JP2011226712A - Waste heat recovery facility for arc furnace for steel making, and arc furnace facility for steel making - Google Patents

Waste heat recovery facility for arc furnace for steel making, and arc furnace facility for steel making Download PDF

Info

Publication number
JP2011226712A
JP2011226712A JP2010097443A JP2010097443A JP2011226712A JP 2011226712 A JP2011226712 A JP 2011226712A JP 2010097443 A JP2010097443 A JP 2010097443A JP 2010097443 A JP2010097443 A JP 2010097443A JP 2011226712 A JP2011226712 A JP 2011226712A
Authority
JP
Japan
Prior art keywords
exhaust gas
waste heat
steam
arc furnace
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097443A
Other languages
Japanese (ja)
Other versions
JP5501841B2 (en
Inventor
Keiji Wakahara
啓司 若原
Nobuyuki Fujikura
信幸 藤倉
Masanari Yamazaki
政成 山崎
Masayuki Watabe
雅之 渡部
Yoshinobu Okuyama
芳宜 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JP Steel Plantech Co
Original Assignee
JP Steel Plantech Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JP Steel Plantech Co filed Critical JP Steel Plantech Co
Priority to JP2010097443A priority Critical patent/JP5501841B2/en
Priority to PCT/JP2011/059615 priority patent/WO2011132669A1/en
Priority to CN201180019548.5A priority patent/CN102859008B/en
Priority to EP11772004.5A priority patent/EP2562270A4/en
Priority to US13/581,322 priority patent/US9157336B2/en
Publication of JP2011226712A publication Critical patent/JP2011226712A/en
Application granted granted Critical
Publication of JP5501841B2 publication Critical patent/JP5501841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste heat recovery facility for an arc furnace for steel making capable of efficiently recovering waste heat by suppressing temperature fluctuation of exhaust gas.SOLUTION: A waste heat recovery facility for an arc furnace for steel making is provided with: first exhaust gas passages for discharging exhaust gas from each of a plurality of arc furnaces for steel making; waste heat boilers 6 that are installed in the first exhaust gas passages, and that recover the waste heat from the exhaust gas as saturated steam; a steam accumulator 62 that accumulates steam by merging the saturated steam generated by each of the waste heat boilers 6; a steam superheater 43 that produces superheated steam by heating the steam accumulated in the steam accumulator 62; second exhaust gas passages that discharge exhaust gas, which has been obtained from the waste heat recovered by the waste heat boilers 6, guided to the steam superheater 43, and provided for superheating of the saturated steam; third exhaust gas passages that discharge exhaust gas, which has been obtained from the waste heat recovered by the waste heat boilers 6, but which bypasses the steam superheater 43; switching means that switch the exhaust gas passage, after waste heat has been recovered, between the second exhaust gas passages and the third exhaust passages.

Description

本発明は、製鋼用アーク炉からの排ガスの廃熱を飽和蒸気として回収し、これをさらに加熱して過熱蒸気とする製鋼用アーク炉の廃熱回収設備およびこのような廃熱回収設備を有する製鋼用アーク炉設備に関する。   The present invention has a waste heat recovery facility for a steel arc furnace for recovering waste heat of exhaust gas from a steel arc furnace as saturated steam and further heating it to superheated steam, and such a waste heat recovery facility. The present invention relates to an arc furnace facility for steel making.

製鋼用アーク炉(「電気炉」ともいう)は、原料の鉄スクラップや還元鉄(DRI)およびそれを高温でブリケット化したホット・ブリケット・アイアン(HBI)、溶銑、冷銑(型銑)等を炉内に装入後、アーク炉内に電極を装入して通電し、原料を溶解した後、通電を停止し、溶解した鋼を排出する工程を1サイクルとする間歇運転が行われる。   Steelmaking arc furnaces (also referred to as “electric furnaces”) are raw steel scrap, reduced iron (DRI), hot briquette iron (HBI), hot metal, cold iron (model iron), etc. Is inserted into the furnace, the electrode is inserted into the arc furnace and energized to melt the raw material, the energization is stopped, and the intermittent operation is performed with the process of discharging the melted steel as one cycle.

原料である鉄スクラップには、塗料や機械油が付着していることが多く、合成樹脂などが混入することもあるため、白煙・悪臭などが発生する。また、鉄スクラップやDRIに含まれる炭素が一酸化炭素として発生する。このため、炉−炉蓋間や二次燃焼塔で積極的に空気を取り込んで排ガスを完全燃焼させている。   Since iron scrap, which is a raw material, often has paint and machine oil attached to it, and synthetic resin may be mixed in, it produces white smoke and bad odor. Also, carbon contained in iron scrap and DRI is generated as carbon monoxide. For this reason, exhaust gas is completely burned by positively taking in air between the furnace and the furnace lid or in the secondary combustion tower.

この燃焼ガスは、1200℃を超える高温となり、多大なエネルギーを有するため、その廃熱を回収することが試みられている。例えば、特許文献1には、電気炉排ガス管路に廃熱ボイラーを設置して製鋼用アーク炉の排ガスの顕熱・燃焼熱を回収する技術が開示されている。   Since this combustion gas has a high temperature exceeding 1200 ° C. and has a great deal of energy, it has been attempted to recover its waste heat. For example, Patent Document 1 discloses a technique of installing a waste heat boiler in an electric furnace exhaust gas pipe and recovering sensible heat and combustion heat of exhaust gas from a steelmaking arc furnace.

また、回収した蒸気は蒸気タービンによる発電などに供されるが、蒸気タービンの駆動源として供給される蒸気は、タービン入口側のエンタルピーを増大させる観点から過熱蒸気を用いることが好ましく、特許文献2には、製鋼用アーク炉の廃熱を飽和蒸気として回収した後、過熱蒸気にすることが開示されている。   The recovered steam is used for power generation by a steam turbine, and the steam supplied as a driving source of the steam turbine is preferably superheated steam from the viewpoint of increasing the enthalpy on the turbine inlet side. Discloses that the waste heat of the steelmaking arc furnace is recovered as saturated steam and then converted to superheated steam.

特開平8−277412号公報JP-A-8-277212 特開2002−286209号公報JP 2002-286209 A

しかしながら、製鋼用アーク炉は、操業1サイクルを70分とした場合、55分程度の間は高温ガスが流れ、15分程度の間は冷風が流れるといったように、高温ガスと冷風とが交互に流れることとなるため、排ガス温度が大きく変動してしまう。このように排ガス温度が大きく変動すると、蒸気発生量が変動して回収蒸気量も変動する。回収蒸気量が変動すると、回収蒸気を蒸気タービンに供給している場合などには、発電量が低下したり、蒸気タービンの定常運転が困難となってしまう。   However, in an arc furnace for steelmaking, when one cycle of operation is 70 minutes, hot gas and cold air alternate, such that hot gas flows for about 55 minutes and cold air flows for about 15 minutes. Since it will flow, exhaust gas temperature will change a lot. When the exhaust gas temperature fluctuates greatly in this way, the amount of steam generated varies and the amount of recovered steam also varies. When the amount of recovered steam varies, when the recovered steam is supplied to the steam turbine, the amount of power generation decreases, or steady operation of the steam turbine becomes difficult.

また、廃熱ボイラーで回収した蒸気は飽和蒸気であるため、そのままでは利用価値が少なく、蒸気タービンなどに供して発電を行う場合には過熱蒸気とすることが望ましく、上述したように特許文献2には、製鋼用アーク炉の廃熱を飽和蒸気として回収した後、過熱蒸気にすることが開示されている。しかしながら、特許文献2の方法では飽和蒸気を過熱蒸気とするために、化石燃料などの他の熱源を用いる必要があり、エネルギー経済性が低くなる。   Further, since the steam recovered by the waste heat boiler is saturated steam, it has little utility value as it is, and it is desirable to use superheated steam when generating power by using a steam turbine or the like, as described above. Discloses that the waste heat of the steelmaking arc furnace is recovered as saturated steam and then converted to superheated steam. However, in the method of Patent Document 2, in order to use saturated steam as superheated steam, it is necessary to use another heat source such as fossil fuel, resulting in low energy economy.

本発明はこのような状況に鑑みてなされたものであり、製鋼用アーク炉から排出される排ガスの廃熱を飽和蒸気として回収し、これをさらに加熱して過熱蒸気とするにあたり、排ガスの温度変動を抑制して効率良く廃熱回収することができ、かつエネルギー経済性が高い製鋼用アーク炉の廃熱回収設備およびこのような廃熱回収設備を有する製鋼用アーク炉設備を提供することを課題とする。   The present invention has been made in view of such a situation, and the waste heat of exhaust gas discharged from a steelmaking arc furnace is recovered as saturated steam, and when this is further heated to superheated steam, the temperature of the exhaust gas is recovered. To provide a waste heat recovery facility for a steelmaking arc furnace, which can efficiently recover waste heat while suppressing fluctuations, and has high energy economy, and a steelmaking arc furnace facility having such a waste heat recovery facility. Let it be an issue.

上記課題を解決するため、本発明の第1の観点では、複数の製鋼用アーク炉から排出される排ガスの廃熱を飽和蒸気として回収し、さらに飽和蒸気を加熱して過熱蒸気とする製鋼用アーク炉の廃熱回収設備であって、それぞれの製鋼用アーク炉から排ガスを排出するための第1の排ガス流路と、前記第1の排ガス流路に設置された、排ガスの廃熱を飽和蒸気として回収する廃熱ボイラーと、それぞれの廃熱ボイラーで発生した飽和蒸気を合流させて貯留する蒸気アキュムレータと、前記蒸気アキュムレータに貯留された蒸気を加熱して過熱蒸気とする蒸気過熱器と、前記廃熱ボイラーで廃熱が回収された後の排ガスを前記蒸気過熱器に導いて飽和蒸気の加熱に供した後に排出する第2の排ガス流路と、前記廃熱ボイラーで廃熱が回収された後の排ガスを前記蒸気過熱器を経由せずに排出する第3の排ガス流路と、廃熱が回収された後の排ガスの流路を前記第2の排ガス流路と前記第3の排ガス流路とで切り替える切替手段とを具備することを特徴とする製鋼用アーク炉の廃熱回収設備を提供する。 In order to solve the above-mentioned problems, in the first aspect of the present invention, the waste heat of exhaust gas discharged from a plurality of steelmaking arc furnaces is recovered as saturated steam, and further, the saturated steam is heated to form superheated steam. A waste heat recovery facility for an arc furnace, which saturates exhaust gas waste heat installed in the first exhaust gas flow path for discharging exhaust gas from each steelmaking arc furnace and the first exhaust gas flow path. A waste heat boiler to be recovered as steam, a steam accumulator for storing saturated steam generated in each of the waste heat boilers, a steam superheater for heating the steam stored in the steam accumulator to form superheated steam, The exhaust gas after the waste heat is recovered by the waste heat boiler is guided to the steam superheater and used for heating the saturated steam, and the exhaust gas is discharged by the waste heat boiler. After A third exhaust gas flow path for discharging the exhaust gas without passing through the steam superheater, and a flow path for the exhaust gas after the waste heat is recovered, the second exhaust gas flow path and the third exhaust gas flow path. A waste heat recovery facility for an arc furnace for steel making, characterized in that it comprises a switching means for switching in step (b).

上記廃熱回収設備において、前記排ガスの廃熱は、典型的には排ガスの顕熱、または排ガスの顕熱および燃焼熱である。   In the waste heat recovery facility, the waste heat of the exhaust gas is typically sensible heat of the exhaust gas, or sensible heat and combustion heat of the exhaust gas.

また、上記廃熱回収設備において、前記第1の排ガス流路は、排ガスダクトと、排ガスを燃焼させる燃焼塔とを有し、前記廃熱ボイラーは前記排ガスダクトおよび/または前記燃焼塔を構成するように設けることができる。また、前記廃熱ボイラーは、その出口の排ガスの温度が600℃以上となる範囲に設けられることが好ましい。   In the waste heat recovery facility, the first exhaust gas flow path includes an exhaust gas duct and a combustion tower for burning the exhaust gas, and the waste heat boiler constitutes the exhaust gas duct and / or the combustion tower. Can be provided. The waste heat boiler is preferably provided in a range where the temperature of the exhaust gas at the outlet is 600 ° C. or higher.

また、前記廃熱ボイラーの出口および/または前記蒸気過熱器の入口に設けられたガス温度計をさらに具備し、前記廃熱ボイラーの出口の排ガス温度および/または前記蒸気過熱器の入口の排ガス温度が予め定められた温度以上の場合は、前記排ガスを前記第2の排ガス流路に流し、前記廃熱ボイラーの出口の排ガス温度および/または前記蒸気過熱器の入口の排ガス温度が予め定められた温度よりも低い場合は、前記排ガスを前記第3の排ガス流路に流すように前記切替手段が操作されることが好ましい。   The apparatus further comprises a gas thermometer provided at an outlet of the waste heat boiler and / or an inlet of the steam superheater, and an exhaust gas temperature at the outlet of the waste heat boiler and / or an exhaust gas temperature at the inlet of the steam superheater. Is equal to or higher than a predetermined temperature, the exhaust gas is caused to flow through the second exhaust gas flow path, and the exhaust gas temperature at the outlet of the waste heat boiler and / or the exhaust gas temperature at the inlet of the steam superheater is predetermined. When the temperature is lower than the temperature, the switching means is preferably operated so that the exhaust gas flows through the third exhaust gas flow path.

前記第3の排ガス流路は、前記各製鋼用アーク炉の周囲および/または前記複数の製鋼用アーク炉が設置される製鋼工場内を換気するための換気ダクトと、前記第2の流路と前記換気ダクトとを接続する接続配管と、前記換気ダクトが集合した換気集合ダクトとを有する構成とすることができる。この場合に、前記第2の排ガス流路からの排ガスを集塵する集塵器と、前記集塵器に到達する前の排ガスを冷却する冷却器をさらに具備する構成とすることができる。また、前記第2の排ガス流路からの排ガスを集塵する集塵器をさらに具備し、前記第2の排ガス流路からの排ガスは前記換気集合ダクトの冷風が混合された状態で、前記集塵器に導かれる構成とすることもできる。具体的には、前記第2の排ガス流路は、前記各廃熱ボイラーの下流側の排ガスダクトと、これら排ガスダクトが集合した排ガス集合ダクトと、前記排ガス集合ダクトから延び、前記蒸気過熱器が接続された下流側排ガスダクトとを有し、前記下流側排ガスダクトが前記換気集合ダクトに接続され、前記換気集合ダクトには前記集塵器が接続された排ガス集塵ダクトが接続され、前記下流側排ガスダクトからの排ガスに前記換気集合ダクトの冷風が混合された状態で、前記排ガス集塵ダクトを介して前記集塵器に導かれる構成とすることができる。さらに、このように前記第2の排ガス流路からの排ガスは前記換気集合ダクトの冷風が混合された状態で、前記集塵器に導かれる構成とした上で、冷却器をさらに具備する構成とすることもできる。   The third exhaust gas flow path includes a ventilation duct for ventilating the surroundings of each steelmaking arc furnace and / or a steelmaking factory where the plurality of steelmaking arc furnaces are installed, and the second flow path. It can be set as the structure which has the connection piping which connects the said ventilation duct, and the ventilation assembly duct which the said ventilation duct gathered. In this case, it can be set as the structure further equipped with the dust collector which collects the waste gas from the said 2nd exhaust gas flow path, and the cooler which cools the waste gas before reaching the said dust collector. And a dust collector for collecting the exhaust gas from the second exhaust gas flow path, wherein the exhaust gas from the second exhaust gas flow path is mixed with the cold air of the ventilation collective duct in the mixed state. It can also be set as the structure led to a duster. Specifically, the second exhaust gas flow path extends from an exhaust gas duct downstream of each waste heat boiler, an exhaust gas assembly duct in which these exhaust gas ducts are aggregated, the exhaust gas assembly duct, and the steam superheater A downstream exhaust gas duct connected thereto, the downstream exhaust gas duct connected to the ventilation collective duct, the exhaust gas collective duct connected to the dust collector connected to the ventilation collective duct, and the downstream The exhaust gas from the side exhaust gas duct may be guided to the dust collector via the exhaust gas dust collection duct in a state where the cold air of the ventilation assembly duct is mixed with the exhaust gas. Further, the exhaust gas from the second exhaust gas passage is configured to be guided to the dust collector in a state where the cold air of the ventilation collective duct is mixed, and further includes a cooler. You can also

前記過熱器に流入する排ガスの温度の変動を抑えるために、前記第2の排ガス流路の前記蒸気過熱器の上流側に設けられた蓄熱体をさらに具備することが好ましい。   In order to suppress fluctuations in the temperature of the exhaust gas flowing into the superheater, it is preferable to further include a heat storage body provided on the upstream side of the steam superheater in the second exhaust gas flow path.

前記蒸気過熱器に流入される飽和蒸気の流量を制御する飽和蒸気流量制御弁と、前記蒸気過熱器から排出される過熱蒸気の温度を検出する過熱蒸気温度計と、前記過熱蒸気の温度に応じて前記飽和蒸気流量制御弁を制御して過熱蒸気量を制御する制御器とをさらに具備することが好ましい。   Depending on the temperature of the superheated steam, a saturated steam flow control valve that controls the flow rate of saturated steam that flows into the steam superheater, a superheated steam thermometer that detects the temperature of superheated steam discharged from the steam superheater, and the temperature of the superheated steam And a controller for controlling the amount of superheated steam by controlling the saturated steam flow control valve.

前記蒸気過熱器に流入される排ガスの流量を検出する排ガス流量計と、前記蒸気過熱器に流入される排ガスの温度を検出する排ガス温度計と、前記蒸気過熱器に流入される飽和蒸気の流量を検出する飽和蒸気流量計と、前記排ガスの流量を調節する流量調節手段と、前記排ガスの温度と前記飽和蒸気の流量に応じて前記流量調節手段を制御して前記排ガス流量を制御する制御器とをさらに具備する構成とすることが好ましい。   An exhaust gas flow meter for detecting the flow rate of exhaust gas flowing into the steam superheater, an exhaust gas thermometer for detecting the temperature of exhaust gas flowing into the steam superheater, and a flow rate of saturated steam flowing into the steam superheater And a controller for controlling the flow rate of the exhaust gas by controlling the flow rate adjusting means according to the temperature of the exhaust gas and the flow rate of the saturated steam. It is preferable to further comprise

また、本発明の第2の観点では、複数の製鋼用アーク炉と、前記複数の製鋼用アーク炉から排出される排ガスの廃熱を飽和蒸気として回収し、さらに飽和蒸気を加熱して過熱蒸気とする廃熱回収設備とを具備する製鋼用アーク炉設備であって、前記廃熱回収設備として、第1の観点の廃熱回収設備を備えることを特徴とする製鋼用アーク炉設備を提供する。   In the second aspect of the present invention, the waste heat of exhaust gas discharged from a plurality of steelmaking arc furnaces and the plurality of steelmaking arc furnaces is recovered as saturated steam, and the saturated steam is further heated to superheated steam. A steelmaking arc furnace facility comprising a waste heat recovery facility, wherein the waste heat recovery facility comprises the waste heat recovery facility according to the first aspect. .

本発明によれば、複数の製鋼用アーク炉にそれぞれ設けた廃熱ボイラーで生成された飽和蒸気を合流させるので、1つの製鋼用アーク炉の操業において蒸気発生量にばらつきがあっても、合流した後の蒸気量は平準化される。また、飽和蒸気を加熱して過熱蒸気とする際に、加熱エネルギーの供給を廃熱回収後の排ガスを用いて行うので、過熱蒸気を生成するための別途の燃料が不要であり、エネルギー経済性が高い。さらに、過熱蒸気を生成する際に、製鋼用アーク炉において低温の排ガスが排出される期間は、蒸気過熱器を経由しない排ガス流路に排ガスが流れるように切り替えるので、飽和蒸気を加熱するための排ガスの温度低下を抑制することができ、安定して所定の過熱度の過熱蒸気を生成することができる。   According to the present invention, since saturated steam generated by a waste heat boiler provided in each of a plurality of steelmaking arc furnaces is joined, even if there is a variation in the amount of steam generated in the operation of one steelmaking arc furnace, After that, the amount of steam is leveled. In addition, when heating saturated steam to superheated steam, heating energy is supplied using exhaust gas after waste heat recovery, so there is no need for a separate fuel for generating superheated steam, and energy economy Is expensive. Furthermore, when the superheated steam is generated, the period during which the low temperature exhaust gas is discharged in the steel arc furnace is switched so that the exhaust gas flows through the exhaust gas passage not via the steam superheater. The temperature drop of exhaust gas can be suppressed, and superheated steam with a predetermined superheat degree can be generated stably.

本発明の一実施形態に係る製鋼用アーク炉の廃熱回収設備を備えた製鋼用アーク炉設備を示す概略構成図である。It is a schematic block diagram which shows the arc furnace equipment for steelmaking provided with the waste heat recovery equipment of the arc furnace for steelmaking which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製鋼用アーク炉の廃熱回収設備に用いる蒸気過熱器の構成を示す断面図である。It is sectional drawing which shows the structure of the steam superheater used for the waste heat recovery equipment of the arc furnace for steel manufacture which concerns on one Embodiment of this invention. ダンパーによる排ガス流路の切替え態様を説明するための図である。It is a figure for demonstrating the switching aspect of the exhaust gas flow path by a damper. 1ヒートが70分のときの製鋼用アーク炉における燃焼塔入口の温度変化例を示す図である。It is a figure which shows the example of a temperature change of the combustion tower entrance in the arc furnace for steel manufacture when 1 heat is 70 minutes. 蒸気タービンの出力が低下した際の出力が回復するまでの時間を説明するための図。The figure for demonstrating time until the output recovers when the output of a steam turbine falls. 排ガス流路を蒸気過熱器に供給する排ガス流路と蒸気過熱器を経由しない排ガス流路とで切り替えるための好ましい構成を説明するための図。The figure for demonstrating the preferable structure for switching by the exhaust gas flow path which supplies an exhaust gas flow path to a steam superheater, and the exhaust gas flow path which does not go through via a steam superheater. 排ガス流路を蒸気過熱器に供給する排ガス流路と蒸気過熱器を経由しない排ガス流路とで切り替えるための好ましい構成の他の例を説明するための図。The figure for demonstrating the other example of the preferable structure for switching by the exhaust gas flow path which supplies an exhaust gas flow path to a steam superheater, and the exhaust gas flow path which does not go through via a steam superheater. 排ガス流路を蒸気過熱器に供給する排ガス流路と蒸気過熱器を経由しない排ガス流路とで切り替えるための好ましい構成のさらに他の例を説明するための図。The figure for demonstrating the further another example of the preferable structure for switching by the exhaust gas flow path which supplies an exhaust gas flow path to a steam superheater, and the exhaust gas flow path which does not go through via a steam superheater. 本発明の他の実施形態に係る製鋼用アーク炉の廃熱回収設備の要部を示す図である。It is a figure which shows the principal part of the waste heat recovery equipment of the arc furnace for steel manufacture which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る製鋼用アーク炉の廃熱回収設備の要部を示す図である。It is a figure which shows the principal part of the waste heat recovery equipment of the arc furnace for steel manufacture which concerns on other embodiment of this invention. 本発明の別の実施形態に係る製鋼用アーク炉の廃熱回収設備の要部を示す図である。It is a figure which shows the principal part of the waste heat recovery equipment of the arc furnace for steel manufacture which concerns on another embodiment of this invention.

以下、添付図面を参照して本発明の実施形態について説明する。
図1は、本発明の一実施形態に係る製鋼用アーク炉の廃熱回収設備を備えた製鋼用アーク炉設備を示す概略構成図である。この製鋼用アーク炉設備100は、4つのアーク炉ユニット10a、10b、10c、10dを有している。これら、アーク炉ユニット10a〜10dは、図示しない製鋼工場に配置され、いずれも製鋼用アーク炉1を有しており、各製鋼用アーク炉1には排気ダクト2が接続されている。排気ダクト2には製鋼用アーク炉1から排出された高温の排ガスが流入する。排気ダクト2には前段側の水冷ダクト4が接続され、前段側の水冷ダクト4には排ガスを燃焼させる燃焼塔3が接続され、燃焼塔3には後段側の水冷ダクト4が接続され、後段側の水冷ダクト4にはダクト5が接続されている。排気ダクト2、水冷ダクト4、ダクト5は、排ガスダクトとして機能する。前段側および後段側の水冷ダクト4および燃焼塔3は廃熱ボイラー6を構成している。なお、廃熱ボイラー6は水冷ダクト4のみまたは燃焼塔3のみで構成されていてもよい。また、各アーク炉ユニットの製鋼用アーク炉1の周囲には、換気用フード11が設けられており、換気用フード11には換気用ダクト12が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram showing a steelmaking arc furnace facility provided with a waste heat recovery facility for a steelmaking arc furnace according to an embodiment of the present invention. The steelmaking arc furnace facility 100 includes four arc furnace units 10a, 10b, 10c, and 10d. These arc furnace units 10a to 10d are arranged in a steelmaking factory (not shown), and all have a steelmaking arc furnace 1, and an exhaust duct 2 is connected to each steelmaking arc furnace 1. High temperature exhaust gas discharged from the steelmaking arc furnace 1 flows into the exhaust duct 2. A water-cooling duct 4 on the front stage side is connected to the exhaust duct 2, a combustion tower 3 for combusting exhaust gas is connected to the water-cooling duct 4 on the front stage side, and a water-cooling duct 4 on the rear stage side is connected to the combustion tower 3. A duct 5 is connected to the water cooling duct 4 on the side. The exhaust duct 2, the water cooling duct 4, and the duct 5 function as exhaust gas ducts. The water cooling duct 4 and the combustion tower 3 on the front stage side and the rear stage side constitute a waste heat boiler 6. Note that the waste heat boiler 6 may be composed of only the water cooling duct 4 or only the combustion tower 3. A ventilation hood 11 is provided around the arc furnace 1 for steel making of each arc furnace unit, and a ventilation duct 12 is connected to the ventilation hood 11.

本実施形態では、製鋼用アーク炉1は、炉体21と、開閉可能な炉蓋22と、炉蓋22の上方から炉体21内部に挿入される3本のアーク電極23とを有しており、3相交流型のアーク炉を構成している。なお、製鋼用アーク炉1は、アーク電極23の本数が3本の3相交流型のアーク炉に限定されず、アーク電極が他の本数のアーク炉であってもよい。そして、炉体21内に鉄スクラップ、DRI、HBI、溶銑、冷銑(型銑)等の原料を装入し、アーク電極23に通電することにより形成されるアークにより原料を溶解して溶鋼を溶製するようになっている。図示はしていないが、製鋼用アーク炉1には、精錬用の酸素ガス吹込ランスおよび/または炭剤添加用の炭材吹込みランスが配置されることもある。   In this embodiment, the steelmaking arc furnace 1 includes a furnace body 21, a furnace lid 22 that can be opened and closed, and three arc electrodes 23 that are inserted into the furnace body 21 from above the furnace lid 22. It constitutes a three-phase AC type arc furnace. The steelmaking arc furnace 1 is not limited to a three-phase AC type arc furnace in which the number of arc electrodes 23 is three, and the arc electrode may be another number of arc furnaces. Then, raw materials such as iron scrap, DRI, HBI, hot metal, cold iron (type iron) are charged into the furnace body 21, and the raw material is melted by an arc formed by energizing the arc electrode 23 to obtain molten steel. It is designed to be melted. Although not shown, the steelmaking arc furnace 1 may be provided with an oxygen gas blowing lance for refining and / or a carbonaceous material blowing lance for adding a charcoal.

各アーク炉ユニットの燃焼塔3は、炉体21から排出される高温の排ガスの中の一酸化炭素、白煙物質、悪臭物質などを空気導入口8から導入される空気により完全燃焼させて無害化するものであり、この際の燃焼熱により排ガスの温度はさらに上昇する。   The combustion tower 3 of each arc furnace unit is harmless by completely burning carbon monoxide, white smoke substance, malodorous substance, etc. in the high-temperature exhaust gas discharged from the furnace body 21 with air introduced from the air inlet 8. The temperature of the exhaust gas further rises due to the heat of combustion at this time.

各アーク炉ユニットの廃熱ボイラー6は、排ガスの廃熱(ここでは排ガスの顕熱および燃焼熱)を飽和蒸気として回収するものであり、製鋼用アーク炉1から流出される排ガスの流路に設けられる。このとき廃熱ボイラー6は、排ガス温度が所定温度以上になるような範囲に設けることが好ましい。廃熱ボイラー6を構成する前段側および後段側の水冷ダクト4および燃焼塔3は伝熱管7を有している。   The waste heat boiler 6 of each arc furnace unit recovers waste heat of exhaust gas (here, sensible heat and combustion heat of exhaust gas) as saturated steam, and flows into the exhaust gas flow path flowing out from the steelmaking arc furnace 1. Provided. At this time, the waste heat boiler 6 is preferably provided in a range in which the exhaust gas temperature is equal to or higher than a predetermined temperature. The water cooling duct 4 and the combustion tower 3 on the front side and the rear side constituting the waste heat boiler 6 have heat transfer tubes 7.

また、各アーク炉ユニットは、蒸気ドラム13を有しており、蒸気ドラム13には伝熱管7に冷却水(純水)を供給する供給配管14および伝熱管7から蒸気ドラム13に冷却水(蒸気)を返戻する返戻配管15が接続されている。また、供給配管14には循環水ポンプ16が設けられている。これにより、伝熱管7に冷却水が循環供給される。蒸気ドラム13に収容された冷却水は、循環水ポンプ16により供給配管14を介して伝熱管7に送られる。そして、伝熱管7に送られた冷却水は、製鋼用アーク炉1から発生する排ガスの顕熱および燃焼塔3で排ガスが燃焼して生じた燃焼熱により昇温されて飽和蒸気に変換され返戻配管15を介して蒸気ドラム13に返戻され、蒸気ドラム13において気水分離された状態となる。蒸気ドラム13には飽和蒸気搬送配管17が接続されており、蒸気ドラム13内の飽和蒸気がこの飽和蒸気搬送配管17を介してアキュムレータ62へ搬送される。   Each arc furnace unit has a steam drum 13. The steam drum 13 is supplied with cooling water (pure water) to the heat transfer tube 7 and the cooling water (pure water) from the heat transfer tube 7 to the steam drum 13 ( A return pipe 15 for returning steam) is connected. The supply pipe 14 is provided with a circulating water pump 16. Thereby, the cooling water is circulated and supplied to the heat transfer tube 7. The cooling water accommodated in the steam drum 13 is sent to the heat transfer pipe 7 through the supply pipe 14 by the circulating water pump 16. The cooling water sent to the heat transfer tube 7 is heated by the sensible heat of the exhaust gas generated from the steelmaking arc furnace 1 and the combustion heat generated by the combustion of the exhaust gas in the combustion tower 3, converted into saturated steam, and returned. The steam is returned to the steam drum 13 through the pipe 15 and is separated into steam and water in the steam drum 13. A saturated steam transport pipe 17 is connected to the steam drum 13, and the saturated steam in the steam drum 13 is transported to the accumulator 62 through the saturated steam transport pipe 17.

なお、蒸気ドラム13には純水タンク(図示せず)が接続されており、蒸気ドラム13に所定量の水が貯留されるように、適宜、純水タンクから冷却水(純水)が供給される。また、図では、供給配管14および返戻配管15を、便宜上、1つずつ記載しているが、実際には伝熱管7の数(必要に応じて分割されたボイラー部分の数)ずつ設けられている。   Note that a pure water tank (not shown) is connected to the steam drum 13, and cooling water (pure water) is appropriately supplied from the pure water tank so that a predetermined amount of water is stored in the steam drum 13. Is done. Further, in the drawing, the supply pipe 14 and the return pipe 15 are shown one by one for convenience, but in actuality, the number of heat transfer pipes 7 (the number of boiler parts divided as necessary) is provided. Yes.

各アーク炉ユニットのダクト5は、いずれも排ガス集合ダクト41に接続されており、排ガス集合ダクト41には1本の下流側排ガスダクト42が接続されていて、各アーク炉ユニットのダクト5からの排ガスが排ガス集合ダクト41で集合され、下流側排ガスダクト42に至る。下流側排ガスダクト42には、飽和蒸気をさらに加熱して過熱蒸気とする蒸気過熱器43が接続されている。したがって、廃熱が回収された後の排ガスは、ダクト5、排ガス集合ダクト41、下流側排ガスダクト42を通って蒸気過熱器43における飽和蒸気の加熱に供される。蒸気過熱器43については後で詳細に説明する。なお、下流側排ガスダクト42の蒸気過熱器43よりも上流側の部分には排ガス流量計47が設けられている。一方、各アーク炉ユニットの換気ダクト12は、いずれも換気集合ダクト51に接続されている。そして、蒸気過熱器43を経た後の下流側排ガスダクト42が換気集合ダクト51に接続され、換気集合ダクト51には排ガス集塵ダクト52が接続されている。排ガス集塵ダクト52には、例えばバグフィルタを有する集塵器54、排気ファン55が接続されており、排ガス集塵ダクト52の終端には集塵器54で除塵された排ガスを大気に放出する煙突56が接続されている。また、集塵器54の上流の排ガス集塵ダクト52には、必要に応じて、排ガスの温度を集塵器54の耐熱温度以下とするための排ガス冷却器53が設けられる。   Each of the arc furnace unit ducts 5 is connected to the exhaust gas collecting duct 41, and the exhaust gas collecting duct 41 is connected to one downstream exhaust gas duct 42. The exhaust gas is collected by the exhaust gas collecting duct 41 and reaches the downstream exhaust gas duct 42. The downstream exhaust gas duct 42 is connected to a steam superheater 43 that further heats the saturated steam to form superheated steam. Therefore, the exhaust gas after the waste heat is recovered is used for heating the saturated steam in the steam superheater 43 through the duct 5, the exhaust gas collecting duct 41, and the downstream exhaust gas duct 42. The steam superheater 43 will be described in detail later. An exhaust gas flow meter 47 is provided in a portion of the downstream side exhaust duct 42 upstream of the steam superheater 43. On the other hand, each of the ventilation ducts 12 of each arc furnace unit is connected to a ventilation collective duct 51. The downstream exhaust gas duct 42 after passing through the steam superheater 43 is connected to the ventilation collective duct 51, and the exhaust gas dust collecting duct 52 is connected to the ventilating collective duct 51. For example, a dust collector 54 having a bag filter and an exhaust fan 55 are connected to the exhaust gas dust collection duct 52, and the exhaust gas removed by the dust collector 54 is discharged to the atmosphere at the end of the exhaust gas dust collection duct 52. A chimney 56 is connected. The exhaust gas dust collecting duct 52 upstream of the dust collector 54 is provided with an exhaust gas cooler 53 for setting the temperature of the exhaust gas below the heat resistant temperature of the dust collector 54 as necessary.

各アーク炉ユニットの飽和蒸気搬送配管17は、蒸気集合配管61に接続され、各飽和蒸気搬送配管17を搬送されてきた飽和蒸気は蒸気集合配管61により集合される。蒸気集合配管61には蒸気アキュムレータ62が接続されており各アーク炉ユニットの蒸気ドラム13で発生した飽和蒸気は蒸気アキュムレータ42に貯留されるようになっている。そして、蒸気アキュムレータ62を経た後の蒸気集合配管61に蒸気過熱器43が接続されている。なお、蒸気アキュムレータ62は図示のように1個であってもよいし、複数であってもよい。   The saturated steam transport pipe 17 of each arc furnace unit is connected to the steam collecting pipe 61, and the saturated steam transported through each saturated steam transport pipe 17 is collected by the steam collecting pipe 61. A steam accumulator 62 is connected to the steam collecting pipe 61, and saturated steam generated in the steam drum 13 of each arc furnace unit is stored in the steam accumulator 42. A steam superheater 43 is connected to the steam collecting pipe 61 after passing through the steam accumulator 62. In addition, the steam accumulator 62 may be one as shown in the figure, or may be plural.

蒸気過熱器43は、図2に示すように、筐体44と、筐体44内に多数屈曲して設けられた伝熱管45とを有している。筐体44は下流側排ガスダクト42に接続されており、筐体44内に高温の排ガスが通流される。一方、伝熱管45には蒸気アキュムレータ62からの飽和蒸気が供給され、伝熱管45を通流している飽和蒸気が排ガスにより加熱されて過熱蒸気に変換される。本実施形態では、変換された過熱蒸気は、発電用蒸気タービン63に供給されている。   As shown in FIG. 2, the steam superheater 43 includes a housing 44 and a heat transfer tube 45 that is bent and provided inside the housing 44. The casing 44 is connected to the downstream side exhaust gas duct 42, and high-temperature exhaust gas flows through the casing 44. On the other hand, the saturated steam from the steam accumulator 62 is supplied to the heat transfer tube 45, and the saturated steam flowing through the heat transfer tube 45 is heated by the exhaust gas and converted into superheated steam. In the present embodiment, the converted superheated steam is supplied to the power generation steam turbine 63.

各アーク炉ユニットには、廃熱ボイラー6の下流側のダクト5と換気ダクト12とを接続する接続配管18が設けられている。接続配管18は、廃熱が回収された後の排ガスを換気ダクト12に流すためのものである。ダクト5の接続配管18接続部の下流側にはダンパー31が設けられ、接続配管18のダクト5接続部の近傍にはダンパー32が設けられている。これらのダンパー31および32を操作することにより製鋼用アーク炉1からの排ガスを、蒸気過熱器43側の排ガス流路と、蒸気過熱器43を通らない換気ダクト12側の排ガス流路とで切り替えることが可能となっている。つまり、ダンパー31および32は、廃熱回収後の排ガスを蒸気過熱器43に供給する排ガス流路と、蒸気過熱器43を通らない排ガス流路とで切り替える切替手段として機能する。具体的には、製鋼用アーク炉1の運転時の排ガス温度が高い期間には、図3の(a)に示すように、ダンパー31を開き、ダンパー32を閉じて製鋼用アーク炉1からの排ガスをダクト5、排ガス集合ダクト41、下流側排ガスダクト42を介して蒸気過熱器43に導く。一方、製鋼用アーク炉1の運転を停止しているときのように排ガス温度が低い期間には、図3の(b)に示すように、ダンパー31を閉じ、ダンパー32を開いて製鋼用アーク炉1からの低温の排ガスを接続配管18を介して換気ダクト12に導く。このように本実施形態では、製鋼用アーク炉1からの低温の排ガスが蒸気過熱器43に供給されないようにして飽和蒸気を加熱するための排ガスの温度が低下することを防止するように構成されている。   Each arc furnace unit is provided with a connecting pipe 18 that connects the duct 5 on the downstream side of the waste heat boiler 6 and the ventilation duct 12. The connection pipe 18 is for flowing the exhaust gas after the waste heat is recovered to the ventilation duct 12. A damper 31 is provided on the downstream side of the connecting pipe 18 connecting portion of the duct 5, and a damper 32 is provided in the vicinity of the duct 5 connecting portion of the connecting pipe 18. By operating these dampers 31 and 32, the exhaust gas from the steelmaking arc furnace 1 is switched between the exhaust gas flow path on the steam superheater 43 side and the exhaust gas flow path on the ventilation duct 12 side that does not pass through the steam superheater 43. It is possible. That is, the dampers 31 and 32 function as a switching unit that switches between an exhaust gas passage that supplies exhaust gas after waste heat recovery to the steam superheater 43 and an exhaust gas passage that does not pass through the steam superheater 43. Specifically, during the period when the exhaust gas temperature during operation of the steelmaking arc furnace 1 is high, the damper 31 is opened and the damper 32 is closed and the steelmaking arc furnace 1 is opened as shown in FIG. The exhaust gas is guided to the steam superheater 43 through the duct 5, the exhaust gas collecting duct 41, and the downstream exhaust gas duct 42. On the other hand, during the period when the exhaust gas temperature is low, such as when the operation of the steelmaking arc furnace 1 is stopped, the damper 31 is closed and the damper 32 is opened as shown in FIG. Low-temperature exhaust gas from the furnace 1 is guided to the ventilation duct 12 through the connection pipe 18. Thus, in this embodiment, the low temperature exhaust gas from the steelmaking arc furnace 1 is not supplied to the steam superheater 43 so that the temperature of the exhaust gas for heating the saturated steam is prevented from decreasing. ing.

なお、各製鋼用アーク炉1から排気ダクト2を経て、燃焼塔3および水冷ダクト4のボイラー6を構成する部分までは、排ガスの廃熱を回収する第1の排ガス流路を構成している。ダクト5、排ガス集合ダクト41、下流側排ガスダクト42は、廃熱が回収された後の排ガスを蒸気過熱器43に導いた後に排出する第2の排ガス流路として機能する。さらに、接続配管18、換気ダクト12、換気集合ダクト51は、廃熱が回収された後の排ガスを蒸気過熱器を経由せずに排出する第3の排ガス流路として機能する。   A first exhaust gas flow path for recovering waste heat of the exhaust gas is formed from each steelmaking arc furnace 1 through the exhaust duct 2 to the portion constituting the boiler 6 of the combustion tower 3 and the water cooling duct 4. . The duct 5, the exhaust gas collecting duct 41, and the downstream exhaust gas duct 42 function as a second exhaust gas flow path for discharging the exhaust gas after the waste heat has been recovered after being led to the steam superheater 43. Further, the connection pipe 18, the ventilation duct 12, and the ventilation collective duct 51 function as a third exhaust gas flow path for discharging the exhaust gas after the waste heat is recovered without passing through the steam superheater.

このような製鋼用アーク炉設備100は、運転の監視および各部の操作・制御を行う監視・操作・制御部70を有している。この監視・操作・制御部70は、製鋼用アーク炉設備100の運転状況を把握する監視ユニットと、オペレータがアーク電極23への通電開始・停止等、操業のための種々の操作を行うための操作パネルと、運転時に必要な制御を行う制御ユニットとを有している。   Such a steelmaking arc furnace facility 100 has a monitoring / operation / control unit 70 for monitoring operation and operating / controlling each unit. The monitoring / operation / control unit 70 is a monitoring unit for grasping the operation status of the steelmaking arc furnace facility 100, and for the operator to perform various operations for operations such as starting and stopping energization of the arc electrode 23. It has an operation panel and a control unit that performs necessary control during operation.

次に、このように構成される製鋼用アーク炉設備100の処理動作について説明する。
まず、製鋼用アーク炉1の炉体21内に原料を装入し、アーク電極23に通電してアーク放電により原料の溶解を開始し、必要に応じて原料の追加装入、酸素ガス吹き込みによる脱炭精錬および炭材等による成分調整等を含む精錬を行う。精錬が終了した時点で、アーク電極23への通電を停止し、炉体21から溶鋼を出鋼する。これにより1ヒートの操業が終了し、このような操業を繰り返し行う。
Next, the processing operation of the steelmaking arc furnace facility 100 configured as described above will be described.
First, the raw material is charged into the furnace body 21 of the steelmaking arc furnace 1, and the arc electrode 23 is energized to start melting of the raw material by arc discharge. Refining including decarburization refining and adjustment of ingredients by charcoal. When the refining is completed, energization to the arc electrode 23 is stopped, and molten steel is discharged from the furnace body 21. As a result, the operation for one heat is completed, and such operation is repeated.

一方、本実施形態では、4つのアーク炉ユニットが設置され、それぞれの製鋼用アーク炉1において前述と同様の操業が行われるが、通常、4つの製鋼用アーク炉1の操業開始タイミングはずれた状態となる。   On the other hand, in the present embodiment, four arc furnace units are installed, and the same operation as described above is performed in each steelmaking arc furnace 1, but the operation start timing of the four steelmaking arc furnaces 1 is usually shifted. It becomes.

このような操業中、各製鋼用アーク炉1からは、高温の排ガスが排出され、第1の排ガス流路を構成する排気ダクト2、前段側の水冷ダクト4、燃焼塔3、後段側の水冷ダクト4を通過する間に、廃熱ボイラー6により廃熱(顕熱および燃焼熱)が回収される。具体的には、排ガスの廃熱は廃熱ボイラー6を構成する伝熱管7において飽和蒸気に変換され、この飽和蒸気は蒸気ドラム13、飽和蒸気搬送配管17、蒸気集合配管61を経て蒸気アキュムレータ62に貯留される。そして、蒸気アキュムレータに貯留された飽和蒸気は、蒸気過熱器43に供給され、そこで高温の排ガスにより加熱されて過熱蒸気に変換される。変換された過熱蒸気は、発電用蒸気タービン63に供給され、発電に供される。   During such operations, high-temperature exhaust gas is discharged from each steelmaking arc furnace 1, and an exhaust duct 2, a front-side water-cooled duct 4, a combustion tower 3, and a rear-stage water-cooling constituting the first exhaust gas flow path. While passing through the duct 4, waste heat (sensible heat and combustion heat) is recovered by the waste heat boiler 6. Specifically, the waste heat of the exhaust gas is converted into saturated steam in a heat transfer pipe 7 that constitutes the waste heat boiler 6, and this saturated steam passes through the steam drum 13, the saturated steam transfer pipe 17, and the steam collecting pipe 61, and then is a steam accumulator 62. It is stored in. The saturated steam stored in the steam accumulator is supplied to the steam superheater 43, where it is heated by the high-temperature exhaust gas and converted into superheated steam. The converted superheated steam is supplied to the power generation steam turbine 63 for power generation.

一方、廃熱が回収された後の排ガスは、第2の排ガス流路を構成するダクト5、排ガス集合ダクト41、下流側排ガスダクト42を経て蒸気過熱器43に至り、蒸気過熱器43において飽和蒸気の加熱に供される。   On the other hand, the exhaust gas after the waste heat is recovered reaches the steam superheater 43 through the duct 5, the exhaust gas collecting duct 41, and the downstream exhaust gas duct 42 constituting the second exhaust gas flow path, and is saturated in the steam superheater 43. It is used for steam heating.

製鋼用アーク炉1の周囲および/または図示しない製鋼工場内は、換気用フード11、換気用ダクト12を介して換気され、換気用ダクト12からの冷風は換気集合ダクト51に至る。また、飽和蒸気の加熱に供された後の排ガスは、下流側排ガスダクト42を経て換気集合ダクト51に至り、換気ダクト12から供給された冷風と混合した状態で、集塵ダクト52に供給され、集塵器54で集塵されて煙突56から排出される。このように、排ガス集塵ダクト52には、下流側排ガスダクト42の高温の排ガスと換気集合ダクト51の換気用の冷風とが合流して、温度が低下された排ガスが供給され、バグフィルタからなる集塵器54に流れる排ガスの温度を集塵器54の耐熱温度以下とすることが可能となる。また、上述したように集塵器54の上流の排ガス集塵ダクト52に冷却器53を設けることにより、排ガス温度を集塵器54の耐熱温度以下とすることが一層容易となる。   The surroundings of the steelmaking arc furnace 1 and / or the inside of the steelmaking factory (not shown) are ventilated through the ventilation hood 11 and the ventilation duct 12, and the cold air from the ventilation duct 12 reaches the ventilation collective duct 51. Further, the exhaust gas after being used for heating the saturated steam reaches the ventilation collective duct 51 through the downstream exhaust gas duct 42 and is supplied to the dust collecting duct 52 while being mixed with the cold air supplied from the ventilation duct 12. The dust is collected by the dust collector 54 and discharged from the chimney 56. In this way, the exhaust gas dust collecting duct 52 is supplied with the exhaust gas having a lowered temperature by combining the hot exhaust gas in the downstream exhaust gas duct 42 and the cold air for ventilation in the ventilation collective duct 51, and is supplied from the bag filter. It becomes possible to make the temperature of the exhaust gas flowing through the dust collector 54 to be equal to or lower than the heat resistant temperature of the dust collector 54. Further, by providing the cooler 53 in the exhaust gas dust collection duct 52 upstream of the dust collector 54 as described above, it becomes easier to set the exhaust gas temperature below the heat resistance temperature of the dust collector 54.

ここで、一つの製鋼用アーク炉1においては、上述のように、原料装入−溶解(−原料追加装入−溶解−精錬)−出鋼という一連のプロセスを1ヒートとして操業を行うが、この1ヒートの期間に排ガス温度は大きく変動する。図4は1ヒートが70分である製鋼用アーク炉における燃焼塔入口の温度変化を示すものである。この図に示すように、通電開始後から排ガス温度は上昇して1400℃近傍に達し、原料追加装入により一旦400℃程度に低下するが、原料の溶解の進行にともなって1200℃程度まで再度上昇し、原料が完全に溶解(溶け落ち)を経過してその後の精錬期間まで排ガス温度が高い期間(高温期)が継続する。一方、精錬期間終了後の出鋼にともなって排ガス温度は低下し、出鋼完了後には200℃以下となる。そして、出鋼完了後から次ヒートの原料装入を経て次ヒートの通電開始まで、200℃以下の排ガス温度の低い期間(低温期)となる。このような排ガスの温度変動にともない、排ガスの顕熱および燃焼熱を利用して回収される飽和蒸気の量は変動することとなる。   Here, in one steelmaking arc furnace 1, as described above, a series of processes of raw material charging-melting (-raw material additional charging-melting-refining) -tapping steel is performed as one heat. The exhaust gas temperature fluctuates greatly during this 1-heat period. FIG. 4 shows the temperature change at the entrance of the combustion tower in a steelmaking arc furnace in which one heat is 70 minutes. As shown in this figure, the temperature of the exhaust gas rises and reaches around 1400 ° C. after the start of energization, and once decreases to about 400 ° C. due to the additional charging of the raw material, but again to about 1200 ° C. as the melting of the raw material proceeds. It rises, and after the raw material has completely melted (dissolved), the period during which the exhaust gas temperature is high (high temperature period) continues until the subsequent refining period. On the other hand, the exhaust gas temperature decreases with the steel output after the end of the refining period, and becomes 200 ° C. or less after the steel output is completed. And it becomes a period (low temperature period) when the exhaust gas temperature is low at 200 ° C. or less from the completion of the steel output to the start of energization of the next heat through the charging of the next heat. As the temperature of the exhaust gas changes, the amount of saturated steam recovered using the sensible heat and combustion heat of the exhaust gas changes.

しかし、本実施形態では、製鋼用アーク炉設備100が4つの製鋼用アーク炉1を有しており、これらは通常操業開始タイミングが所定時間ずれた状態となる。これにより、これら4つの製鋼用アーク炉1の高温期と低温期は互いにずれた状態となり、これら4つの製鋼用アーク炉1で回収された飽和蒸気を蒸気アキュムレータ62で合流させるので、合流後の飽和蒸気量は平準化されることとなる。このとき、各製鋼用アーク炉1の操業タイミングを制御することにより、合流後の飽和蒸気量の分布を所望のものとすることができる。   However, in the present embodiment, the steelmaking arc furnace facility 100 has four steelmaking arc furnaces 1, which are in a state in which the normal operation start timing is shifted by a predetermined time. As a result, the high temperature period and the low temperature period of the four steelmaking arc furnaces 1 are shifted from each other, and the saturated steam collected in the four steelmaking arc furnaces 1 is merged by the steam accumulator 62. The amount of saturated steam will be leveled. At this time, by controlling the operation timing of each arc furnace 1 for steelmaking, the distribution of the saturated steam amount after joining can be made desired.

また、本実施形態では、飽和蒸気を過熱蒸気にする際に蒸気過熱器43に対する加熱エネルギーの供給を廃熱回収後の排ガスを用いて行うことができるので、過熱蒸気を生成するための別途の燃料が不要であり、エネルギー経済性が高い。   Further, in this embodiment, when the saturated steam is changed to superheated steam, heating energy can be supplied to the steam superheater 43 using the exhaust gas after waste heat recovery. Fuel is unnecessary and energy economy is high.

ところで、廃熱が回収された後の排ガスを、過熱蒸気を生成するための熱源として用いる場合、所定の過熱度の過熱蒸気を生成するための熱量を確保しておく必要があり、そのために蒸気過熱器43に供給される排ガス温度の低下を極力防止することが必要となる。しかし、製鋼用アーク炉1においては低温の排ガスが排出されることがある。例えば、製鋼用アーク炉1において通電直後、原料追加装入直後、出鋼後は低温の排ガスが排出される。この低温の排ガスが運転中の他の製鋼用アーク炉の高温の排ガスに混合されると、混合後のガス温度が低下してしまう。排ガス温度が低下すると、所定の過熱度の過熱蒸気生成のための熱量が不足する不都合が生じる。これにより、過熱蒸気流量および/または蒸気過熱度が低下して量蒸気タービンの出力が低下し、その後過熱蒸気流量および/または蒸気過熱度が回復しても、定常出力に回復するまでに長時間を要し、発電量が低下してしまう。例えば、図5に示すように、出力が23MWの場合に6MW分程度の過熱蒸気流量および/または蒸気過熱度が低下しただけでも定常状態に回復するのに15分間程度かかり、20MW分程度低下した場合には40分間近くかかってしまう。   By the way, when the exhaust gas after the waste heat is recovered is used as a heat source for generating superheated steam, it is necessary to secure a heat quantity for generating superheated steam having a predetermined superheat degree. It is necessary to prevent the temperature of the exhaust gas supplied to the superheater 43 from decreasing as much as possible. However, low temperature exhaust gas may be discharged in the steelmaking arc furnace 1. For example, in the arc furnace 1 for steelmaking, low temperature exhaust gas is discharged immediately after energization, immediately after raw material addition, and after steel output. If this low temperature exhaust gas is mixed with the high temperature exhaust gas of another steelmaking arc furnace in operation, the gas temperature after mixing will decrease. When the exhaust gas temperature is lowered, there is a disadvantage that the amount of heat for generating superheated steam having a predetermined superheat degree is insufficient. As a result, the superheated steam flow rate and / or the degree of steam superheat decreases, the output of the quantity steam turbine decreases, and even after the superheated steam flow rate and / or steam superheat degree recovers, it takes a long time to recover to the steady output. Power generation will be reduced. For example, as shown in FIG. 5, when the output is 23 MW, it takes about 15 minutes to recover the steady state even if the superheated steam flow rate and / or the steam superheat degree is reduced by about 6 MW, and it is reduced by about 20 MW. In some cases it takes nearly 40 minutes.

そこで、本実施形態では、廃熱ボイラー6下流側のダクト5に、換気ダクト12へ接続される接続配管18を設け、廃熱回収後の排ガスを蒸気過熱器43側に供給する排ガス流路と、蒸気過熱器43を通らない排ガス流路とで切り替える切替手段としてダンパー31および32を設けている。そして、製鋼用アーク炉1から高温の排ガスを排出している期間(高温期)には、図3の(a)に示すように、ダンパー31を開き、ダンパー32を閉じて、排ガスが蒸気過熱器43に供給されるようにする。一方、製鋼用アーク炉1の運転を停止しているとき等の低温の排ガスを排出している期間(低温期)には、図3の(b)に示すように、ダンパー31を閉じ、ダンパー32を開いて、製鋼用アーク炉1からの排ガスを換気用ダンパー12に導き、製鋼用アーク炉1からの排ガスが蒸気過熱器43に供給されないようにする。これにより、過熱蒸気発生用の排ガスの温度が低下することを防止することができ、安定して所定の過熱度の過熱蒸気を生成することができる。   Therefore, in the present embodiment, the connection pipe 18 connected to the ventilation duct 12 is provided in the duct 5 on the downstream side of the waste heat boiler 6, and the exhaust gas flow path for supplying exhaust gas after waste heat recovery to the steam superheater 43 side is provided. Dampers 31 and 32 are provided as switching means for switching between the exhaust gas passage not passing through the steam superheater 43. And in the period (high temperature period) in which high temperature exhaust gas is discharged from the steelmaking arc furnace 1, the damper 31 is opened and the damper 32 is closed as shown in FIG. To be supplied to the vessel 43. On the other hand, during a period when low temperature exhaust gas is discharged (low temperature period) such as when the operation of the steelmaking arc furnace 1 is stopped, the damper 31 is closed as shown in FIG. The exhaust gas from the steelmaking arc furnace 1 is led to the ventilation damper 12 so that the exhaust gas from the steelmaking arc furnace 1 is not supplied to the steam superheater 43. Thereby, it can prevent that the temperature of the exhaust gas for superheated steam generation falls, and can generate the superheated steam of the predetermined superheat degree stably.

この場合に、予め1ヒートの排ガス温度プロファイルを把握しておき、排ガス温度が予め定めた温度よりも低温になる場合に、蒸気過熱器43へ排ガスが供給されないようにすることができる。   In this case, an exhaust gas temperature profile for one heat is obtained in advance, and when the exhaust gas temperature is lower than a predetermined temperature, the exhaust gas is not supplied to the steam superheater 43.

より安定して過熱蒸気を生成する観点からは、図6に示すように、各アーク炉ユニットの廃熱ボイラー6の出口に温度計81を設置し、温度計81の温度が予め定めた温度よりも低温になった時点で、該当する製鋼用アーク炉1のダンパー31および32を操作して排ガスが蒸気過熱器43へ供給されないようにしてもよい。この場合は、図6に示すように制御器82を設け、温度計81の信号を制御器82に出力し、制御器82がその信号に基づいてダンパー31および32を自動的に操作するようにすることが好ましい。また、図7に示すように、温度計81の他に蒸気過熱器43の入口にも温度計83を設けるようにしてもよい。この場合には、温度計83が所定温度よりも低くなった時点で、各アーク炉ユニットのうち温度計81の温度が予め定められた温度よりも低いものについて排ガスが蒸気過熱器43に流れないようにダンパー31および32を操作する。このとき、このような操作を制御器82の制御によって行うことが好ましい。さらに、図8に示すように、温度計83のみを設け、その温度が予め定められた温度よりも低くなった時点で、4つの製鋼用アーク炉1の操業状態を把握し、低温期にある製鋼用アーク炉1に対応するアーク炉ユニットについて排ガスが蒸気過熱器43に流れないようにダンパー31および32を操作するようにしてもよい。このとき、監視・操作・制御部70からの情報に基づいて制御器82が低温期にある製鋼用アーク炉1に対応するアーク炉ユニットにダンパー31および32を操作する指令を与えるようにすることが好ましい。   From the viewpoint of more stably generating superheated steam, as shown in FIG. 6, a thermometer 81 is installed at the outlet of the waste heat boiler 6 of each arc furnace unit, and the temperature of the thermometer 81 is higher than a predetermined temperature. When the temperature becomes low, the dampers 31 and 32 of the corresponding steelmaking arc furnace 1 may be operated so that the exhaust gas is not supplied to the steam superheater 43. In this case, a controller 82 is provided as shown in FIG. 6, and the signal of the thermometer 81 is output to the controller 82, and the controller 82 automatically operates the dampers 31 and 32 based on the signal. It is preferable to do. In addition to the thermometer 81, a thermometer 83 may be provided at the inlet of the steam superheater 43 as shown in FIG. In this case, when the thermometer 83 becomes lower than the predetermined temperature, the exhaust gas does not flow into the steam superheater 43 for each of the arc furnace units whose temperature is lower than the predetermined temperature. The dampers 31 and 32 are operated as described above. At this time, it is preferable to perform such an operation under the control of the controller 82. Furthermore, as shown in FIG. 8, only the thermometer 83 is provided, and when the temperature becomes lower than a predetermined temperature, the operating state of the four steelmaking arc furnaces 1 is grasped, and is in a low temperature period. For the arc furnace unit corresponding to the steelmaking arc furnace 1, the dampers 31 and 32 may be operated so that the exhaust gas does not flow to the steam superheater 43. At this time, the controller 82 gives a command to operate the dampers 31 and 32 to the arc furnace unit corresponding to the steelmaking arc furnace 1 in the low temperature period based on information from the monitoring / operation / control unit 70. Is preferred.

次に、廃熱ボイラー6の範囲について説明する。
顕熱および燃焼熱が回収された後の排ガスを過熱蒸気生成のための熱源として使用する場合、その熱量は発生飽和蒸気量と過熱度、廃熱ボイラー6以降蒸気過熱器43までの管路の熱放散により決定される。今、215℃の飽和蒸気から350℃の過熱蒸気を得ようとしたとき、廃熱ボイラー6の入口の熱量を100%とすると、廃熱ボイラー6での吸熱量が50〜55%のときの発生蒸気を過熱するために必要な熱量は5〜10%となる。さらに管路などからの放熱を加味すると、廃熱ボイラー6の範囲は、廃熱ボイラー6の出口の排ガス温度が500℃以上の範囲となる。
Next, the range of the waste heat boiler 6 will be described.
When the exhaust gas after the recovery of sensible heat and combustion heat is used as a heat source for the generation of superheated steam, the amount of heat generated is the amount of generated saturated steam and the degree of superheat, and the pipe line from the waste heat boiler 6 to the steam superheater 43. Determined by heat dissipation. Now, when trying to obtain 350 ° C superheated steam from 215 ° C saturated steam, assuming that the heat quantity at the inlet of the waste heat boiler 6 is 100%, the endothermic amount in the waste heat boiler 6 is 50 to 55%. The amount of heat necessary to superheat the generated steam is 5 to 10%. Further, when heat dissipation from the pipe line is taken into account, the range of the waste heat boiler 6 is such that the exhaust gas temperature at the outlet of the waste heat boiler 6 is 500 ° C. or higher.

一方、製鋼用アーク炉の廃熱ボイラー6は、主として放射伝熱による熱交換となり、放射伝熱による熱交換量は概略以下の(1)で求めることができる。
Q=CA〔(Tg/100)−(Tw/100)〕 ……(1)
Q:放射伝熱量
Tg:ガス温度
Tw:水冷壁管表面温度
A:有効放射伝熱面積
C:有効放射係数
On the other hand, the waste heat boiler 6 of the arc furnace for steel making is mainly subjected to heat exchange by radiant heat transfer, and the heat exchange amount by radiant heat transfer can be determined by the following (1).
Q = CA [(Tg / 100) 4 − (Tw / 100) 4 ] (1)
Q: Radiation heat transfer amount Tg: Gas temperature Tw: Water-cooled wall tube surface temperature A: Effective radiation heat transfer area C: Effective radiation coefficient

実際の放射伝熱は複雑な現象であるが、有効放射係数に変化がないと仮定して、ガス温度が1000℃のときに吸収される熱量と同じ吸収熱量を得ようとした場合、排ガス温度が800℃では約2.5倍、排ガス温度が600℃では約8倍の有効放射伝熱面積が必要となり、排ガス温度が600℃よりも低い位置まで廃熱ボイラー6の範囲を広げることは伝熱面積の増加割合に比して回収蒸気量が少なく、経済的でない。このことと、上述した熱バランスから廃熱ボイラー6を設置する範囲は、排ガス温度が600℃以上の範囲が好ましく、700℃以上の範囲がより好ましい。   Actual radiant heat transfer is a complicated phenomenon, but assuming that there is no change in the effective radiant coefficient, when trying to obtain the same amount of heat absorbed when the gas temperature is 1000 ° C., the exhaust gas temperature However, an effective radiant heat transfer area of approximately 2.5 times is required at 800 ° C and approximately 8 times greater at an exhaust gas temperature of 600 ° C. The amount of recovered steam is small compared to the rate of increase in the heat area, which is not economical. From this and the above-described heat balance, the range in which the waste heat boiler 6 is installed is preferably an exhaust gas temperature of 600 ° C. or higher, more preferably 700 ° C. or higher.

次に、本発明の他の実施形態について説明する。
ここでは、図9に示すように、上記図1の設備に加え、さらに下流側排ガスダクト42の蒸気過熱器43の上流側部分に蓄熱体75を設け、排ガスが蓄熱体75を通過して流れるようにしている。蓄熱体75としてはチェッカレンガ等の熱容量の大きいブロック体を用いることができる。さらにいえば、伝熱面積が大きく同一容量の蓄熱室ではより多くの蓄熱ができる特殊形状のチェッカを用いることがより好ましい。上述のように、ダンパー31および32を操作して低温の排ガスが蒸気過熱器43に供給されないようにすることにより、蒸気過熱器43に供給される排ガス温度の低下を極力防止することができるが、やはり多少の排ガス温度変動が生じる。しかし、この蓄熱体75は高温の排ガスにより多量の熱量を蓄積することができ、排ガスの温度変動があっても排ガスが蓄熱体75を通過する際に、蓄熱体75から排ガスに熱供給されて蒸気過熱器43に供給される排ガス温度の変動を緩和することができる。これにより排ガスの温度変動を一層小さくすることができ、蒸気過熱器43の蒸気の温度をより均一にすることができる。
Next, another embodiment of the present invention will be described.
Here, as shown in FIG. 9, in addition to the equipment of FIG. 1, a heat storage body 75 is further provided in the upstream side portion of the steam superheater 43 of the downstream exhaust gas duct 42, and the exhaust gas flows through the heat storage body 75. I am doing so. As the heat storage body 75, a block body having a large heat capacity such as a checker brick can be used. Furthermore, it is more preferable to use a checker with a special shape that can store more heat in a heat storage chamber having a large heat transfer area and the same capacity. As described above, by operating the dampers 31 and 32 so that the low temperature exhaust gas is not supplied to the steam superheater 43, it is possible to prevent the temperature of the exhaust gas supplied to the steam superheater 43 from being lowered as much as possible. Some exhaust gas temperature fluctuations still occur. However, the heat storage body 75 can store a large amount of heat with the high-temperature exhaust gas, and even when there is a temperature fluctuation of the exhaust gas, when the exhaust gas passes through the heat storage body 75, heat is supplied from the heat storage body 75 to the exhaust gas. Variations in the temperature of the exhaust gas supplied to the steam superheater 43 can be mitigated. Thereby, the temperature fluctuation | variation of waste gas can be made still smaller, and the temperature of the steam of the steam superheater 43 can be made more uniform.

次に、本発明のさらに他の実施形態について説明する。
ここでは、図10に示すように、蒸気過熱器43の入口に飽和蒸気流量制御弁91を設け、蒸気過熱器43の出口に過熱蒸気温度計92と過熱蒸気流量計93を設け、過熱蒸気温度計92の信号に応じて飽和蒸気流量制御弁91を制御して供給する飽和蒸気流量を制御する制御器94を設ける。これにより、過熱蒸気温度に応じた過熱蒸気量になるように、飽和蒸気流量制御弁91を制御して飽和蒸気流量を制御することができるので、過熱蒸気の過熱度を一定にすることができる。なお、過熱蒸気流量計93を設ける代わりに、制御器93に予め求めた飽和蒸気流量制御弁91の開度と飽和蒸気量との関係を設定しておき、過熱蒸気温度に応じた飽和蒸気流量となるように飽和蒸気流量制御弁91の開度を制御してもよい。
Next, still another embodiment of the present invention will be described.
Here, as shown in FIG. 10, a saturated steam flow rate control valve 91 is provided at the inlet of the steam superheater 43, a superheated steam thermometer 92 and a superheated steam flow meter 93 are provided at the outlet of the steam superheater 43, and the superheated steam temperature is increased. A controller 94 is provided for controlling the saturated steam flow to be supplied by controlling the saturated steam flow control valve 91 in accordance with the signal from the meter 92. Accordingly, the saturated steam flow rate control valve 91 can be controlled so as to control the saturated steam flow rate so that the amount of superheated steam according to the superheated steam temperature can be obtained, so that the superheat degree of the superheated steam can be made constant. . Instead of providing the superheated steam flow meter 93, the controller 93 sets the relationship between the opening degree of the saturated steam flow control valve 91 and the saturated steam amount obtained in advance, and the saturated steam flow according to the superheated steam temperature. The opening degree of the saturated steam flow control valve 91 may be controlled so that

次に、本発明の別の実施形態について説明する。
ここでは、図11に示すように、蒸気過熱器43の入口に排ガス温度計83を設け、蒸気過熱器43の入口に飽和蒸気流量計97を設け、排ガス流量を制御する制御器98を設ける。そして、制御器98に排ガス温度計83および飽和蒸気流量計97からの信号および下流側排ガスダクトに設けられた排ガス流量計47からの信号を入力するようにし、制御器98が排ガス温度計96および飽和蒸気流量計97からの信号に応じてダンパー31および32の開度を制御するようにする。これにより、飽和蒸気流量に応じて蒸気過熱器43に流入する排ガス流量を制御することができる。
Next, another embodiment of the present invention will be described.
Here, as shown in FIG. 11, an exhaust gas thermometer 83 is provided at the inlet of the steam superheater 43, a saturated steam flow meter 97 is provided at the inlet of the steam superheater 43, and a controller 98 for controlling the exhaust gas flow rate is provided. Then, a signal from the exhaust gas thermometer 83 and the saturated steam flow meter 97 and a signal from the exhaust gas flow meter 47 provided in the downstream exhaust gas duct are input to the controller 98. The opening degree of the dampers 31 and 32 is controlled in accordance with a signal from the saturated steam flow meter 97. Thereby, the exhaust gas flow rate flowing into the steam superheater 43 can be controlled according to the saturated steam flow rate.

製鋼用アーク炉の排ガスは、窒素、酸素、二酸化炭素を主成分とし操業による変動は少なく、ガス成分の変動による比熱の変動も少ないので、ガス温度と比熱の関係を予め測定しておけば排ガス流量と排ガス温度の測定のみで排ガスの持つ熱エネルギー量を把握することができる。したがって、排ガス流量と排ガス温度を測定することにより、蒸気過熱器43に通気される飽和蒸気量と要求される過熱度から過熱蒸気生成のための必要とする熱エネルギーを、蒸気過熱器43に流入する排ガス量で制御することができる。このため、ほぼ一定の過熱度の過熱蒸気を生成することができ、極めて高効率で蒸気タービン式の発電用タービン63を駆動することができる。このとき、各アーク炉ユニットの廃熱ボイラー6の出口に温度計を設けることにより、流量制御する排ガスの温度を正確に把握することができるので、より精度を高めることができる。また、このように飽和蒸気を過熱するための排ガスの熱エネルギーを制御することにより、過熱蒸気の過度の過熱や、排ガスが高温になりすぎて蒸気過熱器43を通過した後に集塵器を焼損する等の不都合を防止することができる。   Exhaust gas from steelmaking arc furnaces is mainly composed of nitrogen, oxygen, and carbon dioxide, and there are few fluctuations due to operation, and there is little fluctuation in specific heat due to fluctuations in gas components, so if the relationship between gas temperature and specific heat is measured in advance The amount of thermal energy possessed by the exhaust gas can be ascertained only by measuring the flow rate and the exhaust gas temperature. Therefore, by measuring the exhaust gas flow rate and the exhaust gas temperature, the heat energy required for generating the superheated steam flows into the steam superheater 43 from the saturated steam amount vented to the steam superheater 43 and the required superheat degree. The amount of exhaust gas to be controlled can be controlled. For this reason, it is possible to generate superheated steam having a substantially constant superheat degree, and it is possible to drive the steam turbine power generation turbine 63 with extremely high efficiency. At this time, by providing a thermometer at the outlet of the waste heat boiler 6 of each arc furnace unit, the temperature of the exhaust gas whose flow rate is controlled can be accurately grasped, so that the accuracy can be further improved. In addition, by controlling the thermal energy of the exhaust gas for superheating the saturated steam in this way, excessive heating of the superheated steam or burning of the dust collector after the exhaust gas becomes too hot and passes through the steam superheater 43 Inconvenience such as doing can be prevented.

なお、本発明は上記実施形態に限定されることなく、種々の変形が可能である。例えば、上記例では4つの製鋼用アーク炉を用いた例について示したが、製鋼用アーク炉の数は2以上であればいくつでもよい。また、飽和蒸気を発電に利用する場合について示したが、これに限るものではない。さらに、上記実施形態では、排ガスを燃焼塔で燃焼させて、排ガスの顕熱および燃焼熱を廃熱として回収する場合について示したが、燃焼塔は必ずしも必要はなく、燃焼塔を省いた廃熱ボイラー内で燃焼させることも可能である。また、製鉄所内で発生した鋼くずのみの溶解などであれば、白煙・悪臭などの発生が無く、一酸化炭素の発生量も少ないため、燃焼用空気を積極的に吸引する必要はなく、より高温の排ガスからの熱回収が可能となる。この場合には排ガスから回収される廃熱は、実質的に顕熱のみとなる。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above example, an example using four steelmaking arc furnaces is shown, but the number of steelmaking arc furnaces may be any number as long as it is two or more. Moreover, although shown about the case where saturated steam is utilized for electric power generation, it does not restrict to this. Furthermore, in the above-described embodiment, the case where the exhaust gas is burned in the combustion tower and the sensible heat and combustion heat of the exhaust gas are recovered as waste heat is shown. However, the combustion tower is not necessarily required, and the waste heat without the combustion tower is used. It is also possible to burn in the boiler. In addition, if only steel scrap generated in the steel works is dissolved, there is no generation of white smoke or offensive odor, and the amount of carbon monoxide generated is small, so there is no need to actively suck in combustion air. Heat recovery from higher temperature exhaust gas becomes possible. In this case, the waste heat recovered from the exhaust gas is substantially only sensible heat.

1;製鋼用アーク炉
2;排気ダクト
3;燃焼塔
4;水冷ダクト
5;ダクト
6;廃熱ボイラー
7;伝熱管
8;空気導入口
10a,10b,10c,10d;アーク炉ユニット
11;換気用フード
12;換気ダクト
13;蒸気ドラム
17;飽和蒸気搬送配管
18;接続配管
21;炉体
23;アーク電極
31,32;ダンパー
41;排ガス集合ダクト
42;下流側排ガスダクト
43;蒸気過熱器
51;換気集合ダクト
52;排ガス集塵ダクト
54;集塵器
61;蒸気集合配管
62;蒸気アキュムレータ
63;発電用タービン
70;監視・操作・制御部
75;蓄熱体
81,83;温度計
82;制御器
91;飽和蒸気流量制御弁
92;加熱蒸気温度計
93;加熱蒸気流量計
94;制御器
95;排ガス流量計
96;排ガス温度計
97;飽和蒸気流量計
98;制御器
100;製鋼用アーク炉設備
DESCRIPTION OF SYMBOLS 1; Steelmaking arc furnace 2; Exhaust duct 3; Combustion tower 4; Water cooling duct 5; Duct 6; Waste heat boiler 7; Heat transfer pipe 8; Air inlet 10a, 10b, 10c, 10d; Hood 12; Ventilation duct 13; Steam drum 17; Saturated steam transfer pipe 18; Connection pipe 21; Furnace body 23; Arc electrode 31, 32; Damper 41; Exhaust gas collecting duct 42; Downstream exhaust duct 43; Steam superheater 51; Ventilation collecting duct 52; exhaust gas dust collecting duct 54; dust collector 61; steam collecting pipe 62; steam accumulator 63; power generation turbine 70; monitoring / operation / control unit 75; heat storage body 81, 83; thermometer 82; 91; saturated steam flow control valve 92; heating steam thermometer 93; heating steam flow meter 94; controller 95; exhaust gas flow meter 96; exhaust gas thermometer 7; saturated vapor flow meter 98; controller 100; steel-making arc furnace facilities

Claims (14)

複数の製鋼用アーク炉から排出される排ガスの廃熱を飽和蒸気として回収し、さらに飽和蒸気を加熱して過熱蒸気とする製鋼用アーク炉の廃熱回収設備であって、
それぞれの製鋼用アーク炉から排ガスを排出するための第1の排ガス流路と、
前記第1の排ガス流路に設置された、排ガスの廃熱を飽和蒸気として回収する廃熱ボイラーと、
それぞれの廃熱ボイラーで発生した飽和蒸気を合流させて貯留する蒸気アキュムレータと、
前記蒸気アキュムレータに貯留された蒸気を加熱して過熱蒸気とする蒸気過熱器と、
前記廃熱ボイラーで廃熱が回収された後の排ガスを前記蒸気過熱器に導いて飽和蒸気の加熱に供した後に排出する第2の排ガス流路と、
前記廃熱ボイラーで廃熱が回収された後の排ガスを前記蒸気過熱器を経由せずに排出する第3の排ガス流路と、
廃熱が回収された後の排ガスの流路を前記第2の排ガス流路と前記第3の排ガス流路とで切り替える切替手段とを具備することを特徴とする製鋼用アーク炉の廃熱回収設備。
A waste heat recovery facility for a steelmaking arc furnace that recovers waste heat of exhaust gas discharged from a plurality of steelmaking arc furnaces as saturated steam and further heats the saturated steam to superheated steam,
A first exhaust gas flow path for discharging exhaust gas from each steelmaking arc furnace;
A waste heat boiler installed in the first exhaust gas flow path for recovering waste heat of exhaust gas as saturated steam;
A steam accumulator that combines and stores saturated steam generated in each waste heat boiler;
A steam superheater that heats the steam stored in the steam accumulator to form superheated steam;
A second exhaust gas flow path for discharging the exhaust gas after the waste heat has been recovered by the waste heat boiler to the steam superheater and heating the saturated steam;
A third exhaust gas flow path for discharging the exhaust gas after the waste heat is recovered by the waste heat boiler without passing through the steam superheater;
Waste heat recovery for a steelmaking arc furnace, comprising switching means for switching the exhaust gas flow path after the waste heat has been recovered between the second exhaust gas flow path and the third exhaust gas flow path Facility.
前記排ガスの廃熱は、排ガスの顕熱、または排ガスの顕熱および燃焼熱であることを特徴とする請求項1に記載の製鋼用アーク炉の廃熱回収設備。   The waste heat recovery equipment for a steelmaking arc furnace according to claim 1, wherein the waste heat of the exhaust gas is sensible heat of the exhaust gas, or sensible heat and combustion heat of the exhaust gas. 前記第1の排ガス流路は、排ガスダクトと、排ガスを燃焼させる燃焼塔とを有し、前記廃熱ボイラーは前記排ガスダクトおよび/または前記燃焼塔を構成するように設けられることを特徴とする請求項1または請求項2に記載の製鋼用アーク炉の廃熱回収設備。   The first exhaust gas flow path has an exhaust gas duct and a combustion tower for combusting exhaust gas, and the waste heat boiler is provided to constitute the exhaust gas duct and / or the combustion tower. The waste heat recovery equipment for an arc furnace for steel making according to claim 1 or 2. 前記廃熱ボイラーは、その出口の排ガスの温度が600℃以上となる範囲に設けられることを特徴とする請求項1から請求項3のいずれか1項に記載の製鋼用アーク炉の廃熱回収設備。   The waste heat recovery of the arc furnace for steel making according to any one of claims 1 to 3, wherein the waste heat boiler is provided in a range where the temperature of the exhaust gas at the outlet thereof is 600 ° C or higher. Facility. 前記廃熱ボイラーの出口および/または前記蒸気過熱器の入口に設けられたガス温度計をさらに具備し、前記廃熱ボイラーの出口の排ガス温度および/または前記蒸気過熱器の入口の排ガス温度が予め定められた温度以上の場合は、前記排ガスを前記第2の排ガス流路に流し、前記廃熱ボイラーの出口の排ガス温度および/または前記蒸気過熱器の入口の排ガス温度が予め定められた温度よりも低い場合は、前記排ガスを前記第3の排ガス流路に流すように前記切替手段が操作されることを特徴とする請求項1から請求項4のいずれか1項に記載の製鋼用アーク炉の廃熱回収設備。   A gas thermometer provided at the outlet of the waste heat boiler and / or the inlet of the steam superheater is further provided, and the exhaust gas temperature at the outlet of the waste heat boiler and / or the exhaust gas temperature at the inlet of the steam superheater is previously set. If the temperature is equal to or higher than a predetermined temperature, the exhaust gas is allowed to flow through the second exhaust gas flow path, and the exhaust gas temperature at the outlet of the waste heat boiler and / or the exhaust gas temperature at the inlet of the steam superheater is more than a predetermined temperature. The arc furnace for steelmaking according to any one of claims 1 to 4, wherein the switching means is operated so that the exhaust gas flows into the third exhaust gas flow path when the exhaust gas is low. Waste heat recovery equipment. 前記第3の排ガス流路は、前記各製鋼用アーク炉の周囲および/または前記複数の製鋼用アーク炉が設置される製鋼工場内を換気するための換気ダクトと、前記第2の流路と前記換気ダクトとを接続する接続配管と、前記換気ダクトが集合した換気集合ダクトとを有することを特徴とする請求項1から請求項5のいずれか1項に記載の製鋼用アーク炉の廃熱回収設備。   The third exhaust gas flow path includes a ventilation duct for ventilating the surroundings of each steelmaking arc furnace and / or a steelmaking factory where the plurality of steelmaking arc furnaces are installed, and the second flow path. The waste heat of the arc furnace for steel making according to any one of claims 1 to 5, further comprising a connection pipe connecting the ventilation duct and a ventilation collecting duct in which the ventilation ducts are gathered. Recovery equipment. 前記第2の排ガス流路からの排ガスを集塵する集塵器と、前記集塵器に到達する前の排ガスを冷却する冷却器をさらに具備することを特徴とする請求項6に記載の製鋼用アーク炉の廃熱回収設備。   The steelmaking according to claim 6, further comprising a dust collector that collects the exhaust gas from the second exhaust gas flow path, and a cooler that cools the exhaust gas before reaching the dust collector. Waste heat recovery equipment for electric arc furnaces. 前記第2の排ガス流路からの排ガスを集塵する集塵器をさらに具備し、前記第2の排ガス流路からの排ガスは前記換気集合ダクトの冷風が混合された状態で、前記集塵器に導かれることを特徴とする請求項6に記載の製鋼用アーク炉の廃熱回収設備。   A dust collector for collecting the exhaust gas from the second exhaust gas flow path; and the exhaust gas from the second exhaust gas flow path is mixed with the cold air of the ventilation collective duct, The waste heat recovery equipment for a steelmaking arc furnace according to claim 6, wherein 前記第2の排ガス流路は、前記各廃熱ボイラーの下流側の排ガスダクトと、これら排ガスダクトが集合した排ガス集合ダクトと、前記排ガス集合ダクトから延び、前記蒸気過熱器が接続された下流側排ガスダクトとを有し、前記下流側排ガスダクトが前記換気集合ダクトに接続され、前記換気集合ダクトには前記集塵器が接続された排ガス集塵ダクトが接続され、前記下流側排ガスダクトからの排ガスに前記換気集合ダクトの冷風が混合された状態で、前記排ガス集塵ダクトを介して前記集塵器に導かれることを特徴とする請求項8に記載の製鋼用アーク炉の廃熱回収設備。   The second exhaust gas flow path includes an exhaust gas duct on the downstream side of each waste heat boiler, an exhaust gas assembly duct in which these exhaust gas ducts are aggregated, and a downstream side to which the steam superheater is connected. An exhaust gas duct, the downstream exhaust gas duct is connected to the ventilation collective duct, the exhaust gas collect duct connected to the dust collector is connected to the ventilation collective duct, and the exhaust gas duct from the downstream exhaust duct The waste heat recovery equipment for an arc furnace for steel making according to claim 8, wherein the exhaust gas is guided to the dust collector through the exhaust gas dust collection duct in a state where the cold air of the ventilation collective duct is mixed with the exhaust gas. . 前記集塵器に到達する前の排ガスを冷却する冷却器をさらに具備することを特徴とする請求項8または請求項9に記載の製鋼用アーク炉の廃熱回収設備。   The waste heat recovery facility for an arc furnace for steel making according to claim 8 or 9, further comprising a cooler for cooling the exhaust gas before reaching the dust collector. 前記第2の排ガス流路の前記蒸気過熱器の上流側に設けられた蓄熱体をさらに具備することを特徴とする請求項1から請求項10のいずれか1項に記載の製鋼用アーク炉の廃熱回収設備。   The arc furnace for steel making according to any one of claims 1 to 10, further comprising a heat storage body provided on the upstream side of the steam superheater in the second exhaust gas flow path. Waste heat recovery equipment. 前記蒸気過熱器に流入される飽和蒸気の流量を制御する飽和蒸気流量制御弁と、前記蒸気過熱器から排出される過熱蒸気の温度を検出する過熱蒸気温度計と、前記過熱蒸気の温度に応じて前記飽和蒸気流量制御弁を制御して過熱蒸気量を制御する制御器とをさらに具備することを特徴とする請求項1から請求項11のいずれか1項に記載の製鋼用アーク炉の廃熱回収設備。   Depending on the temperature of the superheated steam, a saturated steam flow control valve that controls the flow rate of saturated steam that flows into the steam superheater, a superheated steam thermometer that detects the temperature of superheated steam discharged from the steam superheater, and the temperature of the superheated steam And a controller for controlling the amount of superheated steam by controlling the saturated steam flow control valve, and disposing of the arc furnace for steelmaking according to any one of claims 1 to 11. Heat recovery equipment. 前記蒸気過熱器に流入される排ガスの流量を検出する排ガス流量計と、前記蒸気過熱器に流入される排ガスの温度を検出する排ガス温度計と、前記蒸気過熱器に流入される飽和蒸気の流量を検出する飽和蒸気流量計と、前記排ガスの流量を調節する流量調節手段と、前記排ガスの温度と前記飽和蒸気の流量に応じて前記流量調節手段を制御して前記排ガス流量を制御する制御器とをさらに具備することを特徴とする請求項1から請求項12のいずれか1項に記載の製鋼用アーク炉の廃熱回収設備。   An exhaust gas flow meter for detecting the flow rate of exhaust gas flowing into the steam superheater, an exhaust gas thermometer for detecting the temperature of exhaust gas flowing into the steam superheater, and a flow rate of saturated steam flowing into the steam superheater And a controller for controlling the flow rate of the exhaust gas by controlling the flow rate adjusting means according to the temperature of the exhaust gas and the flow rate of the saturated steam. The waste heat recovery facility for an arc furnace for steel making according to any one of claims 1 to 12, further comprising: 複数の製鋼用アーク炉と、前記複数の製鋼用アーク炉から排出される排ガスの廃熱を飽和蒸気として回収し、さらに飽和蒸気を加熱して過熱蒸気とする廃熱回収設備とを具備する製鋼用アーク炉設備であって、
前記廃熱回収設備として、請求項1から請求項13のいずれか1項に記載の廃熱回収設備を備えることを特徴とする製鋼用アーク炉設備。
Steel making comprising a plurality of steelmaking arc furnaces, and a waste heat recovery facility for recovering waste heat of exhaust gas discharged from the plurality of steelmaking arc furnaces as saturated steam, and further heating the saturated steam into superheated steam Arc furnace equipment for
An arc furnace facility for steel making comprising the waste heat recovery facility according to any one of claims 1 to 13 as the waste heat recovery facility.
JP2010097443A 2010-04-20 2010-04-20 Waste heat recovery equipment for steelmaking arc furnace and arc furnace equipment for steelmaking Active JP5501841B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010097443A JP5501841B2 (en) 2010-04-20 2010-04-20 Waste heat recovery equipment for steelmaking arc furnace and arc furnace equipment for steelmaking
PCT/JP2011/059615 WO2011132669A1 (en) 2010-04-20 2011-04-19 Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
CN201180019548.5A CN102859008B (en) 2010-04-20 2011-04-19 Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
EP11772004.5A EP2562270A4 (en) 2010-04-20 2011-04-19 Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
US13/581,322 US9157336B2 (en) 2010-04-20 2011-04-19 Waste heat recovery structure for steel making electric arc furnaces, steel making electric arc furnace facility, and waste heat recovery method for steel making electric arc furnaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097443A JP5501841B2 (en) 2010-04-20 2010-04-20 Waste heat recovery equipment for steelmaking arc furnace and arc furnace equipment for steelmaking

Publications (2)

Publication Number Publication Date
JP2011226712A true JP2011226712A (en) 2011-11-10
JP5501841B2 JP5501841B2 (en) 2014-05-28

Family

ID=45042259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097443A Active JP5501841B2 (en) 2010-04-20 2010-04-20 Waste heat recovery equipment for steelmaking arc furnace and arc furnace equipment for steelmaking

Country Status (1)

Country Link
JP (1) JP5501841B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471407A (en) * 2013-09-06 2013-12-25 南通曼特威金属材料有限公司 Smelting furnace waste heat recovery system for aluminum ingot production
CN104596317A (en) * 2015-01-28 2015-05-06 白银有色集团股份有限公司 Power frequency core electric furnace production stop and production recovery cold start boiler melting start process in zinc casting
CN104880085A (en) * 2015-05-25 2015-09-02 成都中冶节能环保工程有限公司 Alarm voltage stabilizing type waste heat power generation system based on submerged arc furnace
CN108442988A (en) * 2018-04-25 2018-08-24 山西建龙实业有限公司 A kind of heat reclaim unit and its method for continuous casting steel billet
CN112977877A (en) * 2021-02-03 2021-06-18 中国空气动力研究与发展中心超高速空气动力研究所 Method and device for automatically debugging test state of low-enthalpy enclosure on electric arc heating equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471407A (en) * 2013-09-06 2013-12-25 南通曼特威金属材料有限公司 Smelting furnace waste heat recovery system for aluminum ingot production
CN104596317A (en) * 2015-01-28 2015-05-06 白银有色集团股份有限公司 Power frequency core electric furnace production stop and production recovery cold start boiler melting start process in zinc casting
CN104880085A (en) * 2015-05-25 2015-09-02 成都中冶节能环保工程有限公司 Alarm voltage stabilizing type waste heat power generation system based on submerged arc furnace
CN108442988A (en) * 2018-04-25 2018-08-24 山西建龙实业有限公司 A kind of heat reclaim unit and its method for continuous casting steel billet
CN112977877A (en) * 2021-02-03 2021-06-18 中国空气动力研究与发展中心超高速空气动力研究所 Method and device for automatically debugging test state of low-enthalpy enclosure on electric arc heating equipment
CN112977877B (en) * 2021-02-03 2022-07-19 中国空气动力研究与发展中心超高速空气动力研究所 Method and device for automatically debugging test state of low-enthalpy enclosure on electric arc heating equipment

Also Published As

Publication number Publication date
JP5501841B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2011132669A1 (en) Waste heat recovery facility for arc furnace for steel making, arc furnace facility for steel making, and waste heat recovery method for arc furnace for steel making
WO2010047004A1 (en) Waste heat recovery facility of arc furnace for steel-making and method for recovering waste heat
JP5501841B2 (en) Waste heat recovery equipment for steelmaking arc furnace and arc furnace equipment for steelmaking
CN101539371B (en) First flue gas dust removal and waste heat recovery system for electric stove
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
CN106755718B (en) The fume waste heat utilization and dust removal integrated system and technique that pneumatic steelmaking generates
JP5631073B2 (en) Coke dry fire extinguishing equipment and operation method thereof
CN207095315U (en) Electric furnace flue gas processing system
CN103047871B (en) A kind of In The Sub-mergedfurnace of The Ferroalloys waste heat recovery utilization system
CN203848696U (en) Heat accumulating type settling chamber waste heat storage device
JP5501842B2 (en) Waste heat recovery equipment and waste heat recovery method for steel making arc furnace, and steel making arc furnace equipment
CN108823352A (en) A kind of converter gas dry type waste heat recycling dust-extraction unit and method
CN206281365U (en) A kind of high-temp waste gas afterheat utilizing system
HU177192B (en) Combined boiler equipment utilizing the heat of flue gas for glass ovens of recuperative system
JP6621310B2 (en) Gasification device, control device, combined gasification power generation facility and control method
CN208818016U (en) Electric arc furnaces afterheat utilizing system
KR20130141490A (en) Operating method for utilizing the thermal waste heat for a plant in the basic materials industry
JP4173791B2 (en) Fluidized incinerator system and method for operating the system
CN105758205A (en) Rotary hearth furnace combined waste heat recovery system
CN205560719U (en) Desulfurization oxygen combustion system that floats
CN209623391U (en) The full residual neat recovering system of electric furnace
JP2018123744A (en) Waste power generation plant and operation method of the same
CN116753528B (en) Converter gas high-efficiency utilization and power generation system
CN108343940A (en) A kind of can be the system that boiler of power plant supplies coal gas
CN2910954Y (en) Tube-packing type chimney fixed at converter mouth of evaporated cooling flue of steelmaking converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250