JP2011226783A - Nuclear power plant - Google Patents

Nuclear power plant Download PDF

Info

Publication number
JP2011226783A
JP2011226783A JP2010093652A JP2010093652A JP2011226783A JP 2011226783 A JP2011226783 A JP 2011226783A JP 2010093652 A JP2010093652 A JP 2010093652A JP 2010093652 A JP2010093652 A JP 2010093652A JP 2011226783 A JP2011226783 A JP 2011226783A
Authority
JP
Japan
Prior art keywords
valve
turbine
turbine bypass
main steam
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010093652A
Other languages
Japanese (ja)
Other versions
JP5457256B2 (en
Inventor
Kazuaki Kito
和明 木藤
Tomohiko Ikegawa
智彦 池側
Yoshihiko Ishii
佳彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2010093652A priority Critical patent/JP5457256B2/en
Publication of JP2011226783A publication Critical patent/JP2011226783A/en
Application granted granted Critical
Publication of JP5457256B2 publication Critical patent/JP5457256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To reduce the rise width of the reactor pressure in case of occurrence of a load loss event.SOLUTION: In an atomic power plant which is provided with a containment vessel containing a nuclear reactor, a main steam piping connecting the nuclear reactor to a turbine, a condenser which condenses steam emitted from the turbine, a feedwater pump which drives cooling water supplied by the condenser to the nuclear reactor, separation valves placed before and after a penetration part of the main steam piping which penetrates the containment vessel, a relief safety valve placed on the main steam piping between the separation valves and the nuclear reactor, a steam adjustment valve placed on the main steam piping between the separation valves and the turbine, a turbine bypass piping that connects the main steam piping between the steam adjustment valve and the separation valves to the condenser, and a turbine bypass valve placed on the turbine bypass piping, a turbine bypass safety valve which is opened by pressure difference between the upstream and the downstream is provided on the main steam piping between the steam adjustment valve and the separation valves, and emits steam into the condenser.

Description

本発明は、沸騰水型原子力発電プラントに関する。   The present invention relates to a boiling water nuclear power plant.

沸騰水型原子力発電プラントは、原子炉で発生した蒸気を、主蒸気配管を通して高圧タービン及び低圧タービンに供給し、これらのタービンを回転させて発電機を回し、発電している。低圧タービンから排気された蒸気は、復水器で凝縮されて水になる。   In boiling water nuclear power plants, steam generated in a nuclear reactor is supplied to a high-pressure turbine and a low-pressure turbine through main steam piping, and these turbines are rotated to generate electricity. The steam exhausted from the low-pressure turbine is condensed into water by the condenser.

係る沸騰水型原子力発電プラントでは、原子炉圧力が上昇すると、炉心部の蒸気が圧縮されて蒸気体積割合が小さくなり、中性子の減速が促進されて炉心の出力が上昇する場合がある。   In such a boiling water nuclear power plant, when the reactor pressure rises, the steam in the core portion is compressed, the steam volume ratio becomes smaller, the neutron deceleration is promoted, and the core output may increase.

このような現象が起こり得る代表的な異常な過渡事象は、負荷喪失事象(負荷遮断事象とも呼ばれる)である。負荷喪失事象は送電線の断線などにより、発電機の負荷が喪失する事象である。   A typical abnormal transient that can cause such a phenomenon is a load loss event (also called a load shedding event). The load loss event is an event in which the load on the generator is lost due to disconnection of the transmission line.

負荷喪失事象が発生すると、発電機によるタービンの回転抵抗が減少するため、タービンの回転速度が増加する。タービンの回転速度上昇によるタービンの損傷を回避するため、タービン入口に設けられた蒸気加減弁を急閉してタービンを保護する。タービンへの蒸気供給が止まることでタービンの回転速度上昇は回避されるが、原子炉で発生した蒸気の放出先が無くなるため、原子炉圧力は上昇することになる。   When a load loss event occurs, the rotational speed of the turbine is increased because the rotational resistance of the turbine due to the generator decreases. In order to avoid damage to the turbine due to an increase in the rotational speed of the turbine, the steam control valve provided at the turbine inlet is closed rapidly to protect the turbine. When the supply of steam to the turbine is stopped, an increase in the rotational speed of the turbine is avoided, but the destination of the steam generated in the reactor is eliminated, and the reactor pressure increases.

この原子炉圧力の上昇に対し、負荷喪失事象時は、通常は原子炉で発生した蒸気を、タービンを通さずに復水器に導くタービンバイパス弁を開放する。これにより、原子炉の圧力上昇が抑制される。   In response to this increase in reactor pressure, during a load loss event, the turbine bypass valve that normally directs steam generated in the reactor to the condenser without passing through the turbine is opened. Thereby, the pressure rise of a nuclear reactor is suppressed.

これに対し、原子炉安全対策上は、タービンバイパス弁の開放に失敗することも想定しており、この場合には、最終的に逃し安全弁の安全弁機能が作動することで原子炉の圧力上昇を抑制する。   On the other hand, the reactor safety measures also assume that the turbine bypass valve will fail to open, and in this case, the safety valve function of the relief safety valve will eventually operate to increase the reactor pressure. Suppress.

然しながら、逃し安全弁は原子炉格納容器内に設置された弁であり、これが開くと格納容器内部に放射性物質が放出されることになる。この事後対策として、メンテナンス作業のための除洗が必要になる場合があるため、小さな圧力変動で逃し安全弁が開放しないように、逃し安全弁の安全弁機能の開放圧力の設定値は、原子炉の安全性を十分に確保可能な範囲で高い値に設定される。なお負荷喪失事象時には、タービンバイパス弁不作動を仮定しても原子炉の安全性を確保可能であることが必須となっている。   However, the relief safety valve is a valve installed in the reactor containment vessel, and when it is opened, radioactive material is released into the containment vessel. As a post-measure, it may be necessary to perform cleaning for maintenance work.To prevent the relief safety valve from opening due to small pressure fluctuations, the set value of the release pressure for the safety valve function of the relief safety valve is It is set to a high value within a range that can sufficiently secure the property. In the event of a load loss event, it is essential that the safety of the reactor can be ensured even if the turbine bypass valve is inoperative.

負荷喪失事象発生時の原子炉圧力上昇を現行システムよりも小さくする目的で、格納容器内部に蒸気逃し加減弁を設置することが、特許文献1で提案されている。   For the purpose of making the reactor pressure rise at the time of a load loss event smaller than that of the current system, it is proposed in Patent Document 1 to install a steam escape control valve inside the containment vessel.

また、負荷喪失事象発生時のタービン保護を確実にする目的で、低圧タービン入口部から復水器につながる新たなタービンバイパス配管を設置することが、特許文献2で提案されている。   Further, Patent Document 2 proposes to install a new turbine bypass pipe connected from the low-pressure turbine inlet to the condenser for the purpose of ensuring turbine protection when a load loss event occurs.

特開昭60−36987号公報JP-A-60-36987 特開平5−65805号公報JP-A-5-65805

特許文献1,2に記載の技術は、タービンバイパス弁が開いた場合には有効であるが、負荷喪失事象発生時に原子炉圧力が高くなるのは、タービンバイパス弁の開放に失敗した場合であり、この場合の原子炉圧力上昇の抑制には寄与しない。   The techniques described in Patent Documents 1 and 2 are effective when the turbine bypass valve is opened, but the reactor pressure increases when the load loss event occurs when the turbine bypass valve fails to open. In this case, it does not contribute to the suppression of the reactor pressure rise.

これに対し、原子炉安全対策上は、タービンバイパス弁の不作動を仮定することは必須項目である。タービンバイパス弁の開放に失敗した場合の原子炉圧力上昇を抑制できれば、負荷喪失事象発生時の原子炉出力上昇と、それに伴う熱的余裕の減少を抑制でき、さらなる原子炉熱出力の向上が可能となる。   On the other hand, it is indispensable to assume that the turbine bypass valve does not operate in terms of reactor safety measures. If the increase in reactor pressure in the event of failure to open the turbine bypass valve can be suppressed, the increase in reactor power at the time of a load loss event and the associated decrease in thermal margin can be suppressed, and further increase in reactor heat output can be achieved. It becomes.

以上のことから本発明では、負荷喪失事象発生時にタービンバイパス弁の開放に失敗した場合であっても、原子炉圧力上昇幅を抑制可能な手段を提供することを目的とする。   In view of the above, an object of the present invention is to provide means capable of suppressing the increase in the reactor pressure even when the opening of the turbine bypass valve fails when a load loss event occurs.

上記目的を達成するため本発明は、原子炉を含む格納容器と、原子炉とタービンとを接続する主蒸気配管と、タービンから排出された蒸気を凝縮する復水器と、復水器から原子炉に供給される冷却水を駆動する給水ポンプと、主蒸気配管の格納容器貫通部前後に設置された隔離弁と、隔離弁と原子炉の間の主蒸気配管上に設置された逃し安全弁と、隔離弁とタービンの間の主蒸気配管上に設置された蒸気加減弁と、蒸気加減弁と隔離弁の間の主蒸気配管上から復水器までを接続するタービンバイパス配管と、タービンバイパス配管上に設置されたタービンバイパス弁を備える原子力発電プラントにおいて、蒸気加減弁と隔離弁の間の主蒸気配管上に上流側と下流側の圧力差によって開放するタービンバイパス安全弁を備え、タービンバイパス安全弁の蒸気放出先を前記復水器側とする。   In order to achieve the above object, the present invention includes a containment vessel including a nuclear reactor, a main steam pipe connecting the nuclear reactor and the turbine, a condenser for condensing the steam discharged from the turbine, and an atom from the condenser. A feed water pump for driving the cooling water supplied to the reactor, an isolation valve installed before and after the main vessel piping containment, and a relief safety valve installed on the main steam piping between the isolation valve and the reactor A steam control valve installed on the main steam pipe between the isolation valve and the turbine, a turbine bypass pipe for connecting from the main steam pipe between the steam control valve and the isolation valve to the condenser, and a turbine bypass pipe In a nuclear power plant having a turbine bypass valve installed above, a turbine bypass safety valve is provided on the main steam pipe between the steam control valve and the isolation valve, and is opened by a pressure difference between the upstream side and the downstream side. The vapor emission destination Zenben to the condenser side.

また、タービンバイパス安全弁の下流側を、タービンバイパス配管に接続するのがよい。   Moreover, it is good to connect the downstream side of a turbine bypass safety valve to turbine bypass piping.

また、タービンバイパス安全弁の開放設定圧力は、逃し安全弁の安全弁機能の開放設定圧力の最低値よりも小さくするのがよい。   Further, it is preferable that the opening set pressure of the turbine bypass safety valve is smaller than the minimum value of the opening set pressure of the safety valve function of the relief safety valve.

また、タービンバイパス安全弁は、弁の上流側と下流側の圧力差により、外部からの駆動力や開信号無しに開く弁とするのがよい。   The turbine bypass safety valve is preferably a valve that opens without an external driving force or an open signal due to a pressure difference between the upstream side and the downstream side of the valve.

上記目的を達成するため本発明は、原子炉を含む格納容器と、原子炉とタービンとを接続する主蒸気配管と、タービンから排出された蒸気を凝縮する復水器と、復水器から原子炉に供給される冷却水を駆動する給水ポンプと、主蒸気配管の格納容器貫通部前後に設置された隔離弁と、隔離弁と原子炉の間の主蒸気配管上に設置された逃し安全弁と、隔離弁とタービンの間の主蒸気配管上に設置された蒸気加減弁とを備える原子力発電プラントにおいて、蒸気加減弁と隔離弁の間の主蒸気配管上から復水器までを接続するタービンバイパス配管上に、制御弁であるタービンバイパス弁と、上流側と下流側の圧力差によって開放し、非制御弁であるタービンバイパス安全弁を並置する。   In order to achieve the above object, the present invention includes a containment vessel including a nuclear reactor, a main steam pipe connecting the nuclear reactor and the turbine, a condenser for condensing the steam discharged from the turbine, and an atom from the condenser. A feed water pump for driving the cooling water supplied to the reactor, an isolation valve installed before and after the main vessel piping containment, and a relief safety valve installed on the main steam piping between the isolation valve and the reactor In a nuclear power plant having a steam control valve installed on the main steam pipe between the isolation valve and the turbine, a turbine bypass connecting the main steam pipe between the steam control valve and the isolation valve to the condenser A turbine bypass valve, which is a control valve, and a turbine bypass safety valve, which is a non-control valve, are juxtaposed on the pipe due to a pressure difference between the upstream side and the downstream side.

本発明によれば、負荷喪失事象発生時の原子力発電プラントの安全余裕が増大し、増加した安全余裕を活用して熱出力を向上できる。   According to the present invention, the safety margin of the nuclear power plant when a load loss event occurs is increased, and the increased safety margin can be utilized to improve the heat output.

本発明の沸騰水型原子力発電プラントの構成図である。It is a block diagram of the boiling water nuclear power plant of this invention. 本発明の沸騰水型原子力発電プラントの構成図である。It is a block diagram of the boiling water nuclear power plant of this invention.

本発明者らは、負荷喪失事象発生時にタービンバイパス弁の開放に失敗した場合であっても、原子炉圧力上昇を抑制可能な手段について検討した。   The present inventors examined means that can suppress the increase in the reactor pressure even when the opening of the turbine bypass valve fails when a load loss event occurs.

この結果、原子炉からの蒸気をタービンを介さずに復水器に導くタービンバイパス弁に着目した。然るに、このタービンバイパス弁は、原子炉起動時に使用されるため、外部動力により開閉可能な制御弁とする必要がある。このため、原子炉圧力上昇を抑制可能な手段として使用するには、原子炉の安全確保の観点からは、外部動力の喪失や制御系の故障を考慮することが必須となる。つまり、タービンバイパス弁に対しても、その不作動対策が新たに必要となる。   As a result, we focused on the turbine bypass valve that guides steam from the reactor to the condenser without going through the turbine. However, since this turbine bypass valve is used when the nuclear reactor is started, it is necessary to use a control valve that can be opened and closed by external power. For this reason, in order to use as a means capable of suppressing the increase in the reactor pressure, it is essential to consider the loss of external power and the failure of the control system from the viewpoint of ensuring the safety of the reactor. That is, a countermeasure against the malfunction is also required for the turbine bypass valve.

一方、隔離弁より上流(原子炉側)に設置する逃し安全弁は、圧力上昇時に確実に動作させることが可能である。しかし、開放圧力をタービンから原子炉までの主蒸気管の圧損分だけ高い圧力に設定する必要があり、また解放時には格納容器内に放射性物質が放出されるという課題があった。   On the other hand, the relief safety valve installed upstream (reactor side) from the isolation valve can be reliably operated when the pressure rises. However, it is necessary to set the open pressure to a pressure that is higher than the pressure loss of the main steam pipe from the turbine to the reactor, and there is a problem that radioactive material is released into the containment vessel at the time of release.

本発明者らは圧力上昇時に確実に動作可能で、かつ開放圧力を低く設定可能な原子炉の過圧防止弁を検討した結果、隔離弁と主蒸気加減弁の間の主蒸気配管上にタービンバイパス安全弁を設置すればよいとの新たな知見を見出した。   The present inventors have studied a reactor overpressure prevention valve that can operate reliably when the pressure rises and can set the open pressure low, and as a result, a turbine is installed on the main steam pipe between the isolation valve and the main steam control valve. A new finding was found that a bypass safety valve should be installed.

これにより、負荷喪失事象発生時にタービンバイパス弁の開放に失敗した場合であっても、従来の格納容器内部に設置した逃し安全弁のみを用いる場合よりも原子炉圧力の上昇幅を効果的に抑制できる。   Thereby, even if it is a case where opening of a turbine bypass valve fails at the time of load loss event occurrence, the rise of a reactor pressure can be controlled more effectively than the case where only the relief safety valve installed in the conventional containment vessel is used. .

上記の検討結果を反映した、本発明の実施例を以下に説明する。   Examples of the present invention reflecting the above examination results will be described below.

本発明の好適な一実施例である沸騰水型原子力発電プラントを、図1を用いて説明する。   A boiling water nuclear power plant that is a preferred embodiment of the present invention will be described with reference to FIG.

沸騰水型原子力発電プラントは、大きく原子炉側設備とタービン側設備に分かれており、この間に蒸気系統と給水系統が設置される。原子炉側設備は、格納容器3内に蒸気発生装置である原子炉2を収納し、タービン側設備は高圧タービン5、低圧タービン6、復水器7などで構成される。   A boiling water nuclear power plant is roughly divided into a reactor-side facility and a turbine-side facility, and a steam system and a water supply system are installed between them. The reactor side equipment accommodates the reactor 2 which is a steam generator in the containment vessel 3, and the turbine side equipment includes a high pressure turbine 5, a low pressure turbine 6, a condenser 7, and the like.

給水系統は、復水器7からの復水を給水として給水加熱器8、給水ポンプ9を介して原子炉に供給する。   The feed water system supplies the condensate from the condenser 7 as feed water to the nuclear reactor through the feed water heater 8 and the feed water pump 9.

これに対し、蒸気系統は主蒸気配管4、タービンバイパス配管13などからなり、これら配管上には原子炉圧力を左右する各種機能の弁装置が設置されている。これらの弁の設置箇所と本来機能は以下のようである。   On the other hand, the steam system includes a main steam pipe 4, a turbine bypass pipe 13, and the like, and valve devices having various functions that influence the reactor pressure are installed on these pipes. The locations and functions of these valves are as follows.

蒸気加減弁12:高圧タービン5の入口に設置され、高圧タービン5に供給する蒸気量を調整する。   Steam control valve 12: It is installed at the inlet of the high-pressure turbine 5 and adjusts the amount of steam supplied to the high-pressure turbine 5.

隔離弁10:原子炉2から高圧タービン5へとつながる主蒸気配管4が格納容器3を貫通する部分の前後に設置される。原子炉格納容器3より外部の主蒸気配管4が破断した場合に、隔離弁10を閉じることで原子炉内部の放射性物質が格納容器外部の破断口から継続的に放出されるのを防止する。   Isolation valve 10: A main steam pipe 4 connected from the nuclear reactor 2 to the high-pressure turbine 5 is installed before and after a portion penetrating the containment vessel 3. When the main steam pipe 4 outside the reactor containment vessel 3 is broken, the isolation valve 10 is closed to prevent the radioactive material inside the reactor from being continuously released from the break opening outside the containment vessel.

逃し安全弁11:原子炉2と隔離弁10の間に設置される。原子炉2の圧力が過度に上昇した場合には逃し安全弁11を開くことで、原子炉2内部の蒸気を格納容器3内に放出して原子炉2の圧力上昇を抑制する。逃し安全弁11を通して放出された蒸気は格納容器3内に閉じこめられるため、外部に放出されることは無い。逃し安全弁11からの蒸気放出先が格納容器3内部であることと、隔離弁10閉止時でも逃し安全弁11が作動するようにするため、逃し安全弁11は隔離弁10より上流側の原子炉格納容器3内部に設置する必要がある。なお、逃し安全弁11とは、原子炉2の圧力上昇などを検知して、制御系から発信された開信号を受けて電気駆動や高圧ガス駆動で開く逃し弁と、逃し弁が作動せず、原子炉圧力がさらに高くなった場合に、弁の上流側と下流側の差圧によって外部からの駆動力や開信号無しに開く安全弁を組み合わせた弁である。   Relief safety valve 11: installed between the reactor 2 and the isolation valve 10. When the pressure of the nuclear reactor 2 rises excessively, the relief safety valve 11 is opened to release the steam inside the nuclear reactor 2 into the containment vessel 3 to suppress the pressure rise of the nuclear reactor 2. Since the vapor | steam discharge | released through the relief safety valve 11 is confined in the storage container 3, it is not discharge | released outside. The safety valve 11 is located upstream of the isolation valve 10 so that the steam discharge destination from the safety valve 11 is inside the containment vessel 3 and the relief safety valve 11 operates even when the isolation valve 10 is closed. 3 must be installed inside. The relief valve 11 is a relief valve that detects an increase in the pressure of the nuclear reactor 2 and receives an opening signal transmitted from the control system and opens by electric drive or high-pressure gas drive, and the relief valve does not operate. This is a valve that combines a safety valve that opens without a driving force or an open signal from the outside due to the differential pressure between the upstream side and downstream side of the valve when the reactor pressure becomes higher.

タービンバイパス弁14:隔離弁10と蒸気加減弁12の間の主蒸気配管4から蒸気を抜き取り、復水器7に蒸気を送るタービンバイパス配管13上に設置されている。タービンバイパス弁14は通常は閉じているが、蒸気加減弁4が閉止した場合には、タービンバイパス弁14を開いて、主蒸気配管4の蒸気を復水器7に逃がす。隔離弁10が開いている場合には、タービンバイパス弁14を開くことによっても原子炉の圧力上昇を抑制できる。   Turbine bypass valve 14: installed on a turbine bypass pipe 13 that extracts steam from the main steam pipe 4 between the isolation valve 10 and the steam control valve 12 and sends the steam to the condenser 7. Although the turbine bypass valve 14 is normally closed, when the steam control valve 4 is closed, the turbine bypass valve 14 is opened, and the steam in the main steam pipe 4 is released to the condenser 7. When the isolation valve 10 is open, the pressure increase in the reactor can also be suppressed by opening the turbine bypass valve 14.

以上説明した装置構成は、従来の沸騰水型原子力発電プラントが備えているものであり、本実施例の沸騰水型発電プラントでは、さらに蒸気加減弁12と隔離弁10の間の主蒸気配管4上にタービンバイパス安全弁15を設置し、タービンバイパス安全弁15の蒸気放出先を復水器7としている。   The apparatus configuration described above is provided in a conventional boiling water nuclear power plant. In the boiling water power plant of this embodiment, the main steam pipe 4 between the steam control valve 12 and the isolation valve 10 is further provided. A turbine bypass safety valve 15 is installed above the steam discharge destination of the turbine bypass safety valve 15 as the condenser 7.

タービンバイパス安全弁15の主蒸気配管4上の設置位置は、タービンバイパス配管13の主蒸気配管4上の設置位置の上流側でも下流側でも良い。また、タービンバイパス安全弁15は、逃し安全弁11の補助的な役割を担う弁であるため、タービンバイパス安全弁15の容量(弁1体あたりの流路断面積、または弁の個数、またはその両方)は、逃し安全弁11の容量よりも小さくて良い。   The installation position of the turbine bypass safety valve 15 on the main steam pipe 4 may be upstream or downstream of the installation position of the turbine bypass pipe 13 on the main steam pipe 4. Further, since the turbine bypass safety valve 15 is a valve that plays an auxiliary role of the relief safety valve 11, the capacity of the turbine bypass safety valve 15 (the cross-sectional area of the flow path per valve, the number of valves, or both) is The capacity of the relief safety valve 11 may be smaller.

さらに、タービンバイパス安全弁15の開放設定圧力は、逃し安全弁11の安全弁機能の開放圧力よりも小さく設定すると、圧力上昇抑制効果を向上できる。   Furthermore, if the opening setting pressure of the turbine bypass safety valve 15 is set smaller than the opening pressure of the safety valve function of the relief safety valve 11, the effect of suppressing the pressure rise can be improved.

また、タービンバイパス安全弁15は、バネ式弁など、弁の上流側と下流側の圧力差によって、外部からの駆動力や開信号無しに開く静的な機構を持つ弁とすると、タービンバイパス安全弁15の作動確率を向上できる。   Further, when the turbine bypass safety valve 15 is a valve having a static mechanism that opens without a driving force or an open signal from the outside due to a pressure difference between the upstream side and the downstream side of the valve, such as a spring type valve, the turbine bypass safety valve 15 The operation probability of can be improved.

本発明により追加されたタービンバイパス安全弁15は、以上のようなものであるが、これを同じく主蒸気配管4から復水器7に至るタービンバイパス系統に設置されるタービンバイパス弁14との関係で比較検証してみると、以下のような機能上の相違がある。   The turbine bypass safety valve 15 added according to the present invention is as described above, but this is also related to the turbine bypass valve 14 installed in the turbine bypass system from the main steam pipe 4 to the condenser 7. In comparison and verification, there are the following functional differences.

負荷喪失事象発生時の安全性を確認する場合、原子炉の安全性を確実に確保する観点から、外部動力により駆動される制御弁であるタービンバイパス弁14の作動は、不作動を仮定する必要がある。つまり、制御弁を駆動する系統の異常により、不作動となることを想定する必要がある。この点、本発明のタービンバイパス安全弁15は、先に述べたように例えばバネ式弁であり、弁の上流側と下流側の圧力差によって、開放する機構を持つ弁であるため、作動確率を向上できる。   When confirming safety when a load loss event occurs, it is necessary to assume that the operation of the turbine bypass valve 14, which is a control valve driven by external power, is inoperative from the viewpoint of ensuring the safety of the reactor. There is. That is, it is necessary to assume that the system becomes inoperative due to an abnormality in the system that drives the control valve. In this respect, the turbine bypass safety valve 15 of the present invention is, for example, a spring-type valve as described above, and is a valve having a mechanism that is opened by a pressure difference between the upstream side and the downstream side of the valve. It can be improved.

又、従来の最終の安全機能弁であった逃し安全弁11との関係で整理すると、以下のようである。負荷喪失事象が発生し、蒸気加減弁12が閉止した後、タービンバイパス弁14が開かなかった場合、従来の沸騰水型発電プラントでは、最悪の場合は逃し安全弁11の安全弁機能の開放設定圧力まで原子炉圧力は上昇する。   Moreover, it is as follows when it arranges in relation with the relief safety valve 11 which was the last conventional safety function valve. If the turbine bypass valve 14 is not opened after the load loss event occurs and the steam control valve 12 is closed, in the conventional boiling water power plant, in the worst case, up to the opening set pressure of the safety valve function of the relief safety valve 11 Reactor pressure increases.

然しながら、逃し安全弁11は通常運転中は開放しないようにする必要があるため、開放圧力は少なくとも、通常時のタービン入口圧力に、タービン入口から逃し安全弁までの主蒸気管圧損を加えた圧力よりも高く設定する必要がある。ところが、逃し安全弁11は隔離弁10より上流側(原子炉側)に設置する必要があるため、考慮すべき主蒸気管圧損がかなり大きく、設定可能な開放圧力は高くならざるを得ない。   However, since it is necessary to prevent the relief safety valve 11 from opening during normal operation, the release pressure is at least higher than the normal turbine inlet pressure plus the main steam pipe pressure loss from the turbine inlet to the relief safety valve. It needs to be set high. However, since the relief safety valve 11 needs to be installed on the upstream side (reactor side) from the isolation valve 10, the main steam pipe pressure loss to be taken into consideration is considerably large, and the open pressure that can be set must be increased.

この開放設定圧力に関して、本発明のタービンバイパス安全弁15は、隔離弁より下流側(タービン側)に設置するため、考慮すべき主蒸気管圧損は小さくて良く、逃し安全弁11よりも相当低く設定できる。   With respect to this open set pressure, the turbine bypass safety valve 15 of the present invention is installed on the downstream side (turbine side) of the isolation valve, so that the main steam pipe pressure loss to be considered may be small and can be set considerably lower than the relief safety valve 11. .

この結果、本発明の沸騰水型発電プラントでは、原子炉圧力はタービンバイパス安全弁15の開放設定圧力までしか上昇せず、圧力上昇幅を小さくできる。   As a result, in the boiling water power plant of the present invention, the reactor pressure only rises up to the set opening pressure of the turbine bypass safety valve 15, and the pressure increase width can be reduced.

本発明の他の一実施例を、図2を用いて説明する。図2の事例では、タービンバイパス安全弁15の蒸気放出先を、復水器7からタービンバイパス配管13上のタービンバイパス弁14より下流側(復水器側)に変更している。   Another embodiment of the present invention will be described with reference to FIG. In the case of FIG. 2, the steam discharge destination of the turbine bypass safety valve 15 is changed from the condenser 7 to the downstream side (condenser side) from the turbine bypass valve 14 on the turbine bypass pipe 13.

このような接続方法をとることで、タービンバイパス安全弁15を設置することによる配管の物量増加を抑制することができる。   By taking such a connection method, an increase in the amount of piping due to the installation of the turbine bypass safety valve 15 can be suppressed.

また、タービンバイパス弁14とタービンバイパス安全弁15を一体として製作しても良い。   Further, the turbine bypass valve 14 and the turbine bypass safety valve 15 may be manufactured integrally.

なお、このタービンバイパス安全弁15は、上流側と下流側の圧力差によって開放し、いわゆる制御弁ではなく、非制御弁というべきものである。これに対し、タービンバイパス弁は、制御弁であり、本発明は制御弁と、非制御弁をタービンバイパス系統13に並置したものということができる。   The turbine bypass safety valve 15 is opened by a pressure difference between the upstream side and the downstream side, and should be a non-control valve rather than a so-called control valve. On the other hand, the turbine bypass valve is a control valve, and in the present invention, it can be said that the control valve and the non-control valve are juxtaposed in the turbine bypass system 13.

以上、図1、図2のいずれの場合であってもタービンバイパス弁14の蒸気放出先は復水器側であればよい。バイパス配管を完全に2系統備えるか、一部流用するかという違いである。   1 and 2, the steam discharge destination of the turbine bypass valve 14 may be on the condenser side. The difference is whether two bypass pipes are completely provided or a part of the bypass pipe is used.

本発明は、沸騰水型原子力発電プラント等の原子力発電プラントに適用することができる。   The present invention can be applied to a nuclear power plant such as a boiling water nuclear power plant.

1…沸騰水型原子力発電プラント
2…原子炉
3…格納容器
4…主蒸気配管
5…高圧タービン
6…低圧タービン
7…復水器
8…給水加熱器
9…給水ポンプ
10…隔離弁
11…逃し安全弁
12…蒸気加減弁
13…タービンバイパス配管
14…タービンバイパス弁
15…タービンバイパス安全弁
DESCRIPTION OF SYMBOLS 1 ... Boiling water nuclear power plant 2 ... Reactor 3 ... Containment vessel 4 ... Main steam piping 5 ... High pressure turbine 6 ... Low pressure turbine 7 ... Condenser 8 ... Feed water heater 9 ... Feed water pump 10 ... Isolation valve 11 ... Relief Safety valve 12 ... Steam control valve 13 ... Turbine bypass piping 14 ... Turbine bypass valve 15 ... Turbine bypass safety valve

Claims (5)

原子炉を含む格納容器と、前記原子炉とタービンとを接続する主蒸気配管と、前記タービンから排出された蒸気を凝縮する復水器と、該復水器から前記原子炉に供給される冷却水を駆動する給水ポンプと、前記主蒸気配管の前記格納容器貫通部前後に設置された隔離弁と、該隔離弁と前記原子炉の間の主蒸気配管上に設置された逃し安全弁と、前記隔離弁と前記タービンの間の主蒸気配管上に設置された蒸気加減弁と、該蒸気加減弁と前記隔離弁の間の主蒸気配管上から前記復水器までを接続するタービンバイパス配管と、該タービンバイパス配管上に設置されたタービンバイパス弁を備える原子力発電プラントにおいて、
前記蒸気加減弁と前記隔離弁の間の主蒸気配管上に上流側と下流側の圧力差によって開放するタービンバイパス安全弁を備え、該タービンバイパス安全弁の蒸気放出先は前記復水器側であることを特徴とする原子力発電プラント。
A containment vessel including a nuclear reactor, a main steam pipe connecting the nuclear reactor and the turbine, a condenser for condensing steam discharged from the turbine, and cooling supplied from the condenser to the nuclear reactor A water supply pump for driving water, an isolation valve installed before and after the containment vessel penetration of the main steam pipe, a relief safety valve installed on the main steam pipe between the isolation valve and the reactor, A steam control valve installed on a main steam pipe between the isolation valve and the turbine; a turbine bypass pipe connecting the main steam pipe between the steam control valve and the isolation valve to the condenser; In a nuclear power plant including a turbine bypass valve installed on the turbine bypass pipe,
A turbine bypass safety valve that opens due to a pressure difference between the upstream side and the downstream side is provided on the main steam pipe between the steam control valve and the isolation valve, and the steam discharge destination of the turbine bypass safety valve is on the condenser side A nuclear power plant characterized by
請求項1の原子力発電プラントにおいて、
前記タービンバイパス安全弁の下流側を、前記タービンバイパス配管に接続することを特徴とする原子力発電プラント。
The nuclear power plant of claim 1,
A nuclear power plant, wherein a downstream side of the turbine bypass safety valve is connected to the turbine bypass pipe.
請求項1または請求項2記載の原子力発電プラントにおいて、
前記タービンバイパス安全弁の開放設定圧力は、前記逃し安全弁の安全弁機能の開放設定圧力の最低値よりも小さいことを特徴とする原子力発電プラント。
In the nuclear power plant according to claim 1 or 2,
The nuclear power plant, wherein an opening set pressure of the turbine bypass safety valve is smaller than a minimum opening setting pressure of the relief valve function of the relief valve.
請求項1または請求項2記載の原子力発電プラントにおいて、
前記タービンバイパス安全弁は、弁の上流側と下流側の圧力差により、外部からの駆動力や開信号無しに開く弁であることを特徴とする原子力発電プラント。
In the nuclear power plant according to claim 1 or 2,
The nuclear power plant according to claim 1, wherein the turbine bypass safety valve is a valve that opens without an external driving force or an open signal due to a pressure difference between the upstream side and the downstream side of the valve.
原子炉を含む格納容器と、前記原子炉とタービンとを接続する主蒸気配管と、前記タービンから排出された蒸気を凝縮する復水器と、該復水器から前記原子炉に供給される冷却水を駆動する給水ポンプと、前記主蒸気配管の前記格納容器貫通部前後に設置された隔離弁と、該隔離弁と前記原子炉の間の主蒸気配管上に設置された逃し安全弁と、前記隔離弁と前記タービンの間の主蒸気配管上に設置された蒸気加減弁とを備える原子力発電プラントにおいて、
前記蒸気加減弁と前記隔離弁の間の主蒸気配管上から前記復水器までを接続するタービンバイパス配管上に、制御弁であるタービンバイパス弁と、上流側と下流側の圧力差によって開放し、非制御弁であるタービンバイパス安全弁を並置することを特徴とする原子力発電プラント。
A containment vessel including a nuclear reactor, a main steam pipe connecting the nuclear reactor and the turbine, a condenser for condensing steam discharged from the turbine, and cooling supplied from the condenser to the nuclear reactor A water supply pump for driving water, an isolation valve installed before and after the containment vessel penetration of the main steam pipe, a relief safety valve installed on the main steam pipe between the isolation valve and the reactor, In a nuclear power plant comprising a steam control valve installed on a main steam pipe between an isolation valve and the turbine,
A turbine bypass valve that is a control valve and a pressure difference between the upstream side and the downstream side are opened on the turbine bypass pipe that connects the main steam pipe between the steam control valve and the isolation valve to the condenser. A nuclear power plant characterized by juxtaposing turbine bypass safety valves that are non-control valves.
JP2010093652A 2010-04-15 2010-04-15 Nuclear power plant Expired - Fee Related JP5457256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093652A JP5457256B2 (en) 2010-04-15 2010-04-15 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093652A JP5457256B2 (en) 2010-04-15 2010-04-15 Nuclear power plant

Publications (2)

Publication Number Publication Date
JP2011226783A true JP2011226783A (en) 2011-11-10
JP5457256B2 JP5457256B2 (en) 2014-04-02

Family

ID=45042314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093652A Expired - Fee Related JP5457256B2 (en) 2010-04-15 2010-04-15 Nuclear power plant

Country Status (1)

Country Link
JP (1) JP5457256B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557196A (en) * 1978-10-20 1980-04-26 Tokyo Shibaura Electric Co Steam release device of reactor
JPS5674698A (en) * 1979-11-22 1981-06-20 Tokyo Shibaura Electric Co Pressure release satety device of nuclear reactor
JPS6036987A (en) * 1983-08-10 1985-02-26 株式会社東芝 Bypass device for main steam of nuclear reactor
JPH0565805A (en) * 1991-03-13 1993-03-19 Toshiba Corp Control method for steam turbine and control device thereof
JPH0996695A (en) * 1995-10-02 1997-04-08 Hitachi Ltd Drain treating facility for nuclear reactor
JPH10325897A (en) * 1997-05-23 1998-12-08 Toshiba Corp Turbine controller
JP2001091689A (en) * 1999-09-27 2001-04-06 Yoshiaki Oka Starting method for supercritical pressure light water- cooled reactor
JP2001349983A (en) * 2000-06-12 2001-12-21 Toshiba Corp Method for operating boiling water nuclear power plant
JP2003344574A (en) * 2002-05-24 2003-12-03 Hitachi Ltd Natural circulation nuclear reactor system and operation method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557196A (en) * 1978-10-20 1980-04-26 Tokyo Shibaura Electric Co Steam release device of reactor
JPS5674698A (en) * 1979-11-22 1981-06-20 Tokyo Shibaura Electric Co Pressure release satety device of nuclear reactor
JPS6036987A (en) * 1983-08-10 1985-02-26 株式会社東芝 Bypass device for main steam of nuclear reactor
JPH0565805A (en) * 1991-03-13 1993-03-19 Toshiba Corp Control method for steam turbine and control device thereof
JPH0996695A (en) * 1995-10-02 1997-04-08 Hitachi Ltd Drain treating facility for nuclear reactor
JPH10325897A (en) * 1997-05-23 1998-12-08 Toshiba Corp Turbine controller
JP2001091689A (en) * 1999-09-27 2001-04-06 Yoshiaki Oka Starting method for supercritical pressure light water- cooled reactor
JP2001349983A (en) * 2000-06-12 2001-12-21 Toshiba Corp Method for operating boiling water nuclear power plant
JP2003344574A (en) * 2002-05-24 2003-12-03 Hitachi Ltd Natural circulation nuclear reactor system and operation method therefor

Also Published As

Publication number Publication date
JP5457256B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP7461733B2 (en) Pressure reducing valve
EP3667678A1 (en) Depressurisation valve
JP5676905B2 (en) Relief safety valve drive system
JP4643470B2 (en) Steam turbine overspeed prevention device
JP5457256B2 (en) Nuclear power plant
JPH0498198A (en) Core cooling facility for nuclear power plant
JP4551168B2 (en) Steam turbine power generation facility and operation method thereof
US4080790A (en) Safety system for a steam turbine installation
JP2006097543A (en) Pressure release device for low-pressure steam piping system in power generation plant
JPH06201883A (en) Boiling water reactor facility
CN112309598A (en) Overpressure protection system of nuclear power station and nuclear power station
JP4494564B2 (en) Steam turbine power generation equipment
US3683620A (en) Arrangement for protecting a steam treatment device against excess pressure
JP2008157944A (en) Protection system for and method of operating nuclear boiling water reactor
JPS61272404A (en) Cross around piping system
JP6335660B2 (en) Turbine building flood prevention device
JPS6314001A (en) Steam-generator output controller
TWI564469B (en) Steam turbine overturning system and power plant
JP2012093324A (en) Operation controller of nuclear power plant
JPS60242393A (en) Controller for output from nuclear reactor
JPS6078288A (en) Condenser protecting device of thermal power plant
JPS59195197A (en) Feedwater control device of bwr type reactor
JPH0462039B2 (en)
Bevilacqua et al. Secondary cycle design considerations for reduction of reactor transients frequency
JPS6235592B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Ref document number: 5457256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees