明のマイクロバブルの作用効果は、従来用いられてきた界面活性剤や腐食調整助剤と併用しても損なわれるものでなく、また、各々の作用効果を損なうものでもない。ただし、界面活性剤や腐食調整助剤の使用は、コスト増となるばかりでなく、腐食後の廃液の処理が複雑になる場合もあるので、用途や状況に応じて適宜組み合わせればよい。   Further, the operational effects of the microbubbles of the present invention are not impaired even when used in combination with conventionally used surfactants and corrosion control aids, and do not impair the respective operational effects. However, the use of surfactants and corrosion control aids not only increases costs but also may complicate the treatment of waste liquid after corrosion, and may be combined as appropriate according to the application and situation.

凝固組織の記録手段としては、ほぼ直方体の鋳片(試料)のうち凝固組織を検出したい断面を研磨した後、上記の方法で試料断面を所定時間腐食させた後、写真撮影するだけでもよいが、従来実施されている以下の方法で記録してもよい。すなわち、断面を腐食させた試料を引き上げ、試料を洗浄、乾燥し、試料断面に形成された腐食孔に研磨粉を埋め込み、試料断面に透明粘着テープを貼り、腐食孔中の研磨粉を透明粘着テープに粘着せしめた後、テープをはがし、次いでそのテープを白色台紙上へ貼り付ける方法である。   As a means for recording a solidified structure, it is possible to polish a cross section of a substantially rectangular parallelepiped slab (sample) where the solidified structure is to be detected, corrode the sample cross section for a predetermined time by the above method, and then take a photograph. The recording may be performed by the following method that has been conventionally used. That is, pulling up the sample that has corroded the cross section, cleaning and drying the sample, embedding the abrasive powder in the corrosion hole formed in the sample cross section, sticking the transparent adhesive tape to the sample cross section, and transparently adhering the abrasive powder in the corrosion hole In this method, after the tape is adhered, the tape is peeled off, and then the tape is stuck on the white mount.

本発明による前述の腐食液を用いて凝固組織を現出させることにより、試料の洗浄、乾燥後の試料腐食面や上記の透明粘着テープを貼り付けた白色台紙において、明瞭な凝固組織を、写真撮影や白色台紙上に記録することができる。   By exposing the solidified structure using the above-described corrosive liquid according to the present invention, a clear solidified structure is photographed on the sample corroded surface after washing and drying of the sample and the white mount with the transparent adhesive tape attached thereto. It can be taken and recorded on a white mount.

また、本発明によれば、試料の腐食面の腐食を促進できるので、従来では明瞭な凝固組織検出が不可能であった、凝固中の溶質元素の偏析による濃度差が比較的小さな鋼種、例えば炭素濃度が0.01mass%以下の低炭素鋼においても、明瞭な凝固組織を検出することができる。   Further, according to the present invention, since corrosion of the corroded surface of the sample can be promoted, a steel type having a relatively small difference in concentration due to segregation of solute elements during solidification, which has conventionally been impossible to clearly detect a solidified structure, for example, A clear solidified structure can be detected even in a low carbon steel having a carbon concentration of 0.01 mass% or less.

マイクロバブルを含む腐食液への超音波の印加方法については、図2(a)に示すように腐食液を入れた槽11の外側に振動装置12,13を設置し、槽壁14を介して内部の腐食液15に超音波を印加するか、または、図2(b)に示すように槽11の内部の腐食液15中に直接振動装置12,13を浸漬して、腐食液15に超音波を印加してもよい。ただし、図2(b)の場合には、振動装置12,13が腐食液15で腐食される可能性もあるため、振動装置12,13をステンレス製のケースに収容するか耐食性の樹脂でカバーするなどの対策を講ずる必要がある。振動装置12,13の設置位置については、腐食液15の一部に超音波を印加できる範囲であればよく、系の一部が共振状態になると微細振動が3次元的に連鎖し系全体が共振状態になる。このように通常の超音波印加では局部的な振動付与しかできないのに対して、マイクロバブルを含む水溶液に特定の周波数の超音波を印加した場合は、系全体に均一に振動付与できるのが水共振の特徴である。   As for the method of applying ultrasonic waves to the corrosive liquid containing microbubbles, as shown in FIG. 2A, vibration devices 12 and 13 are installed outside the tank 11 containing the corrosive liquid, and the tank wall 14 is interposed. An ultrasonic wave is applied to the internal corrosive liquid 15 or the vibration devices 12 and 13 are immersed directly in the internal corrosive liquid 15 in the tank 11 as shown in FIG. Sound waves may be applied. However, in the case of FIG. 2B, since the vibration devices 12 and 13 may be corroded by the corrosive liquid 15, the vibration devices 12 and 13 are accommodated in a stainless steel case or covered with a corrosion-resistant resin. It is necessary to take measures such as The installation positions of the vibration devices 12 and 13 need only be within a range in which ultrasonic waves can be applied to a part of the corrosive liquid 15, and when a part of the system is in a resonance state, micro vibrations are three-dimensionally chained to Resonant state. In this way, normal application of ultrasonic waves can only give local vibration, whereas when ultrasonic waves of a specific frequency are applied to an aqueous solution containing microbubbles, water can be applied uniformly to the entire system. It is a feature of resonance.

本発明は、上記の実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、上記のそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の鋼の凝固組織の検出方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the above-described embodiments, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. The method of detecting the solidified structure of steel of the present invention by combining the above is also included in the scope of the present invention.

次に、本発明の作用効果を確認するために行った実施例について説明する。   Next, examples carried out for confirming the effects of the present invention will be described.

腐食液として、マイクロバブルを含む水にピクリン酸20g/Lを加えた水溶液を用いて、本発明例1〜18について、鋼の凝固組織を検出した。また、一部(本発明例13〜15)には、該腐食液に、塩化第II銅5g/L、界面活性剤「ライポンF」(登録商標)20g/Lの両方またはどちらか一方を加えた。腐食液の初期温度は25℃とし、腐食時間は30〜90分とした。供試材として、炭素濃度が0.001mass%の自動車用極低炭素鋼、0.01mass%の冷延用低炭素鋼板および0.1mass%の厚板用中炭素鋼板を用いた。マイクロバブルの直径は、ふるい目を通して初期状態で106μm以下(0.01〜106μm)に調整した。超音波の印加は、事前実験の結果、効果が安定して得られた38kHzと100kHzの2種類の超音波発振器を、腐食槽の外壁に設置して行った。   As a corrosive solution, a solidified structure of steel was detected for Examples 1 to 18 of the present invention using an aqueous solution in which 20 g / L of picric acid was added to water containing microbubbles. Further, in part (Invention Examples 13 to 15), either or both of cupric chloride 5 g / L and surfactant “Lypon F” (registered trademark) 20 g / L were added to the corrosive liquid. It was. The initial temperature of the corrosive liquid was 25 ° C., and the corrosion time was 30 to 90 minutes. As test materials, an ultra-low carbon steel for automobiles having a carbon concentration of 0.001 mass%, a low-carbon steel sheet for cold rolling with 0.01 mass%, and a medium carbon steel sheet for thick plates with 0.1 mass% were used. The diameter of the microbubble was adjusted to 106 μm or less (0.01 to 106 μm) in the initial state through the sieve. The application of ultrasonic waves was performed by installing two kinds of ultrasonic oscillators of 38 kHz and 100 kHz, which were obtained stably as a result of prior experiments, on the outer wall of the corrosion tank.

生成させたマイクロバブルの濃度(個/mL)は、マイクロバブル発生装置の通液時間の調整やマイクロバブル発生装置の稼動条件の調整で、概ね20(個/mL)以上100(個/mL)未満に調整した場合と、100〜1000(個/mL)とした場合の2種類の条件で実験した。   The concentration of microbubbles generated (pieces / mL) is generally 20 (pieces / mL) to 100 (pieces / mL) by adjusting the flow time of the microbubble generator and the operating conditions of the microbubble generator. Experiments were performed under two conditions, when adjusted to less than 100 and when set to 100 to 1000 (pieces / mL).

また、従来例として、マイクロバブルを含まない通常の水を腐食液の溶媒とし、各本発明例と同じ成分の腐食液、鋼種、腐食時間、かつ超音波を印加しない条件で腐食させ、凝固組織の明瞭度について相対評価を行った。具体的には、本発明例に対応する従来例の凝固組織現出状況を比較して、◎:本発明例が従来例に対して極めて明瞭に改善、○:本発明例が従来例に対して明瞭に改善、△:本発明例が従来例と比較してやや明瞭に改善、×:本発明例が従来例に対して同等あるいは不明瞭、とした。供試材の大きさは、腐食面のサイズでH100〜300mm×W500〜750mm、厚さはt50〜100mmとした。結果一覧を表1に示す。   In addition, as a conventional example, normal water not containing microbubbles is used as a solvent for a corrosive solution, and corroded under the same components as in the present invention, corrosive solution, steel type, corrosion time, and no ultrasonic wave applied, and solidified structure Relative evaluation was performed on the intelligibility. Specifically, the solidification structure appearance situation of the conventional example corresponding to the present invention example was compared, ◎: the present invention example improved very clearly compared to the conventional example, ○: the present invention example compared to the conventional example △: The example of the present invention improved slightly more clearly than the conventional example, x: The example of the present invention was equivalent or unclear to the conventional example. The size of the specimen was H100 to 300 mm × W500 to 750 mm in terms of the size of the corroded surface, and the thickness was t50 to 100 mm. Table 1 shows the result list.

Figure 2011226993
Figure 2011226993

本発明例1〜3は、供試材として炭素濃度が0.001mass%の自動車用極低炭素鋼を用い、初期状態で0.01〜106μmの直径を有するマイクロバブルを100〜1000(個/mL)含む水溶媒にピクリン酸を20g/L加えた腐食液に、38kHzと100kHzの2種類あるいはどちらか1種類の超音波を印加して水共振させた状態で30分腐食させて凝固組織を現出させた例である。通常の腐食液だけで凝固組織を現出させた従来例と比較して、いずれの場合も凝固組織の明瞭度が改善され、とくに38kHzと100kHzの2種類の超音波を重畳印加した場合は凝固組織が極めて明瞭になった。   Inventive Examples 1 to 3 use ultra-low carbon steel for automobiles having a carbon concentration of 0.001 mass% as a test material, and microbubbles having a diameter of 0.01 to 106 μm in an initial state of 100 to 1000 (pieces / piece mL) The corrosive solution obtained by adding 20 g / L of picric acid to an aqueous solvent containing two kinds of ultrasonic waves of 38 kHz and 100 kHz, or one of them, is caused to corrode for 30 minutes in a state of water resonance to form a solidified structure. This is an example. Compared with the conventional example in which a solidified structure is revealed only with a normal corrosive solution, the clarity of the solidified structure is improved in any case, and in particular, when two types of ultrasonic waves of 38 kHz and 100 kHz are superimposed and applied, the solidification is achieved. The organization became very clear.

本発明例4〜6は、供試材として炭素濃度が0.001mass%の自動車用極低炭素鋼を用い、初期状態で0.01〜106μmの直径を有するマイクロバブルを100〜1000(個/mL)含む水溶媒にピクリン酸を20g/L加えた腐食液に38kHzと100kHzの2種類あるいはどちらか1種類の超音波を印加して水共振させた状態で、90分腐食させて凝固組織を現出させた例である。本発明例1〜3と同様の結果が得られた。   Examples 4 to 6 of the present invention use an ultra-low carbon steel for automobiles having a carbon concentration of 0.001 mass% as a test material, and microbubbles having a diameter of 0.01 to 106 μm in an initial state of 100 to 1000 (pieces / piece). mL) The corrosive solution obtained by adding 20 g / L of picric acid to an aqueous solvent containing two kinds of ultrasonic waves of 38 kHz and 100 kHz or one of them to cause water resonance and corroding for 90 minutes. This is an example. The same results as those of Invention Examples 1 to 3 were obtained.

本発明例7〜9は、供試材として炭素濃度が0.01mass%の冷延用低炭素鋼板を用い、初期状態で0.01〜106μmの直径を有するマイクロバブルを100〜1000(個/mL)含む水溶媒にピクリン酸を20g/L加えた腐食液に38kHzと100kHzの2種類の超音波を印加して水共振させた状態で、30〜90分腐食させて凝固組織を現出させた例である。通常の腐食液だけで凝固組織を現出した従来例と比較して、いずれの場合も凝固組織が極めて明瞭に改善された。   Inventive Examples 7 to 9 use a low-carbon steel sheet for cold rolling having a carbon concentration of 0.01 mass% as a test material, and microbubbles having a diameter of 0.01 to 106 μm in an initial state of 100 to 1000 (pieces / piece). mL) In a state where two kinds of ultrasonic waves of 38 kHz and 100 kHz are applied to a corrosive solution obtained by adding 20 g / L of picric acid to an aqueous solvent containing water and resonated with water, it is corroded for 30 to 90 minutes to reveal a solidified structure. This is an example. Compared with the conventional example in which the solidified structure appeared only with a normal corrosive solution, the solidified structure was improved very clearly in each case.

本発明例10〜12は、供試材として炭素濃度が0.1mass%の厚板用中炭素鋼板を用い、初期状態で0.01〜106μmの直径を有するマイクロバブルを100〜1000(個/mL)含む水溶媒にピクリン酸を20g/L加えた腐食液に38kHzと100kHzの2種類の超音波を印加して水共振させた状態で、30〜90分腐食させて凝固組織を現出させた例である。通常の腐食液だけで凝固組織を現出した従来例と比較して、いずれの場合も凝固組織は明瞭になった。ただし、改善代は時間に依存し、本発明例12のように腐食時間が90分と長くなると、従来例との差はそれほど大きくなかった。この理由は、一般的に炭素濃度が大きくなるほど凝固組織が現出されやすくなる傾向にあり、また、腐食時間が長いほど凝固組織が現出されやすくなるので、本発明例12に対応する従来例でも、腐食時間が90分と長いため従来の腐食条件で十分に凝固組織が出つくした状態になっていたためと思われる。言い換えると、炭素含有量0.01mass%以下の鋼のような元々凝固組織の出難い鋼種の方が、本発明の効果が発揮されやすいということである。   Inventive Examples 10 to 12 use a medium carbon steel plate for thick plates having a carbon concentration of 0.1 mass% as a test material, and microbubbles having a diameter of 0.01 to 106 μm in an initial state of 100 to 1000 (pieces / piece). mL) In a state where two kinds of ultrasonic waves of 38 kHz and 100 kHz are applied to a corrosive solution obtained by adding 20 g / L of picric acid to an aqueous solvent containing water and resonated with water, it is corroded for 30 to 90 minutes to reveal a solidified structure. This is an example. Compared with the conventional example in which the solidified structure appeared only with a normal corrosive solution, the solidified structure became clear in all cases. However, the improvement allowance depends on the time, and when the corrosion time is as long as 90 minutes as in Example 12 of the present invention, the difference from the conventional example is not so large. This is because the solidified structure generally tends to appear as the carbon concentration increases, and the solidified structure tends to appear as the corrosion time increases. Therefore, the conventional example corresponding to Example 12 of the present invention. However, since the corrosion time is as long as 90 minutes, it seems that the solidified structure has come out sufficiently under the conventional corrosion conditions. In other words, the effect of the present invention is more easily exhibited in steel types that are less likely to have a solidified structure, such as steel having a carbon content of 0.01 mass% or less.

本発明例13〜15は、本発明の腐食液に塩化第II銅5g/L、界面活性剤「ライポンF」(登録商標)20g/Lの両方かまたはどちらか一方を加えた例であるが、いずれの場合も各々に対応する従来例と比べて、凝固組織の明瞭度が大幅に改善された。   Inventive Examples 13 to 15 are examples in which either or both of 5 g / L of cupric chloride and a surfactant “Lypon F” (registered trademark) 20 g / L were added to the corrosive liquid of the present invention. In either case, the clarity of the solidified tissue was greatly improved as compared with the conventional examples corresponding to each case.

一方、本発明例16〜18は、腐食液にマイクロバブルを含むものの、初期状態でのマイクロバブルの濃度が20個/mL以上100個/mL未満と低かった例であり、従来例の凝固組織と比べて明瞭度が劣ることはないが、改善代は非常に小さかった。すなわち、腐食液中にマイクロバブルを含む本発明例では、マイクロバブルを含まない比較例に対して現出された凝固組織の明瞭度が改善されたが、本発明の効果を十分に発揮させるためには、マイクロバブルの濃度の調整制御を行い十分な水共振状態にすることがいっそう好ましいことを意味している。   On the other hand, Examples 16 to 18 of the present invention are examples in which the concentration of microbubbles in the initial state is as low as 20 / mL or more and less than 100 / mL, although the corrosive liquid contains microbubbles. Although the clarity was not inferior to that of, improvement cost was very small. That is, in the present invention example containing microbubbles in the corrosive liquid, the clarity of the solidified structure revealed compared to the comparative example not containing microbubbles was improved, but the effect of the present invention was sufficiently exhibited. This means that it is more preferable to adjust and control the concentration of microbubbles so that a sufficient water resonance state is obtained.

一方、比較例1〜3は、マイクロバブルを含まない腐食液に超音波を印加した例であり、いずれの場合も腐食の偏りが生じ全体的な明瞭度は改善されなかった。   On the other hand, Comparative Examples 1 to 3 are examples in which ultrasonic waves were applied to a corrosive solution that did not contain microbubbles. In any case, corrosion was uneven and overall clarity was not improved.

以上述べたように、本発明は、凝固組織の検出が困難であった凝固中の溶質元素の偏析による濃度差が比較的小さな鋼種とくに炭素濃度が0.01mass%以下の低炭素鋼の凝固組織を明瞭に検出できるため、産業上極めて有用である。   As described above, the present invention is a solidified structure of a steel type in which the concentration difference due to segregation of solute elements during solidification, which is difficult to detect the solidified structure, particularly a low carbon steel having a carbon concentration of 0.01 mass% or less. Can be detected clearly, which is extremely useful in the industry.

1 偏析部
2 非偏析部
11 槽
12、13 超音波発振装置
14 槽壁
15 腐食液
DESCRIPTION OF SYMBOLS 1 Segregation part 2 Non-segregation part 11 Tank 12, 13 Ultrasonic oscillator 14 Tank wall 15 Corrosion liquid

Claims (5)

鋼鋳片の試料断面を研磨した後で、該試料断面を腐食させる鋼の凝固組織検出方法において、溶媒としてマイクロバブルを含む水を用いた腐食液に、30kHz〜3MHzの超音波を印加し該腐食液を水共振させながら、該試料断面を腐食させて鋼の凝固組織を現出させることを特徴とする鋼の凝固組織検出方法。   In a method for detecting a solidified structure of steel that corrodes the sample cross section after polishing the sample cross section of the steel slab, an ultrasonic wave of 30 kHz to 3 MHz is applied to a corrosive solution using water containing microbubbles as a solvent. A method for detecting a solidified structure of steel, wherein the solidified structure of the steel is revealed by corroding the cross section of the sample while causing the corrosive liquid to resonate with water. 前記超音波が、30kHz〜3MHzの範囲の互いに異なる2種類以上の周波数の超音波であることを特徴とする請求項1に記載の鋼の凝固組織検出方法。   2. The method for detecting a solidified structure of steel according to claim 1, wherein the ultrasonic waves are ultrasonic waves having two or more different frequencies within a range of 30 kHz to 3 MHz. 前記溶媒中にピクリン酸を含むことを特徴とする請求項1または2に記載の鋼の凝固組織検出方法。   The method for detecting a solidified structure of steel according to claim 1 or 2, wherein the solvent contains picric acid. 鋼鋳片の試料断面を研磨した後で、該試料断面を請求項1〜3のいずれかに記載の方法で腐食させた後、洗浄、乾燥し、前記試料断面に形成された腐食孔に研磨粉を埋め込み、前記試料断面に透明粘着テープを貼り、前記腐食孔中の研磨粉を前記透明粘着テープに粘着せしめた後、前記透明粘着テープをはがし、次いで前記透明粘着テープを白色台紙上へ貼り付けることを特徴とする鋼の凝固組織検出方法。   After the sample cross section of the steel slab is polished, the sample cross section is corroded by the method according to any one of claims 1 to 3, and then washed and dried, and polished to the corrosion holes formed in the sample cross section. After embedding powder, sticking a transparent adhesive tape to the sample cross section, adhering the abrasive powder in the corrosion hole to the transparent adhesive tape, peeling off the transparent adhesive tape, and then attaching the transparent adhesive tape on a white mount A method for detecting a solidified structure of steel, characterized by comprising: 前記鋼鋳片が炭素含有量0.01mass%以下の鋼である請求項1〜4のいずれかに記載の鋼の凝固組織の検出方法。   The method for detecting a solidified structure of steel according to any one of claims 1 to 4, wherein the steel slab is steel having a carbon content of 0.01 mass% or less.
JP2010098985A 2010-04-22 2010-04-22 Method for detecting solidification structure of steel Active JP5409499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098985A JP5409499B2 (en) 2010-04-22 2010-04-22 Method for detecting solidification structure of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098985A JP5409499B2 (en) 2010-04-22 2010-04-22 Method for detecting solidification structure of steel

Publications (2)

Publication Number Publication Date
JP2011226993A true JP2011226993A (en) 2011-11-10
JP5409499B2 JP5409499B2 (en) 2014-02-05

Family

ID=45042486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098985A Active JP5409499B2 (en) 2010-04-22 2010-04-22 Method for detecting solidification structure of steel

Country Status (1)

Country Link
JP (1) JP5409499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247382A (en) * 2011-05-31 2012-12-13 Nippon Steel & Sumitomo Metal Detection method of solidification structure for steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855933B (en) * 2019-01-14 2022-07-29 大冶特殊钢有限公司 Metallographic specimen preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532361A (en) * 1976-06-29 1978-01-11 Mitsubishi Electric Corp Etching method
JPH07198565A (en) * 1993-12-28 1995-08-01 Kobe Steel Ltd Method for transferring segregation of steel
JP2001271180A (en) * 2000-03-28 2001-10-02 Enhama:Kk Etching system and ultrasonic vibrating device for etching solution
JP2002228650A (en) * 2001-01-29 2002-08-14 Sanyo Special Steel Co Ltd Method of revealing dendrite of low carbon steel or low carbon alloy steel cast piece

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532361A (en) * 1976-06-29 1978-01-11 Mitsubishi Electric Corp Etching method
JPH07198565A (en) * 1993-12-28 1995-08-01 Kobe Steel Ltd Method for transferring segregation of steel
JP2001271180A (en) * 2000-03-28 2001-10-02 Enhama:Kk Etching system and ultrasonic vibrating device for etching solution
JP2002228650A (en) * 2001-01-29 2002-08-14 Sanyo Special Steel Co Ltd Method of revealing dendrite of low carbon steel or low carbon alloy steel cast piece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247382A (en) * 2011-05-31 2012-12-13 Nippon Steel & Sumitomo Metal Detection method of solidification structure for steel

Also Published As

Publication number Publication date
JP5409499B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4541683B2 (en) Method for partially stripping a coating film from the surface of a substrate, articles and compositions related thereto
KR101146853B1 (en) Steel sheet rinsing method, and steel sheet continuous rinsing apparatus
JP4970623B2 (en) Steel plate pickling method and pickling apparatus
JP2008021672A (en) Ultrasonic cleaning method and cleaning device using gas supersaturation solution
JP5409499B2 (en) Method for detecting solidification structure of steel
TW546725B (en) Ultrasonic cleaning method for semiconductor manufacturing equipment
JP5336416B2 (en) Steel solidification structure detection device and solidification structure detection method
JP5743717B2 (en) Method for detecting solidification structure of steel
JP5450233B2 (en) Method for detecting solidification structure of steel
CN101711423A (en) Method for cleaning semiconductor wafer surfaces by applying periodic shear stress to the cleaning solution
JP5033112B2 (en) Method for detecting solidification structure of steel
JP2010137134A (en) Cleaning method and cleaning apparatus under low environmental load
JP7462435B2 (en) Ultrasonic cleaning device and ultrasonic cleaning method
JPH1022246A (en) Cleaning method
JP2007294822A (en) Apparatus and method for ultrasonic cleaning
JP2011005668A (en) Support material removing device
JP5222059B2 (en) Apparatus for manufacturing a supply liquid for ultrasonic processing apparatus, method for manufacturing a supply liquid for ultrasonic processing apparatus, and ultrasonic processing system
JP2011183300A (en) Ultrasonic cleaning apparatus
JP3227391B2 (en) Cleaning equipment for synthetic resin molds
JP4481811B2 (en) Cleaning device and cleaning method
JP4902521B2 (en) Glass cleaning method
JP2007152207A (en) Ultrasonic washing apparatus
JP5353433B2 (en) Method and apparatus for cleaning photomask substrate
RU2516326C2 (en) Deburring of small-size parts
JP4023103B2 (en) Ultrasonic fluid processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250