JP2011226961A - Neutralization depth measuring method and neutralization determining method - Google Patents

Neutralization depth measuring method and neutralization determining method Download PDF

Info

Publication number
JP2011226961A
JP2011226961A JP2010097987A JP2010097987A JP2011226961A JP 2011226961 A JP2011226961 A JP 2011226961A JP 2010097987 A JP2010097987 A JP 2010097987A JP 2010097987 A JP2010097987 A JP 2010097987A JP 2011226961 A JP2011226961 A JP 2011226961A
Authority
JP
Japan
Prior art keywords
neutralization
recess
concrete
neutralized
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097987A
Other languages
Japanese (ja)
Inventor
Muneyoshi Kiyosawa
宗義 清澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Nippon Highway Engineering Nagoya Co Ltd
Original Assignee
Central Nippon Highway Engineering Nagoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Nippon Highway Engineering Nagoya Co Ltd filed Critical Central Nippon Highway Engineering Nagoya Co Ltd
Priority to JP2010097987A priority Critical patent/JP2011226961A/en
Publication of JP2011226961A publication Critical patent/JP2011226961A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a neutralization depth measuring method and a neutralization determining method which can be realized by an extremely simple method without using an exclusive measuring implement after suppressing a drilling depth by a concrete drill even while drilling a concrete surface using it.SOLUTION: On a concrete surface 23, a measuring recess 30 in an inverted conical shape is drilled (S2). After spraying distilled water using an atomizer or the like, the measuring recess 30 is washed to wash off concrete powder (S3), and moisture is removed from there (S4). A neutralization determining reagent is sprayed to the concrete surface inside the measuring recess 30 using an atomizer (S5), and a boundary of a neutralized layer 21 and a non-neutralized layer 22 is discolored and exposed visibly with the naked eye. After the discoloration, the value of the entire diameter d1 of the measuring recess 30 and the value of a non-neutralized area diameter d2 are measured using a general length measuring device such as vernier calipers or a ruler (S6).

Description

本発明は、コンクリートの中性化深さを測定する中性化深さ測定方法と、コンクリート内の中性化の進行度を判定する中性化判定方法とに関するものである。   The present invention relates to a neutralization depth measurement method for measuring the neutralization depth of concrete and a neutralization determination method for determining the degree of progress of neutralization in concrete.

従来より、道路の橋梁等のコンクリート構造物に関する劣化度の判定方法の一つとして、コンクリート中性化深さを用いた判定方法がある。このコンクリート中性化深さを用いた判定方法は、本来、強アルカリ性であるコンクリートが劣化進行に伴って、コンクリート表面から徐々に中性へと変化していく現象に着目し、この中性化したコンクリートの深さ(厚み)の大小に基づいて、コンクリートの劣化度を判定するものであり、コンクリート構造物の劣化度を判定するための一般的な方法として知られている。   2. Description of the Related Art Conventionally, there is a determination method using a concrete neutralization depth as one of methods for determining a deterioration degree of a concrete structure such as a road bridge. This judgment method using the neutralization depth of the concrete focuses on the phenomenon that the strongly alkaline concrete is gradually changing from the concrete surface to neutrality as the deterioration progresses. This is a method for determining the degree of deterioration of concrete based on the depth (thickness) of the concrete, and is known as a general method for determining the degree of deterioration of a concrete structure.

ここで、健全なコンクリートは、本来上記したように強アルカリ性(pH12程度)を示すものであり、この強アルカリ性により鉄筋鋼材の腐食が防止されているが、大気中の炭酸ガス等によるコンクリートの炭酸化したり、コンクリート中からアルカリ成分が溶出するなどして、コンクリート表面から徐々に経時的にアルカリ度が低下すると、コンクリート内の防食雰囲気が破壊されて、鉄筋鋼材の腐食を招来させてしまう。このため、コンクリートの中性化深さを測定することにより、コンクリートの中性化の進行状況を把握する必要がある。   Here, sound concrete originally exhibits strong alkalinity (about pH 12) as described above, and this strong alkalinity prevents corrosion of reinforcing steel, but the carbonation of concrete due to carbon dioxide in the atmosphere, etc. When the alkalinity gradually decreases from the concrete surface over time, for example, when the alkalinity component is eluted or the alkali component is eluted from the concrete, the anticorrosive atmosphere in the concrete is destroyed, leading to corrosion of the reinforced steel material. For this reason, it is necessary to grasp the progress of the neutralization of concrete by measuring the neutralization depth of concrete.

例えば、特許文献1(特許第3342308号)及び特許文献3(特公平7−104339号)に従来技術として記載される中性化深さの測定方法は、コンクリート構造物から測定用の試料であるコンクリートコアを採取し、かかるコンクリートコアの表面にフェノールフタレイン溶液を噴霧し、コンクリートコアの表面におけるアルカリ性部分(赤色変化部分)と中性化部分(無変色部分)との境界を可視化した上で、その境界位置からコンクリートコアの端面(コンクリート構造物のコンクリート表面であった端面)までの距離を物差し等を用いて測定し、その測定値を当該測定地点におけるコンクリート中性化深さとするものである。   For example, the neutralization depth measurement method described in Patent Document 1 (Japanese Patent No. 3342308) and Patent Document 3 (Japanese Patent Publication No. 7-104339) is a sample for measurement from a concrete structure. After collecting the concrete core and spraying the phenolphthalein solution on the surface of the concrete core, the boundary between the alkaline part (red change part) and the neutralization part (no change part) on the surface of the concrete core is visualized. Measure the distance from the boundary position to the end face of the concrete core (the end face that was the concrete surface of the concrete structure) using a ruler, etc., and use the measured value as the concrete neutralization depth at the measurement point. is there.

これに対し、特許文献1及び特許文献2(特開2005−233819号)に記載される中性化深さ測定方法は、コンクリート構造物のコンクリート表面にコンクリートドリルにより数ミリ〜十数ミリの穴をコンクリート深部へ向けて削孔した後、その穴内にフェノールフタレイン溶液を噴霧又は塗布すると、その穴の内部表面におけるアルカリ性部分(赤色変化部分)と中性化部分(無変色部分)との境界位置を可視化した上で、その穴内部に専用の光学式測定機器を挿入して、コンクリート表面からその境界位置までの距離を測定し、この測定値を当該測定地点におけるコンクリート中性深さとするものである。   On the other hand, the neutralization depth measuring method described in Patent Document 1 and Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-233819) is a hole of several millimeters to several tens of millimeters by a concrete drill on the concrete surface of a concrete structure. When drilling or applying a phenolphthalein solution into the hole after drilling the hole toward the deep part of the concrete, the boundary between the alkaline part (red change part) and the neutralization part (no change color part) on the inner surface of the hole After visualizing the position, insert a dedicated optical measuring instrument inside the hole, measure the distance from the concrete surface to the boundary position, and use this measurement value as the concrete neutral depth at the measurement point It is.

また、特許文献3に記載されるコンクリートの劣化検査方法は、コンクリート構造物のコンクリート表面にビットにより10mm(5〜6mm程度)の穴をコンクリート深部へ向けて穿孔しならがら、その穴内に検査試薬であるフェノールフタレイン溶液を噴霧して、この検査試薬を吸着した穿孔に伴う粉塵の色がアルカリ性を示す赤色に変化した場合に、その穿孔を中止し、この中止時の穿孔深さを物差し等で測定して、この測定値を当該測定地点におけるコンクリート中性化深さとするものである。   In addition, the concrete deterioration inspection method described in Patent Document 3 is a method in which a 10 mm (about 5 to 6 mm) hole is drilled in the concrete surface of a concrete structure with a bit toward the deep part of the concrete, and an inspection reagent is placed in the hole. When the phenolphthalein solution is sprayed and the color of the dust accompanying the perforation that adsorbs the test reagent changes to red indicating alkalinity, the perforation is stopped, and the perforation depth at the time of this suspension is measured The measured value is used as the concrete neutralization depth at the measurement point.

特許第3342308号公報Japanese Patent No. 3342308 特開2005−233819号公報Japanese Patent Laying-Open No. 2005-233819 特公平7−104339号公報Japanese Examined Patent Publication No. 7-104339

しかしながら、従来のコンクリートコアを用いて行われる中性化深さの測定方法では、コンクリートコアをコンクリート構造物から抜き取るため、コアドリルを装備した専用のコア抜き機を使用する必要があり、その設置や操作も煩雑であり、コンクリートコア抜き取りに要する作業時間やコストが嵩むという問題点があった。また、コア採取後は、採取後に開口した穴を埋め戻す作業も必要となり、更に、作業が煩雑化し、そのコストも嵩むという問題点もあった。   However, in the conventional neutralization depth measurement method performed using a concrete core, it is necessary to use a dedicated core drilling machine equipped with a core drill in order to extract the concrete core from the concrete structure. The operation is complicated, and there is a problem that the working time and cost required for removing the concrete core increase. In addition, after the core is collected, it is necessary to refill the hole that has been opened after the core is collected, which further complicates the operation and increases the cost.

また、このようなコンクリートコアを用いた中性化深さの測定方法では、コンクリートコアの表面へのフェノールフタレイン溶液の噴霧後、アルカリ性部分(赤色変化部分)と中性化部分(無変色部分)との境界に鉛筆で線を引き、その中性化部分を鉛筆で塗り、この中性化部分にセロハンを当てて、セロハンに中性化部分に塗られた鉛筆色を転写し、このセロハンに写し取った中性化部分の面積を求めて、この面積をコンクリートコアの円周で除して平均中性化深さが求められている。   In addition, in the method of measuring the neutralization depth using such a concrete core, after spraying the phenolphthalein solution onto the surface of the concrete core, the alkaline part (red change part) and the neutralization part (no change color part) ), Draw a line with a pencil at the boundary, paint the neutralized part with pencil, apply cellophane to this neutralized part, transfer the pencil color painted on the neutralized part to cellophane, this cellophane The average neutralization depth is calculated by obtaining the area of the neutralized portion copied in (1) and dividing the area by the circumference of the concrete core.

ところが、このような測定方法では、セロハンへの転写が不鮮明となりやすく、コンクリート表面から数mm程度である中性化深さを正確に算定することが難しいという問題点がある。また、コンクリートコアの表面の性質が大気等との接触により変化する場合があることから、コンクリートコアを用いた中性化深さの測定は、コンクリートコアの採取後直ちに実施する必要があるが、円筒状のコアに鉛筆等により線引きを行い、それをセロハンに転写する処理を、採取現場で行うことが極めて煩雑であり、正確な測定結果を得づらいという問題点があった。   However, such a measuring method has a problem that transfer to a cellophane tends to be unclear and it is difficult to accurately calculate a neutralization depth of about several mm from the concrete surface. In addition, since the properties of the surface of the concrete core may change due to contact with the atmosphere, etc., the measurement of the neutralization depth using the concrete core must be carried out immediately after collecting the concrete core. There is a problem that it is very complicated to draw a cylindrical core with a pencil or the like and transfer it to a cellophane at the sampling site, making it difficult to obtain an accurate measurement result.

また、特許文献1及び2に記載される中性化深さ測定方法についても、コンクリート表面に穴を削孔してフェノールフタレイン溶液を噴霧付着させた後、その穴へ専用の光学式測定器を挿入する必要があり、コンクリートコア抜き取りに要する作業時間やコストが嵩むという問題点があった。特に、特許文献3に記載される劣化検査方法については、ビットによる穴の穿孔を行いながら、その粉塵の色変化を同時に判断する必要があり、粉塵の着色状態の変化を判定し辛く、中性化部分を越えて非中性化部分まで穿孔が進行した後で、粉塵の着色に気付くことも危惧され、厳密な意味での中性化深さを測定できないという問題点があった。   Moreover, also about the neutralization depth measuring method described in patent documents 1 and 2, after drilling a hole in a concrete surface and spraying and adhering a phenolphthalein solution, an optical measuring device dedicated to the hole There is a problem that the working time and cost required for removing the concrete core increase. In particular, for the deterioration inspection method described in Patent Document 3, it is necessary to determine the color change of the dust at the same time while drilling a hole with a bit, and it is difficult to determine the change in the color state of the dust. After drilling has progressed to the non-neutralized part beyond the neutralized part, it is feared that the coloring of the dust will be noticed, and there is a problem that the neutralization depth cannot be measured in a strict sense.

本発明は、上述した問題点を解決するためになされたものであり、コンクリートドリルを用いてコンクリート表面に削孔しつつも、それによる削孔深さを抑制した上で、専用の測定器具を用いずに極めて簡易な方法によりコンクリートの中性化深さを測定することができる中性化深さ測定方法と中性化判定方法を提供することを目的としている。   The present invention has been made in order to solve the above-described problems. While drilling a concrete surface using a concrete drill, the depth of the drilling hole is suppressed, and a dedicated measuring instrument is used. The object is to provide a neutralization depth measurement method and a neutralization determination method that can measure the neutralization depth of concrete by a very simple method without using it.

この目的を達成するために請求項1の中性化深さ測定方法は、コンクリートの中性化深さを測定するための方法であって、円錐状の刃先部を有する削孔工具によって、コンクリート表面からコンクリートの深さ方向に一定比率で内径が縮径する逆円錐状の凹所を、そのコンクリート表面に削成する削成工程と、その削成工程により削成された凹所に対し、中性化部分若しくは非中性化部分の一方若しくはその双方又はこれらの境界を視認可能に顕在化させる試薬を用いて、その凹所内のコンクリート面に現われた非中性化層を顕在化させる顕在化工程と、その顕在化工程により前記凹所内のコンクリート面に顕在化された非中性化層の平面投影像である非中性化領域の直径(d2)を測定する測定工程と、その測定工程により得られた非中性化領域の直径(d2)を用いて中性化深さ(h)を、次式により計算する演算工程とを備えている。
h=K・(d1−d2)
ここで、h:中性化深さ、K:削孔工具の工具係数(K=H/D(H:削孔工具の円錐状の刃先部の高さ、D:削孔工具の円錐状の刃先部の最大外径である。))、d1:凹所の最大径(コンクリート表面位置での凹所の内径)、d2:非中性化領域の直径である。
In order to achieve this object, the neutralization depth measurement method according to claim 1 is a method for measuring the neutralization depth of concrete, wherein the concrete is measured by a drilling tool having a conical cutting edge. From the surface to the concrete conical depth, the conical recess whose inner diameter is reduced at a constant ratio is cut into the concrete surface, and the recess cut by the cutting step, Revealing the non-neutralized layer that appears on the concrete surface in the recess using a reagent that visibly reveals one or both of the neutralized part and / or non-neutralized part A measuring step for measuring a diameter (d2) of a non-neutralized region which is a planar projection image of a non-neutralized layer that has been revealed on the concrete surface in the recess by the revealing step, and the measurement Non-neutral obtained by the process Neutralization depth with diameter area (d2) a (h), and a calculation step of calculating the following equation.
h = K · (d1-d2)
Here, h: neutralization depth, K: tool coefficient of drilling tool (K = H / D (H: height of conical cutting edge of drilling tool, D: conical shape of drilling tool) The maximum outer diameter of the blade edge portion))), d1: the maximum diameter of the recess (the inner diameter of the recess at the concrete surface position), d2: the diameter of the non-neutralized region.

なお、請求項1に記載される「非中性化層の顕在化」は、試薬を用いることで凹所内のコンクリート面において、非中性化層のみを顕在化させる場合に加え、中性化層及び非中性化層の双方を顕在化させる場合、中性化層を顕在化させることにより非中性化層を相対的に顕在化させる場合、中性化層及び非中性化層の境界を顕在化させる場合を包摂する用語として使用する。   In addition, in addition to the case where only the non-neutralized layer is revealed on the concrete surface in the recess by using a reagent, the “realization of the non-neutralized layer” described in claim 1 When both the layer and the non-neutralized layer are exposed, when the non-neutralized layer is relatively revealed by revealing the neutralized layer, the neutralized layer and the non-neutralized layer It is used as a term to encompass the case where the boundary is exposed.

請求項2の中性化深さ測定方法は、請求項1の中性化深さ測定方法において、前記測定工程は、前記顕在化工程により前記凹所内のコンクリート面に非中性化層を顕在化させた後、その凹所内のコンクリート面に顕在化された非中性化層の平面投影像である非中性化領域の直径(d2)を現場で直接測定するものである。   The neutralization depth measurement method according to claim 2 is the neutralization depth measurement method according to claim 1, wherein the measurement step reveals a non-neutralization layer on the concrete surface in the recess by the manifestation step. Then, the diameter (d2) of the non-neutralized region, which is a planar projection image of the non-neutralized layer that has been revealed on the concrete surface in the recess, is directly measured on site.

請求項3の中性化深さ測定方法は、請求項1の中性化深さ測定方法において、前記測定工程は、前記顕在化工程により前記凹所内のコンクリート面に非中性化層を顕在化させた後、その凹所の画像を撮像し、その画像から凹所内のコンクリート面に顕在化された非中性化層の平面投影像である非中性化領域の直径(d2)を測定するものである。   The neutralization depth measurement method according to claim 3 is the neutralization depth measurement method according to claim 1, wherein the measurement step reveals a non-neutralization layer on the concrete surface in the recess by the manifestation step. Then, the image of the recess is taken, and the diameter (d2) of the non-neutralized region, which is a planar projection image of the non-neutralized layer that is made visible on the concrete surface in the recess, is measured from the image. To do.

請求項4の中性化深さ測定方法は、請求項1から3のいずれかの中性化深さ測定方法において、前記顕在化工程の前に、前記削成工程により削成された前記凹所内のコンクリート面を蒸留水により洗浄し、その後、その凹所内のコンクリート面に付着する水分を除去する洗浄除去工程を備えている。   A neutralization depth measurement method according to a fourth aspect of the present invention is the neutralization depth measurement method according to any one of the first to third aspects, wherein the recess formed by the grinding step is performed before the revealing step. The concrete surface in the place is washed with distilled water, and then a washing and removing step is performed to remove water adhering to the concrete surface in the recess.

請求項5の中性化深さ測定方法は、請求項1から4のいずれかの中性化深さ測定方法において、前記算出工程の前に、前記凹所の最大径(d1)を測定し、削孔工具の円錐状の刃先部の高さ(H)及び当該刃先部の最大外径(D)を測定して削孔工具の工具係数(K)を計算する演算予備工程を備えている。   The neutralization depth measurement method according to claim 5 is the neutralization depth measurement method according to any one of claims 1 to 4, wherein the maximum diameter (d1) of the recess is measured before the calculation step. And a calculation preliminary step of calculating the tool coefficient (K) of the drilling tool by measuring the height (H) of the conical cutting edge of the drilling tool and the maximum outer diameter (D) of the cutting tool. .

請求項6の中性化深さ測定方法は、請求項1から4のいずれかの中性化深さ測定方法において、前記削成工程は、予め設定した所定の最大径を有する前記凹所を削成するものであり、その削孔工程において用いられる削孔工具の工具係数(K)が既知である。   A neutralization depth measurement method according to a sixth aspect of the present invention is the neutralization depth measurement method according to any one of the first to fourth aspects, wherein the cutting step includes the recess having a predetermined maximum diameter set in advance. The tool coefficient (K) of the drilling tool used in the drilling process is known.

請求項7の中性化判定方法は、コンクリート内の中性化の進行度を判定するための方法であり、円錐状の刃先部を有する削孔工具によって、コンクリート表面からコンクリートの深さ方向に一定比率で内径が縮径する逆円錐状の凹所を、そのコンクリート表面に削成する削成工程と、その削成工程により削成された凹所に対し、中性化部分若しくは非中性化部分の一方若しくはその双方又はこれらの境界を視認可能に顕在化させる試薬を噴霧して、その凹所内のコンクリート面に現われた中性化層若しくは非中性化層の一方若しくはその双方又はこれらの境界を顕在化させる顕在化工程と、その顕在化工程の後、前記凹所内のコンクリート面に顕在化された中性化層又は非中性化層の平面投影像の大きさを現場で直接観察して、コンクリートの中性化の進行度を判定する判定工程とを備えている。   The neutralization determination method according to claim 7 is a method for determining the degree of progress of neutralization in concrete, and is formed in a depth direction of the concrete from the concrete surface by a drilling tool having a conical cutting edge. Cutting a reverse conical recess whose inner diameter is reduced at a constant ratio on the concrete surface, and a neutralized part or non-neutral with respect to the recess cut by the cutting process One or both of the neutralized portions or a reagent that makes the boundary thereof visibly visible is sprayed, and one or both of the neutralized layer and / or the non-neutralized layer that appears on the concrete surface in the recess, or these After the revealing process that reveals the boundary of the surface, and after the revealing process, the size of the planar projection image of the neutralized layer or non-neutralized layer that is manifested on the concrete surface in the recess is directly Observe the concrete And a determination step of determining the progress of the neutralization.

請求項8の中性化判定方法は、請求項7の中性化判定方法において、前記判定工程に代えて、前記顕在化工程の後、前記凹所の画像を撮影し、その画像に撮像された前記凹所内のコンクリート面に顕在化された中性化層又は非中性化層の平面投影像の大きさに基づき、コンクリートの中性化の進行度を判定する判定工程を備えている。   The neutralization determination method according to claim 8 is the neutralization determination method according to claim 7, wherein instead of the determination step, after the revealing step, an image of the recess is captured and captured in the image. And a determination step of determining the progress of the neutralization of the concrete based on the size of the planar projection image of the neutralized layer or the non-neutralized layer that is manifested on the concrete surface in the recess.

請求項9の中性化判定方法は、請求項7又は8の中性化判定方法において、前記顕在化工程の前に、前記削成工程により削成された前記凹所内のコンクリート面を蒸留水により洗浄し、その後、その凹所内のコンクリート面に付着する水分を除去する洗浄除去工程を備えている。   The neutralization determination method according to claim 9 is the neutralization determination method according to claim 7 or 8, wherein the concrete surface in the recess formed by the cutting step is distilled water before the revealing step. And then a cleaning and removing step for removing water adhering to the concrete surface in the recess.

本発明の中性化深さ測定方法によれば、削孔工具によりコンクリート表面に削成凹設される凹所の形状を逆円錐状とすることで、かかる測定に伴うコンクリート表面の破壊箇所を面積的にも深さ的にも極めて狭小な範囲に抑えることができるので、測定後の当該凹所を埋め戻す補修も極めて簡便かつ低コストで行え、コンクリート構造物の強度に与える影響も極少化できるという効果がある。   According to the neutralization depth measurement method of the present invention, the shape of the recess formed on the concrete surface by the drilling tool is made into an inverted cone, so that the fracture location on the concrete surface accompanying such measurement can be determined. Since it can be kept in a very narrow range both in terms of area and depth, it is possible to repair the recess after filling in a very simple and low-cost manner and minimize the impact on the strength of concrete structures. There is an effect that can be done.

しかも、コンクリートコアのようにコア抜き機のような専用装置を用いずとも、凹所は、円錐状の刃先部を有する削孔工具、例えば、一般的なコンクリートドリルを用いてでも削成できるので、その削成作業に要する手間を簡素化でき、時間を短縮化でき、コストを削減できるという効果がある。   In addition, the recess can be cut using a drilling tool having a conical cutting edge, for example, a general concrete drill, without using a dedicated device such as a core cutter like a concrete core. The labor required for the cutting work can be simplified, the time can be shortened, and the cost can be reduced.

また、凹所が逆円錐状となることから、その凹所内の内面がコンクリート表面に対して深さ方向に一定角度θを成して傾斜する格好となる(図1(a)参照。)。このため、凹所内に現れる非中性化層の平面投影像の幅は、中性化深さ(h)を(1/tanθ)倍に拡大した幅となるので、中性化深さを拡大観察でき、従来は測定し難かった極薄い中性化深さ(h)の測定も容易に行えるという効果がある。   Further, since the recess has an inverted conical shape, the inner surface in the recess is inclined with a certain angle θ in the depth direction with respect to the concrete surface (see FIG. 1A). For this reason, the width of the planar projection image of the non-neutralized layer appearing in the recess is a width obtained by enlarging the neutralization depth (h) by (1 / tan θ) times, so the neutralization depth is expanded. There is an effect that it is possible to easily measure the very thin neutralization depth (h), which is difficult to measure in the past.

また、上記したコンクリートコアに鉛筆で線引きしてセロハンに転写する方法では、鉛筆の線引きの仕方や、その転写の仕方に測定者毎の個人差があるため、測定結果に誤差が内在し易く、より正確な中性化深さ(h)の測定結果が得られないという不具合があったが、本実施例の中性化深さ測定方法によれば、このような線引きや転写が不要となることから、これらに起因する測定結果の誤差を解消できるという効果がある。   In addition, in the method of drawing on the concrete core with a pencil and transferring it to the cellophane, there is an individual difference for each measurer in the method of drawing the pencil and the method of transfer, so the error is likely to be inherent in the measurement result, There was a problem that a more accurate measurement result of the neutralization depth (h) could not be obtained. However, according to the neutralization depth measurement method of this example, such drawing and transfer are not necessary. Therefore, there is an effect that the error of the measurement result due to these can be eliminated.

また、特許文献1及び2に記載の方法のように、コンクリート表面に削孔した穴へ専用の光学式測定器を挿入して穴内を観察せずとも、コンクリート表面に削成された凹所を直接目視して観察でき、かつ、その凹所をカメラなど用いて直接撮影して調査記録を保存することもできるので、コンクリートの中性化に関する調査を極めて簡易かつ低コストで行えるという効果がある。   In addition, as in the methods described in Patent Documents 1 and 2, a recess formed in the concrete surface can be formed without inserting a dedicated optical measuring instrument into the hole drilled in the concrete surface and observing the inside of the hole. Since it is possible to observe directly by visual observation and to save the investigation record by directly photographing the recess using a camera etc., there is an effect that the investigation on the neutralization of concrete can be performed very easily and at low cost. .

さらに、凹所の削成を完成させてしまった後で、試薬を用いて凹所内に現われた非中性化層を顕在化させ、それから、中性化深さ(h)を計算するために必要な測定を行えるので、特許文献3に記載の方法のように削孔と粉塵の色変化の判断とを同時に行う必要もなく、コンクリートの中性化深さの測定をより正確に行えるという効果がある。   Furthermore, after completing the formation of the recess, the reagent is used to reveal the non-neutralized layer that appeared in the recess, and then to calculate the neutralization depth (h) Since necessary measurement can be performed, there is no need to simultaneously perform drilling and judgment of color change of dust as in the method described in Patent Document 3, and the effect that the neutralization depth of concrete can be measured more accurately. There is.

また、凹所内のコンクリート面に試薬を噴霧することにより、中性化層と非中性化層とを区別可能な状態でコンクリート表面上に出現させることができることから、コンクリートコアに対する線引き及びそれのセロハン転写、並びに、光学式測定器による測長及びその準備などの余分な作業を要さずとも、中性化深さの測定を速やかに行える。このため、凹所内のコンクリート面が大気に曝されることにより、大気中のアルカリ性成分や酸性成分が浸透して、中性化深さ(h)の測定精度が低下する事態を回避できるという効果がある。   In addition, by spraying a reagent on the concrete surface in the recess, the neutralized layer and the non-neutralized layer can appear on the concrete surface in a distinguishable state. Neutralization depth can be measured quickly without the need for extra work such as cellophane transfer, length measurement with an optical measuring instrument, and preparation thereof. For this reason, the effect that it can avoid the situation where the alkaline component in the atmosphere and an acidic component penetrate | infiltrate, and the measurement precision of neutralization depth (h) falls by exposing the concrete surface in a recess to air | atmosphere. There is.

請求項4の中性化深さ測定方法によれば、削成工具を用いた凹所の削成により生じたコンクリート粉を、顕在化工程の前に、洗浄除去工程によって凹所内のコンクリート面から除去できる。このため、顕在化工程で用いられる試薬が凹所内のコンクリート面に付着したまま残存したコンクリート粉と反応することで、本来中性化層であるべき箇所が非中性化層として顕在化されたり、中性化層と非中性化層との境界が不鮮明となることを回避でき、結果、中性化深さの測定精度が低下することを防止できるという効果がある。   According to the neutralization depth measurement method of claim 4, the concrete powder generated by the cutting of the recess using the cutting tool is removed from the concrete surface in the recess by the washing and removing process before the revealing process. Can be removed. For this reason, the reagent used in the revealing step reacts with the remaining concrete powder while adhering to the concrete surface in the recess, so that the portion that should originally be a neutralized layer is revealed as a non-neutralized layer. The boundary between the neutralized layer and the non-neutralized layer can be prevented from becoming unclear, and as a result, the measurement accuracy of the neutralized depth can be prevented from being lowered.

しかも、洗浄除去工程による洗浄には蒸留水が使用されるので、例えば、かかる洗浄自体により凹所に現われるコンクリート面の水素イオン濃度が狂ってしまうことを回避でき、結果、中性化深さの測定精度が低下することを防止できるという効果がある。   Moreover, since distilled water is used for cleaning in the cleaning and removing process, for example, it is possible to avoid the hydrogen ion concentration on the concrete surface appearing in the recess from being distorted by such cleaning itself, resulting in a neutralization depth. There is an effect that the measurement accuracy can be prevented from being lowered.

請求項5の中性化深さ測定方法によれば、演算工程における中性化深さの演算に必要な数値のうち、非中性化領域の直径(d2)は測定工程により取得され、残る削孔工具の工具係数(K)及び凹所の最大径(d1)は演算予備工程により取得される。よって、コンクリート構造物の形状、構造、使用環境その他の状況により、予め決められたサイズに凹所を削成することが困難であっても、その状況に応じた凹所をコンクリート面に凹設することで必要な中性化深さ(h)を取得できるという効果がある。   According to the neutralization depth measurement method of claim 5, among the numerical values necessary for the calculation of the neutralization depth in the calculation step, the diameter (d2) of the non-neutralization region is acquired by the measurement step and remains. The tool coefficient (K) of the drilling tool and the maximum diameter (d1) of the recess are obtained by a calculation preliminary process. Therefore, even if it is difficult to cut the recess to a predetermined size due to the shape, structure, usage environment and other conditions of the concrete structure, a recess corresponding to the situation is provided in the concrete surface. As a result, the necessary neutralization depth (h) can be obtained.

請求項6の中性化深さ測定方法によれば、演算工程における中性化深さの演算に必要な数値のうち、非中性化領域の直径(d2)は測定工程により取得され、残る削孔工具の工具係数(K)及び凹所の最大径(d1)は既知であることから、コンクリート面に凹設される凹所の形状及び寸法を画一化でき、複数の凹所をコンクリート面に凹設して、各凹所から取得された中性化深さ(h)を対比評価できるという効果がある。   According to the neutralization depth measurement method of claim 6, among the numerical values necessary for the calculation of the neutralization depth in the calculation step, the diameter (d2) of the non-neutralization region is acquired by the measurement step and remains. Since the tool coefficient (K) of the drilling tool and the maximum diameter (d1) of the recess are known, the shape and size of the recess formed in the concrete surface can be made uniform, and a plurality of recesses can be made into concrete. There is an effect that the neutralization depth (h) acquired from each recess can be compared and evaluated by recessing the surface.

本発明の中性化判定方法によれば、凹所内のコンクリート面に現われた中性化層、非中性化層又はこれらの境界が試薬により顕在化されることにより、凹所内のコンクリート面における中性化層の範囲と非中性化層の範囲とが区別可能となる。そして、コンクリートの中性化深さが大きければ、中性化層の平面投影像の面積は大きなり、相対的に非中性化層の平面投影像の面積は小さくなる。一方、コンクリートの中性化深さが小さければ、中性化層の平面投影像の面積は小さくなり、相対的に非中性化層の平面投影像の面積は大きくなる。   According to the neutralization determination method of the present invention, the neutralization layer, the non-neutralization layer, or the boundary between the neutralization layer that appears on the concrete surface in the recess is revealed by the reagent, so that the concrete surface in the recess The range of the neutralized layer and the range of the non-neutralized layer can be distinguished. And if the neutralization depth of concrete is large, the area of the planar projection image of a neutralization layer will become large, and the area of the planar projection image of a non-neutralization layer will become relatively small. On the other hand, if the neutralization depth of concrete is small, the area of the planar projection image of the neutralization layer becomes small, and the area of the plane projection image of the non-neutralization layer becomes relatively large.

つまり、凹所内の中性化層又は非中性化層の平面投影像の面積の大きさが、コンクリートの中性化の進行度、即ち、中性化度(劣化度)を示す指標となるので、現場で、かかる凹所内に現われた中性化層又は非中性化層の大きさを平面的に直接観察することにより、コンクリートの中性化度を極めて簡便に判定できるという効果がある。   That is, the size of the area of the planar projection image of the neutralized layer or the non-neutralized layer in the recess serves as an index indicating the degree of neutralization of concrete, that is, the degree of neutralization (deterioration). Therefore, by directly observing the size of the neutralized layer or the non-neutralized layer appearing in the recess on the site, there is an effect that the degree of neutralization of the concrete can be judged very simply. .

請求項8の中性化判定方法によれば、顕在化工程の後、凹所の画像を撮像し、この画像から凹所内の中性化層又は非中性化層の平面投影像の面積の大きさを、コンピュータを用いた画像処理による演算や、面積計を用いた測定等により導出すれば、その結果からもコンクリートの中性化度を極めて簡便に判定できるという効果がある。   According to the neutralization determination method of claim 8, after the revealing step, an image of the recess is taken, and from this image, the area of the planar projection image of the neutralization layer or the non-neutralization layer in the recess is obtained. If the size is derived by calculation by image processing using a computer, measurement using an area meter, or the like, there is an effect that the degree of neutralization of concrete can be determined very simply from the result.

請求項9の中性化判定方法によれば、削成工具を用いた凹所の削成により生じたコンクリート粉を、顕在化工程の前に、洗浄除去工程によって凹所内のコンクリート面から除去できる。このため、顕在化工程で用いられる試薬が凹所内のコンクリート面に付着したまま残存したコンクリート粉と反応することで、本来中性化層であるべき箇所が非中性化層として顕在化されたり、中性化層と非中性化層との境界が不鮮明となることを回避でき、結果、中性化の進行度の判定結果が不正確となることを防止できるという効果がある。   According to the neutralization determination method of claim 9, the concrete powder generated by the cutting of the recess using the cutting tool can be removed from the concrete surface in the recess by the washing and removing process before the clarification process. . For this reason, the reagent used in the revealing step reacts with the remaining concrete powder while adhering to the concrete surface in the recess, so that the portion that should originally be a neutralized layer is revealed as a non-neutralized layer. In addition, the boundary between the neutralized layer and the non-neutralized layer can be prevented from becoming unclear, and as a result, the determination result of the degree of progress of neutralization can be prevented from becoming inaccurate.

しかも、洗浄除去工程による洗浄には蒸留水が使用されるので、例えば、かかる洗浄自体により凹所に現われるコンクリート面の水素イオン濃度が狂ってしまうことを回避でき、結果、中性化の進行度の判定結果が不正確となることを防止できるという効果がある。   Moreover, since distilled water is used for cleaning in the cleaning and removing step, for example, it is possible to avoid the hydrogen ion concentration on the concrete surface appearing in the recess from being distorted by such cleaning itself, and as a result, the degree of progress of neutralization. There is an effect that it is possible to prevent inaccurate determination results.

本発明の一実施例である中性化深さ測定方法についての概念説明図であって、(a)は、コンクリートドリルの正面図、及び、そのコンクリートドリルにより削成される測定凹所の断面図であり、(b)は、測定凹所の平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual explanatory drawing about the neutralization depth measuring method which is one Example of this invention, Comprising: (a) is a front view of a concrete drill, and the cross section of the measurement recess cut by the concrete drill It is a figure and (b) is a top view of a measurement recess. 本実施例の中性化深さ測定方法の工程の一例を示したフローチャートである。It is the flowchart which showed an example of the process of the neutralization depth measuring method of a present Example. 本実施例の中性化深さ測定方法を使用して実際に求められたコンクリート構造物の中性化深さについて説明した図であり、(a)は、測定凹所の平面図であって、測定凹所の測定位置を示したものであり、(b)は、(a)に示した測定位置での測定凹所の全体直径及び非中性化領域直径の測定結果と、使用されたコンクリートドリルの工具係数と、これらか計算された中性化深さとを示した図表である。It is the figure explaining the neutralization depth of the concrete structure actually calculated | required using the neutralization depth measuring method of a present Example, (a) is a top view of a measurement recess, The measurement position of the measurement recess was shown, and (b) was used with the measurement results of the overall diameter and non-neutralized region diameter of the measurement recess at the measurement position shown in (a). It is the table | surface which showed the tool coefficient of the concrete drill, and these neutralization depth calculated. 測定凹所を用いたコンクリートの中性化判定方法についての説明図であり、(a)から(d)はいずれも測定凹所の平面図であって、(a)から(d)には中性化深さの値が小さいものから順番に図示されている。It is explanatory drawing about the neutralization determination method of concrete using a measurement recess, (a) to (d) are all plan views of the measurement recess, and (a) to (d) It is illustrated in order from the smallest value of the sexualization depth. 測定凹所の削成工程に関する変形例を示した説明図である。It is explanatory drawing which showed the modification regarding the cutting process of a measurement recess.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。図1は、本発明の一実施例である中性化深さ測定方法についての概念説明図であって、図1(a)は、コンクリートドリル10の正面図、及び、そのコンクリートドリル10により削成される測定凹所30の断面図であり、図1(b)は、測定凹所30の平面図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. FIG. 1 is a conceptual explanatory view of a neutralization depth measuring method according to an embodiment of the present invention. FIG. 1 (a) is a front view of a concrete drill 10 and the concrete drill 10 cuts it. FIG. 1B is a sectional view of the measurement recess 30 formed, and FIG. 1B is a plan view of the measurement recess 30.

図1に示すように、コンクリート構造物20のコンクリート内部には、コンクリート表面23側の表層部分に中性化した部分21(以下「中性化層21」という。)が、この中性化部分より深層部分に未だアルカリ性を維持し続けている部分22(以下「非中性化層22」という。)が、それぞれ存在している。   As shown in FIG. 1, in the concrete of the concrete structure 20, a neutralized portion 21 (hereinafter referred to as “neutralized layer 21”) is formed on the surface layer portion on the concrete surface 23 side. There are portions 22 (hereinafter referred to as “non-neutralized layers 22”) that still maintain alkalinity in the deeper layer portions.

なお、図1では、中性化層21がコンクリート表面23から深さ方向(図1(a)の矢印Z方向に相当する。以下同じ。)にほぼ均一の厚み(中性化深さhに相当する。以下同じ。)で存在しているものと仮定して図示しており、中性化層21と非中性化層22との境界を2点鎖線で示している。   In FIG. 1, the neutralization layer 21 has a substantially uniform thickness (with a neutralization depth h) from the concrete surface 23 in the depth direction (corresponding to the arrow Z direction in FIG. 1 (a); the same applies hereinafter). The same applies hereinafter.), And the boundary between the neutralized layer 21 and the non-neutralized layer 22 is indicated by a two-dot chain line.

コンクリートドリル10は、その円錐状の先端尖形部11(刃先部)によってコンクリートを削って削孔する回転式の工具であり、駆動機構(図示せず)によって中心軸回りに高速回転されることでコンクリート表面23に測定凹所30を削成するものである。   The concrete drill 10 is a rotary tool that cuts concrete and drills the concrete with its conical tip 11 (blade edge), and is rotated at high speed around a central axis by a drive mechanism (not shown). The measurement recess 30 is cut in the concrete surface 23.

このコンクリートドリル10は、その先端尖形部11の最大外径D(円錐部分の最大外径)と、その円錐状の先端尖形部11の高さH(円錐部分の高さ)とが双方とも既知のものであり、これらに基づいて、次式(1)によりコンクリートドリル10の工具係数Kが求められる。
K=H/D ・・・ (1)
ここで、式中の「/」は、除算を表わす演算子である(以下同じ。)。
This concrete drill 10 has both the maximum outer diameter D (the maximum outer diameter of the conical portion) of the tip cusp portion 11 and the height H (the height of the cone portion) of the conical tip cusp portion 11. Both are known, and based on these, the tool coefficient K of the concrete drill 10 is obtained by the following equation (1).
K = H / D (1)
Here, “/” in the expression is an operator representing division (the same applies hereinafter).

測定凹所30は、測定対象となるコンクリート構造物20のコンクリート表面23に凹設される凹部である。この測定凹所30は、コンクリートドリル10によりコンクリート表面23に削成され、このコンクリートドリル10の先端尖形部11の円錐形状に合致したものとなる。   The measurement recess 30 is a recess provided in the concrete surface 23 of the concrete structure 20 to be measured. The measurement recess 30 is cut into the concrete surface 23 by the concrete drill 10 and conforms to the conical shape of the tip pointed portion 11 of the concrete drill 10.

つまり、測定凹所30は、その内径が深さ方向(コンクリート表面23からコンクリートの深層部分へ向かう方向)に一定比率で縮径する浅い逆円錐状に形成されている。このため、測定凹所30は、その内面を成している曲面が開口部(図1(a)上側)から底部(図1(a)下側)の1点(以下「収束点」という。)Pへ向けて収束した形状となっている。   That is, the measurement recess 30 is formed in a shallow inverted conical shape whose inner diameter is reduced in a certain ratio in the depth direction (direction from the concrete surface 23 toward the deep portion of the concrete). For this reason, the measurement recess 30 is referred to as one point (hereinafter referred to as “convergence point”) in which the curved surface forming the inner surface thereof is from the opening (upper side in FIG. 1A) to the bottom (lower side in FIG. 1A). ) The shape converges toward P.

なお、図1(a)においては、測定凹所30の曲面の収束点Pと測定凹所30の最深部とが一致している。   In FIG. 1A, the convergence point P of the curved surface of the measurement recess 30 coincides with the deepest portion of the measurement recess 30.

また、この測定凹所30において、その全体深さh1は、コンクリート表面23から測定凹所30の収束点Pまでの深さであり、中性化深さhは、中性化層21の厚みであり、非中性化深さh2は、中性化層21と非中性化層22との境界位置から測定凹所30の曲面の収束点Pまでの深さである。   Further, in the measurement recess 30, the entire depth h 1 is a depth from the concrete surface 23 to the convergence point P of the measurement recess 30, and the neutralization depth h is the thickness of the neutralization layer 21. The non-neutralization depth h2 is a depth from the boundary position between the neutralization layer 21 and the non-neutralization layer 22 to the convergence point P of the curved surface of the measurement recess 30.

これらの全体深さh1と中性化深さhと非中性化深さh2との間には、次式(2)に示す関係があり、中性化深さhは、測定凹所30の全体深さh1から非中性化深さh2を除した値として求められる。
h=h1−h2 ・・・ (2)
The total depth h1, the neutralization depth h, and the non-neutralization depth h2 have a relationship represented by the following formula (2). The neutralization depth h is the measurement recess 30. The total depth h1 is obtained by dividing the non-neutralization depth h2.
h = h1-h2 (2)

また、測定凹所30の全体直径d1は、コンクリート表面23位置での測定凹所30の内径、即ち、測定凹所30の最大径であり、測定凹所30の非中性化領域直径d2は、非中性化領域32(測定凹所30内に現れる中性化層21及び非中性化層22の境界線を輪郭とした当該境界線の内側にある非中性化層22に相当する部分を平面投影像をという。以下同じ。)(図1(a)参照。)の直径である。   The overall diameter d1 of the measurement recess 30 is the inner diameter of the measurement recess 30 at the concrete surface 23 position, that is, the maximum diameter of the measurement recess 30, and the non-neutralized region diameter d2 of the measurement recess 30 is , Non-neutralized region 32 (corresponding to the non-neutralized layer 22 inside the boundary line having the boundary line between the neutralized layer 21 and the non-neutralized layer 22 appearing in the measurement recess 30 as an outline The portion is referred to as a planar projection image (the same applies hereinafter) (see FIG. 1A).

なお、図1(a)では非中性化領域32に細かいハッチングを付し、図1(b)でも非中性化領域32に同様のハッチングを付している。この細かいハッチングは、非中性化領域32が後述する中性化判定試薬により着色された状態を表わしたものである(以下、図3及び図4においても同じ。)。これに対し、図1(a)及び図5(a)〜図5(c)において図中に付した粗いハッチングは、いずれもコンクリート構造物20の断面を表わしたものである。   In FIG. 1A, the non-neutralized region 32 is finely hatched, and in FIG. 1B, the non-neutralized region 32 is similarly hatched. This fine hatching represents a state in which the non-neutralized region 32 is colored by a neutralization determination reagent described later (the same applies to FIGS. 3 and 4 below). On the other hand, the rough hatching attached | subjected in the figure in Fig.1 (a) and FIG.5 (a)-FIG.5 (c) all represents the cross section of the concrete structure 20. FIG.

ここで、図1に示した非中性化領域32は、中性化層21の厚みがほぼ均一であることから、図1(b)示すように円形となっている。なお、コンクリート表面層における中性化の進行度は概ね一定しているものと考えられることから、極めて特殊な状況を除けば、実際の非中性化領域32も、円形となるか、又は、円形に近い形状になるものと考えられる。   Here, since the thickness of the neutralization layer 21 is substantially uniform, the non-neutralization region 32 shown in FIG. 1 has a circular shape as shown in FIG. In addition, since the progress of neutralization in the concrete surface layer is considered to be substantially constant, except for a very special situation, the actual non-neutralized region 32 is also circular, or It is considered that the shape is close to a circle.

そして、このように構成される測定凹所30は、それ自体が逆円錐形状を有しており、中性化層21の厚みがほぼ均一であることから、その全体直径d1及び非中性化領域直径d2と全体深さh1及び非中性化深さh2との間に相似関係が成立し、次式(3)に示す関係が成立する。
h2=(d2/d1)・h1 ・・・ (3)
ここで、式中の「・」は、乗算を表わす演算子である(以下同じ。)。
The measurement recess 30 thus configured itself has an inverted conical shape, and since the thickness of the neutralization layer 21 is substantially uniform, its overall diameter d1 and non-neutralization A similarity relationship is established between the region diameter d2, the overall depth h1, and the non-neutralization depth h2, and the relationship represented by the following expression (3) is established.
h2 = (d2 / d1) · h1 (3)
Here, “·” in the expression is an operator representing multiplication (the same applies hereinafter).

したがって、中性化深さhは、上記式(2)に上記式(3)を代入すれば、次式(4)により表わされることとなる。
h=h1・(1−(d2/d1)) ・・・ (4)
ここで、式中の「・」は、乗算を表わす演算子である(以下同じ。)。
Therefore, the neutralization depth h is expressed by the following equation (4) when the above equation (3) is substituted into the above equation (2).
h = h1 · (1- (d2 / d1)) (4)
Here, “·” in the expression is an operator representing multiplication (the same applies hereinafter).

また、測定凹所30とコンクリートドリル10の円錐状の先端尖形部11とが合致することから、測定凹所30の全体深さh1は、全体直径d1とコンクリートドリル10の工具係数Kとを用いて、次式(5)により表わされる。
h1=(d1/D)・H
=K・d1 ・・・ (5)
In addition, since the measurement recess 30 and the conical tip pointed portion 11 of the concrete drill 10 are matched, the overall depth h1 of the measurement recess 30 is the total diameter d1 and the tool coefficient K of the concrete drill 10. And is represented by the following equation (5).
h1 = (d1 / D) · H
= K · d1 (5)

したがって、中性化深さhは、上記式(4)に上記式(5)を代入することにより、コンクリートドリル10の工具係数Kと、測定凹所30の全体直径d1及び非中性化領域直径d2とを用いて、次式(6)により表わされるものとなる。
h=K・(d1−d2) ・・・ (6)
Therefore, the neutralization depth h can be obtained by substituting the above formula (5) into the above formula (4), the tool coefficient K of the concrete drill 10, the overall diameter d1 of the measurement recess 30, and the non-neutralized region. Using the diameter d2, it is expressed by the following equation (6).
h = K · (d1−d2) (6)

ここで、式(6)において、コンクリートドリル10の工具係数Kは、実際に使用するコンクリートドリル10を実測することにより求められるので、測定凹所30の全体直径d1及び非中性化領域直径d2を実測することにより、コンクリートの中性化深さhは、上記式(6)から算出することができる。   Here, in Equation (6), the tool coefficient K of the concrete drill 10 is obtained by actually measuring the concrete drill 10 that is actually used. Therefore, the overall diameter d1 of the measurement recess 30 and the non-neutralized region diameter d2 By actually measuring, the neutralization depth h of the concrete can be calculated from the above equation (6).

図2は、本実施例の中性化深さ測定方法の工程の一例を示したフローチャートである。図2に示すように、この中性化深さ測定方法では、まず、コンクリートドリル10の先端尖形部11の形状を示す数値、即ち、その先端尖形部11の最大外径Dと、その円錐部分の先端尖形部11の高さHとが計測されて、これらの最大外径D及び高さHの計測値を用いて、上記式(1)から、コンクリートドリル10の工具係数Kの値が求められる(S1)。   FIG. 2 is a flowchart showing an example of the steps of the neutralization depth measurement method of this embodiment. As shown in FIG. 2, in this neutralization depth measurement method, first, a numerical value indicating the shape of the tip cusp portion 11 of the concrete drill 10, that is, the maximum outer diameter D of the tip cusp portion 11, The height H of the pointed tip 11 of the conical portion is measured, and the tool coefficient K of the concrete drill 10 is calculated from the above equation (1) using the measured values of the maximum outer diameter D and the height H. A value is determined (S1).

コンクリートドリル10の工具係数Kを求めた後は、コンクリートドリル10が駆動機構にセットされ、このコンクリートドリル10が駆動機構(図示せず。)により高速回転されることにより、コンクリート構造物20のコンクリート表面23に、図1に示すように逆円錐状の測定凹所30が削成される(S2)。なお、測定凹所30を削成する際、かかる測定凹所30は、その全体深さh1を特定の値に設定する必要はないが、その内径が深さ方向に一定比率で縮小する逆円錐状の形状をしている必要がある。   After obtaining the tool coefficient K of the concrete drill 10, the concrete drill 10 is set in a drive mechanism, and the concrete drill 10 is rotated at a high speed by a drive mechanism (not shown), whereby the concrete of the concrete structure 20 is obtained. As shown in FIG. 1, an inverted conical measurement recess 30 is cut on the surface 23 (S2). Note that when the measurement recess 30 is cut, the measurement recess 30 does not have to be set to a specific value for the entire depth h1, but an inverted cone whose inner diameter is reduced at a constant rate in the depth direction. It must have a shape.

測定凹所30の削成凹設後は、この測定凹所30内に削成による生じたコンクリート粉末が付着残存しているので、かかるコンクリート粉末を除去するため、測定凹所30内のコンクリート面に蒸留水を噴霧器等を用いて噴霧することにより、測定凹所30を洗浄して、コンクリート粉末を洗い流す(S3)。この洗浄後は、清浄な布地を用いて測定凹所30内のコンクリート面を拭いて、そこに付着する水分を除去する(S4)。   After the formation of the measurement recess 30, the concrete powder generated by the cutting remains in the measurement recess 30. Therefore, the concrete surface in the measurement recess 30 is removed to remove the concrete powder. By spraying distilled water with a sprayer or the like, the measurement recess 30 is washed to wash away the concrete powder (S3). After this washing, the concrete surface in the measurement recess 30 is wiped with a clean cloth to remove water adhering thereto (S4).

この水分除去後は、測定凹所30内のコンクリート面に中性化判定試薬として酸塩基指示薬の一種であるフェノールフタレイン溶液を、噴霧器を用いて噴霧する(S5)。このフェノールフタレイン溶液の噴霧により、測定凹所30内のコンクリート面は、中性化層21に相当する部分と非中性化層22に相当する部分とで色が異なるものとなり、中性化層21と非中性化層22との境界が顕在化されて肉眼で視認可能なものとなる。   After the moisture removal, a phenolphthalein solution, which is a kind of acid-base indicator, is sprayed on the concrete surface in the measurement recess 30 as a neutralization determination reagent using a sprayer (S5). By spraying this phenolphthalein solution, the concrete surface in the measurement recess 30 is different in color between the portion corresponding to the neutralized layer 21 and the portion corresponding to the non-neutralized layer 22, and is neutralized. The boundary between the layer 21 and the non-neutralized layer 22 becomes obvious and becomes visible with the naked eye.

ここで、本実施例では、中性化判定試薬としてフェノールフタレイン溶液を使用していることから、測定凹所30内のコンクリート面のうち、中性化層21に相当する部分が中性であるので変色せず、非中性化層22に相当する部分(図1、図3(a)及び図4の中の細かいハッチング部分をいう。)がアルカリ性であるので赤色(赤紫色又はピンク色の近似色を含む。以下同じ。)に変色する。このように変色すれば、ノギスや物差し等の一般的な測長器を用いて、測定凹所30の全体直径d1の値と、非中性化領域直径d2の値とを測定する(S6)。   Here, in this example, since the phenolphthalein solution is used as the neutralization determination reagent, the portion corresponding to the neutralization layer 21 in the concrete surface in the measurement recess 30 is neutral. Since there is no discoloration, the portion corresponding to the non-neutralizing layer 22 (referring to the fine hatched portions in FIGS. 1, 3A and 4) is alkaline, so red (red purple or pink) The color changes to the same color. If the color is changed in this way, the general diameter measuring device such as calipers or a ruler is used to measure the value of the overall diameter d1 of the measurement recess 30 and the value of the non-neutralized region diameter d2 (S6). .

そして、測定凹所30に関する全体直径d1及び非中性化領域直径d2の測定値と、S1の工程で予め求めておいたコンクリートドリル10の工具係数Kの値とを、上記式(6)に代入して計算することにより、この測定凹所30が削成凹設されたコンクリート表面23の箇所における中性化深さhの値が求められる(S7)。   Then, the measured value of the overall diameter d1 and the non-neutralized region diameter d2 regarding the measurement recess 30 and the value of the tool coefficient K of the concrete drill 10 obtained in advance in the step S1 are expressed in the above equation (6). By substituting and calculating, the value of the neutralization depth h at the location of the concrete surface 23 where the measurement recess 30 is cut and formed is obtained (S7).

図3は、本実施例の中性化深さ測定方法を使用して実際に求められたコンクリート構造物20の中性化深さhについて説明した図であり、図3(a)は、測定凹所30の平面図であって、測定凹所30の測定位置を示したものであり、図3(b)は、図3(a)に示した測定位置での測定凹所30の全体直径d1及び非中性化領域直径d2の測定結果と、使用されたコンクリートドリル10の工具係数Kと、これらか計算された中性化深さhとを示した図表である。なお、図3(a)では非中性化領域32に図1と同様のハッチングを付している。   FIG. 3 is a diagram for explaining the neutralization depth h of the concrete structure 20 actually obtained by using the neutralization depth measurement method of this embodiment, and FIG. FIG. 3 is a plan view of the recess 30 and shows the measurement position of the measurement recess 30, and FIG. 3B shows the overall diameter of the measurement recess 30 at the measurement position shown in FIG. It is the table | surface which showed the measurement result of d1 and the non-neutralization area | region diameter d2, the tool coefficient K of the used concrete drill 10, and these calculated neutralization depth h. In FIG. 3A, the non-neutralized region 32 is hatched as in FIG.

図3(a)に示すように、測定凹所30の非中性化領域32は、円形に近い形状であるものの厳密には円形ではないため、測定凹所30の全体直径d1及び非中性化領域直径d2の測定は、当該測定凹所30を平面視した場合の測定凹所30の収束点Pにて直交する2つの直線L1,L2上でそれぞれ行うものとした。このため、図3(b)では、直線L1上での測定結果を「測定結果1」と表記し、直線L2上での測定結果を「測定結果2」と表記している。   As shown in FIG. 3A, the non-neutralized region 32 of the measurement recess 30 has a shape close to a circle, but is not strictly circular. Therefore, the overall diameter d1 of the measurement recess 30 and the non-neutrality The measurement area diameter d2 is measured on two straight lines L1 and L2 orthogonal to each other at the convergence point P of the measurement recess 30 when the measurement recess 30 is viewed in plan. Therefore, in FIG. 3B, the measurement result on the straight line L1 is expressed as “measurement result 1”, and the measurement result on the straight line L2 is expressed as “measurement result 2”.

図3(b)に示すように、測定結果1では、測定凹所30の全体直径d1の測定値が27.55mmであり、その非中性化領域直径d2の測定値が7.15mmであった。また、測定結果2では、測定凹所30の全体直径d1の測定値が同じく27.55mmではあるが、その非中性化領域直径d2の測定値が5.20mmであった。   As shown in FIG. 3B, in the measurement result 1, the measurement value of the entire diameter d1 of the measurement recess 30 is 27.55 mm, and the measurement value of the non-neutralized region diameter d2 is 7.15 mm. It was. In the measurement result 2, the measurement value of the entire diameter d1 of the measurement recess 30 is also 27.55 mm, but the measurement value of the non-neutralized region diameter d2 is 5.20 mm.

かかる場合、測定結果1及び2の測定凹所30の全体直径d1の測定値の平均値は27.55mmとなり、その非中性化領域直径d2の測定値の平均値は6.175mmとなるので、これらの平均値を、当該測定凹所30の全体直径d1及び非中性化領域直径d2の最終的な測定値として決定した。   In such a case, the average value of the measured value of the entire diameter d1 of the measurement recess 30 of the measurement results 1 and 2 is 27.55 mm, and the average value of the measured value of the non-neutralized region diameter d2 is 6.175 mm. These average values were determined as final measured values of the overall diameter d1 and the non-neutralized region diameter d2 of the measurement recess 30.

また、この測定凹所30の削成凹設に使用されたコンクリートドリル10の先端尖形部11は、その最大外径Dが26.0mmであり、その円錐状の部分の高さHが7.2mmであったことから、これらの値を上記式(1)に代入して計算すると、コンクリートドリル10の工具係数Kは0.277となった。   Further, the tip sharpened portion 11 of the concrete drill 10 used for forming the measurement recess 30 has a maximum outer diameter D of 26.0 mm and a height H of the conical portion of 7. Since it was 0.2 mm, when these values were substituted into the above formula (1) and calculated, the tool coefficient K of the concrete drill 10 was 0.277.

したがって、工具係数K=0.277、測定凹所30の全体直径d1=27.55mm、及び、非中性化領域直径d2=6.175mmを、上記式(6)に代入すると、次式(7)の通りとなり、結果、当該測定凹所30が削成凹設されたコンクリート構造物20の中性化深さhの値は5.9mmとして求められた。
h=0.277×(27.55−6.175)=5.9[mm] ・・・ (7)
Therefore, when the tool coefficient K = 0.277, the overall diameter d1 = 27.55 mm of the measurement recess 30, and the non-neutralized region diameter d2 = 6.175 mm are substituted into the above equation (6), the following equation ( 7) As a result, the value of the neutralization depth h of the concrete structure 20 in which the measurement recess 30 was cut and formed was determined as 5.9 mm.
h = 0.277 × (27.55-6.175) = 5.9 [mm] (7)

ここで、測定結果1及び2において、測定凹所30の全体直径d1はコンクリートドリル10の最大外径Dに比べて大きくなっているが、これは、コンクリートが金属材料等に比べると脆いものであることから、測定凹所30の削成の際に測定凹所30における開口部周縁のコンクリートが剥離欠損したことに起因するものと考えられる。   Here, in the measurement results 1 and 2, the overall diameter d1 of the measurement recess 30 is larger than the maximum outer diameter D of the concrete drill 10, but this is a fragile concrete compared to a metal material or the like. This is considered to be due to the fact that the concrete at the periphery of the opening in the measurement recess 30 was peeled off when the measurement recess 30 was cut.

したがって、このように測定凹所30の全体直径d1がコンクリートドリル10の最大外径Dの大きさを超える場合(d1>D)には、測定凹所30の全体直径d1の値をコンクリートドリルの最大外径Dの値に補正した上で、上記式(6)を用いて、コンクリート構造物20の中性化深さhの値を求めても良い。   Therefore, when the overall diameter d1 of the measurement recess 30 exceeds the maximum outer diameter D of the concrete drill 10 (d1> D), the value of the overall diameter d1 of the measurement recess 30 is set to the value of the concrete drill. After correcting to the value of the maximum outer diameter D, the value of the neutralization depth h of the concrete structure 20 may be obtained using the above formula (6).

具体的には、上記した測定結果1及び2の場合にあっては、測定凹所30の全体直径d1=26.00mmと補正されるので、かかる全体直径d1の補正値と、工具係数K=0.277と、非中性化領域直径d2=6.175mmとを、上記式(6)に代入すれば、当該測定凹所30が削成凹設されたコンクリート構造物20の中性化深さhの値は、次式(8)に示すように5.5mmとなる。
h=0.277×(26.00−6.175)=5.5[mm] ・・・ (8)
Specifically, in the case of the measurement results 1 and 2 described above, since the overall diameter d1 of the measurement recess 30 is corrected to 26.00 mm, the correction value of the overall diameter d1 and the tool coefficient K = By substituting 0.277 and the non-neutralized region diameter d2 = 6.175 mm into the above equation (6), the neutralization depth of the concrete structure 20 in which the measurement recess 30 is formed by cutting is provided. The value of the length h is 5.5 mm as shown in the following formula (8).
h = 0.277 × (26.00-6.175) = 5.5 [mm] (8)

以上説明したように、本実施例の中性化深さ測定方法によれば、コンクリートドリル10によるコンクリート表面23の破壊箇所(測定凹所30)を面積的にも深さ的にも極めて狭小な範囲に抑えることができるので、測定後の測定凹所30の補修も簡便かつ低コストで行え、コンクリート構造物20の強度に与える影響も極少化できる。   As described above, according to the neutralization depth measurement method of the present embodiment, the destruction location (measurement recess 30) of the concrete surface 23 by the concrete drill 10 is extremely narrow in both area and depth. Since it can be suppressed to the range, the measurement recess 30 after the measurement can be repaired easily and at low cost, and the influence on the strength of the concrete structure 20 can be minimized.

また、測定凹所30内のコンクリート面は、コンクリート表面23に対する垂直方向である深さ方向に対して一定角度θを成して傾斜するので、中性化領域31(測定凹所30内に現れる中性化層21と非中性化層22との境界線の外側にある中性化層21に相当する部分の平面投影像をいう。以下同じ。)(図1(b)参照。)は、中性化深さhを(1/tanθ)倍に拡大した幅を有するリング状として観察される。このように測定凹所30を介すれば、中性化深さhを拡大観察できるので、従来は測定し難かった極薄い中性化層21の中性化深さhの測定も容易に行える。   Further, the concrete surface in the measurement recess 30 is inclined at a constant angle θ with respect to the depth direction that is perpendicular to the concrete surface 23, so that the neutralized region 31 (appears in the measurement recess 30. A planar projection image of a portion corresponding to the neutralization layer 21 outside the boundary line between the neutralization layer 21 and the non-neutralization layer 22 (the same applies hereinafter) (see FIG. 1B). It is observed as a ring shape having a width obtained by enlarging the neutralization depth h by (1 / tan θ) times. Since the neutralization depth h can be enlarged and observed through the measurement recess 30 in this way, it is possible to easily measure the neutralization depth h of the extremely thin neutralization layer 21 that was difficult to measure in the past. .

また、上記したコンクリートコアに鉛筆で線引きしてセロハンに転写する方法では、鉛筆の線引きの仕方や、その転写の仕方に測定者毎の個人差があるため、測定結果に誤差が内在し易く、より正確な中性化深さhの測定結果が得られないという不具合があったが、本実施例の中性化深さ測定方法によれば、このような線引きや転写が不要となることから、これらに起因する測定結果の誤差を解消できる。   In addition, in the method of drawing on the concrete core with a pencil and transferring it to the cellophane, there is an individual difference for each measurer in the method of drawing the pencil and the method of transfer, so the error is likely to be inherent in the measurement result, Although there was a problem that a more accurate measurement result of the neutralization depth h could not be obtained, according to the neutralization depth measurement method of this example, such drawing and transfer are not necessary. The error of the measurement result due to these can be eliminated.

また、測定凹所30を削成凹設してフェノールフタレイン溶液を噴霧した後、上記した線引きやセロハンへの転写が不要であるので、速やかに測定凹所30の全体直径d1及び非中性化領域直径d2の測定を行うことができる。   In addition, after the measurement recess 30 is formed and the phenolphthalein solution is sprayed, the above-described drawing or transfer to cellophane is unnecessary, so that the entire diameter d1 and non-neutrality of the measurement recess 30 can be quickly obtained. The measurement area diameter d2 can be measured.

このため、測定凹所30内のコンクリート面に大気中のアルカリ性成分や酸性成分が浸透し、その結果、測定凹所30内に現れる中性化層21に相当する部分又は非中性化層22に相当する部分の範囲が変化して、本来の非中性化領域32の大きさが喪失された状態で非中性化領域直径d2の測定が行われる事態を回避でき、より正確な中性化深さhを求めることができる。   For this reason, alkaline components and acidic components in the atmosphere penetrate into the concrete surface in the measurement recess 30, and as a result, a portion corresponding to the neutralization layer 21 that appears in the measurement recess 30 or the non-neutralization layer 22. The range of the portion corresponding to is changed, and the situation where the measurement of the non-neutralized region diameter d2 is performed in a state where the original size of the non-neutralized region 32 is lost can be avoided, and more accurate neutralization can be achieved. The chemical depth h can be obtained.

図4は、測定凹所30を用いたコンクリートの中性化判定方法についての説明図であり、図4(a)から図4(d)はいずれも測定凹所30の平面図であって、図4(a)から図4(d)には中性化深さhの値が小さいものから順番に図示されている。なお、図4(a)から図4(d)では、非中性化領域32に図1と同様のハッチングを付している。   FIG. 4 is an explanatory view of a method for determining the neutralization of concrete using the measurement recess 30, and FIGS. 4 (a) to 4 (d) are all plan views of the measurement recess 30. In FIG. 4A to FIG. 4D, the neutralization depth h is shown in order from the smallest value. In FIG. 4A to FIG. 4D, the non-neutralized region 32 is hatched in the same manner as in FIG.

ここで、図4(a)から図4(d)に示した測定凹所30はいずれも、上記した図2のS2〜S5に示した工程を経て作られたものであり、工具係数Kが等しくかつ円錐状の先端尖形部11を有したコンクリートドリル10を用いて全体直径d1及び全体深さh1が等しくなるように削成凹設され、フェノールフタレイン溶液により中性化層21と非中性化層22とが視覚的に区別可能に顕在化した状態となっている。   Here, all of the measurement recesses 30 shown in FIGS. 4A to 4D are made through the steps shown in S2 to S5 in FIG. 2, and the tool coefficient K is Using a concrete drill 10 having an equal and conical tip 11, the overall diameter d1 and the overall depth h1 are made to be equal to each other, and the neutralized layer 21 and the non-neutralized layer 21 are made of phenolphthalein solution. The neutralized layer 22 has been revealed so as to be visually distinguishable.

図4(a)〜図4(d)に示すように、これらの測定凹所30は、中性化深さhが大きくなるに従って、非中性化領域32の面積が減少する一方で、中性化領域31が増加している。このため、測定凹所30の中性化領域31又は非中性化領域32の面積の大きさが、コンクリートの中性化度(劣化度)を示す指標となり、この測定凹所30の中性化領域31又は非中性化領域32の大きさを平面的に観察することにより、コンクリートの中性化度(劣化度)を極めて簡便に判定できるのである(請求項7記載の判定工程)。   As shown in FIGS. 4A to 4D, these measurement recesses 30 have an area of the non-neutralized region 32 that decreases as the neutralization depth h increases. The sexifying region 31 is increasing. For this reason, the size of the area of the neutralization region 31 or the non-neutralization region 32 of the measurement recess 30 serves as an index indicating the degree of neutralization (degradation) of the concrete. By observing the size of the neutralized region 31 or the non-neutralized region 32 in a plane, the degree of neutralization (degradation) of the concrete can be determined very simply (determination step according to claim 7).

例えば、図4(a)は、測定凹所30内の全体が非中性化領域32となっており、中性化領域31がないので、コンクリートの中性化に伴う劣化度が低いことが判る。そして、図4(b)から図4(d)へ移行するに従って、測定凹所30内の全体に占める非中性化領域32の面積が減少し、それとは逆に中性化領域31の面積が増加していることから、コンクリートの中性化に伴う劣化が進行していることが判る。   For example, in FIG. 4A, the entire measurement recess 30 is a non-neutralized region 32, and since there is no neutralized region 31, the degree of deterioration due to the neutralization of concrete may be low. I understand. 4B, the area of the non-neutralized region 32 occupying the entire measurement recess 30 decreases, and conversely, the area of the neutralized region 31 is shifted from FIG. 4B to FIG. 4D. From this, it can be seen that the deterioration due to the neutralization of concrete is progressing.

また、図4(a)〜図4(d)に示したような測定凹所30の画像を撮影し、この画像から中性化領域31の面積、又は、非中性化領域32の面積を、コンピュータを用いた画像処理による演算や、面積計を用いた測定等により導出すれば、この結果からもコンクリートの中性化度を極めて簡便に判定することができる(請求項8記載の判定工程)。   Also, an image of the measurement recess 30 as shown in FIGS. 4A to 4D is taken, and the area of the neutralized region 31 or the area of the non-neutralized region 32 is taken from this image. If the calculation is performed by image processing using a computer, measurement using an area meter, or the like, the degree of neutralization of concrete can be determined very simply from this result as well (determination step according to claim 8). ).

次に、図5を参照して、上記実施例で説明した削成工程(S2)の変形例について説明する。図5は、測定凹所30の削成工程(S2)に関する変形例を示した説明図である。   Next, with reference to FIG. 5, the modification of the cutting process (S2) demonstrated in the said Example is demonstrated. FIG. 5 is an explanatory view showing a modified example regarding the cutting step (S2) of the measurement recess 30. FIG.

図5(a)に示すように、この測定凹所30の削成工程では、測定凹所30をコンクリート表面23に削成する前に、測定凹所30の全体深さh1よりも深くなるように、下穴用のコンクリートドリル110によって、下穴130がコンクリート表面23に削成される。   As shown in FIG. 5 (a), in the cutting step of the measurement recess 30, before the measurement recess 30 is cut into the concrete surface 23, the entire depth h1 of the measurement recess 30 is deepened. In addition, the pilot hole 130 is cut into the concrete surface 23 by the concrete drill 110 for the pilot hole.

なお、下穴130の深さは、必ずしも測定凹所30の全体深さh1を越える必要はなく、測定凹所30の全体深さh1と同じ程度の深さ、又は、測定凹所30の全体深さh1よりも浅くても良い。   The depth of the pilot hole 130 does not necessarily need to exceed the overall depth h1 of the measurement recess 30, but is the same depth as the overall depth h1 of the measurement recess 30 or the entire measurement recess 30. It may be shallower than the depth h1.

また、このとき削成される下穴130の内径は、測定凹所30の全体直径d1よりも十分に小さなものとされる。したがって、下穴用のコンクリートドリル110には、その外径D1がコンクリートドリル10の先端尖形部11の最大外径Dに比べて十分に小さなものを用いることが好ましい。   In addition, the inner diameter of the prepared hole 130 cut at this time is sufficiently smaller than the overall diameter d1 of the measurement recess 30. Therefore, it is preferable to use a concrete drill 110 for the pilot hole whose outer diameter D1 is sufficiently smaller than the maximum outer diameter D of the pointed tip portion 11 of the concrete drill 10.

そして、この下穴130の削成後は、図5(b)に示すように、この下穴130にコンクリートドリル10の先端尖形部11が合わせられ、図5(c)に示すように、このコンクリートドリル10により測定凹所30が削成される。   And after cutting this pilot hole 130, as shown in FIG.5 (b), the front-end | tip sharp part 11 of the concrete drill 10 is match | combined with this pilot hole 130, and as shown in FIG.5 (c), The measurement recess 30 is cut by the concrete drill 10.

また、図5(c)に示すように、下穴130の深さが測定凹所30の全体深さh1より大きな場合、下穴130が存在するがため、測定凹所30の曲面の収束点P(図5(c)中の点P’の位置に相当する。)は実在せず実測し得ないものとなる。もっとも、上記式(6)を用いた中性化深さ測定方法によれば、測定凹所30の全体深さh1を使用することなく中性化深さhを求めることができるので、何の不都合もない。   In addition, as shown in FIG. 5C, when the pilot hole 130 has a depth greater than the total depth h <b> 1 of the measurement recess 30, the pilot hole 130 exists, and thus the convergence point of the curved surface of the measurement recess 30. P (corresponding to the position of the point P ′ in FIG. 5C) does not exist and cannot be actually measured. However, according to the neutralization depth measurement method using the above formula (6), the neutralization depth h can be obtained without using the entire depth h1 of the measurement recess 30. There is no inconvenience.

以上、実施例に基づき本発明を説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications can be easily made without departing from the spirit of the present invention. It can be guessed.

例えば、上記実施例では、コンクリート構造物20のコンクリート表面23に作り出された測定凹所30の全体直径d1及び非中性化領域直径d2の測定に際し、実際の測定凹所30の寸法をノギス等を用いて直接測定したが、かかる測定形式は必ずしもこれに限定されるものではなく、例えば、フェノールフタレイン溶液が噴霧されることで非中性化領域32が顕在化した後、その測定凹所30の画像を撮像して、現場以外の場所で事後的に当該画像から測長したり、当該画像をコンピュータ等を用いた画像処理により解析して測長するようにしても良い。   For example, in the above embodiment, when measuring the overall diameter d1 and the non-neutralized region diameter d2 of the measurement recess 30 created on the concrete surface 23 of the concrete structure 20, the actual measurement recess 30 has a dimension such as caliper. However, the measurement format is not necessarily limited to this. For example, after the non-neutralized region 32 is revealed by spraying a phenolphthalein solution, the measurement recess It is also possible to take 30 images and measure the length of the image afterwards at a place other than the site, or analyze and measure the image by image processing using a computer or the like.

そして、かかる場合、画像内に長さの基準となる物差しを一緒に撮像しておくようにしても良い。また、このように画像ならば、非中性化領域32の顕在化直後の非中性化領域32の状態を保存しておけるので、予め現場で測定凹所30の全体直径d1と工具係数Kとを測定しておけば、フェノールフタレイン溶液の噴霧後時間が経過して非中性化領域32の輪郭が不鮮明となっても、その画像を用いて事後的に正確な中性化深さhを求めることができる。   In such a case, a ruler serving as a reference for the length may be imaged together in the image. Further, in the case of such an image, the state of the non-neutralized region 32 immediately after the non-neutralized region 32 is revealed can be stored, so that the entire diameter d1 of the measurement recess 30 and the tool coefficient K are previously stored in the field. If the time after the spraying of the phenolphthalein solution elapses and the contour of the non-neutralized region 32 becomes unclear, an accurate neutralization depth is subsequently determined using the image. h can be obtained.

上記実施例では、中性化判定試薬として非中性化部分であるアルカリ性部分を赤色に変色させるフェノールフタレイン溶液を用いたが、かかる中性化判定試薬の種類は必ずしもこれに限定されるものではなく、測定凹所30内に現れる中性化層21に相当する部分又は非中性化層22に相当する部分のいずれか一方若しくはその双方又はこれらの境界を視覚的に区別可能な状態で顕在化できるものであれば良い。   In the above examples, a phenolphthalein solution that changes the color of an alkaline part, which is a non-neutralized part, to red is used as a neutralization determination reagent. However, the type of the neutralization determination reagent is not necessarily limited to this. Instead, one or both of the portion corresponding to the neutralized layer 21 and the portion corresponding to the non-neutralized layer 22 appearing in the measurement recess 30 or a boundary thereof can be visually distinguished. Any material that can be realized is acceptable.

例えば、チモールブルー(塩基性側)、フェノールレッド、チモールフタレイン、クレゾールレッド、ブロチモモールブルーその他の酸塩基指示薬(水素イオン濃度の高低に応じて変色する色素)であっても良い。   For example, thymol blue (basic side), phenol red, thymolphthalein, cresol red, brothymomol blue and other acid-base indicators (colorants that change color depending on the level of hydrogen ion concentration) may be used.

10 コンクリートドリル(削孔工具)
11 先端尖形部(刃先部)
20 コンクリート構造物
21 中性化層
22 非中性化層
23 コンクリート表面
30 測定凹所(凹所)
31 中性化領域
32 非中性化領域
h 中性化深さ
d1 全体直径(凹所の最大径)
d2 非中性化領域直径(非中性化領域の直径)
K 工具係数
H 先端尖形部の高さ(削孔工具の円錐状の刃先部の高さ)
D 先端尖形部の最大外径(削孔工具の円錐状の刃先部の最大外径)
S1 演算予備工程の一部
S2 削成工程
S3,S4 洗浄除去工程
S5 顕在化工程
S6 測定工程及び演算予備工程の一部
S7 演算工程
10 Concrete drill (drilling tool)
11 Pointed tip (blade edge)
20 Concrete structure 21 Neutralized layer 22 Non-neutralized layer 23 Concrete surface 30 Measurement recess (recess)
31 Neutralized region 32 Non-neutralized region h Neutralized depth d1 Overall diameter (maximum diameter of recess)
d2 Non-neutralized region diameter (diameter of non-neutralized region)
K Tool factor H Height of pointed tip (height of conical cutting edge of drilling tool)
D Maximum outer diameter of pointed tip (maximum outer diameter of conical cutting edge of drilling tool)
S1 Part of calculation preliminary process S2 Cutting process S3, S4 Cleaning and removing process S5 Realization process S6 Part of measurement process and preliminary calculation process S7 Calculation process

Claims (9)

コンクリートの中性化深さを測定するための中性化深さ測定方法において、
円錐状の刃先部を有する削孔工具によって、コンクリート表面からコンクリートの深さ方向に一定比率で内径が縮径する逆円錐状の凹所を、そのコンクリート表面に削成する削成工程と、
その削成工程により削成された凹所に対し、中性化部分若しくは非中性化部分の一方若しくはその双方又はこれらの境界を視認可能に顕在化させる試薬を用いて、その凹所内のコンクリート面に現われた非中性化層を顕在化させる顕在化工程と、
その顕在化工程により前記凹所内のコンクリート面に顕在化された非中性化層の平面投影像である非中性化領域の直径(d2)を測定する測定工程と、
その測定工程により得られた非中性化領域の直径(d2)を用いて中性化深さ(h)を、次式により計算する演算工程とを備えていることを特徴とする中性化深さ測定方法。
h=K・(d1−d2)
ここで、h:中性化深さ、K:削孔工具の工具係数(K=H/D(H:削孔工具の円錐状の刃先部の高さ、D:削孔工具の円錐状の刃先部の最大外径である。))、d1:凹所の最大径(コンクリート表面位置での凹所の内径)、d2:非中性化領域の直径である。
In the neutralization depth measurement method for measuring the neutralization depth of concrete,
With a drilling tool having a conical cutting edge, a cutting step of cutting an inverted conical recess whose inner diameter is reduced at a constant ratio from the concrete surface in the depth direction of the concrete on the concrete surface;
Using a reagent that makes the neutralized part and / or the non-neutralized part or both of these, or the boundary thereof visible, with respect to the concave part cut by the cutting process, the concrete in the concave part A manifestation process for revealing the non-neutralized layer that appeared on the surface,
A measuring step of measuring a diameter (d2) of a non-neutralized region which is a planar projection image of a non-neutralized layer that is made visible on the concrete surface in the recess by the revealing step;
A neutralization feature comprising a calculation step of calculating the neutralization depth (h) by the following formula using the diameter (d2) of the non-neutralized region obtained by the measurement step Depth measurement method.
h = K · (d1-d2)
Here, h: neutralization depth, K: tool coefficient of drilling tool (K = H / D (H: height of conical cutting edge of drilling tool, D: conical shape of drilling tool) The maximum outer diameter of the blade edge portion))), d1: the maximum diameter of the recess (the inner diameter of the recess at the concrete surface position), d2: the diameter of the non-neutralized region.
前記測定工程は、前記顕在化工程により前記凹所内のコンクリート面に非中性化層を顕在化させた後、その凹所内のコンクリート面に顕在化された非中性化層の平面投影像である非中性化領域の直径(d2)を現場で直接測定するものであることを特徴とする請求項1記載の中性化深さ測定方法。   The measurement step is a planar projection image of the non-neutralized layer that is exposed on the concrete surface in the recess after the non-neutralized layer is exposed on the concrete surface in the recess by the revealing step. 2. The neutralization depth measurement method according to claim 1, wherein the diameter (d2) of a non-neutralization region is directly measured on site. 前記測定工程は、前記顕在化工程により前記凹所内のコンクリート面に非中性化層を顕在化させた後、その凹所の画像を撮像し、その画像から凹所内のコンクリート面に顕在化された非中性化層の平面投影像である非中性化領域の直径(d2)を測定するものであることを特徴とする請求項1記載の中性化深さ測定方法。   In the measurement step, after the non-neutralization layer is made visible on the concrete surface in the recess by the revealing step, an image of the recess is taken, and the image is made visible on the concrete surface in the recess. 2. The neutralization depth measuring method according to claim 1, wherein the diameter (d2) of the non-neutralized region which is a planar projection image of the non-neutralized layer is measured. 前記顕在化工程の前に、前記削成工程により削成された前記凹所内のコンクリート面を蒸留水により洗浄し、その後、その凹所内のコンクリート面に付着する水分を除去する洗浄除去工程を備えていることを特徴とする請求項1から3のいずれかに記載の中性化深さ測定方法。   Before the revealing step, the concrete surface in the recess that has been cut by the cutting step is washed with distilled water, and thereafter, a washing and removing step of removing water adhering to the concrete surface in the recess. The neutralization depth measuring method according to any one of claims 1 to 3, wherein the neutralization depth is measured. 前記算出工程の前に、前記凹所の最大径(d1)を測定し、削孔工具の円錐状の刃先部の高さ(H)及び当該刃先部の最大外径(D)を測定して削孔工具の工具係数(K)を計算する演算予備工程を備えていることを特徴とする請求項1から4のいずれかに記載の中性化深さ測定方法。   Before the calculation step, the maximum diameter (d1) of the recess is measured, and the height (H) of the conical cutting edge part of the drilling tool and the maximum outer diameter (D) of the cutting edge part are measured. The neutralization depth measurement method according to any one of claims 1 to 4, further comprising a calculation preliminary step of calculating a tool coefficient (K) of the drilling tool. 前記削成工程は、予め設定した所定の最大径を有する前記凹所を削成するものであり、その削孔工程において用いられる削孔工具の工具係数(K)が既知であることを特徴とする請求項1から4のいずれかに記載の中性化深さ測定方法。   The cutting step is to cut the recess having a predetermined maximum diameter set in advance, and the tool coefficient (K) of the drilling tool used in the drilling step is known. The neutralization depth measuring method according to any one of claims 1 to 4. コンクリート内の中性化の進行度を判定するための中性化判定方法において、
円錐状の刃先部を有する削孔工具によって、コンクリート表面からコンクリートの深さ方向に一定比率で内径が縮径する逆円錐状の凹所を、そのコンクリート表面に削成する削成工程と、
その削成工程により削成された凹所に対し、中性化部分若しくは非中性化部分の一方若しくはその双方又はこれらの境界を視認可能に顕在化させる試薬を噴霧して、その凹所内のコンクリート面に現われた中性化層若しくは非中性化層の一方若しくはその双方又はこれらの境界を顕在化させる顕在化工程と、
その顕在化工程の後、前記凹所内のコンクリート面に顕在化された中性化層又は非中性化層の平面投影像の大きさを現場で直接観察して、コンクリートの中性化の進行度を判定する判定工程とを備えていることを特徴とする中性化判定方法。
In the neutralization judgment method for judging the progress of neutralization in concrete,
With a drilling tool having a conical cutting edge, a cutting step of cutting an inverted conical recess whose inner diameter is reduced at a constant ratio from the concrete surface in the depth direction of the concrete on the concrete surface;
A reagent that makes the neutralized part or the non-neutralized part or both of them or a boundary thereof visibly visible is sprayed on the concave part formed by the cutting process, and the inside of the concave part is sprayed. A revealing step of revealing one or both of the neutralized layer or the non-neutralized layer that appeared on the concrete surface, or a boundary thereof;
After the manifestation process, the size of the planar projection image of the neutralized layer or non-neutralized layer that is manifested on the concrete surface in the recess is directly observed on site, and the progress of neutralization of the concrete A neutralization determination method comprising: a determination step of determining a degree.
前記判定工程に代えて、前記顕在化工程の後、前記凹所の画像を撮影し、その画像に撮像された前記凹所内のコンクリート面に顕在化された中性化層又は非中性化層の平面投影像の大きさに基づき、コンクリートの中性化の進行度を判定する判定工程を備えていることを特徴とする請求項7記載の中性化判定方法。   Instead of the determination step, after the revealing step, an image of the recess is taken, and a neutralized layer or a non-neutralized layer that is revealed on the concrete surface in the recess captured in the image The neutralization determination method according to claim 7, further comprising a determination step of determining the progress of the neutralization of the concrete based on the size of the planar projection image. 前記顕在化工程の前に、前記削成工程により削成された前記凹所内のコンクリート面を蒸留水により洗浄し、その後、その凹所内のコンクリート面に付着する水分を除去する洗浄除去工程を備えていることを特徴とする請求項7又は8に記載の中性化判定方法。   Before the revealing step, the concrete surface in the recess that has been cut by the cutting step is washed with distilled water, and thereafter, a washing and removing step of removing water adhering to the concrete surface in the recess. The neutralization determination method according to claim 7 or 8, wherein the neutralization determination method is provided.
JP2010097987A 2010-04-21 2010-04-21 Neutralization depth measuring method and neutralization determining method Pending JP2011226961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097987A JP2011226961A (en) 2010-04-21 2010-04-21 Neutralization depth measuring method and neutralization determining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097987A JP2011226961A (en) 2010-04-21 2010-04-21 Neutralization depth measuring method and neutralization determining method

Publications (1)

Publication Number Publication Date
JP2011226961A true JP2011226961A (en) 2011-11-10

Family

ID=45042461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097987A Pending JP2011226961A (en) 2010-04-21 2010-04-21 Neutralization depth measuring method and neutralization determining method

Country Status (1)

Country Link
JP (1) JP2011226961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323708B1 (en) * 2013-03-05 2013-10-30 한국건설기술연구원 Method for evaluating semi-quantitatively of concrete carbonization and evaluating apparatus using the same
JP2017009290A (en) * 2015-06-16 2017-01-12 デンカ株式会社 Method for measuring neutralization depth and seal for neutralization depth measurement
JP2021152917A (en) * 2016-07-29 2021-09-30 パイオニア株式会社 Information processing device, control method, program and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259649A (en) * 1988-08-25 1990-02-28 Kido Gijutsu Kenkyusho:Kk Method for investigating deterioration degree of existing buried pipe with small bore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259649A (en) * 1988-08-25 1990-02-28 Kido Gijutsu Kenkyusho:Kk Method for investigating deterioration degree of existing buried pipe with small bore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323708B1 (en) * 2013-03-05 2013-10-30 한국건설기술연구원 Method for evaluating semi-quantitatively of concrete carbonization and evaluating apparatus using the same
WO2014137035A1 (en) * 2013-03-05 2014-09-12 한국건설기술연구원 Method for semi-quantitatively evaluating concrete carbonation and apparatus therefor
US9261492B2 (en) 2013-03-05 2016-02-16 Korea Institute Of Construction Technology Method for evaluating semi-quantitatively of concrete carbonization and evaluating apparatus using the same
JP2017009290A (en) * 2015-06-16 2017-01-12 デンカ株式会社 Method for measuring neutralization depth and seal for neutralization depth measurement
JP2021152917A (en) * 2016-07-29 2021-09-30 パイオニア株式会社 Information processing device, control method, program and storage medium

Similar Documents

Publication Publication Date Title
JP2011226961A (en) Neutralization depth measuring method and neutralization determining method
US10028800B2 (en) Retrograde reamer depth tube gage
JP2008264954A (en) Tool and correction method of tool
CN206848178U (en) Concrete carbonization depth automatic tester
JP2015093346A5 (en) On-machine measuring method using machining inspection work of machine tool
CN101398283A (en) Inside and outside diameter measuring tool for large-sized workpieces
CN105674837A (en) Device for detecting aperture mouth part chamfer of product machined by numerical control machine tool
CN103029040A (en) Detection method for tool
WO2021047301A1 (en) Prepared, stopping-depth-demarcated bur for use with prepared 3d-printed dental guide plate
CN108445075A (en) A kind of evaluation method of heat exchanger tube EDDY CURRENT vessel wall damage
JP5591155B2 (en) Concrete degradation factor detection method
CN102607473B (en) Crack sounding and monitoring penetration detection method and simulation test block
CN107388924A (en) A kind of taper pin dimension measuring device and measuring method
CN209991915U (en) Multifunctional go-no go gauge
CN209655956U (en) A kind of concrete carbonization depth testing apparatus
CN204757902U (en) A measuring tool for measure diameter of axle chamfer
Helmli et al. Optical measurement of micro cutting tools
JP5171743B2 (en) Finished surface inspection system and inspection method
CN109724497B (en) Method for online detecting radius value of inner sphere
JP2007024821A (en) Measuring device and method of headrace or like
CN208349949U (en) A kind of multipurpose bore gauge measuring through-hole
CN206632558U (en) A kind of combined type weld groove detection ruler
JP2008296348A (en) Rotary cutting tool and reference position detecting method
KR101986917B1 (en) Etching solution for revealing boundary between welding melted portion and heat affected portion and Inspection method using the etching solution
CN220568665U (en) Concrete structure carbonization depth measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140828

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203