JP2011226911A - Composition analysis method of hydrocarbon composition - Google Patents

Composition analysis method of hydrocarbon composition Download PDF

Info

Publication number
JP2011226911A
JP2011226911A JP2010096817A JP2010096817A JP2011226911A JP 2011226911 A JP2011226911 A JP 2011226911A JP 2010096817 A JP2010096817 A JP 2010096817A JP 2010096817 A JP2010096817 A JP 2010096817A JP 2011226911 A JP2011226911 A JP 2011226911A
Authority
JP
Japan
Prior art keywords
saturated hydrocarbon
linear
composition
hydrocarbon
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010096817A
Other languages
Japanese (ja)
Other versions
JP5555529B2 (en
Inventor
Shin Miyagi
伸 宮城
Hiroyuki Shigekuni
博之 重国
Takashi Sano
孝 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010096817A priority Critical patent/JP5555529B2/en
Publication of JP2011226911A publication Critical patent/JP2011226911A/en
Application granted granted Critical
Publication of JP5555529B2 publication Critical patent/JP5555529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composition analysis method of a new hydrocarbon composition.SOLUTION: A gas chromatography analysis is performed for a saturated hydrocarbon composition containing at least a linear saturated hydrocarbon and a cyclic saturated hydrocarbon, and in the resulting gas chromatogram, one or two or more local minimal points are selected from a plurality of local minimal points that exist in the region between a peak assigned to the linear saturated hydrocarbon having carbon atoms of n and a peak assigned to the cyclic saturated hydrocarbon carbon atoms of n-1 for each carbon number of the linear saturated hydrocarbon. And, the content ratio of the cyclic saturated hydrocarbon to the saturated hydrocarbon composition is calculated based on the formula (1). C=S/S×100 (1) [Crepresents the content ratio of the cyclic saturated hydrocarbon, Srepresents the total peak area in the gas chromatogram, Srepresents the area of the closed region formed by a line segment which connects all of the chosen local minimal points and a baseline of the gas chromatogram.]

Description

本発明は、炭化水素組成物の組成分析方法に関する。   The present invention relates to a composition analysis method for a hydrocarbon composition.

従来、ガソリン、灯油、軽油等の燃料油、潤滑油などの石油製品の基材として、鉱油系基材が広く用いられている。鉱油系基材は、原油を蒸留し、さらに必要に応じて水素化処理等の精製処理を施すことによって得られる炭化水素組成物であり、通常、飽和分、オレフィン分、芳香族分等の混合物である。さらに、飽和分は、直鎖状飽和炭化水素、分岐鎖状飽和炭化水素及び環状飽和炭化水素に更に分類できる。炭化水素組成物における上記の含有成分の含有割合は、鉱油系基材の各種用途における特性を決定する重要な因子である。   Conventionally, mineral base materials have been widely used as base materials for petroleum products such as fuel oils such as gasoline, kerosene and light oil, and lubricating oils. A mineral oil-based base material is a hydrocarbon composition obtained by distilling crude oil and further subjecting it to purification treatment such as hydrogenation treatment, if necessary, usually a mixture of saturated, olefinic, aromatics, etc. It is. Further, the saturated component can be further classified into a linear saturated hydrocarbon, a branched saturated hydrocarbon and a cyclic saturated hydrocarbon. The content ratio of the above-described components in the hydrocarbon composition is an important factor that determines the characteristics of the mineral oil base material in various applications.

ガソリンより重質な炭化水素組成物中の飽和分の組成分析方法としては、シリカゲルクロマトグラフィー等により炭化水素組成物から分取した飽和分について、ガスクロマトグラフィー分析を行うことにより直鎖状飽和炭化水素を、質量分析を行うことにより環状飽和炭化水素を、それぞれ定量し、それらの結果から分岐鎖状飽和炭化水素の含有割合を算出する手法が当業者の間では一般的である。また、環状飽和炭化水素の定量法としては、質量分析法により求める方法が知られているが(例えば、非特許文献1を参照。)、直鎖状飽和炭化水素、環状飽和炭化水素及び分岐鎖状飽和炭化水素を同一の分析手段で定量する方法は知られていない。   As a method of composition analysis of saturated components in hydrocarbon compositions heavier than gasoline, linear saturated carbonization is performed by performing gas chromatography analysis on the saturated components separated from the hydrocarbon composition by silica gel chromatography or the like. It is common among those skilled in the art to quantitate cyclic saturated hydrocarbons by carrying out mass spectrometry of hydrogen and to calculate the content of branched saturated hydrocarbons from the results. In addition, as a method for quantifying cyclic saturated hydrocarbons, a method for obtaining by mass spectrometry is known (see, for example, Non-Patent Document 1), but linear saturated hydrocarbons, cyclic saturated hydrocarbons, and branched chains. There is no known method for quantifying gaseous saturated hydrocarbons using the same analytical means.

ASTM D 425 “Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry”ASTM D 425 “Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry”

本発明は、炭化水素組成物に含まれる環状飽和炭化水素を簡便にかつ精度よく定量することが可能な、新規な炭化水素組成物の組成分析方法を提供することを目的とする。   An object of the present invention is to provide a novel composition analysis method for a hydrocarbon composition, which can easily and accurately quantify a cyclic saturated hydrocarbon contained in a hydrocarbon composition.

本発明は、少なくとも直鎖状飽和炭化水素及び環状飽和炭化水素を含有する飽和炭化水素組成物についてガスクロマトグラフィー分析を行い、ガスクロマトグラムを得る第1のステップと、
第1のステップで得られたガスクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から1又は2以上の極小点を選定し、下記式(1)に基づいて、飽和炭化水素組成物に占める環状飽和炭化水素の含有割合を算出する第2のステップと、
を備える炭化水素組成物の組成分析方法を提供する。
=S/S×100 (1)
[式中、Cは飽和炭化水素組成物に占める環状飽和炭化水素の含有割合(単位:質量%)を示し、Sはガスクロマトグラムにおける全ピーク面積を示し、Sは第2のステップにおいて選定した極小点の全てを結んだ線分とガスクロマトグラムのベースラインとによって形成される閉じた領域の面積を示す。]
The present invention includes a first step of performing a gas chromatography analysis on a saturated hydrocarbon composition containing at least a linear saturated hydrocarbon and a cyclic saturated hydrocarbon to obtain a gas chromatogram;
In the gas chromatogram obtained in the first step, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a linear carbon atom having n-1 carbon atoms. One or two or more minimum points are selected from a plurality of minimum points existing in the region between the peaks attributed to hydrogen, and cyclic saturated hydrocarbons occupying the saturated hydrocarbon composition based on the following formula (1) A second step of calculating the content ratio of
A composition analysis method for a hydrocarbon composition comprising:
C N = S N / S A × 100 (1)
[Wherein C N represents the content (unit: mass%) of the cyclic saturated hydrocarbon in the saturated hydrocarbon composition, S A represents the total peak area in the gas chromatogram, and S N represents the second step. The area of the closed region formed by the line segment connecting all the selected minimum points and the baseline of the gas chromatogram is shown. ]

また、炭化水素組成物に含まれる環状飽和炭化水素を一層精度よく定量できることから、上記の第2のステップにおいて選定する極小点は、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点のうち、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点を含む2以上の極小点であることが好ましい。   In addition, since the cyclic saturated hydrocarbon contained in the hydrocarbon composition can be quantified more accurately, the minimum point selected in the second step is a peak attributed to the linear saturated hydrocarbon having n carbon atoms. Among a plurality of minimum points existing between the peaks attributed to the linear hydrocarbon having n-1 carbon atoms, the minimum point giving the minimum value and the minimum point giving the second smallest value in the region It is preferable that it is two or more minimum points containing.

さらに、炭化水素組成物に含まれる環状飽和炭化水素を定量する際の簡便性と精度とを高水準で両立できることから、第2のステップにおいて選定する極小点は、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点のうち、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点であることが好ましい。   Furthermore, since the simplicity and accuracy in quantifying the cyclic saturated hydrocarbon contained in the hydrocarbon composition can be achieved at a high level, the minimum point selected in the second step is linear saturation with n carbon atoms. Among a plurality of minimum points existing in a region between a peak attributed to a hydrocarbon and a peak attributed to a linear hydrocarbon having a carbon number of n-1, a minimum point giving a minimum value in the region and 2 The minimum point giving the second smallest value is preferable.

また、本発明の炭化水素組成物の組成分析方法は、第1のステップで得られるクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、直鎖状飽和炭化水素に帰属されるピークの両側の最も近い位置に存在する2つの極小点を選定し、下記式(2)に基づいて、飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合を算出する第3のステップを更に備えることが好ましい。
=S/S×100 (2)
[式中、Cは飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合(単位:質量%)を示し、Sはガスクロマトグラムにおける全ピーク面積を示し、Sは、第3のステップにおいて選定した2つの極小点を結んだ線分と炭素数nの直鎖状飽和炭化水素に帰属されるピーク曲線とによって形成される閉じた領域の面積を、直鎖状飽和炭化水素の全炭素数について合計した値を示す。]
Moreover, the composition analysis method of the hydrocarbon composition of the present invention provides a peak attributed to the linear saturated hydrocarbon for each carbon number of the linear saturated hydrocarbon in the chromatogram obtained in the first step. Further, a third step of selecting the two minimum points existing at the closest positions on both sides and calculating the content of the linear saturated hydrocarbon in the saturated hydrocarbon composition based on the following formula (2) It is preferable to provide.
C L = S L / S A × 100 (2)
[Wherein, C L represents the content (unit: mass%) of linear saturated hydrocarbon in the saturated hydrocarbon composition, S A represents the total peak area in the gas chromatogram, and S L represents the third The area of the closed region formed by the line segment connecting the two minimum points selected in the above step and the peak curve attributed to the linear saturated hydrocarbon having n carbon atoms is defined as the linear saturated hydrocarbon The total value for the total carbon number is shown. ]

さらに、本発明の炭化水素組成物の組成分析方法は、下記式(3)に基づいて、前記炭化水素飽和生成物に占める分岐鎖状飽和炭化水素の含有割合を算出する第4のステップを更に備えることが好ましい。
=100−(C+C) (3)
[式中、Cは飽和炭化水素組成物に占める分岐鎖状飽和炭化水素の含有割合(単位:質量%)を示し、Cは飽和炭化水素組成物に占める環状飽和炭化水素の含有割合(単位:質量%)を示し、Cは飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合(単位:質量%)を示す。]
Furthermore, the composition analysis method of the hydrocarbon composition of the present invention further includes a fourth step of calculating the content of the branched saturated hydrocarbon in the saturated hydrocarbon product based on the following formula (3). It is preferable to provide.
C B = 100− (C N + C L ) (3)
Wherein, C B is the content of the branched-chain saturated hydrocarbon among the saturated hydrocarbon composition: shows the (unit weight%), C N is the proportion of cyclic saturated hydrocarbon among the saturated hydrocarbon composition ( unit: wt%) indicates, C L is the content of linear saturated hydrocarbons among the saturated hydrocarbon composition (unit: shows the mass%). ]

なお、従来の組成分析方法においては、シリカゲルクロマトグラフィー等により炭化水素組成物から分取した飽和分について、ガスクロマトグラフィー分析を行うことにより直鎖状飽和炭化水素を、質量分析を行うことにより環状飽和炭化水素を、それぞれ定量し、それらの結果から分岐鎖状飽和炭化水素の含有割合を算出するなど、操作が煩雑であり、また、分析に長時間を要するものであった。これに対して本発明では、第1〜第4のステップを経ることによって、ガスクロマトグラフィー分析のみを用いて、直鎖状飽和炭化水素、分岐鎖状飽和炭化水素及び環状飽和炭化水素の全ての含有割合を精度よく算出することができるため、操作の簡便性及び分析時間の短縮の点でも非常に有用である。   In the conventional composition analysis method, linear saturated hydrocarbons are obtained by performing gas chromatography analysis on the saturated fractions separated from the hydrocarbon composition by silica gel chromatography or the like, and cyclic by mass analysis. The operation was complicated and the analysis took a long time, such as quantifying each saturated hydrocarbon and calculating the content of the branched saturated hydrocarbon from the results. On the other hand, in the present invention, all of linear saturated hydrocarbons, branched saturated hydrocarbons and cyclic saturated hydrocarbons are obtained by using only gas chromatography analysis through the first to fourth steps. Since the content ratio can be calculated with high accuracy, it is very useful in terms of easy operation and shortening of analysis time.

以上の通り、本発明によれば、炭化水素組成物に含まれる環状飽和炭化水素を簡便にかつ精度よく定量することが可能な、新規な炭化水素組成物の組成分析方法が提供される。   As described above, according to the present invention, there is provided a novel hydrocarbon composition composition analysis method capable of easily and accurately quantifying a cyclic saturated hydrocarbon contained in a hydrocarbon composition.

鉱油系軽油基材から分取した飽和分について、上記の分析条件でガスクロマトグラフィー分析を行った場合に得られるガスクロマトグラムの一例を示す図である。It is a figure which shows an example of the gas chromatogram obtained when a gas chromatographic analysis is performed on said analysis conditions about the saturated part fractionated from the mineral oil type | system | group light oil base material. 図1に示すガスクロマトグラムにおいて、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点を選定し、選定した極小点の全てを結んだときの状態を示す図である。In the gas chromatogram shown in FIG. 1, a plurality of peaks existing in a region between a peak attributed to a linear saturated hydrocarbon having n carbon atoms and a peak attributed to a linear hydrocarbon having n−1 carbon atoms are present. It is a figure which shows the state when selecting the minimum point which gives the minimum value in the said area | region from the minimum point, and the minimum point which gives the 2nd smallest value, and connecting all the selected minimum points. 図2に示したガスクロマトグラムの炭素数14〜19の直鎖状飽和炭化水素に帰属されるピークを含む領域を部分的に拡大した図である。It is the figure which expanded partially the area | region containing the peak attributed to a C14-C19 linear saturated hydrocarbon of the gas chromatogram shown in FIG. 実施例1及び比較例1における組成分析の結果を示すグラフである。It is a graph which shows the result of the composition analysis in Example 1 and Comparative Example 1.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本実施形態に係る炭化水素組成物の組成分析方法においては、まず、少なくとも直鎖状飽和炭化水素及び環状飽和炭化水素を含有する飽和炭化水素組成物についてガスクロマトグラフィー分析を行い、ガスクロマトグラムを得る(第1のステップ)。   In the composition analysis method for a hydrocarbon composition according to the present embodiment, first, gas chromatographic analysis is performed on a saturated hydrocarbon composition containing at least a linear saturated hydrocarbon and a cyclic saturated hydrocarbon to obtain a gas chromatogram. (First step).

試料である飽和炭化水素組成物は、少なくとも直鎖状飽和炭化水素及び環状飽和炭化水素を含有するものであれば特に制限されない。例えば、ガソリン、灯油、軽油等の燃料油、潤滑油などの石油製品に用いられる鉱油系基材から分取した飽和分を試料とすることができる。鉱油系基材から飽和分を分取する手段としては、シリカゲルクロマトグラフィー、高速液体クロマトグラフィー(HPLC)などが挙げられる。試料として用いられる飽和炭化水素組成物の炭素数範囲は、好ましくは7〜32、より好ましくは8〜31、さらに好ましくは9〜30である。   The saturated hydrocarbon composition as a sample is not particularly limited as long as it contains at least a linear saturated hydrocarbon and a cyclic saturated hydrocarbon. For example, a saturated component fractionated from a mineral oil base material used in petroleum products such as fuel oil such as gasoline, kerosene and light oil, and lubricating oil can be used as a sample. Examples of means for separating a saturated component from a mineral oil base material include silica gel chromatography and high performance liquid chromatography (HPLC). The carbon number range of the saturated hydrocarbon composition used as the sample is preferably 7 to 32, more preferably 8 to 31, and still more preferably 9 to 30.

ガスクロマトグラフィー分析における分析条件は、測定試料の種類、炭素数分布等に応じて適宜選定される。試料が鉱油系軽油基材から分取した飽和分である場合の分析条件の一例を以下に示す。
装置:島津製作所社製、GC2010(FID(Flame Ionization Detector)付きガスクロマトグラフ)
カラム:ウルトラアロイ−HT(30m×0.25mmφ×0.15μm)、又は無極性カラムHP−1,CBP−1など
キャリアガス:ヘリウム
キャリアガス圧:120kPa
注入口温度:300℃
検出器温度:300℃
オーブン温度:50℃(5分)〜300℃(5分)
注入量:2μL(HPLCで分取した飽和分の純度99容量%以上のヘキサン溶液)
スプリット比:1/10。
Analysis conditions in the gas chromatography analysis are appropriately selected according to the type of measurement sample, carbon number distribution, and the like. An example of analysis conditions in the case where the sample is a saturated fraction fractionated from a mineral oil-based light oil base material is shown below.
Device: GC2010 (manufactured by Shimadzu Corporation) (gas chromatograph with FID (Frame Ionization Detector))
Column: Ultra Alloy-HT (30 m × 0.25 mmφ × 0.15 μm) or nonpolar columns HP-1, CBP-1, etc. Carrier gas: Helium Carrier gas pressure: 120 kPa
Inlet temperature: 300 ° C
Detector temperature: 300 ° C
Oven temperature: 50 ° C (5 minutes) to 300 ° C (5 minutes)
Injection volume: 2 μL (a hexane solution with a purity of 99% by volume or more obtained by HPLC)
Split ratio: 1/10.

なお、ガスクロマトグラフィー分析は、FID点火後、ベースラインが安定したことを確認して行うことが好ましいのは言うまでもない。   Needless to say, the gas chromatographic analysis is preferably carried out after confirming that the baseline is stable after FID ignition.

ガスクロマトグラムは、横軸を保持時間(リテンション タイム)、縦軸をピーク強度とするグラフ(GCチャート)として得ることができる。鉱油系軽油基材から分取した飽和分について、上記の分析条件でガスクロマトグラフィー分析を行った場合に得られるガスクロマトグラムの一例を図1に示す。図1中のピーク曲線(ピークを与える曲線)とベースラインとによって形成される閉じた領域の面積が、後述する式(1)及び(2)中の全ピーク面積Sに相当する。 The gas chromatogram can be obtained as a graph (GC chart) in which the horizontal axis represents retention time (retention time) and the vertical axis represents peak intensity. FIG. 1 shows an example of a gas chromatogram obtained when a gas chromatographic analysis is performed under the above-described analysis conditions for a saturated fraction collected from a mineral oil-based light oil base material. Area of closed area formed with the baseline peak curve (curve giving the peak) in FIG. 1 corresponds to a total peak area S A in later-described formula (1) and (2).

次に、得られたガスクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から1又は2以上の極小点を選定し、下記式(1)に基づいて、飽和炭化水素組成物に占める環状飽和炭化水素の含有割合を算出する(第2のステップ)。
=S/S×100 (1)
[式中、Cは飽和炭化水素組成物に占める環状飽和炭化水素の含有割合(単位:質量%)を示し、Sはガスクロマトグラムにおける全ピーク面積を示し、Sは第2のステップにおいて選定した極小点の全てを結んだ線分とガスクロマトグラムのベースラインとによって形成される閉じた領域の面積を示す。]
Next, in the obtained gas chromatogram, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a linear hydrocarbon having n-1 carbon atoms are obtained. The inclusion of cyclic saturated hydrocarbons in the saturated hydrocarbon composition based on the following formula (1) by selecting one or more minimum points from a plurality of minimum points existing in the region between the assigned peaks The ratio is calculated (second step).
C N = S N / S A × 100 (1)
[Wherein C N represents the content (unit: mass%) of the cyclic saturated hydrocarbon in the saturated hydrocarbon composition, S A represents the total peak area in the gas chromatogram, and S N represents the second step. The area of the closed region formed by the line segment connecting all the selected minimum points and the baseline of the gas chromatogram is shown. ]

ここで、炭化水素組成物に含まれる環状飽和炭化水素を一層精度よく定量できることから、上記の第2のステップにおいて選定する極小点は、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点のうち、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点を含む2以上の極小点であることが好ましい。   Here, since the cyclic saturated hydrocarbon contained in the hydrocarbon composition can be quantified more accurately, the minimum point selected in the second step is a peak attributed to the linear saturated hydrocarbon having n carbon atoms. Among a plurality of minimum points existing in a region between the peak and the peak attributed to the straight-chain hydrocarbon having n-1 carbon atoms, a minimum point giving the minimum value and a minimum giving the second smallest value in the region Two or more local minimum points including the point are preferable.

さらに、炭化水素組成物に含まれる環状飽和炭化水素を定量する際の簡便性と精度とを高水準で両立できることから、第2のステップにおいて選定する極小点は、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点のうち、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点であることが好ましい。   Furthermore, since the simplicity and accuracy in quantifying the cyclic saturated hydrocarbon contained in the hydrocarbon composition can be achieved at a high level, the minimum point selected in the second step is linear saturation with n carbon atoms. Among a plurality of minimum points existing in a region between a peak attributed to a hydrocarbon and a peak attributed to a linear hydrocarbon having a carbon number of n-1, a minimum point giving a minimum value in the region and 2 The minimum point giving the second smallest value is preferable.

図2は、第2のステップを経た後のガスクロマトグラムの一例を示す図である。図2は、図1に示したガスクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点を選定し、選定した極小点の全てを結んだときの状態を示している。図2中の網掛け部分が、選定した極小点を結んだ線分とガスクロマトグラムのベースラインとによって形成される閉じた領域であり、この面積が式(1)中のSに相当する。 FIG. 2 is a diagram illustrating an example of a gas chromatogram after the second step. FIG. 2 shows a peak attributed to a linear saturated hydrocarbon having n carbon atoms and a linear chain having a carbon number of n−1 for each carbon number of the linear saturated hydrocarbon in the gas chromatogram shown in FIG. From the multiple minimum points existing in the region between the peaks attributed to hydrocarbons, select the minimum point giving the minimum value and the minimum point giving the second smallest value in the region, and all the selected minimum points It shows the state when linking. The shaded portion in FIG. 2 is a closed region formed by the line segment connecting the selected minimum points and the baseline of the gas chromatogram, and this area corresponds to S N in equation (1).

また、図3は、図2に示したガスクロマトグラムの炭素数14〜19の直鎖状飽和炭化水素に帰属されるピークを含む領域を部分的に拡大した図である。図3には、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から選定した2つの極小点、及び、選定した極小点を結んだ線分を示している。   Moreover, FIG. 3 is the figure which expanded partially the area | region containing the peak attributed to a C14-C19 linear saturated hydrocarbon of the gas chromatogram shown in FIG. FIG. 3 shows, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a peak attributed to the linear hydrocarbon having n−1 carbon atoms. 2 shows two local minimum points selected from a plurality of local minimum points existing in a region between and a line segment connecting the selected local minimum points.

また、本実施形態に係る炭化水素組成物の組成分析方法は、第1のステップで得られるクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、直鎖状飽和炭化水素に帰属されるピークの両側の最も近い位置に存在する2つの極小点を選定し、下記式(2)に基づいて、飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合を算出する第3のステップ、あるいはさらに、下記式(3)に基づいて、炭化水素飽和生成物に占める分岐鎖状飽和炭化水素の含有割合を算出する第4のステップを更に備えることが好ましい。第1〜第4のステップを経ることによって、ガスクロマトグラフィー分析のみを用いて、直鎖状飽和炭化水素、分岐鎖状飽和炭化水素及び環状飽和炭化水素の全ての含有割合を精度よく算出することができるため、操作の簡便性及び分析時間の短縮の点でも非常に有用である。
=S/S×100 (2)
[式中、Cは飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合(単位:質量%)を示し、Sはガスクロマトグラムにおける全ピーク面積を示し、Sは、第3のステップにおいて選定した2つの極小点を結んだ線分と炭素数nの直鎖状飽和炭化水素に帰属されるピーク曲線とによって形成される閉じた領域の面積を、直鎖状飽和炭化水素の全炭素数について合計した値を示す。]
=100−(C+C) (3)
[式中、Cは飽和炭化水素組成物に占める分岐鎖状飽和炭化水素の含有割合(単位:質量%)を示し、Cは飽和炭化水素組成物に占める環状飽和炭化水素の含有割合(単位:質量%)を示し、Cは飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合(単位:質量%)を示す。]
Moreover, in the chromatogram obtained in the first step, the hydrocarbon composition analysis method according to the present embodiment is attributed to the linear saturated hydrocarbon for each carbon number of the linear saturated hydrocarbon. Third step of selecting the two minimum points existing at the closest positions on both sides of the peak and calculating the content of the linear saturated hydrocarbon in the saturated hydrocarbon composition based on the following formula (2) Alternatively, it is preferable that the method further includes a fourth step of calculating the content ratio of the branched chain saturated hydrocarbon in the saturated hydrocarbon product based on the following formula (3). By passing through the first to fourth steps, only the gas chromatographic analysis is used to accurately calculate all the content ratios of the linear saturated hydrocarbon, the branched saturated hydrocarbon and the cyclic saturated hydrocarbon. Therefore, it is very useful in terms of easy operation and shortening of analysis time.
C L = S L / S A × 100 (2)
[Wherein, C L represents the content (unit: mass%) of linear saturated hydrocarbon in the saturated hydrocarbon composition, S A represents the total peak area in the gas chromatogram, and S L represents the third The area of the closed region formed by the line segment connecting the two minimum points selected in the above step and the peak curve attributed to the linear saturated hydrocarbon having n carbon atoms is defined as the linear saturated hydrocarbon The total value for the total carbon number is shown. ]
C B = 100− (C N + C L ) (3)
Wherein, C B is the content of the branched-chain saturated hydrocarbon among the saturated hydrocarbon composition: shows the (unit weight%), C N is the proportion of cyclic saturated hydrocarbon among the saturated hydrocarbon composition ( unit: wt%) indicates, C L is the content of linear saturated hydrocarbons among the saturated hydrocarbon composition (unit: shows the mass%). ]

なお、本発明は上記の実施形態に何ら制限されるものではない。例えば、予め環状飽和炭化水素の含有割合が既知である複数の飽和炭化水素組成物について第1及び第2のステップを行うことによってCとSとの相関(検量線)を得ておき、その相関に基づいて実測値SからCを算出してもよい。同様に、予め直鎖状飽和炭化水素の含有割合が既知である複数の飽和炭化水素組成物について第3のステップを行うことによってCとSとの相関(検量線)を得ておき、その相関に基づいて実測値SからCを算出してもよい。さらに、飽和炭化水素組成物に含まれる環状飽和炭化水素及び直鎖状飽和炭化水素の密度に関するデータを取得し、C及びC、あるいは更にCを容量百分率から質量百分率に換算することもできる。 In addition, this invention is not restrict | limited to said embodiment at all. For example, advance to obtain the correlation between C N and S N by the content of pre-cyclic saturated hydrocarbon perform first and second steps for a plurality of saturated hydrocarbon composition is known (calibration curve), it may be calculated C N from the measured values S N based on the correlation. Similarly, a correlation (calibration curve) between C L and S L is obtained by performing the third step on a plurality of saturated hydrocarbon compositions in which the content ratio of the linear saturated hydrocarbon is known in advance, As may be calculated C L from measured values S L based on the correlation. Furthermore, to obtain data on density of cyclic saturated hydrocarbons and linear saturated hydrocarbons contained in the saturated hydrocarbon composition, C N and C L, or be further converted into mass percentage of C B from percentages by volume it can.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[実施例1]
HPLCにより組成の異なる燃料油A、B、Cから分取した3種類の飽和分(試料A、B、C)を試料とし、以下の手順に従って、飽和分の組成分析を行った。
まず、各試料について、ガスクロマトグラフィー分析を行い、ガスクロマトグラムを得た。ガスクロマトグラフィー分析における分析条件を以下に示す。
装置:島津製作所社製、GC2010(FID(Flame Ionization Detector)付きガスクロマトグラフ)
カラム:ウルトラアロイ−HT(30m×0.25mmφ×0.15μm)キャリアガス:ヘリウム
キャリアガス圧:120kPa
注入口温度:300℃
検出器温度:300℃
オーブン温度:50℃(5分)〜300℃(5分)
注入量:2μL(HPLCで分取した飽和分の純度99容量%以上のヘキサン溶液)
スプリット比:1/10。
[Example 1]
Three types of saturated components (samples A, B, and C) separated from fuel oils A, B, and C having different compositions by HPLC were used as samples, and composition analysis of the saturated components was performed according to the following procedure.
First, each sample was subjected to gas chromatography analysis to obtain a gas chromatogram. The analysis conditions in the gas chromatography analysis are shown below.
Device: GC2010 (manufactured by Shimadzu Corporation) (gas chromatograph with FID (Frame Ionization Detector))
Column: Ultra Alloy-HT (30 m × 0.25 mmφ × 0.15 μm) Carrier gas: Helium carrier gas pressure: 120 kPa
Inlet temperature: 300 ° C
Detector temperature: 300 ° C
Oven temperature: 50 ° C (5 minutes) to 300 ° C (5 minutes)
Injection volume: 2 μL (a hexane solution with a purity of 99% by volume or more obtained by HPLC)
Split ratio: 1/10.

次に、得られたガスクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点を選定し、上記式(1)に基づいて、飽和炭化水素組成物に占める環状飽和炭化水素の含有割合を算出した。   Next, in the obtained gas chromatogram, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a linear hydrocarbon having n-1 carbon atoms are obtained. From a plurality of local minimum points existing in the region between the assigned peaks, a local minimum point that gives the minimum value and a local minimum point that gives the second smallest value in the region are selected, and based on the above formula (1), The content ratio of the cyclic saturated hydrocarbon in the saturated hydrocarbon composition was calculated.

さらに、得られたクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、直鎖状飽和炭化水素に帰属されるピークの両側の最も近い位置に存在する2つの極小点を選定し、上記式(2)に基づいて、飽和炭化水素組成物に占める直鎖状飽和炭化水素の含有割合を算出した。また、上記式(3)に基づいて、炭化水素飽和生成物に占める分岐鎖状飽和炭化水素の含有割合を算出した。なお、分析に要した時間(ガスクロマトグラフィー測定時間と同定時間の合計)は3時間であった。   Furthermore, in the obtained chromatogram, for each carbon number of the linear saturated hydrocarbon, select two local minimum points existing on both sides of the peak attributed to the linear saturated hydrocarbon, Based on Formula (2), the content rate of the linear saturated hydrocarbon which occupies for a saturated hydrocarbon composition was computed. Moreover, the content rate of the branched saturated hydrocarbon which occupies for a hydrocarbon saturated product was computed based on the said Formula (3). The time required for the analysis (the sum of the gas chromatography measurement time and the identification time) was 3 hours.

[比較例1]
実施例1で用いた試料A、B、Cについて、ガスクロマトグラフィー分析を行うことにより直鎖状飽和炭化水素を、質量分析を行うことにより環状飽和炭化水素を、それぞれ定量し、それらの結果から分岐鎖状飽和炭化水素の含有割合を算出した。ガスクロマトグラフィー分析は、注入量を0.3μL、スプリット比を1/70に変更したこと以外は実施例1と同様である。一方、質量分析の分析条件は以下の通りである。
イオン化法:FI(Field Ionization)
質量分離法:二重収束磁場型
真空度:10−6Torr
分解能:500以上
イオン検出:正
走査質量範囲:40〜400m/z
加速電圧:3.0kV
エミッタ電流:5mA
試料導入方法:DI(Direct Probe)
DI昇温条件:
初期温度:常温(保持時間0分)
昇温速度:32℃/分
最終温度:400℃(保持時間20分)
注入量:1.0μL(シリカゲルクロマトグラフィーで分取した飽和分)
[Comparative Example 1]
Samples A, B, and C used in Example 1 were quantitatively analyzed for linear saturated hydrocarbons by performing gas chromatography analysis, and cyclic saturated hydrocarbons by performing mass spectrometry. The content ratio of the branched saturated hydrocarbon was calculated. The gas chromatography analysis is the same as that of Example 1 except that the injection amount is changed to 0.3 μL and the split ratio is changed to 1/70. On the other hand, the analysis conditions of mass spectrometry are as follows.
Ionization method: FI (Field Ionization)
Mass separation method: Double focusing magnetic field type vacuum degree: 10 −6 Torr
Resolution: 500 or more Ion detection: Positive scanning mass range: 40 to 400 m / z
Accelerating voltage: 3.0 kV
Emitter current: 5 mA
Sample introduction method: DI (Direct Probe)
DI temperature rise conditions:
Initial temperature: normal temperature (holding time 0 minutes)
Temperature rising rate: 32 ° C / min Final temperature: 400 ° C (holding time 20 minutes)
Injection volume: 1.0 μL (saturated fraction fractionated by silica gel chromatography)

実施例1及び比較例1で得られた組成分析の結果を図4に示す。   The results of the composition analysis obtained in Example 1 and Comparative Example 1 are shown in FIG.

図4に示したように、実施例1においては、ガスクロマトグラフィー分析のみを用いて、直鎖状飽和炭化水素、分岐鎖状飽和炭化水素及び環状飽和炭化水素の全ての含有割合を精度よく算出することができることが確認された。また、実施例1は分析時間を3時間と比較例1の従来法より大幅に短縮でき、本発明の組成分析方法により直鎖状飽和炭化水素、分岐鎖状飽和炭化水素及び環状飽和炭化水素の全てを迅速に分析できることが分かる。   As shown in FIG. 4, in Example 1, all the proportions of linear saturated hydrocarbons, branched saturated hydrocarbons and cyclic saturated hydrocarbons are accurately calculated using only gas chromatography analysis. Confirmed that you can. Further, in Example 1, the analysis time is 3 hours, which is significantly shorter than that of the conventional method of Comparative Example 1, and linear saturated hydrocarbons, branched saturated hydrocarbons and cyclic saturated hydrocarbons are analyzed by the composition analysis method of the present invention. It turns out that everything can be analyzed quickly.

[実施例2]
まず、実施例1と同様にして、試料Aについてガスクロマトフィー分析を実施した。次いで、得られたガスクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から、当該領域において最小値を与える極小点のみを選定し、上記式(1)に基づいて、飽和炭化水素組成物に占める環状飽和炭化水素の含有割合を算出した。なお、分析時間は3時間であった。
[Example 2]
First, a gas chromatographic analysis was performed on Sample A in the same manner as in Example 1. Next, in the obtained gas chromatogram, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a linear hydrocarbon having the carbon number n-1 are attributed. Only a minimum point that gives the minimum value in the region is selected from a plurality of minimum points existing in the region between the peak and the cyclic saturated carbonization occupied in the saturated hydrocarbon composition based on the above formula (1). The hydrogen content was calculated. The analysis time was 3 hours.

[実施例3]
まず、実施例1と同様にして、試料Aについてガスクロマトフィー分析を実施した。次いで、得られたガスクロマトグラムにおいて、直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から、当該領域において最小値を与える極小点、2番目に小さい値を与える極小点並びに3番目に小さい値を与える極小点を選定し、上記式(1)に基づいて、飽和炭化水素組成物に占める環状飽和炭化水素の含有割合を算出した。なお、分析時間は3時間であった。
[Example 3]
First, a gas chromatographic analysis was performed on Sample A in the same manner as in Example 1. Next, in the obtained gas chromatogram, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a linear hydrocarbon having the carbon number n-1 are attributed. A plurality of local minimum points existing in the region between the peak to be selected, a local minimum point that gives the minimum value in the region, a local minimum point that gives the second smallest value, and a local minimum point that gives the third smallest value, Based on the above formula (1), the content ratio of the cyclic saturated hydrocarbon in the saturated hydrocarbon composition was calculated. The analysis time was 3 hours.

試料Aについて、実施例1〜3及び比較例1で得られた組成分析の結果を表1に示す。なお、表1に示す分析時間は、測定時間と同定時間の合計である。   Table 1 shows the results of the composition analysis of Sample A obtained in Examples 1 to 3 and Comparative Example 1. The analysis time shown in Table 1 is the sum of measurement time and identification time.

Figure 2011226911
Figure 2011226911

表1に示したように、実施例2、3においても、直鎖状飽和炭化水素、分岐鎖状飽和炭化水素及び環状飽和炭化水素の全ての含有割合を精度よく算出することができることが確認された。さらに、直鎖状飽和炭化水素の炭素数ごとに選択した極小点が2点である実施例1及び3点である実施例3では、より高い精度で定量を行うことができた。   As shown in Table 1, also in Examples 2 and 3, it was confirmed that all the content ratios of linear saturated hydrocarbon, branched saturated hydrocarbon and cyclic saturated hydrocarbon can be calculated with high accuracy. It was. Furthermore, in Example 1 in which the minimum points selected for each carbon number of the linear saturated hydrocarbon were 2 points and in Example 3 which was 3 points, quantification could be performed with higher accuracy.

産業上の利用分野Industrial application fields

本発明の炭化水素組成物の組成分析方法は、例えばガソリン、灯油、軽油等の燃料油、潤滑油などの石油製品分野において、炭化水素組成物に含まれる環状飽和炭化水素、あるいは更に直鎖状飽和炭化水素、分岐鎖状飽和炭化水素を定量する方法として有用である。
The composition analysis method of the hydrocarbon composition of the present invention is, for example, in the field of petroleum products such as gasoline, kerosene and light oil, and petroleum products such as lubricating oil, cyclic saturated hydrocarbons contained in the hydrocarbon composition, or more linear. It is useful as a method for quantifying saturated hydrocarbons and branched chain saturated hydrocarbons.

Claims (5)

少なくとも直鎖状飽和炭化水素及び環状飽和炭化水素を含有する飽和炭化水素組成物についてガスクロマトグラフィー分析を行い、ガスクロマトグラムを得る第1のステップと、
前記ガスクロマトグラムにおいて、前記直鎖状飽和炭化水素の炭素数ごとに、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点から1又は2以上の極小点を選定し、下記式(1)に基づいて、前記飽和炭化水素組成物に占める前記環状飽和炭化水素の含有割合を算出する第2のステップと、
を備える炭化水素組成物の組成分析方法。
=S/S×100 (1)
[式中、Cは前記飽和炭化水素組成物に占める前記環状飽和炭化水素の含有割合(単位:質量%)を示し、Sは前記ガスクロマトグラムにおける全ピーク面積を示し、Sは第2のステップにおいて選定した極小点の全てを結んだ線分と前記ガスクロマトグラムのベースラインとによって形成される閉じた領域の面積を示す。]
A first step of performing a gas chromatography analysis on a saturated hydrocarbon composition containing at least a linear saturated hydrocarbon and a cyclic saturated hydrocarbon to obtain a gas chromatogram;
In the gas chromatogram, for each carbon number of the linear saturated hydrocarbon, a peak attributed to the linear saturated hydrocarbon having n carbon atoms and a peak attributed to the linear hydrocarbon having n-1 carbon atoms. 1 or 2 or more minimum points are selected from a plurality of minimum points existing in the region between and based on the following formula (1), the content ratio of the cyclic saturated hydrocarbon in the saturated hydrocarbon composition is A second step of calculating;
A composition analysis method for a hydrocarbon composition comprising:
C N = S N / S A × 100 (1)
[Wherein C N represents the content (unit: mass%) of the cyclic saturated hydrocarbon in the saturated hydrocarbon composition, S A represents the total peak area in the gas chromatogram, and S N represents the second The area of the closed region formed by the line segment connecting all the minimum points selected in the step and the baseline of the gas chromatogram is shown. ]
前記第2のステップにおいて選定する極小点は、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点のうち、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点を含む2以上の極小点である、請求項1に記載の方法。   The minimum point selected in the second step is in a region between a peak attributed to a linear saturated hydrocarbon having n carbon atoms and a peak attributed to a linear hydrocarbon having n-1 carbon atoms. The method according to claim 1, wherein among a plurality of existing local minimum points, there are two or more local minimum points including a local minimum point that gives a minimum value in the region and a local minimum point that gives a second smallest value. 前記第2のステップにおいて選定する極小点は、炭素数nの直鎖状飽和炭化水素に帰属されるピークと炭素数n−1の直鎖状炭化水素に帰属されるピークとの間の領域に存在する複数の極小点のうち、当該領域において最小値を与える極小点及び2番目に小さい値を与える極小点である、請求項1又は2に記載の方法。   The minimum point selected in the second step is in a region between a peak attributed to a linear saturated hydrocarbon having n carbon atoms and a peak attributed to a linear hydrocarbon having n-1 carbon atoms. The method according to claim 1, wherein among the plurality of existing local minimum points, the local minimum point that gives the minimum value in the region and the local minimum point that gives the second smallest value. 前記クロマトグラムにおいて、前記直鎖状飽和炭化水素の炭素数ごとに、直鎖状飽和炭化水素に帰属されるピークの両側の最も近い位置に存在する2つの極小点を選定し、下記式(2)に基づいて、前記飽和炭化水素組成物に占める前記直鎖状飽和炭化水素の含有割合を算出する第3のステップを更に備える、請求項1〜3のいずれか一項に記載の方法。
=S/S×100 (2)
[式中、Cは前記飽和炭化水素組成物に占める前記直鎖状飽和炭化水素の含有割合(単位:質量%)を示し、Sは前記ガスクロマトグラムにおける全ピーク面積を示し、Sは、前記第3のステップにおいて選定した2つの極小点を結んだ線分と炭素数nの直鎖状飽和炭化水素に帰属されるピーク曲線とによって形成される閉じた領域の面積を、前記直鎖状飽和炭化水素の全炭素数について合計した値を示す。]
In the chromatogram, for each carbon number of the linear saturated hydrocarbon, two local minimum points existing on both sides of the peak attributed to the linear saturated hydrocarbon are selected, and the following formula (2 ), The method according to any one of claims 1 to 3, further comprising a third step of calculating a content ratio of the linear saturated hydrocarbon in the saturated hydrocarbon composition.
C L = S L / S A × 100 (2)
[Wherein C L represents the content (unit: mass%) of the linear saturated hydrocarbon in the saturated hydrocarbon composition, S A represents the total peak area in the gas chromatogram, and S L represents The area of the closed region formed by the line segment connecting the two minimum points selected in the third step and the peak curve attributed to the straight chain saturated hydrocarbon having n carbon atoms is defined as the straight chain. The total value of the total number of carbon atoms of the saturated hydrocarbon is shown. ]
下記式(3)に基づいて、前記炭化水素飽和生成物に占める分岐鎖状飽和炭化水素の含有割合を算出する第4のステップを更に備える、請求項1〜4のいずれか一項に記載の方法。
=100−(C+C) (3)
[式中、Cは前記飽和炭化水素組成物に占める前記分岐鎖状飽和炭化水素の含有割合(単位:質量%)を示し、Cは前記飽和炭化水素組成物に占める前記環状飽和炭化水素の含有割合(単位:質量%)を示し、Cは前記飽和炭化水素組成物に占める前記直鎖状飽和炭化水素の含有割合(単位:質量%)を示す。]

5. The method according to claim 1, further comprising a fourth step of calculating a content ratio of the branched chain saturated hydrocarbon in the saturated hydrocarbon product based on the following formula (3). Method.
C B = 100− (C N + C L ) (3)
[Wherein, C B is the branched saturated content of hydrocarbons accounts for the saturated hydrocarbon composition (unit: mass%) indicates, the cyclic saturated hydrocarbon C N is occupied in the saturated hydrocarbon composition the proportion (unit: mass%) indicates, C L is the proportion of the straight-chain saturated hydrocarbon occupied in the saturated hydrocarbon composition: shows the (unit weight%). ]

JP2010096817A 2010-04-20 2010-04-20 Method for analyzing composition of hydrocarbon composition Active JP5555529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096817A JP5555529B2 (en) 2010-04-20 2010-04-20 Method for analyzing composition of hydrocarbon composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096817A JP5555529B2 (en) 2010-04-20 2010-04-20 Method for analyzing composition of hydrocarbon composition

Publications (2)

Publication Number Publication Date
JP2011226911A true JP2011226911A (en) 2011-11-10
JP5555529B2 JP5555529B2 (en) 2014-07-23

Family

ID=45042418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096817A Active JP5555529B2 (en) 2010-04-20 2010-04-20 Method for analyzing composition of hydrocarbon composition

Country Status (1)

Country Link
JP (1) JP5555529B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142558A (en) * 1981-02-28 1982-09-03 Shimadzu Corp Measurement of boiling point distribution for oil or the like
JPS59228163A (en) * 1983-05-31 1984-12-21 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Separating column for gas chromatography
JPS625179A (en) * 1985-06-28 1987-01-12 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Chromatographic analyzer
JPH03128458A (en) * 1989-10-13 1991-05-31 Tosoh Corp Method and apparatus for analyzing hydrocarbons
JPH0462470A (en) * 1990-06-30 1992-02-27 Shimadzu Corp Measurement data processing method
JPH04294274A (en) * 1991-03-22 1992-10-19 Shimadzu Corp Data processing apparatus for chromatograph
JPH05113431A (en) * 1991-10-22 1993-05-07 Yokogawa Electric Corp Pipna measuring apparatus
JP2010037421A (en) * 2008-08-04 2010-02-18 Nippon Oil Corp Lubricating oil composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142558A (en) * 1981-02-28 1982-09-03 Shimadzu Corp Measurement of boiling point distribution for oil or the like
JPS59228163A (en) * 1983-05-31 1984-12-21 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Separating column for gas chromatography
JPS625179A (en) * 1985-06-28 1987-01-12 シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− Chromatographic analyzer
JPH03128458A (en) * 1989-10-13 1991-05-31 Tosoh Corp Method and apparatus for analyzing hydrocarbons
JPH0462470A (en) * 1990-06-30 1992-02-27 Shimadzu Corp Measurement data processing method
JPH04294274A (en) * 1991-03-22 1992-10-19 Shimadzu Corp Data processing apparatus for chromatograph
JPH05113431A (en) * 1991-10-22 1993-05-07 Yokogawa Electric Corp Pipna measuring apparatus
JP2010037421A (en) * 2008-08-04 2010-02-18 Nippon Oil Corp Lubricating oil composition

Also Published As

Publication number Publication date
JP5555529B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
Blomberg et al. Gas chromatographic methods for oil analysis
Alam et al. Using variable ionization energy time-of-flight mass spectrometry with comprehensive GC× GC to identify isomeric species
Panda et al. Characterization of aromatic hydrocarbons and sulfur heterocycles in Saudi Arabian heavy crude oil by gel permeation chromatography and ultrahigh resolution mass spectrometry
Hourani et al. Structural level characterization of base oils using advanced analytical techniques
Alam et al. Mapping and quantifying isomer sets of hydrocarbons (≥ C 12) in diesel exhaust, lubricating oil and diesel fuel samples using GC× GC-ToF-MS
Fontanive et al. Characterization of sulfur and nitrogen compounds in Brazilian petroleum derivatives using ionic liquid capillary columns in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection
Wu et al. ESI FT-ICR mass spectral analysis of coal liquefaction products
Zhou et al. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry
Kim et al. Combination of ring type HPLC separation, ultrahigh-resolution mass spectrometry, and high field NMR for comprehensive characterization of crude oil compositions
CN110646556B (en) Method for analyzing components of organic sample
Garaniya et al. Extensive chemical characterization of a heavy fuel oil
Panda et al. β-Cyclodextrin as a stationary phase for the group separation of polycyclic aromatic compounds in normal-phase liquid chromatography
JP5508837B2 (en) Heavy oil component analysis method
Kim et al. Characterization of petroleum heavy oil fractions prepared by preparatory liquid chromatography with thin-layer chromatography, high-resolution mass spectrometry, and gas chromatography with an atomic emission detector
França et al. Molecular-level characterization of Brazilian pre-salt crude oils by advanced analytical techniques
Fialkov et al. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry—The novel concept of isomer abundance analysis
Panda et al. Determination of heavy polycyclic aromatic hydrocarbons by non-aqueous reversed phase liquid chromatography: Application and limitation in refining streams
Djokic et al. Combined characterization using HT-GC× GC-FID and FT-ICR MS: A pyrolysis fuel oil case study
Smit et al. Investigating the trace polar species present in diesel using high-resolution mass spectrometry and selective ionization techniques
Johnson Applications of mass spectrometric techniques to the analysis of fuels and lubricants
Niyonsaba et al. Determination of the chemical compositions of heavy, medium, and light crude oils by using the Distillation, Precipitation, Fractionation Mass Spectrometry (DPF MS) method
Chainet et al. Characterization of silicon species issued from PDMS degradation under thermal cracking of hydrocarbons: Part 2–Liquid samples analysis by a multi-technical approach based on gas chromatography and mass spectrometry
JP2018169357A (en) Method and program for approximately specifying molecular structure of multicomponent mixture (csa1s)
US5644129A (en) Direct analysis of paraffin and naphthene types in hydrocarbon
JP5555529B2 (en) Method for analyzing composition of hydrocarbon composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5555529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250