JP2011226587A - Sliding constant velocity universal joint - Google Patents

Sliding constant velocity universal joint Download PDF

Info

Publication number
JP2011226587A
JP2011226587A JP2010097892A JP2010097892A JP2011226587A JP 2011226587 A JP2011226587 A JP 2011226587A JP 2010097892 A JP2010097892 A JP 2010097892A JP 2010097892 A JP2010097892 A JP 2010097892A JP 2011226587 A JP2011226587 A JP 2011226587A
Authority
JP
Japan
Prior art keywords
joint member
constant velocity
velocity universal
shaft
inner joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097892A
Other languages
Japanese (ja)
Inventor
Yoshio Itoda
義男 井戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010097892A priority Critical patent/JP2011226587A/en
Publication of JP2011226587A publication Critical patent/JP2011226587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To certainly reduce a play occurring in a fitting part between an inside joint member and a shaft by a simple means without providing a torsion angle in a spline.SOLUTION: In the sliding constant velocity universal joint which includes an outside joint member 10 and the inside joint member 20 transmitted with torque while permitting axial direction displacement and angle displacement between the inside joint member 20 and the outside joint member 10, and wherein the shaft 50 is inserted into a hole 22 of the inside joint member 20 and is fitted therein in a state of allowing torque transmission, the fitting part 60 between the inside joint member 20 and the shaft 50 is disposed on an insertion side of the shaft 50, and a fixing part 70 imparting an axial direction load on the fitting part 60 is disposed on an opposite-insertion side of the shaft 50. The fitting part 60 includes a structure wherein a spline 23 is formed in a taper-like opening part of the hole 22 of the inside joint member 20 and wherein a spline 53 is formed in a taper-like part of the outer circumferential face of the shaft 50. The fixing part 70 includes: a screw 52 formed on the outer circumferential face of the shaft 50; and a nut 72 tightening and fixing the inside joint member 20 to the shaft 50 by screwing on the screw 52.

Description

本発明は、自動車、航空機、船舶や各種産業機械の動力伝達系において使用され、例えば4WD車やFR車などで使用されるドライブシャフトやプロペラシャフト等に組み込まれて駆動側と従動側の二軸間で軸方向変位および角度変位を許容する摺動式等速自在継手に関する。   The present invention is used in power transmission systems of automobiles, airplanes, ships, and various industrial machines, and is incorporated into a drive shaft, a propeller shaft, etc. used in, for example, a 4WD vehicle, an FR vehicle, etc. The present invention relates to a sliding type constant velocity universal joint that allows axial displacement and angular displacement between them.

例えば、自動車のエンジンから車輪に回転力を等速で伝達するドライブシャフトやプロペラシャフト等に組み込まれる等速自在継手には、固定式等速自在継手と摺動式等速自在継手の二種がある。これら両者の等速自在継手は、駆動側と従動側の二軸を連結してその二軸が作動角をとっても等速で回転トルクを伝達し得る構造を備えている。   For example, there are two types of constant velocity universal joints, such as fixed constant velocity universal joints and sliding constant velocity universal joints, that are built into drive shafts and propeller shafts that transmit rotational force from automobile engines to wheels at constant speed. is there. Both of these constant velocity universal joints have a structure in which two shafts on the driving side and the driven side are connected so that rotational torque can be transmitted at a constant speed even if the two shafts have an operating angle.

自動車のエンジンから駆動車輪に動力を伝達するドライブシャフトは、エンジンと車輪との相対的位置関係の変化による角度変位と軸方向変位に対応する必要があるため、一般的に、エンジン側(インボード側)に摺動式等速自在継手を、駆動車輪側(アウトボード側)に固定式等速自在継手をそれぞれ装備し、両者の等速自在継手をシャフトで連結した構造を具備する。   A drive shaft that transmits power from an automobile engine to a driving wheel needs to cope with an angular displacement and an axial displacement caused by a change in a relative positional relationship between the engine and the wheel. Side) and a fixed type constant velocity universal joint on the drive wheel side (outboard side), and a structure in which both constant velocity universal joints are connected by a shaft.

このドライブシャフトのエンジン側に組み付けられる摺動式等速自在継手の一つに、トルク伝達部材としてローラを用いたローラタイプのトリポード型等速自在継手(TJ)がある。他の摺動式等速自在継手には、トルク伝達部材としてボールを用いたボールタイプのダブルオフセット型等速自在継手(DOJ)がある。また、ドライブシャフトの駆動車輪側に組み付けられる固定式等速自在継手には、ツェッパ型等速自在継手(BJ)やアンダーカットフリー型等速自在継手(UJ)がある。   One of the sliding type constant velocity universal joints assembled on the engine side of the drive shaft is a roller type tripod type constant velocity universal joint (TJ) using a roller as a torque transmission member. Another sliding constant velocity universal joint includes a ball type double offset constant velocity universal joint (DOJ) using a ball as a torque transmission member. The fixed constant velocity universal joint assembled on the drive wheel side of the drive shaft includes a Rzeppa type constant velocity universal joint (BJ) and an undercut free type constant velocity universal joint (UJ).

これら各種の等速自在継手は、内側継手部材の孔にシャフトの軸端部を挿入してスプライン嵌合させた構造を具備する。つまり、内側継手部材の孔の内周面にスプラインを形成すると共に、シャフトの軸端部の外周面にスプラインを形成し、内側継手部材の孔にシャフトの軸端部を挿入することにより、内側継手部材のスプラインとシャフトのスプラインとを嵌合させてトルク伝達可能としている。   These various constant velocity universal joints have a structure in which the shaft end portion of the shaft is inserted into the hole of the inner joint member and is spline-fitted. That is, the spline is formed on the inner peripheral surface of the hole of the inner joint member, the spline is formed on the outer peripheral surface of the shaft end portion of the shaft, and the shaft end portion of the shaft is inserted into the hole of the inner joint member. Torque can be transmitted by fitting the splines of the joint member and the splines of the shaft.

ドライブシャフトに使用される等速自在継手では、自動車のNVH(Noise Vibration Harshness)特性の向上を図るため、内側継手部材のスプラインとシャフトのスプラインとの嵌合部に生じるガタを抑制する手段が種々講じられている(例えば、特許文献1参照)。この特許文献1に開示された等速自在継手では、シャフトのスプラインに捩れ角を設け、その捩れ角を持つシャフトのスプラインを内側継手部材のスプラインに嵌合させることにより、その嵌合部に生じるガタを低減するようにしている。   In constant velocity universal joints used for drive shafts, there are various means for suppressing backlash generated at the fitting portion between the spline of the inner joint member and the spline of the shaft in order to improve the NVH (Noise Vibration Harshness) characteristics of the automobile. (See, for example, Patent Document 1). In the constant velocity universal joint disclosed in Patent Document 1, a shaft spline is provided with a torsion angle, and the shaft spline having the torsion angle is fitted to the spline of the inner joint member, thereby generating in the fitting portion. The play is reduced.

実公平6−33220号公報Japanese Utility Model Publication No. 6-33220

ところで、前述したように、特許文献1で開示された従来の等速自在継手は、内側継手部材のスプラインとシャフトのスプラインとの嵌合部に生じるガタを低減することを目的として、シャフトのスプラインに捩れ角を設けた構造を具備している。   By the way, as described above, the conventional constant velocity universal joint disclosed in Patent Document 1 has a shaft spline for the purpose of reducing backlash generated at the fitting portion between the spline of the inner joint member and the spline of the shaft. Has a structure in which a twist angle is provided.

しかしながら、内側継手部材とシャフトとのスプライン嵌合をタイトにするため、シャフトのスプラインの捩れ角を大きく設定すると、内側継手部材の孔にシャフトを挿入するに際して、大きな荷重を付与しなければならず、内側継手部材とシャフトとをスプライン嵌合により結合させることが困難となる。   However, if the torsion angle of the shaft spline is set to be large in order to tighten the spline fitting between the inner joint member and the shaft, a large load must be applied when the shaft is inserted into the hole of the inner joint member. It becomes difficult to connect the inner joint member and the shaft by spline fitting.

これを回避するため、シャフトのスプラインの捩れ角を小さく設定すると、ルーズなスプライン嵌合になり易く、その嵌合部に生じるガタを完全になくすことが難しくなってくる。このように、スプラインの捩れ角を最適に設定することは非常に難しい。   In order to avoid this, if the twist angle of the spline of the shaft is set to be small, loose spline fitting is likely to occur, and it becomes difficult to completely eliminate the play generated in the fitting portion. Thus, it is very difficult to optimally set the twist angle of the spline.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、スプラインに捩れ角を設けることなく、簡便な手段により、内側継手部材とシャフトとの嵌合部に生じるガタを確実に低減し得る摺動式等速自在継手を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to provide a fitting portion between the inner joint member and the shaft by a simple means without providing a twist angle in the spline. An object of the present invention is to provide a sliding type constant velocity universal joint that can surely reduce the generated play.

前述の目的を達成するための技術的手段として、本発明は、外側継手部材と、その外側継手部材との間で軸方向変位および角度変位を許容しながらトルクが伝達される内側継手部材とを備え、その内側継手部材の孔に軸部材を挿入してトルク伝達可能に嵌合させた摺動式等速自在継手であって、内側継手部材と軸部材との嵌合部を軸部材の挿入側に配設すると共に、その嵌合部に軸方向荷重を付与する固定部を軸部材の反挿入側に配設したことを特徴とする。ここで、「軸部材の挿入側」とは、内側継手部材に対して軸部材が軸方向に沿って挿入される側を意味し、「軸部材の反挿入側」とは、内側継手部材に対して軸部材が軸方向に沿って挿入される側の反対側を意味する。   As technical means for achieving the aforementioned object, the present invention includes an outer joint member and an inner joint member to which torque is transmitted while allowing axial displacement and angular displacement between the outer joint member. A sliding type constant velocity universal joint that is inserted into the hole of the inner joint member and is fitted so that torque can be transmitted, and the fitting portion between the inner joint member and the shaft member is inserted into the shaft member. And a fixing portion that applies an axial load to the fitting portion is provided on the opposite side of the shaft member. Here, “the insertion side of the shaft member” means the side where the shaft member is inserted along the axial direction with respect to the inner joint member, and “the anti-insertion side of the shaft member” means the inner joint member. On the other hand, it means the opposite side to the side where the shaft member is inserted along the axial direction.

本発明では、内側継手部材と軸部材との嵌合部を軸部材の挿入側に配設すると共に、その軸部材の反挿入側に配設された固定部により、前述の嵌合部に軸方向荷重を付与する。この軸方向荷重の付与により、嵌合部では、軸方向と角度をなす嵌合面が密着して軸方向および径方向のガタを低減することができる。   In the present invention, the fitting portion between the inner joint member and the shaft member is disposed on the insertion side of the shaft member, and the fixing portion disposed on the non-insertion side of the shaft member is used to connect the shaft to the aforementioned fitting portion. Apply directional load. Due to the application of the axial load, the fitting portion can closely contact the fitting surface that forms an angle with the axial direction, thereby reducing axial and radial play.

本発明における嵌合部は、内側継手部材の孔をテーパ状に開口させ、そのテーパ状開口部位にスプラインを形成すると共に、軸部材の外周面でテーパ状開口部位と対向するように形成されたテーパ状部位にスプラインを形成し、内側継手部材のスプラインと軸部材のスプラインとを嵌合させた構造が望ましい。このようにすれば、内側継手部材のテーパ状開口部位に形成されたスプラインと軸部材のテーパ状部位に形成されたスプラインとを、固定部による軸方向荷重の付与でタイトに嵌合させることができる。   The fitting portion in the present invention is formed so that the hole of the inner joint member is opened in a tapered shape, a spline is formed in the tapered opening portion, and the outer peripheral surface of the shaft member is opposed to the tapered opening portion. A structure in which a spline is formed in the tapered portion and the spline of the inner joint member and the spline of the shaft member are fitted is desirable. In this way, the spline formed at the tapered opening portion of the inner joint member and the spline formed at the tapered portion of the shaft member can be tightly fitted by applying an axial load by the fixing portion. it can.

また、本発明における嵌合部は、内側継手部材の孔の開口端面部位に凹凸条を放射状に形成すると共に、軸部材の外周に形成されたフランジの開口端面部位と対向する端面部位に凹凸条を放射状に形成し、内側継手部材の凹凸条と軸部材の凹凸条とを嵌合させた構造であってもよい。このようにすれば、内側継手部材の孔の開口端面部位に形成された凹凸条と軸部材のフランジの端面部位に形成された凹凸条とを、固定部による軸方向荷重の付与でタイトに嵌合させることができる。   Further, the fitting portion according to the present invention forms the concave and convex stripes radially at the opening end face portion of the hole of the inner joint member, and the concave and convex strips at the end face portion facing the opening end face portion of the flange formed on the outer periphery of the shaft member. May be a structure in which the concave and convex strips of the inner joint member and the concave and convex strips of the shaft member are fitted. In this way, the concave and convex strip formed on the opening end surface portion of the hole of the inner joint member and the concave and convex strip formed on the end surface portion of the flange of the shaft member are tightly fitted by applying an axial load by the fixing portion. Can be combined.

本発明における固定部は、軸部材の外周面に形成されたねじと、そのねじとの螺合により軸部材に対して内側継手部材を締め付け固定するナットとで構成されていることが望ましい。このようにすれば、ナットにより内側継手部材を軸部材に対して締め付け固定することで嵌合部に軸方向荷重を付与することができる。   The fixing portion in the present invention is preferably composed of a screw formed on the outer peripheral surface of the shaft member and a nut that fastens and fixes the inner joint member to the shaft member by screwing with the screw. If it does in this way, an axial load can be given to a fitting part by tightening and fixing an inner joint member to a shaft member with a nut.

なお、本発明におけるナットは、セルフロックナットであることが望ましい。ここで、「セルフロックナット」とは、振動などに対する緩み止め構造を備えたナットを意味する。このようなセルフロックナットを使用すれば、軸部材に対する内側継手部材の締め付け固定が強固となり、振動などによる緩みを未然に防止できる。   In addition, as for the nut in this invention, it is desirable that it is a self-locking nut. Here, the “self-locking nut” means a nut having a locking structure against vibration and the like. By using such a self-locking nut, the inner joint member is firmly fixed to the shaft member, and loosening due to vibration or the like can be prevented in advance.

本発明において、内側継手部材の孔の開口端面部位に、ナットが当接するチャンファ面を形成した構造が望ましい。このようにすれば、ナットをチャンファ面に当接させてねじ込むことにより、嵌合部に軸方向荷重を付与することが容易となる。   In the present invention, a structure in which a chamfer surface with which the nut abuts is formed at the opening end surface portion of the hole of the inner joint member is desirable. If it does in this way, it will become easy to give an axial load to a fitting part by making a nut contact a chamfer surface and screwing.

また、本発明における固定部は、内側継手部材の内径と軸部材の外径との間に環状隙間を形成し、その環状隙間に押し込み部材を圧入することにより軸部材に対して内側継手部材を固定した構造であってもよい。このようにすれば、内側継手部材と軸部材との間の環状隙間に押し込み部材を圧入することで嵌合部に軸方向荷重を付与することができる。   Further, the fixing portion in the present invention forms an annular gap between the inner diameter of the inner joint member and the outer diameter of the shaft member, and presses the pushing member into the annular gap to thereby fix the inner joint member to the shaft member. It may be a fixed structure. If it does in this way, an axial load can be given to a fitting part by press-fitting a pushing member in the annular crevice between an inner joint member and a shaft member.

本発明における押し込み部材は、環状隙間の全周に亘って圧入されていることが望ましい。このようにすれば、押し込み部材により嵌合部の全周に亘って軸方向荷重を均等に付与することができる。なお、この押し込み部材は、環状隙間の円周方向複数箇所に圧入されているようにしてもよい。   The pushing member in the present invention is desirably press-fitted over the entire circumference of the annular gap. If it does in this way, an axial load can be equally provided over the perimeter of a fitting part by a pushing member. The pushing member may be press-fitted at a plurality of locations in the circumferential direction of the annular gap.

本発明において、内側継手部材の孔の開口端面部位に、押し込み部材が当接するチャンファ面を形成した構造が望ましい。このようにすれば、押し込み部材をチャンファ面に当接させて押し込むことにより、嵌合部に軸方向荷重を付与することが容易となる。   In the present invention, a structure in which a chamfer surface with which the pushing member abuts is formed at the opening end surface portion of the hole of the inner joint member is desirable. If it does in this way, it will become easy to give an axial load to a fitting part by making a pushing member contact and touch a chamfer surface.

なお、本発明における外側継手部材は、軸線方向に延びる三本のトラック溝が内周面に形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成され、内側継手部材は、先端がトラック溝内に挿入された三本の脚軸を有するトリポード部材であり、脚軸に回転自在に支持されると共に外側継手部材のトラック溝に挿入されてローラ案内面に沿って案内されるローラを備えた構造を具備することが望ましい。つまり、前述のような構造を具備するローラタイプのトリポード型等速自在継手に適用可能である。   In the outer joint member of the present invention, three track grooves extending in the axial direction are formed on the inner peripheral surface, and roller guide surfaces facing each other are formed on the inner wall of each track groove. It is a tripod member having three leg shafts, the tip of which is inserted into the track groove. The tripod member is rotatably supported by the leg shaft and is inserted into the track groove of the outer joint member to be guided along the roller guide surface. It is desirable to have a structure with rollers. That is, the present invention can be applied to a roller type tripod type constant velocity universal joint having the above-described structure.

また、本発明における外側継手部材は、軸方向に延びる直線状トラック溝が内周面の複数箇所に形成され、内側継手部材は、軸方向に延びる直線状トラック溝が外側継手部材のトラック溝と対をなして外周面の複数箇所に形成され、外側継手部材のトラック溝と内側継手部材のトラック溝との間に配されたボールと、外側継手部材の内周面と内側継手部材の外周面との間に介在してボールを保持するケージとを備えた構造が望ましい。つまり、このような構造を具備するボールタイプのダブルオフセット型等速自在継手に適用可能である。   Further, in the outer joint member of the present invention, linear track grooves extending in the axial direction are formed at a plurality of locations on the inner peripheral surface, and the inner joint member has linear track grooves extending in the axial direction as track grooves of the outer joint member. A pair of balls formed at a plurality of locations on the outer peripheral surface and arranged between the track groove of the outer joint member and the track groove of the inner joint member, and the inner peripheral surface of the outer joint member and the outer peripheral surface of the inner joint member A structure having a cage for holding a ball interposed between the two and the like is desirable. That is, the present invention can be applied to a ball type double offset constant velocity universal joint having such a structure.

本発明によれば、内側継手部材と軸部材との嵌合部を軸部材の挿入側に配設すると共に、その軸部材の反挿入側に配設された固定部により、前述の嵌合部に軸方向荷重を付与する。この軸方向荷重の付与により、嵌合部では、軸方向と角度をなす嵌合面が密着して軸方向および径方向のガタを低減することができる。   According to the present invention, the fitting portion between the inner joint member and the shaft member is disposed on the insertion side of the shaft member, and the above-described fitting portion is provided by the fixing portion disposed on the opposite side of the shaft member. Axial load is applied to. Due to the application of the axial load, the fitting portion can closely contact the fitting surface that forms an angle with the axial direction, thereby reducing axial and radial play.

その結果、従来のようにスプラインに捩れ角を設けることなく、簡便な手段により、内側継手部材と軸部材とを嵌合部によりタイトに結合させることができ、信頼性の高い長寿命の摺動式等速自在継手を提供できる。   As a result, the inner joint member and the shaft member can be tightly coupled to each other by a fitting means by a simple means without providing a twist angle in the spline as in the prior art. A constant velocity universal joint can be provided.

本発明の実施形態で、内側継手部材とシャフトとの結合構造を示す要部拡大断面図である。In embodiment of this invention, it is a principal part expanded sectional view which shows the coupling structure of an inner joint member and a shaft. 図1の実施形態におけるトリポード型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the tripod type | mold constant velocity universal joint in embodiment of FIG. 図2のA方向から見た矢視図である。It is the arrow view seen from the A direction of FIG. 図1の実施形態におけるダブルオフセット型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the double offset type constant velocity universal joint in embodiment of FIG. 図4のB方向から見た矢視図である。It is the arrow view seen from the B direction of FIG. 本発明の他の実施形態で、内側継手部材とシャフトとの結合構造を示す要部拡大断面図である。It is principal part expanded sectional drawing which shows the coupling structure of an inner joint member and a shaft in other embodiment of this invention. 図6の実施形態におけるトリポード型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the tripod type | mold constant velocity universal joint in embodiment of FIG. 図6の実施形態におけるダブルオフセット型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the double offset type constant velocity universal joint in embodiment of FIG. 本発明の他の実施形態で、内側継手部材とシャフトとの結合構造を示す要部拡大断面図である。It is principal part expanded sectional drawing which shows the coupling structure of an inner joint member and a shaft in other embodiment of this invention. 図9の実施形態におけるトリポード型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the tripod type | mold constant velocity universal joint in embodiment of FIG. 図9の実施形態におけるダブルオフセット型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the double offset type constant velocity universal joint in embodiment of FIG. 本発明の他の実施形態で、内側継手部材とシャフトとの結合構造を示す要部拡大断面図である。It is principal part expanded sectional drawing which shows the coupling structure of an inner joint member and a shaft in other embodiment of this invention. 図12の実施形態におけるトリポード型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the tripod type | mold constant velocity universal joint in embodiment of FIG. 図12の実施形態におけるダブルオフセット型等速自在継手の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the double offset type constant velocity universal joint in embodiment of FIG. 環状の押し込み部材を使用した固定部を示す部分側面図である。It is a partial side view which shows the fixing | fixed part which uses a cyclic | annular pushing member. 棒状の押し込み部材を使用した固定部を示す部分側面図である。It is a partial side view which shows the fixing | fixed part which uses a rod-shaped pushing member.

本発明に係る摺動式等速自在継手の実施形態を以下に詳述する。以下の実施形態では、ローラタイプのトリポード型等速自在継手およびボールタイプのダブルオフセット型等速自在継手を例示する。なお、本発明は、シングルローラタイプのトリポード型等速自在継手以外に、作動時の低振動化を可能としたダブルローラタイプのトリポード型等速自在継手にも適用可能である。   Embodiments of the sliding type constant velocity universal joint according to the present invention will be described in detail below. In the following embodiments, a roller type tripod type constant velocity universal joint and a ball type double offset type constant velocity universal joint will be exemplified. In addition to the single roller type tripod type constant velocity universal joint, the present invention can also be applied to a double roller type tripod type constant velocity universal joint capable of reducing vibration during operation.

図2および図3はローラタイプのトリポード型等速自在継手の基本構成を示し、図2は継手の軸線に対する縦断面図、図3は図2の継手をA方向から見た矢視図である(但し、一つのローラ30のみを断面で示す)。この実施形態のトリポード型等速自在継手は、図2および図3に示すように、外側継手部材10と、トリポード部材である内側継手部材20と、ローラ30とで主要部が構成されている。   2 and 3 show a basic configuration of a roller type tripod type constant velocity universal joint, FIG. 2 is a longitudinal sectional view with respect to the axis of the joint, and FIG. 3 is an arrow view of the joint of FIG. (However, only one roller 30 is shown in cross section). As shown in FIGS. 2 and 3, the tripod type constant velocity universal joint according to this embodiment includes a main part including an outer joint member 10, an inner joint member 20 that is a tripod member, and a roller 30.

外側継手部材10は、一端が開口したカップ状をなし、軸方向に延びる三本の直線状トラック溝11が内周面に円周方向等間隔で形成されている。各トラック溝11は、その内側両壁に互いに対向する一対のローラ案内面12を有する。ローラ案内面12は円弧状断面を有し、外側継手部材10の軸線方向に直線状に延びる。この外側継手部材10の内部には、内側継手部材20とローラ30が軸方向摺動自在に収容されている。内側継手部材20は、円筒状をなすボスの外周面に三本の脚軸21が円周方向等間隔(120°間隔)で放射状に一体形成されたものである。脚軸21は、その先端がトラック溝11の底部付近まで半径方向に延在し、その外周面は一般的に円筒面とされている。   The outer joint member 10 has a cup shape with one end opened, and three linear track grooves 11 extending in the axial direction are formed on the inner peripheral surface at equal intervals in the circumferential direction. Each track groove 11 has a pair of roller guide surfaces 12 opposed to each other on both inner walls thereof. The roller guide surface 12 has an arc-shaped cross section and extends linearly in the axial direction of the outer joint member 10. Inside the outer joint member 10, an inner joint member 20 and a roller 30 are accommodated so as to be slidable in the axial direction. The inner joint member 20 is formed by integrally forming three leg shafts 21 radially at equal intervals in the circumferential direction (120 ° intervals) on the outer peripheral surface of a cylindrical boss. The tip of the leg shaft 21 extends in the radial direction to the vicinity of the bottom of the track groove 11, and the outer peripheral surface thereof is generally a cylindrical surface.

外側継手部材10のトラック溝11のローラ案内面12と脚軸21の外周面との間に針状ころ40を介してローラ30が回転自在に配設される。ローラ30の外周面は縦断面円弧状とされ、ローラ案内面12とアンギュラ接触により二箇所で接触する場合と、サーキュラ接触により一箇所で接触する場合がある。一方、ローラ30の内周面は、円筒状に形成されている。このローラ30と脚軸21との間に、複数の針状ころ40が、保持器のない、いわゆる単列総ころ状態で配設されている。脚軸21の外周面は針状ころ40の内側転動面を構成し、ローラ30の内周面は針状ころ40の外側転動面を構成している。   A roller 30 is rotatably disposed via a needle roller 40 between the roller guide surface 12 of the track groove 11 of the outer joint member 10 and the outer peripheral surface of the leg shaft 21. The outer peripheral surface of the roller 30 has an arc shape in vertical section, and may contact with the roller guide surface 12 at two locations by angular contact or contact at one location by circular contact. On the other hand, the inner peripheral surface of the roller 30 is formed in a cylindrical shape. A plurality of needle rollers 40 are disposed between the roller 30 and the leg shaft 21 in a so-called single row full roller state without a cage. The outer peripheral surface of the leg shaft 21 constitutes the inner rolling surface of the needle roller 40, and the inner peripheral surface of the roller 30 constitutes the outer rolling surface of the needle roller 40.

図4および図5はボールタイプのダブルオフセット型等速自在継手の基本構成を示し、図4は継手の軸線に対する縦断面図、図5は図4の継手をB方向から見た矢視図である。この実施形態のダブルオフセット型等速自在継手は、図4および図5に示すように、外側継手部材110、内側継手部材120、ボール130およびケージ140で主要部が構成されている。   4 and 5 show the basic configuration of a ball type double offset constant velocity universal joint, FIG. 4 is a longitudinal sectional view with respect to the axis of the joint, and FIG. 5 is an arrow view of the joint of FIG. is there. As shown in FIGS. 4 and 5, the double offset type constant velocity universal joint according to this embodiment includes an outer joint member 110, an inner joint member 120, a ball 130, and a cage 140.

この等速自在継手は、一端が開口したカップ状をなし、軸方向に延びる直線状トラック溝111が内周面の複数箇所に形成された外側継手部材110と、軸方向に延びる直線状トラック溝121が外側継手部材110のトラック溝111と対をなして外周面の複数箇所に形成された内側継手部材120と、外側継手部材110のトラック溝111と内側継手部材120のトラック溝121との間に配されたボール130と、外側継手部材110の内周面と内側継手部材120の外周面との間に介在してボール130を保持するケージ140とを備えた構造を具備する。   This constant velocity universal joint has a cup shape with one end opened, and an outer joint member 110 in which linear track grooves 111 extending in the axial direction are formed at a plurality of locations on the inner peripheral surface, and linear track grooves extending in the axial direction. 121 is formed between the track groove 111 of the outer joint member 110 and the track groove 121 of the inner joint member 120. And a cage 140 that is interposed between the inner peripheral surface of the outer joint member 110 and the outer peripheral surface of the inner joint member 120 and holds the ball 130.

なお、この実施形態では、6個ボールの等速自在継手(図5参照)を例示するが、8個ボールの等速自在継手にも適用可能であり、ボール130の個数は任意である。この外側継手部材110の内部には、内側継手部材120、ボール130およびケージ140が軸方向摺動自在に収容されている。   In this embodiment, a six-ball constant velocity universal joint (see FIG. 5) is illustrated, but the present invention can also be applied to an eight-ball constant velocity universal joint, and the number of balls 130 is arbitrary. Inside the outer joint member 110, an inner joint member 120, a ball 130, and a cage 140 are accommodated so as to be axially slidable.

図2のトリポード型等速自在継手および図4のダブルオフセット型等速自在継手において、この内側継手部材20,120の孔22,122に軸部材であるシャフト50,150が以下の構造でもって結合されている。この内側継手部材20,120とシャフト50,150との結合構造については、トリポード型等速自在継手とダブルオフセット型等速自在継手で以下に共通して説明する。   In the tripod type constant velocity universal joint of FIG. 2 and the double offset type constant velocity universal joint of FIG. 4, shafts 50 and 150 as shaft members are coupled to the holes 22 and 122 of the inner joint members 20 and 120 with the following structure. Has been. The coupling structure between the inner joint members 20 and 120 and the shafts 50 and 150 will be described below in common for the tripod type constant velocity universal joint and the double offset type constant velocity universal joint.

内側継手部材20,120とシャフト50,150との結合構造において、図2および図4に示すように、内側継手部材20,120とシャフト50,150との嵌合部60,160をシャフト50,150の挿入側(図中左側)に配設すると共に、その嵌合部60,160に軸方向荷重を付与する固定部70,170をシャフト50,150の反挿入側(図中右側)に配設する。   In the coupling structure of the inner joint members 20, 120 and the shafts 50, 150, as shown in FIGS. 2 and 4, the fitting portions 60, 160 between the inner joint members 20, 120 and the shafts 50, 150 are connected to the shaft 50, 150 is arranged on the insertion side (left side in the figure), and fixing parts 70 and 170 for applying an axial load to the fitting parts 60 and 160 are arranged on the opposite insertion side (right side in the figure) of the shafts 50 and 150. Set up.

この結合構造では、内側継手部材20,120の孔22,122にシャフト50,150の軸端部51,151を挿入して嵌合部60,160によりトルク伝達可能に連結した後、外側継手部材10,110の奥側に位置する固定部70,170により嵌合部60,160に軸方向荷重を付与する。そのため、この内側継手部材20,120とシャフト50,150との結合構造は、ローラ30(ボール130およびケージ140)が取り付けられた内側継手部材20,120の孔22,122にシャフト50,150を挿入して嵌合させることにより組み付けた後、そのアッセンブリ体を外側継手部材10,110に収容するようにした摺動式等速自在継手の組み立て要領でもって実現可能となっている。この内側継手部材20,120とシャフト50,150との結合作業は、アッセンブリ体を外側継手部材10,110に収容する前に行われる。   In this coupling structure, after the shaft end portions 51 and 151 of the shafts 50 and 150 are inserted into the holes 22 and 122 of the inner joint members 20 and 120 and connected by the fitting portions 60 and 160 so that torque can be transmitted, the outer joint member An axial load is applied to the fitting parts 60 and 160 by the fixing parts 70 and 170 located on the back side of the 10,110. Therefore, the coupling structure of the inner joint members 20 and 120 and the shafts 50 and 150 has the shafts 50 and 150 in the holes 22 and 122 of the inner joint members 20 and 120 to which the rollers 30 (the balls 130 and the cage 140) are attached. After assembling by inserting and fitting, the assembly can be realized by assembling the sliding constant velocity universal joint in which the assembly body is accommodated in the outer joint members 10 and 110. The connecting operation between the inner joint members 20 and 120 and the shafts 50 and 150 is performed before the assembly body is accommodated in the outer joint members 10 and 110.

この内側継手部材20,120とシャフト50,150との結合構造における嵌合部60,160は、図1に示すように、内側継手部材20,120の孔22,122をテーパ状に開口させ、その軸方向外側(図中左側)へ向けて拡径するテーパ状開口部位にスプライン23,123を形成すると共に、シャフト50,150の外周面でテーパ状開口部位と対向するように形成されて軸方向外側(図中左側)へ向けて拡径するテーパ状部位にスプライン53,153を形成し、内側継手部材20,120のスプライン23,123とシャフト50,150のスプライン53,153とを嵌合させた構造を具備する。これらスプライン23,123およびスプライン53,153は、軸方向に延びる凹凸条となっている。   As shown in FIG. 1, the fitting portions 60 and 160 in the coupling structure of the inner joint members 20 and 120 and the shafts 50 and 150 open the holes 22 and 122 of the inner joint members 20 and 120 in a tapered shape, Splines 23 and 123 are formed in a tapered opening portion whose diameter increases toward the outside in the axial direction (left side in the figure), and the shafts 50 and 150 are formed so as to face the tapered opening portion on the outer peripheral surface. Splines 53 and 153 are formed in tapered portions that expand toward the outside in the direction (left side in the figure), and the splines 23 and 123 of the inner joint members 20 and 120 and the splines 53 and 153 of the shafts 50 and 150 are fitted. The structure is provided. These splines 23 and 123 and splines 53 and 153 are ridges extending in the axial direction.

また、内側継手部材20,120とシャフト50,150との結合構造における固定部70,170は、シャフト50,150の軸端部51,151の外周面に形成されたねじ52,152と、そのねじ52,152との螺合によりシャフト50,150に対して内側継手部材20,120を締め付け固定するナット72,172とで構成されている。さらに、内側継手部材20,120の孔22,122の開口端面部位に、ナット72,172が当接するチャンファ面24,124を形成している。   Further, the fixing portions 70 and 170 in the coupling structure of the inner joint members 20 and 120 and the shafts 50 and 150 include screws 52 and 152 formed on the outer peripheral surfaces of the shaft end portions 51 and 151 of the shafts 50 and 150, and The nuts 72 and 172 are configured to fasten and fix the inner joint members 20 and 120 to the shafts 50 and 150 by screwing with the screws 52 and 152. Furthermore, chamfer surfaces 24 and 124 with which the nuts 72 and 172 abut are formed at the open end surface portions of the holes 22 and 122 of the inner joint members 20 and 120.

なお、このナット72,172において、内側継手部材20,120のチャンファ面24,124と対向する部位にチャンファ面74,174が形成されている。このように、ナット72,172のチャンファ面74,174を内側継手部材20,120のチャンファ面24,124に当接させることにより、ナット72,172を安定して押し込むことが可能となる。   In the nuts 72 and 172, chamfer surfaces 74 and 174 are formed at portions facing the chamfer surfaces 24 and 124 of the inner joint members 20 and 120. Thus, the nuts 72 and 172 can be stably pushed in by bringing the chamfer surfaces 74 and 174 of the nuts 72 and 172 into contact with the chamfer surfaces 24 and 124 of the inner joint members 20 and 120.

この内側継手部材20,120とシャフト50,150との結合構造では、内側継手部材20,120の孔22,122にシャフト50,150の軸端部51,151を挿入して内側継手部材20,120のテーパ状開口部位のスプライン23,123にシャフト50,150のテーパ状部位のスプライン53,153を嵌合させる。このようにして、内側継手部材20,120とシャフト50,150との嵌合部60,160をシャフト50,150の挿入側に配設する。   In the coupling structure of the inner joint members 20 and 120 and the shafts 50 and 150, the shaft end portions 51 and 151 of the shafts 50 and 150 are inserted into the holes 22 and 122 of the inner joint members 20 and 120, and the inner joint members 20 and 120 are inserted. The splines 53 and 153 of the tapered portions of the shafts 50 and 150 are fitted into the splines 23 and 123 of the 120 tapered opening portions. In this manner, the fitting portions 60, 160 between the inner joint members 20, 120 and the shafts 50, 150 are disposed on the insertion side of the shafts 50, 150.

その上で、シャフト50,150の軸端部51,151のねじ52,152にナット72,172を螺合させ、そのナット72,172によりシャフト50,150に対して内側継手部材20,120を締め付け固定する。この時、ナット72,172のチャンファ面74,174を内側継手部材20,120のチャンファ面24,124に当接させた状態でナット72,172を押し込む。このナット72,172による締め付け固定でもって、前述の嵌合部60,160に軸方向荷重を付与する。このようにして、嵌合部60,160に軸方向荷重を付与する固定部70,170をシャフト50,150の反挿入側に配設する。   Then, nuts 72 and 172 are screwed onto the screws 52 and 152 of the shaft end portions 51 and 151 of the shafts 50 and 150, and the inner joint members 20 and 120 are attached to the shafts 50 and 150 by the nuts 72 and 172. Tighten and fix. At this time, the nuts 72 and 172 are pushed in with the chamfer surfaces 74 and 174 of the nuts 72 and 172 in contact with the chamfer surfaces 24 and 124 of the inner joint members 20 and 120. An axial load is applied to the aforementioned fitting portions 60 and 160 by tightening and fixing with the nuts 72 and 172. In this manner, the fixing portions 70 and 170 that apply the axial load to the fitting portions 60 and 160 are disposed on the opposite side of the shafts 50 and 150.

内側継手部材20,120のテーパ状開口部位に形成されたスプライン23,123とシャフト50,150のテーパ状部位に形成されたスプライン53,153とを嵌合させると共に、ナット72,172により内側継手部材20,120をシャフト50,150に対して締め付け固定する。このナット72,172の締め付けで嵌合部60,160に軸方向荷重を付与することにより、その嵌合部60,160では、軸方向と角度(テーパ角度)をなすスプライン23,123とスプライン53,153の嵌合面が密着して軸方向および径方向のガタを低減することができ、内側継手部材20,120とシャフト50,150とをタイトに結合させることができる。なお、嵌合部60,160では、スプライン23,123およびスプライン53,153における凸条の幅寸法を凹条の幅寸法よりも大きく設定すれば、内側継手部材20,120とシャフト50,150とをより一層タイトに嵌合させることができる。   The splines 23 and 123 formed at the tapered opening portions of the inner joint members 20 and 120 are fitted to the splines 53 and 153 formed at the tapered portions of the shafts 50 and 150, and the inner joints are formed by the nuts 72 and 172. The members 20 and 120 are fastened and fixed to the shafts 50 and 150. By applying an axial load to the fitting portions 60 and 160 by tightening the nuts 72 and 172, the fitting portions 60 and 160 have splines 23 and 123 and splines 53 that form an angle (taper angle) with the axial direction. , 153 can be brought into close contact with each other to reduce backlash in the axial direction and the radial direction, and the inner joint members 20, 120 and the shafts 50, 150 can be tightly coupled. In addition, in the fitting parts 60 and 160, if the width dimension of the protruding line in the splines 23 and 123 and the splines 53 and 153 is set larger than the width dimension of the recessed line, the inner joint members 20 and 120 and the shafts 50 and 150 Can be fitted more tightly.

以上の実施形態では、内側継手部材20,120のテーパ状開口部位にスプライン23,123を形成すると共に、シャフト50,150のテーパ状部位にスプライン53,153を形成した場合について説明したが、図6に示す構造の嵌合部61,161であってもよい。この嵌合部61,161は、内側継手部材20,120の孔22,122の開口端面部位に凹凸条25,125を放射状に形成すると共に、シャフト50,150の外周に形成されたフランジ54,154の端面部位に凹凸条55,155を放射状に形成し、内側継手部材20,120の凹凸条25,125とシャフト50,150の凹凸条55,155とを嵌合させた構造を具備する。   In the above embodiment, the splines 23 and 123 are formed in the tapered opening portions of the inner joint members 20 and 120 and the splines 53 and 153 are formed in the tapered portions of the shafts 50 and 150. 6 may be the fitting portions 61 and 161 having the structure shown in FIG. The fitting portions 61 and 161 are formed with ridges 25 and 125 radially at the opening end surface portions of the holes 22 and 122 of the inner joint members 20 and 120, and flanges 54 and 150 formed on the outer circumferences of the shafts 50 and 150. The concave and convex strips 55 and 155 are formed radially on the end surface portion of the 154, and the concave and convex strips 25 and 125 of the inner joint members 20 and 120 and the concave and convex strips 55 and 155 of the shafts 50 and 150 are fitted.

なお、図7はトリポード型等速自在継手に適用した場合、図8はダブルオフセット型等速自在継手に適用した場合をそれぞれ例示する。この図7および図8において、図2および図4と同一部分には同一参照符号を付して重複説明は省略する。   7 illustrates a case where it is applied to a tripod type constant velocity universal joint, and FIG. 8 illustrates a case where it is applied to a double offset type constant velocity universal joint. 7 and FIG. 8, the same parts as those in FIG. 2 and FIG.

このように、内側継手部材20,120の孔22,122の開口端面部位に形成された凹凸条25,125とシャフト50,150のフランジ54,154の端面部位に形成された凹凸条55,155とを嵌合させると共に、ナット72,172により内側継手部材20,120をシャフト50,150に対して締め付け固定することで嵌合部61,161に軸方向荷重を付与することにより、その嵌合部61,161では、軸方向と角度(90°)をなす凹凸条25,125と凹凸条55,155の嵌合面が密着して軸方向および径方向のガタを低減することができ、内側継手部材20,120とシャフト50,150とをタイトに結合させることができる。なお、嵌合部61,161でも、凹凸条25,125および凹凸条55,155における凸条の幅寸法を凹条の幅寸法よりも大きく設定すれば、内側継手部材20,120とシャフト50,150とをより一層タイトに嵌合させることができる。   As described above, the concave and convex strips 25 and 125 formed at the opening end surface portions of the holes 22 and 122 of the inner joint members 20 and 120 and the concave and convex strips 55 and 155 formed at the end surface portions of the flanges 54 and 154 of the shafts 50 and 150 are formed. And the inner joint members 20 and 120 are fastened and fixed to the shafts 50 and 150 by the nuts 72 and 172, thereby applying an axial load to the fitting portions 61 and 161. In the portions 61 and 161, the fitting surfaces of the concave and convex strips 25 and 125 and the concave and convex strips 55 and 155 that form an angle (90 °) with the axial direction can be in close contact with each other to reduce axial and radial play. The joint members 20 and 120 and the shafts 50 and 150 can be tightly coupled. In the fitting portions 61 and 161, the inner joint members 20 and 120 and the shaft 50, if the width of the projections on the projections and depressions 25 and 125 and the projections and depressions 55 and 155 are set larger than the width of the depressions. 150 can be fitted more tightly.

図1に示す固定部70,170のナット72,172は、内径に雌ねじのみを刻設した一般的な構造のものであるが、この一般的なナット72,172に代えて、図9に示すように、セルフロックナット73,173を使用するようにしてもよい。このセルフロックナット73,173とは、振動などに対する緩み止め構造を備えたナットである。このようなセルフロックナット73,173を使用することにより、シャフト50,150に対する内側継手部材20,120の締め付け固定が強固となり、振動などによる緩みを未然に防止できる。セルフロックナット73,173には、雌ねじにナイロンリングや加締め板などを付加した構造のものなど種々の形態のものがある。   The nuts 72 and 172 of the fixing portions 70 and 170 shown in FIG. 1 have a general structure in which only an internal thread is engraved on the inner diameter, but the nuts 72 and 172 shown in FIG. As described above, the self-locking nuts 73 and 173 may be used. The self-locking nuts 73 and 173 are nuts having a structure for preventing loosening against vibrations. By using such self-locking nuts 73 and 173, the inner joint members 20 and 120 are firmly fixed to the shafts 50 and 150, and loosening due to vibration or the like can be prevented in advance. There are various types of self-locking nuts 73 and 173 such as a structure in which a nylon ring or a caulking plate is added to a female screw.

なお、図10はトリポード型等速自在継手に適用した場合、図11はダブルオフセット型等速自在継手に適用した場合をそれぞれ例示する。この図10および図11において、図2および図4と同一部分には同一参照符号を付して重複説明は省略する。また、前述のセルフロックナット73,173は、図9に示す嵌合部60,160に対してだけでなく、図示しないが、図6に示す構造の嵌合部61,161に対しても適用可能である。   10 illustrates a case where it is applied to a tripod type constant velocity universal joint, and FIG. 11 illustrates a case where it is applied to a double offset type constant velocity universal joint. In FIG. 10 and FIG. 11, the same parts as those in FIG. 2 and FIG. Further, the self-locking nuts 73 and 173 described above are applied not only to the fitting portions 60 and 160 shown in FIG. 9 but also to the fitting portions 61 and 161 having the structure shown in FIG. Is possible.

また、前述の実施形態では、シャフト50,150の軸端部51,151のねじ52,152とそのねじ52,152に螺合するナット72,172(セルフロックナット73,173)で構成された固定部70,170について説明したが、これらねじ52,152およびナット72,172(セルフロックナット73,173)に代えて、図12に示す構造の固定部71,171であってもよい。   In the above-described embodiment, the shaft ends 51 and 151 of the shafts 50 and 150 are constituted by the screws 52 and 152 and the nuts 72 and 172 (self-locking nuts 73 and 173) screwed to the screws 52 and 152. Although the fixing portions 70 and 170 have been described, the fixing portions 71 and 171 having the structure shown in FIG. 12 may be used instead of the screws 52 and 152 and the nuts 72 and 172 (self-locking nuts 73 and 173).

この固定部71,171は、内側継手部材20,120の内径とシャフト50,150の外径との間に環状隙間mを形成し、その環状隙間mに押し込み部材75,175を圧入することによりシャフト50,150に対して内側継手部材20,120を固定した構造を具備する。さらに、内側継手部材20,120の孔22,122の開口端部位に、押し込み部材75,175が当接するチャンファ面26,126を形成している。なお、この押し込み部材75,175にもチャンファ面76,176が形成されている。このように、押し込み部材75,175のチャンファ面76,176を内側継手部材20,120のチャンファ面26,126に当接させることにより、その楔作用でもって押し込み部材75,175を安定して押し込むことが可能となる。   The fixing portions 71 and 171 are formed by forming an annular gap m between the inner diameter of the inner joint members 20 and 120 and the outer diameter of the shafts 50 and 150, and press-fitting the pushing members 75 and 175 into the annular gap m. The inner joint members 20 and 120 are fixed to the shafts 50 and 150. Furthermore, chamfer surfaces 26 and 126 with which the pushing members 75 and 175 abut are formed at the open end portions of the holes 22 and 122 of the inner joint members 20 and 120. Chamfer surfaces 76, 176 are also formed on the pushing members 75, 175. As described above, the chamfer surfaces 76 and 176 of the push-in members 75 and 175 are brought into contact with the chamfer surfaces 26 and 126 of the inner joint members 20 and 120, whereby the push-in members 75 and 175 are stably pushed in by the wedge action. It becomes possible.

内側継手部材20,120のテーパ状開口部位に形成されたスプライン23,123とシャフト50,150のテーパ状部位に形成されたスプライン53,153とを嵌合させると共に、押し込み部材75,175を環状隙間mに圧入することにより内側継手部材20,120をシャフト50,150に対して固定することで嵌合部60,160に軸方向荷重を付与する。これにより、その嵌合部60,160では、軸方向と角度(テーパ角度)をなすスプライン23,123とスプライン53,153の嵌合面が密着して軸方向および径方向のガタを低減することができ、内側継手部材20,120とシャフト50,150とをタイトに結合させることができる。   The splines 23 and 123 formed at the tapered opening portions of the inner joint members 20 and 120 and the splines 53 and 153 formed at the tapered portions of the shafts 50 and 150 are fitted, and the pushing members 75 and 175 are annularly formed. The inner joint members 20 and 120 are fixed to the shafts 50 and 150 by press-fitting into the gap m, thereby applying an axial load to the fitting portions 60 and 160. Thereby, in the fitting parts 60 and 160, the fitting surfaces of the splines 23 and 123 and the splines 53 and 153 forming an angle with the axial direction (taper angle) are in close contact to reduce axial and radial play. The inner joint members 20 and 120 and the shafts 50 and 150 can be tightly coupled.

なお、図13はトリポード型等速自在継手に適用した場合、図14はダブルオフセット型等速自在継手に適用した場合をそれぞれ例示する。この図13および図14において、図2および図4と同一部分には同一参照符号を付して重複説明は省略する。また、前述の押し込み部材75,175は、図12に示す嵌合部60,160に対してだけでなく、図示しないが、図6に示す構造の嵌合部61,161に対しても適用可能である。   13 illustrates a case where the present invention is applied to a tripod type constant velocity universal joint, and FIG. 14 illustrates a case where the present invention is applied to a double offset type constant velocity universal joint. In FIG. 13 and FIG. 14, the same parts as those in FIG. 2 and FIG. Further, the pushing members 75 and 175 described above can be applied not only to the fitting portions 60 and 160 shown in FIG. 12 but also to the fitting portions 61 and 161 having the structure shown in FIG. It is.

また、前述の固定部71,171は、環状の押し込み部材75,175を環状隙間mの全周に亘って圧入した構造としている(図15参照)。このように環状の押し込み部材75,175を使用することにより、その押し込み部材75,175により嵌合部60,160の全周に亘って軸方向荷重を均等に付与することができる。なお、他の固定部71,171の構造としては、図16に示すように、棒状の押し込み部材77,177を環状隙間mの円周方向複数箇所(図では4箇所)に圧入した構造とすることも可能である。   Further, the above-described fixing portions 71 and 171 have a structure in which annular pushing members 75 and 175 are press-fitted over the entire circumference of the annular gap m (see FIG. 15). By using the annular pushing members 75 and 175 in this way, the axial load can be uniformly applied over the entire circumference of the fitting portions 60 and 160 by the pushing members 75 and 175. As shown in FIG. 16, the other fixing portions 71 and 171 have a structure in which rod-like pushing members 77 and 177 are press-fitted into a plurality of circumferential positions (four locations in the figure) of the annular gap m. It is also possible.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

10,110 外側継手部材
20,120 内側継手部材
22,122 孔
23,123 スプライン
24,124 チャンファ面
25,125 凹凸条
26,126 チャンファ面
50,150 軸部材(シャフト)
52,152 ねじ
53,153 スプライン
55,155 凹凸条
60,160 嵌合部
61,161 嵌合部
70,170 固定部
71,171 固定部
72,172 ナット
73,173 セルフロックナット
75,175 押し込み部材
m 環状隙間
10, 110 Outer joint member 20, 120 Inner joint member 22, 122 Hole 23, 123 Spline 24, 124 Chamfer surface 25, 125 Concavity and convexity 26, 126 Chamfer surface 50, 150 Shaft member (shaft)
52,152 Screw 53,153 Spline 55,155 Concavity and convexity 60,160 Fitting part 61,161 Fitting part 70,170 Fixing part 71,171 Fixing part 72,172 Nut 73,173 Self-locking nut 75,175 Pushing member m Annular gap

Claims (12)

外側継手部材と、前記外側継手部材との間で軸方向変位および角度変位を許容しながらトルクが伝達される内側継手部材とを備え、前記内側継手部材の孔に軸部材を挿入してトルク伝達可能に嵌合させた摺動式等速自在継手であって、前記内側継手部材と前記軸部材との嵌合部を軸部材の挿入側に配設すると共に、前記嵌合部に軸方向荷重を付与する固定部を前記軸部材の反挿入側に配設したことを特徴とする摺動式等速自在継手。   An outer joint member and an inner joint member that transmits torque while allowing axial displacement and angular displacement between the outer joint member and inserting the shaft member into the hole of the inner joint member to transmit torque A sliding type constant velocity universal joint that is fitted to each other, wherein a fitting portion between the inner joint member and the shaft member is disposed on an insertion side of the shaft member, and an axial load is applied to the fitting portion. A sliding type constant velocity universal joint, characterized in that a fixing portion for imparting a pressure is disposed on the opposite side of the shaft member. 前記嵌合部は、内側継手部材の孔をテーパ状に開口させ、そのテーパ状開口部位にスプラインを形成すると共に、前記軸部材の外周面で前記テーパ状開口部位と対向するように形成されたテーパ状部位にスプラインを形成し、前記内側継手部材のスプラインと前記軸部材のスプラインとを嵌合させた請求項1に記載の摺動式等速自在継手。   The fitting portion is formed such that the hole of the inner joint member is opened in a tapered shape, a spline is formed in the tapered opening portion, and the outer peripheral surface of the shaft member is opposed to the tapered opening portion. The sliding constant velocity universal joint according to claim 1, wherein a spline is formed in a tapered portion, and the spline of the inner joint member and the spline of the shaft member are fitted. 前記嵌合部は、内側継手部材の孔の開口端面部位に凹凸条を放射状に形成すると共に、前記軸部材の外周に形成されたフランジの前記開口端面部位と対向する端面部位に凹凸条を放射状に形成し、前記内側継手部材の凹凸条と前記軸部材の凹凸条とを嵌合させた請求項1に記載の摺動式等速自在継手。   The fitting portion radially forms concave and convex strips on the opening end surface portion of the hole of the inner joint member, and radially forms concave and convex strips on the end surface portion of the flange formed on the outer periphery of the shaft member. The sliding type constant velocity universal joint according to claim 1, wherein the concave and convex strips of the inner joint member and the concave and convex strips of the shaft member are fitted to each other. 前記固定部は、軸部材の外周面に形成されたねじと、前記ねじとの螺合により軸部材に対して内側継手部材を締め付け固定するナットとで構成されている請求項1〜3のいずれか一項に記載の摺動式等速自在継手。   The said fixing | fixed part is comprised with the screw formed in the outer peripheral surface of a shaft member, and the nut which clamp | tightens and fixes an inner joint member with respect to a shaft member by screwing with the said screw. A sliding type constant velocity universal joint according to claim 1. 前記ナットは、セルフロックナットである請求項4に記載の摺動式等速自在継手。   The sliding type constant velocity universal joint according to claim 4, wherein the nut is a self-locking nut. 前記内側継手部材の孔の開口端部位に、前記ナットが当接するチャンファ面を形成した請求項4又は5に記載の摺動式等速自在継手。   The sliding type constant velocity universal joint according to claim 4 or 5, wherein a chamfer surface with which the nut abuts is formed at an opening end portion of the hole of the inner joint member. 前記固定部は、前記内側継手部材の内径と前記軸部材の外径との間に環状隙間を形成し、前記環状隙間に押し込み部材を圧入することにより軸部材に対して内側継手部材を固定した請求項1〜3のいずれか一項に記載の摺動式等速自在継手。   The fixing portion forms an annular gap between the inner diameter of the inner joint member and the outer diameter of the shaft member, and fixes the inner joint member to the shaft member by press-fitting a pushing member into the annular gap. The sliding type constant velocity universal joint as described in any one of Claims 1-3. 前記押し込み部材は、前記環状隙間の全周に亘って圧入されている請求項7に記載の摺動式等速自在継手。   The sliding type constant velocity universal joint according to claim 7, wherein the pushing member is press-fitted over the entire circumference of the annular gap. 前記押し込み部材は、前記環状隙間の円周方向複数箇所に圧入されている請求項7に記載の摺動式等速自在継手。   The sliding type constant velocity universal joint according to claim 7, wherein the push-in member is press-fitted into a plurality of locations in the circumferential direction of the annular gap. 前記内側継手部材の孔の開口端部位に、前記押し込み部材が当接するチャンファ面を形成した請求項7〜9のいずれか一項に記載の摺動式等速自在継手。   The sliding type constant velocity universal joint according to any one of claims 7 to 9, wherein a chamfer surface with which the pushing member abuts is formed at an opening end portion of the hole of the inner joint member. 前記外側継手部材は、軸線方向に延びる三本のトラック溝が内周面に形成されると共に各トラック溝の内側壁に互いに対向するローラ案内面が形成され、前記内側継手部材は、先端が前記トラック溝内に挿入された三本の脚軸を有するトリポード部材であり、前記脚軸に回転自在に支持されると共に前記外側継手部材のトラック溝に挿入されて前記ローラ案内面に沿って案内されるローラを備えた請求項1〜10のいずれか一項に記載の摺動式等速自在継手。   In the outer joint member, three track grooves extending in the axial direction are formed on the inner peripheral surface, and roller guide surfaces facing each other are formed on the inner side wall of each track groove. A tripod member having three leg shafts inserted into the track groove, rotatably supported by the leg shaft, and inserted into the track groove of the outer joint member to be guided along the roller guide surface. The sliding type constant velocity universal joint according to claim 1, further comprising a roller. 前記外側継手部材は、軸方向に延びる直線状トラック溝が内周面の複数箇所に形成され、前記内側継手部材は、軸方向に延びる直線状トラック溝が前記外側継手部材のトラック溝と対をなして外周面の複数箇所に形成され、前記外側継手部材のトラック溝と内側継手部材のトラック溝との間に配されたボールと、前記外側継手部材の内周面と内側継手部材の外周面との間に介在して前記ボールを保持するケージとを備えた請求項1〜10のいずれか一項に記載の摺動式等速自在継手。   In the outer joint member, linear track grooves extending in the axial direction are formed at a plurality of locations on the inner peripheral surface, and in the inner joint member, the linear track grooves extending in the axial direction are paired with the track grooves of the outer joint member. The ball formed between the track groove of the outer joint member and the track groove of the inner joint member, the inner peripheral surface of the outer joint member, and the outer peripheral surface of the inner joint member. A sliding type constant velocity universal joint according to any one of claims 1 to 10, further comprising a cage interposed between the cage and the cage for holding the ball.
JP2010097892A 2010-04-21 2010-04-21 Sliding constant velocity universal joint Pending JP2011226587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097892A JP2011226587A (en) 2010-04-21 2010-04-21 Sliding constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097892A JP2011226587A (en) 2010-04-21 2010-04-21 Sliding constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2011226587A true JP2011226587A (en) 2011-11-10

Family

ID=45042153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097892A Pending JP2011226587A (en) 2010-04-21 2010-04-21 Sliding constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2011226587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109281948A (en) * 2018-11-20 2019-01-29 中国航发中传机械有限公司 A kind of propeller boss coupling arrangement
KR20190035098A (en) * 2017-09-26 2019-04-03 현대위아 주식회사 Constant velocity joint
CN109281948B (en) * 2018-11-20 2024-04-30 中国航发中传机械有限公司 Shaft hub connecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190035098A (en) * 2017-09-26 2019-04-03 현대위아 주식회사 Constant velocity joint
KR101978051B1 (en) * 2017-09-26 2019-05-13 현대위아 주식회사 Constant velocity joint
CN109281948A (en) * 2018-11-20 2019-01-29 中国航发中传机械有限公司 A kind of propeller boss coupling arrangement
CN109281948B (en) * 2018-11-20 2024-04-30 中国航发中传机械有限公司 Shaft hub connecting device

Similar Documents

Publication Publication Date Title
US8382378B2 (en) Wheel bearing device
KR20100093580A (en) Constant velocity joint attachment method
JP6320695B2 (en) Wheel bearing device and assembly method thereof
WO2007145019A1 (en) Constant velocity universal joint
KR20100015769A (en) Bearing device for wheel, method of assembling bearing device for wheel, assembly constructed from bearing device for wheel and from drive shaft, and method of assembling assembly
US8342972B2 (en) Steering joint
US9982720B2 (en) Rotating shaft coupling
JP5283832B2 (en) Constant velocity universal joint
US9636945B2 (en) Bearing device for wheel
JP2011226587A (en) Sliding constant velocity universal joint
JP2009068508A (en) Constant velocity universal joint
JP2010047042A (en) Bearing device for driving wheel
JP2007069704A (en) Bearing device for driving wheel
JP2012225430A (en) Sliding type constant velocity universal joint
JP2008247274A (en) Wheel bearing device
JP6279237B2 (en) Wheel bearing device
JP6239315B2 (en) Wheel bearing device
JP2010047043A (en) Bearing device for driving wheel, and axle unit equipped with the bearing device
WO2016114050A1 (en) Constant-velocity universal joint
JP6624177B2 (en) Vehicle transfer device
JP2007247769A (en) Torque-transmitting mechanism
JP2009127762A (en) Constant velocity universal joint
JP2010106926A (en) Constant velocity universal joint
JP2008051221A (en) Two member connecting structure
JP2007247771A (en) Torque-transmitting mechanism