JP2011226541A - Liquid pressure valve device - Google Patents

Liquid pressure valve device Download PDF

Info

Publication number
JP2011226541A
JP2011226541A JP2010095895A JP2010095895A JP2011226541A JP 2011226541 A JP2011226541 A JP 2011226541A JP 2010095895 A JP2010095895 A JP 2010095895A JP 2010095895 A JP2010095895 A JP 2010095895A JP 2011226541 A JP2011226541 A JP 2011226541A
Authority
JP
Japan
Prior art keywords
chamber
pressure
moving member
hydraulic
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010095895A
Other languages
Japanese (ja)
Inventor
Hiroshi Isono
宏 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010095895A priority Critical patent/JP2011226541A/en
Publication of JP2011226541A publication Critical patent/JP2011226541A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Fluid-Driven Valves (AREA)
  • Magnetically Actuated Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid pressure valve device in which a hydraulic fluid flowing between each valve element and valve seat of a booster valve and a pressure reducing valve flows in a valve opening direction.SOLUTION: The liquid pressure valve device includes: (a) a housing having a low-pressure chamber 272, a pressure regulating chamber 254, a high-pressure chamber 256 positioned between the low-pressure chamber and the pressure regulating chamber, a first inter-chamber part which connects the low pressure chamber and high-pressure chamber, and a second inter-chamber part which connects the high-pressure chamber and pressure regulating chamber; (b) a moving member 196, which plugs the first inter-chamber part and is movable in an inserted state into the second inter-chamber part; (c) a communication passage 260, which opens to the low-pressure chamber and formed on the moving member, has a low-pressure chamber side opening which functions as a valve seat of the pressure reducing valve, and communicates the low-pressure chamber with the pressure regulating chamber; and (d) a plunger 192 which functions as a valve element of the pressure reducing valve which can seat on the low-pressure chamber side opening. In this device, the opening to the pressure regulating chamber of the second inter-chamber part is made to function as a valve seat, and a part in the pressure regulating chamber of the moving member as a valve element of the booster valve. This structure enables the hydraulic fluid to flow in the valve opening direction when pressure is boosted and reduced.

Description

本発明は、高圧源と連通する高圧室と、低圧源と連通する低圧室と、それら高圧室と低圧室とに連通可能な調圧室とを有するハウジングと、高圧室と調圧室との間の作動液の流通を開閉する弁機構と、低圧室と調圧室との間の作動液の流通を開閉する弁機構とを備え、調圧室内の作動液の液圧を調圧可能な液圧弁装置に関する。   The present invention includes a housing having a high pressure chamber communicating with a high pressure source, a low pressure chamber communicating with a low pressure source, a pressure regulating chamber capable of communicating with the high pressure chamber and the low pressure chamber, and a high pressure chamber and a pressure regulating chamber. A valve mechanism that opens and closes the flow of hydraulic fluid between them, and a valve mechanism that opens and closes the flow of hydraulic fluid between the low-pressure chamber and the pressure regulating chamber, and can regulate the hydraulic pressure of the hydraulic fluid in the pressure regulating chamber The present invention relates to a hydraulic valve device.

液圧弁装置には、(a)高圧室と低圧室と調圧室とを有するハウジングと、(b)そのハウジング内に移動可能に設けられ、一端部が第1の弁体として機能するプランジャと、(c)そのプランジャの一端部が着座する第1の弁座が形成されるとともに、ハウジング内に移動可能に設けられた移動部材とによって構成されており、プランジャの一端部が第1の弁座に着座している状態において、低圧室と調圧室との間の作動液の流通が遮断されるとともに、ハウジング内に形成された第2の弁座に着座可能な第2の弁体が上記移動部材に形成され、その移動部材に形成された第2の弁体が第2の弁座に着座している状態において、高圧室と調圧室との間の作動液の流通が遮断される構造のものが存在する。このような構造の液圧弁装置では、第1の弁体と第1の弁座とによって低圧室と調圧室との間の作動液の流通を開閉する弁機構が構成されるとともに、第2の弁体と第2の弁座とによって高圧室と調圧室との間の作動液の流通を開閉する弁機構が構成されている。   The hydraulic valve device includes: (a) a housing having a high pressure chamber, a low pressure chamber, and a pressure regulating chamber; and (b) a plunger provided movably in the housing and having one end functioning as a first valve body. (C) a first valve seat on which one end of the plunger is seated is formed, and a movable member is provided in the housing so as to be movable. In the state of being seated on the seat, the flow of the hydraulic fluid between the low pressure chamber and the pressure regulating chamber is blocked, and the second valve body that can be seated on the second valve seat formed in the housing is provided. In a state where the second valve body formed on the moving member is seated on the second valve seat, the flow of the hydraulic fluid between the high pressure chamber and the pressure regulating chamber is blocked. There is a thing of the structure. In the hydraulic valve device having such a structure, the first valve body and the first valve seat constitute a valve mechanism for opening and closing the flow of hydraulic fluid between the low pressure chamber and the pressure regulating chamber, and the second The valve body and the second valve seat constitute a valve mechanism that opens and closes the flow of hydraulic fluid between the high pressure chamber and the pressure regulating chamber.

さらに、移動部材に形成された第2の弁体が第2の弁座に接近する方向にその移動部材を付勢する第1付勢部材と、プランジャの一端部が第1の弁座から離隔する方向にプランジャを付勢する第2付勢部材と、プランジャの一端部が第1の弁座に接近する方向にプランジャを移動させるための力を発生させる移動力発生器とが設けられ、その移動力発生器の発生させる力によって、プランジャの一端部が第2付勢部材の付勢力に抗して第2の弁座に着座させられ、その状態において移動部材がプランジャとともに移動させられることで、移動部材に形成された第2の弁体が第1付勢部材の付勢力に抗して第2の弁座から離隔する構造のものがある。   Furthermore, the first urging member that urges the moving member in a direction in which the second valve body formed on the moving member approaches the second valve seat, and one end of the plunger are separated from the first valve seat. A second urging member that urges the plunger in a direction to move, and a moving force generator that generates a force for moving the plunger in a direction in which one end of the plunger approaches the first valve seat, One end of the plunger is seated on the second valve seat against the urging force of the second urging member by the force generated by the moving force generator, and the moving member is moved together with the plunger in that state. There is a structure in which the second valve body formed on the moving member is separated from the second valve seat against the urging force of the first urging member.

このような構造の液圧弁装置においては、移動力発生器の作動を制御して、移動部材に形成された第2の弁体を第2の弁座から離隔させることで、高圧室と調圧室との間の作動液の流通を許容し、調圧室内の作動液の液圧(以下、「調圧室圧」という場合がある)を増圧させることが可能となっている。一方、プランジャの一端部を第1の弁座から離隔させることで、低圧室と調圧室との間の作動液の流通を許容し、調圧室圧を減圧させることも可能となっている。つまり、移動力発生器の発生させる力に応じた高さに調圧室圧を調圧することが可能となっている。下記特許文献には、そのような構造の液圧弁装置に関する技術が記載されている。   In the hydraulic valve device having such a structure, the operation of the moving force generator is controlled, and the second valve body formed on the moving member is separated from the second valve seat, thereby adjusting the pressure from the high pressure chamber. It is possible to allow the hydraulic fluid to flow between the chambers and to increase the hydraulic pressure of the hydraulic fluid in the pressure regulating chamber (hereinafter sometimes referred to as “pressure regulating chamber pressure”). On the other hand, by separating one end of the plunger from the first valve seat, it is possible to allow the hydraulic fluid to flow between the low pressure chamber and the pressure regulating chamber and to reduce the pressure regulating chamber pressure. . That is, the pressure regulating chamber pressure can be regulated to a height corresponding to the force generated by the moving force generator. The following patent document describes a technique related to a hydraulic valve device having such a structure.

特開2008−25712号公報JP 2008-25712 A 特開2008−47104号公報JP 2008-47104 A 特開2008−25711号公報JP 2008-25711 A 特開2008−132966号公報JP 2008-132966 A

上記構造の液圧弁装置においては、調圧室圧が増圧および減圧される際に、弁体と弁座との間を作動液が流れる。弁体と弁座との間は比較的狭く、その間を流れる作動液は勢いよく弁体に作用する。このため、例えば、調圧室圧が調圧される際に弁体と弁座との間を流れる作動液が、弁体が弁座に接近する方向に流れるような場合には、作動液の流れによって弁体が弁座に接近する方向に弁体が付勢される。つまり、作動液の流れによって弁が閉じる方向(以下、「自閉方向」という場合がある)に弁体が付勢される。一方、調圧室圧が調圧される際には、移動力発生器の発生させる力を制御して、弁体を弁座から離隔させることで弁を開けている。このため、作動液が自閉方向に流れると、精度良く調圧室圧を調圧できない虞がある。また、作動液が自閉方向に流れると弁体が弁座に着座する場合があり、そのような場合には、作動液の流れによる閉弁と、移動力発生器の発生させる力による開弁とが頻繁に繰り返される現象、所謂ハンチング現象が生じる虞があり、精度良く調圧室圧を調圧できない虞がある。本発明は、そのような事情に鑑みてなされたものであり、調圧室圧が増圧および減圧される際に、精度良く調圧室圧を調圧可能な液圧弁装置を提供することを課題とする。   In the hydraulic valve device having the above structure, the hydraulic fluid flows between the valve body and the valve seat when the pressure regulating chamber pressure is increased and decreased. The space between the valve body and the valve seat is relatively narrow, and the hydraulic fluid flowing between them acts on the valve body vigorously. For this reason, for example, when the hydraulic fluid flowing between the valve body and the valve seat when the pressure regulating chamber pressure is regulated flows in the direction in which the valve body approaches the valve seat, The valve body is biased in the direction in which the valve body approaches the valve seat by the flow. That is, the valve body is biased in the direction in which the valve is closed by the flow of the hydraulic fluid (hereinafter sometimes referred to as “self-closing direction”). On the other hand, when the pressure regulating chamber pressure is regulated, the force generated by the moving force generator is controlled to open the valve by separating the valve body from the valve seat. For this reason, when the hydraulic fluid flows in the self-closing direction, there is a possibility that the pressure regulating chamber pressure cannot be regulated with high accuracy. In addition, when the hydraulic fluid flows in the self-closing direction, the valve element may be seated on the valve seat. May occur frequently, so-called hunting phenomenon, and the pressure regulating chamber pressure may not be regulated accurately. The present invention has been made in view of such circumstances, and provides a hydraulic valve device capable of accurately regulating the pressure regulating chamber pressure when the pressure regulating chamber pressure is increased and reduced. Let it be an issue.

上記課題を解決するために、本発明の液圧弁装置は、(a)低圧室と、調圧室と、それら低圧室と調圧室との間に設けられる高圧室と、低圧室と高圧室とを繋ぐ第1室間部と、高圧室と調圧室とを繋ぐ第2室間部とを有するハウジングと、(b)第1室間部を塞ぐとともに第2室間部に挿入された状態で軸線方向に移動可能にハウジング内に配設される移動部材と、(c)移動部材に形成されるとともに低圧室に開口し、上記第1の弁座として機能する低圧室側開口と、移動部材とハウジングとのいずれか一方に形成されるとともに調圧室に開口する調圧室側開口とを有して、低圧室と調圧室とを連通する連通路と、(d)低圧室側開口に着座可能な上記第1の弁体として機能するプランジャとを備えた液圧弁装置であって、第2室間部の調圧室への開口が上記第2の弁座として機能するとともに、移動部材の調圧室内に位置する部分が上記第2の弁体として機能するように構成される。   In order to solve the above problems, a hydraulic valve device of the present invention includes: (a) a low pressure chamber, a pressure regulating chamber, a high pressure chamber provided between the low pressure chamber and the pressure regulating chamber, a low pressure chamber, and a high pressure chamber. A housing having a first inter-chamber portion connecting the first chamber and a second inter-chamber portion connecting the high pressure chamber and the pressure regulating chamber; and (b) closing the first inter-chamber portion and being inserted into the second inter-chamber portion. A moving member disposed in the housing so as to be movable in the axial direction in a state; (c) a low pressure chamber side opening that is formed in the moving member and that opens to the low pressure chamber and functions as the first valve seat; A communication passage formed in one of the moving member and the housing and having a pressure regulating chamber side opening that opens to the pressure regulating chamber, and communicates the low pressure chamber and the pressure regulating chamber; (d) the low pressure chamber A hydraulic valve device having a plunger functioning as the first valve body that can be seated in a side opening, wherein the opening to the pressure regulating chamber in the second chamber is at the top. And it functions as a second valve seat, the portion located regulating the pressure chamber of the moving member is configured to function as the second valve body.

本発明の液圧弁装置においては、上記第1の弁座としての低圧側開口に着座する上記第1の弁体としてのプランジャは低圧室内に位置しており、調圧室圧が減圧される際に作動液は調圧室から低圧室へ流れる。このため、減圧時において、弁体と弁座との間を流れる作動液は、弁体が弁座から離隔する方向、つまり、弁が開く方向(以下、「自開方向」という場合がある)へ流れる。また、上記第2の弁座としての第2室間部の調圧室への開口に着座する上記第2の弁体としての移動部材の一部は調圧室内に位置しており、調圧室圧が増圧される際に作動液は高圧室から調圧室へ流れる。このため、増圧時においても、弁体と弁座との間を流れる作動液は自開方向へ流れる。したがって、本発明の液圧弁装置によれば、調圧室圧が増圧および減圧される際の弁体と弁座との間を流れる作動液の流れを自開方向にすることが可能となり、ハンチング等の発生を抑制し、精度良く調圧室圧を調圧することが可能となる。   In the hydraulic valve device according to the present invention, the plunger as the first valve body seated in the low-pressure side opening as the first valve seat is located in the low-pressure chamber, and the pressure-regulating chamber pressure is reduced. The hydraulic fluid flows from the pressure regulating chamber to the low pressure chamber. Therefore, during decompression, the hydraulic fluid flowing between the valve body and the valve seat is the direction in which the valve body is separated from the valve seat, that is, the direction in which the valve opens (hereinafter, sometimes referred to as “self-opening direction”). To flow. In addition, a part of the moving member as the second valve body, which is seated in the opening to the pressure regulating chamber in the portion between the second chambers as the second valve seat, is located in the pressure regulating chamber. When the chamber pressure is increased, the hydraulic fluid flows from the high pressure chamber to the pressure regulating chamber. For this reason, even when the pressure is increased, the hydraulic fluid flowing between the valve body and the valve seat flows in the self-opening direction. Therefore, according to the hydraulic valve device of the present invention, it is possible to make the flow of the hydraulic fluid flowing between the valve body and the valve seat when the pressure regulating chamber pressure is increased and reduced in a self-opening direction, The occurrence of hunting or the like can be suppressed, and the pressure regulating chamber pressure can be regulated with high accuracy.

発明の態様Aspects of the Invention

以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。   In the following, some aspects of the invention that can be claimed in the present application (hereinafter sometimes referred to as “claimable invention”) will be exemplified and described. As with the claims, each aspect is divided into sections, each section is numbered, and is described in a form that cites the numbers of other sections as necessary. This is merely for the purpose of facilitating the understanding of the claimable inventions, and is not intended to limit the combinations of the constituent elements constituting those inventions to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying each section, the description of the embodiments, etc., and as long as the interpretation is followed, another aspect is added to the form of each section. In addition, an aspect in which constituent elements are deleted from the aspect of each item can be an aspect of the claimable invention.

なお、以下の各項において、(1)項が請求項1に相当し、請求項1に(2)項に記載の技術的特徴を付加したものが請求項2に、請求項1に(3)項に記載の技術的特徴を付加したものが請求項3に、請求項1ないし請求項3のいずれか1つに(4)項に記載の技術的特徴を付加したものが請求項4に、請求項1ないし請求項4のいずれか1つに(5)項に記載の技術的特徴を付加したものが請求項5に、請求項1ないし請求項5のいずれか1つに(6)項および(7)項に記載の技術的特徴を付加したものが請求項6に、請求項1ないし請求項6のいずれか1つに(6)項および(8)項に記載の技術的特徴を付加したものが請求項7に、請求項1ないし請求項6のいずれか1つに(6)項および(9)項に記載の技術的特徴を付加したものが請求項8に、請求項1ないし請求項8のいずれか1つに(10)項に記載の技術的特徴を付加したものが請求項9に、それぞれ相当する。   In each of the following items, the item (1) corresponds to the item 1, and the technical feature described in the item (2) is added to the item 1, the item 1, the item (3) The technical feature described in item (4) is added to claim 3, and the technical feature described in item (4) is added to any one of claims 1 to 3 in claim 4. Any one of claims 1 to 4 added with the technical feature described in (5) is described in claim 5, and any one of claims 1 to 5 is described in (6). The technical features described in (6) and (8) are added to any one of claims 1 to 6 to which the technical features described in the items (7) and (7) are added. The technical features described in (6) and (9) are added to any one of claims 1 to 6. The to the claim 8, in any one of claims 1 to 8 (10) obtained by adding the technical features described in terms to claim 9, corresponding respectively.

(1)作動液を調圧するための液圧弁装置であって、
低圧源と連通する低圧室と、調圧された作動液で満たされる調圧室と、前記低圧室と前記調圧室との間に設けられるとともに高圧源と連通する高圧室と、前記低圧室と前記高圧室とを繋ぐ第1室間部と、前記高圧室と前記調圧室とを繋ぐ第2室間部とを有し、それらを自身の軸線方向に並ぶように区画するハウジングと、
前記高圧室を前記軸線方向に貫くようにして前記第1室間部と前記第2室間部とに挿入されるとともに一端部が前記調圧室内に延び出しており、前記軸線方向に移動可能に前記ハウジング内に配設され、前記第1室間部を塞ぐとともに、前記一端部が前記第2室間部の前記調圧室側の開口に着座することで前記高圧室と前記調圧室との間の作動液の流通を遮断する移動部材と、
その移動部材を、前記一端部が前記開口に着座する方向に付勢する第1付勢部材と、
前記移動部材の他端部に形成されるとともに前記低圧室に開口する低圧室側開口と、前記移動部材の前記一端部と前記ハウジングとのいずれか一方に形成されるとともに前記調圧室に開口する調圧室側開口とを有して、前記低圧室と前記調圧室とを連通する連通路と、
前記軸線方向に移動可能に前記ハウジング内に配設され、前記低圧室側開口に着座することで前記調圧室と前記低圧室との間の作動液の流通を遮断するプランジャと、
そのプランジャを、それが前記低圧室側開口から離隔する方向に付勢する第2付勢部材と、
前記プランジャをそれが前記低圧室側開口に着座する方向に移動させるための力を、自身に供給される電力に応じた大きさで発生させる移動力発生器と
を備えた液圧弁装置。
(1) A hydraulic valve device for regulating hydraulic fluid,
A low pressure chamber communicating with the low pressure source, a pressure regulating chamber filled with a regulated hydraulic fluid, a high pressure chamber provided between the low pressure chamber and the pressure regulating chamber and communicating with the high pressure source, and the low pressure chamber And a first chamber connecting the high pressure chamber and a second chamber connecting the high pressure chamber and the pressure regulating chamber, and a housing that divides them so as to be aligned in the axial direction of the chamber.
It is inserted into the first chamber and the second chamber so as to penetrate the high pressure chamber in the axial direction, and one end portion extends into the pressure regulating chamber and is movable in the axial direction. The high pressure chamber and the pressure regulating chamber are disposed in the housing, block the portion between the first chambers, and the one end portion is seated in an opening on the pressure regulating chamber side of the second chamber portion. A moving member that blocks the flow of hydraulic fluid between the
A first biasing member that biases the moving member in a direction in which the one end is seated in the opening;
A low pressure chamber side opening that is formed at the other end of the moving member and opens to the low pressure chamber, and is formed at one of the one end of the moving member and the housing and is open to the pressure regulating chamber. A pressure adjusting chamber side opening that communicates with the low pressure chamber and the pressure adjusting chamber;
A plunger that is disposed in the housing so as to be movable in the axial direction, and that blocks the flow of hydraulic fluid between the pressure regulating chamber and the low pressure chamber by being seated in the low pressure chamber side opening;
A second urging member that urges the plunger in a direction in which the plunger is separated from the low-pressure chamber side opening;
A hydraulic valve device comprising: a moving force generator that generates a force for moving the plunger in a direction in which the plunger is seated on the low-pressure chamber side opening in a magnitude corresponding to the electric power supplied to the plunger.

液圧弁装置には、高圧室と、低圧室と、それら高圧室と低圧室とに連通可能な調圧室とを有するハウジングと、高圧室と調圧室との間の作動液の流通を開閉する弁(以下、「増圧弁」という場合がある)と、低圧室と調圧室との間の作動液の流通を開閉する弁(以下、「減圧弁」という場合がある)とを備え、調圧室内の作動液の液圧(以下、「調圧室圧」という場合がある)を調圧可能な構造のものが存在する。増圧弁は、弁体と弁座とを有し、弁体が弁座に着座することで、高圧室と調圧室との間の作動液の流通を遮断する構造とされており、減圧弁も、弁体と弁座とを有し、弁体が弁座に着座することで、低圧室と調圧室との間の作動液の流通を遮断する構造とされている。   The hydraulic valve device opens and closes the flow of hydraulic fluid between the high pressure chamber, the low pressure chamber, a housing having a pressure regulating chamber capable of communicating with the high pressure chamber and the low pressure chamber, and the high pressure chamber and the pressure regulating chamber. And a valve for opening and closing the flow of hydraulic fluid between the low pressure chamber and the pressure regulating chamber (hereinafter also referred to as “pressure reducing valve”), There is a structure capable of adjusting the hydraulic pressure of the hydraulic fluid in the pressure adjusting chamber (hereinafter sometimes referred to as “pressure adjusting chamber pressure”). The pressure increasing valve has a valve body and a valve seat, and the valve body is seated on the valve seat so that the flow of hydraulic fluid between the high pressure chamber and the pressure regulating chamber is blocked. The valve body and the valve seat have a structure in which the flow of the hydraulic fluid between the low pressure chamber and the pressure regulating chamber is blocked by the valve body seated on the valve seat.

調圧室圧が増圧および減圧される際に、弁体と弁座との間を作動液が流れるが、それら弁体と弁座との間は比較的狭いため、その間を流れる作動液は勢いよく弁体に作用する。このため、例えば、調圧室圧が調圧される際に弁体と弁座との間を流れる作動液が、弁体が弁座に接近する方向、つまり、弁が閉じる方向(以下、「自閉方向」という場合がある)に流れるような場合には、弁体と弁座との間を離隔させて調圧室圧を調圧する制御を精度良く実行できない虞がある。また、作動液が自閉方向に流れると弁体が弁座に着座する場合があり、そのような場合には、作動液の流れによる閉弁と、移動力発生器の発生させる力による開弁とが頻繁に繰り返される現象、所謂、ハンチング現象が生じる虞があり、精度良く調圧室圧を調圧できない虞がある。   When the pressure regulating chamber pressure is increased and decreased, the hydraulic fluid flows between the valve body and the valve seat. However, since the space between the valve body and the valve seat is relatively narrow, the hydraulic fluid flowing between them is It acts on the valve body vigorously. For this reason, for example, when the pressure regulating chamber pressure is regulated, the working fluid flowing between the valve body and the valve seat is in a direction in which the valve body approaches the valve seat, that is, in a direction in which the valve is closed (hereinafter, “ In the case of flowing in the “self-closing direction”), there is a possibility that control for regulating the pressure regulating chamber pressure by separating the valve body and the valve seat cannot be performed with high accuracy. In addition, when the hydraulic fluid flows in the self-closing direction, the valve body may be seated on the valve seat. In such a case, the valve is closed by the flow of the hydraulic fluid and the valve is opened by the force generated by the moving force generator. May occur frequently, so-called hunting phenomenon, and the pressure regulating chamber pressure may not be regulated accurately.

以上のことに鑑みて、本項に記載された液圧弁装置は、(a)高圧室と、低圧室と、それら高圧室と低圧室との間に設けられた調圧室と、高圧室と調圧室とを繋ぐ第1室間部と、低圧室と調圧室とを繋ぐ第2室間部とを有するハウジングと、(b)第1室間部を塞ぐとともに第2室間部に挿入された状態で軸線方向に移動可能にハウジング内に配設される移動部材と、(c)移動部材に形成されるとともに低圧室に開口し、減圧弁の弁座として機能する低圧室側開口と、移動部材とハウジングとのいずれか一方に形成されるとともに調圧室に開口する調圧室側開口とを有して、低圧室と調圧室とを連通する連通路と、(d)低圧室側開口に着座可能な減圧弁の弁体として機能するプランジャとを備え、第2室間部の調圧室への開口が増圧弁の弁座として機能するとともに、移動部材の調圧室内に位置する部分が増圧弁の弁体として機能するように構成されている。本項に記載の液圧弁装置によれば、調圧室圧が増圧および減圧される際の弁体と弁座との間を流れる作動液の流れを、弁体が弁座から離隔する方向、つまり、弁が開く方向(以下、「自開方向」という場合がある)にすることが可能となり、ハンチング等の発生を抑制し、精度良く調圧室圧を調圧することが可能となる。   In view of the above, the hydraulic valve device described in this section includes: (a) a high pressure chamber, a low pressure chamber, a pressure regulating chamber provided between the high pressure chamber and the low pressure chamber, a high pressure chamber, A housing having a first chamber connecting the pressure regulating chamber and a second chamber connecting the low pressure chamber and the pressure regulating chamber; and (b) closing the first chamber and closing the second chamber. A moving member disposed in the housing so as to be movable in the axial direction in the inserted state; and (c) a low pressure chamber side opening that is formed in the moving member and that opens to the low pressure chamber and functions as a valve seat of the pressure reducing valve. A pressure regulating chamber side opening formed in one of the moving member and the housing and opened to the pressure regulating chamber, and a communication path communicating the low pressure chamber and the pressure regulating chamber; (d) And a plunger that functions as a valve body of a pressure reducing valve that can be seated on the low pressure chamber side opening, and the opening to the pressure regulating chamber between the second chambers functions as a valve seat of the pressure increasing valve Together, the portion located regulating the pressure chamber of the moving member is configured to function as a valve body of the pressure-increasing valve. According to the hydraulic valve device described in this section, the direction in which the valve body separates the flow of the hydraulic fluid flowing between the valve body and the valve seat when the pressure regulating chamber pressure is increased or decreased. That is, it is possible to make the valve open (hereinafter sometimes referred to as “self-opening direction”), suppress the occurrence of hunting and the like, and adjust the pressure regulating chamber pressure with high accuracy.

本項に記載された「第1室間部」および「第2室間部」は、2つの液室を連通するものであればよく、例えば、2つの液室の間に位置する内壁を貫通する穴,通路等であってもよく、ハウジング内に嵌合される環状の部材の内壁面によって形成される部分であってもよい。本項に記載の「連通路」は、低圧室側開口と調圧室側開口とを介して、低圧室と調圧室とを連通するものであればよく、例えば、移動部材内を貫通する貫通穴のみによって連通するものであってもよく、移動部材内に形成される通路とハウジング内に形成される通路とによって連通するものであってもよい。   The “inter-first chamber portion” and the “second inter-chamber portion” described in this section are only required to communicate between the two liquid chambers. For example, they penetrate the inner wall located between the two liquid chambers. It may be a hole, a passage, or the like, or may be a portion formed by the inner wall surface of an annular member fitted in the housing. The “communication path” described in this section may be anything that allows the low pressure chamber and the pressure regulating chamber to communicate with each other via the low pressure chamber side opening and the pressure regulating chamber side opening. It may communicate with only the through hole, or may communicate with a passage formed in the moving member and a passage formed in the housing.

本項に記載の「移動力発生器」は、プランジャを移動させるための力を制御可能に発生させるものであればよく、具体的に言えば、例えば、供給電力に応じて電磁力を発生させるコイルであってもよい。また、当該液圧弁装置とは異なる電磁式の液圧弁装置によって作動液を調圧し、その調圧された作動液をプランジャに作用させることで、そのプランジャを移動させる構造のものであってもよい。このような構造のものであれば、当該液圧弁装置とは異なる電磁式の液圧弁装置への供給電力に応じて、プランジャを移動させるための力を発生させることが可能である。   The “moving force generator” described in this section may be anything that can controllably generate a force for moving the plunger. Specifically, for example, an electromagnetic force is generated according to the supplied power. A coil may be used. Further, the structure may be such that the hydraulic fluid is regulated by an electromagnetic hydraulic valve device different from the hydraulic valve device, and the plunger is moved by causing the regulated hydraulic fluid to act on the plunger. . If it is a thing of such a structure, it is possible to generate | occur | produce the force for moving a plunger according to the electric power supplied to the electromagnetic hydraulic valve apparatus different from the said hydraulic valve apparatus.

(2)前記調圧室側開口が、前記移動部材の前記一端部に形成されるとともに、
前記連通路が、前記移動部材の内部を貫通する(1)項に記載の液圧弁装置。
(2) The pressure regulating chamber side opening is formed at the one end of the moving member,
The hydraulic valve device according to item (1), wherein the communication path passes through the inside of the moving member.

(3)前記調圧室側開口が、前記ハウジングに形成されるとともに、
前記連通路が、
(a)前記移動部材に形成され、前記第1室間部に開口するとともにその開口と前記低圧室側開口とを連通する移動部材内連通路と、(b)前記ハウジングに形成され、前記移動部材内連通路の前記第1室間部への開口と前記調圧室側開口とを連通するハウジング内連通路とを含んで構成された(1)項に記載の液圧弁装置。
(3) While the pressure regulating chamber side opening is formed in the housing,
The communication path is
(a) a moving member communication path formed in the moving member and opening between the first chambers and communicating the opening and the low pressure chamber side opening; and (b) formed in the housing and moving the moving member. The hydraulic valve device according to item (1), including an in-housing communication path that communicates the opening of the in-member communication path to the first chamber portion and the pressure regulation chamber side opening.

上記2つの項に記載の液圧弁装置においては、連通路の低圧室側開口と調圧室側開項との間の構造が具体的に限定されている。後者の項に記載の「連通路」は、移動部材内連通路とハウジング内連通路との2つの通路によって低圧室と調圧室とを連通するものであればよく、例えば、第1室間部に位置し移動部材の外周面を囲むようにして設けられた連通室と、ハウジングに形成されるとともに連通室と調圧室とを連通する液通路とを有し、その液通路と連通室とがハウジング内連通路として機能するとともに、移動部材内連通路が連通室と低圧室とを連通する構造であってもよい。   In the hydraulic valve device described in the above two terms, the structure between the low pressure chamber side opening and the pressure regulating chamber side opening term of the communication passage is specifically limited. The “communication path” described in the latter section may be any means as long as the low pressure chamber and the pressure regulation chamber communicate with each other through two paths, ie, the moving member communication path and the housing communication path. A communication chamber which is located at the portion and is provided so as to surround the outer peripheral surface of the moving member, and a liquid passage which is formed in the housing and communicates with the communication chamber and the pressure regulating chamber, and the liquid passage and the communication chamber are The structure may function as an in-housing communication path, and the in-moving member communication path may communicate the communication chamber and the low-pressure chamber.

(4)前記移動部材が、
それの前記一端部が前記第2室間部の前記調圧室側の開口に接近する方向に前記高圧室内の作動液の液圧を受ける受圧面積と、前記一端部が前記開口から離隔する方向に前記高圧室内の作動液の液圧を受ける受圧面積とが等しくなる形状とされた(1)項ないし(3)項のいずれか1つに記載の液圧弁装置。
(4) The moving member is
A pressure receiving area for receiving the hydraulic pressure of the working fluid in the high pressure chamber in a direction in which the one end portion thereof approaches the opening on the pressure regulating chamber side of the second chamber portion, and a direction in which the one end portion is separated from the opening The hydraulic valve device according to any one of items (1) to (3), wherein the pressure receiving area for receiving the hydraulic pressure of the hydraulic fluid in the high pressure chamber is the same.

高圧室を区画する移動部材には、高圧室内の作動液の液圧(以下、「高圧室圧」という場合がある)が作用しており、高圧室圧が移動部材の移動に影響を及ぼす場合がある。移動部材には、増圧弁が開く方向に移動部材が高圧室圧を受ける受圧面積に応じた大きさの力が作用し、その力は増圧弁が開く方向に作用する。一方、移動部材には、増圧弁が閉じる方向に移動部材が高圧室圧を受ける受圧面積に応じた大きさの力も作用し、その力は増圧弁が閉じる方向に作用する。それら2つの力は概ねつり合っていることが望ましく、2つの力のバランスが崩れると、後に詳しく説明するように、例えば、移動部材を移動させるために必要な力が大きくなる場合がある。そこで、本項に記載の液圧弁装置においては、増圧弁が開く方向への高圧室圧を受ける移動部材の受圧面積と、増圧弁が閉じる方向への高圧室圧を受ける移動部材の受圧面積とが同じとなるようにされており、移動部材を移動させるために必要な力を低減することが可能となっている。   The moving member that divides the high-pressure chamber is affected by the hydraulic pressure of the hydraulic fluid in the high-pressure chamber (hereinafter sometimes referred to as “high-pressure chamber pressure”), and the high-pressure chamber pressure affects the movement of the moving member. There is. A force having a magnitude corresponding to the pressure receiving area where the moving member receives the high-pressure chamber pressure acts in the direction in which the pressure increasing valve opens, and the force acts in the direction in which the pressure increasing valve opens. On the other hand, a force having a magnitude corresponding to the pressure receiving area where the moving member receives the high-pressure chamber pressure also acts on the moving member in the direction in which the pressure increasing valve closes, and this force acts in the direction in which the pressure increasing valve closes. It is desirable that the two forces are generally balanced, and when the balance between the two forces is lost, as will be described in detail later, for example, the force required to move the moving member may increase. Therefore, in the hydraulic valve device described in this section, the pressure receiving area of the moving member that receives the high pressure chamber pressure in the direction in which the pressure increasing valve opens, and the pressure receiving area of the moving member that receives the high pressure chamber pressure in the direction in which the pressure increasing valve closes Are made the same, and the force required to move the moving member can be reduced.

(5)前記移動部材が、
前記低圧室側開口が前記プランジャに接近する方向に前記調圧室内の作動液の液圧を受ける受圧面積と、前記低圧室側開口が前記プランジャから離隔する方向に前記調圧室内の作動液の液圧を受ける受圧面積とが等しくなる形状とされた(1)項ないし(4)項のいずれか1つに記載の液圧弁装置。
(5) The moving member is
The pressure receiving area that receives the hydraulic pressure of the hydraulic fluid in the pressure regulating chamber in a direction in which the low pressure chamber side opening approaches the plunger, and the hydraulic fluid in the pressure regulating chamber in a direction in which the low pressure chamber side opening is separated from the plunger. The hydraulic valve device according to any one of (1) to (4), wherein the pressure receiving area for receiving the hydraulic pressure is the same.

移動部材は調圧室も区画しており、調圧室圧が移動部材に作用し、調圧室圧が移動部材の移動に影響を及ぼす場合がある。移動部材には、減圧弁が開く方向に移動部材が調圧室圧を受ける受圧面積(以下、「減圧弁開方向受圧面積」という場合がある)に応じた大きさの力が作用し、その力は減圧弁が開く方向に作用する。一方、移動部材には、減圧弁が閉じる方向に移動部材が調圧室圧を受ける受圧面積(以下、「減圧弁閉方向受圧面積」という場合がある)に応じた大きさの力も作用し、その力は減圧弁が閉じる方向に作用する。減圧弁が開く方向の力が、減圧弁が閉じる方向の力より大きい場合には、調圧室圧の増圧時に調圧室から低圧室へ液漏れが生じる虞がある。一方、減圧弁が閉じる方向の力が、減圧弁が開く方向の力より大きい場合には、調圧室圧を減圧する際に減圧弁が開弁し難くなり、圧力特性にヒステリシスが生じる虞がある。そこで、本項に記載の液圧弁装置においては、減圧弁開方向受圧面積と減圧弁閉方向受圧面積とが同じとなるようにされており、調圧室圧の増圧時の液漏れ,圧力特性のヒステリシスの発生を抑制することが可能となっている。   The moving member also partitions the pressure regulating chamber, and the pressure regulating chamber pressure may act on the moving member, and the pressure regulating chamber pressure may affect the movement of the moving member. A force having a magnitude corresponding to a pressure receiving area where the moving member receives pressure regulation chamber pressure in the direction in which the pressure reducing valve opens (hereinafter, sometimes referred to as “pressure reducing valve opening direction pressure receiving area”) acts. The force acts in the direction in which the pressure reducing valve opens. On the other hand, a force having a magnitude corresponding to the pressure receiving area where the moving member receives the pressure regulation chamber pressure in the direction in which the pressure reducing valve closes (hereinafter, also referred to as “pressure reducing valve closing direction pressure receiving area”) acts. The force acts in the direction in which the pressure reducing valve closes. When the force in the direction in which the pressure reducing valve opens is larger than the force in the direction in which the pressure reducing valve closes, there is a possibility that liquid leakage may occur from the pressure regulating chamber to the low pressure chamber when the pressure regulating chamber pressure is increased. On the other hand, if the force in the direction in which the pressure reducing valve closes is greater than the force in the direction in which the pressure reducing valve opens, the pressure reducing valve is difficult to open when reducing the pressure regulating chamber pressure, and there is a risk that hysteresis will occur in the pressure characteristics. is there. Therefore, in the hydraulic valve device described in this section, the pressure receiving area in the pressure reducing valve opening direction is the same as the pressure receiving area in the pressure reducing valve closing direction, and the liquid leakage and pressure when the pressure regulating chamber pressure is increased. It is possible to suppress the occurrence of characteristic hysteresis.

本項に記載の液圧弁装置は、減圧弁開方向受圧面積と減圧弁閉方向受圧面積とが等しくなるように設計されているが、例えば、調圧室圧の増圧時の液漏れを優先して抑制したい場合には、減圧弁閉方向受圧面積が減圧弁開方向受圧面積より大きくなるように設計してもよい。また、例えば、圧力特性のヒステリシスの発生を抑制したい場合、言い換えれば、減圧弁を開弁する際の力を低減したい場合には、減圧弁開方向受圧面積が減圧弁閉方向受圧面積より大きくなるように設計してもよい。   The hydraulic valve device described in this section is designed so that the pressure receiving area in the pressure reducing valve opening direction is equal to the pressure receiving area in the pressure reducing valve closing direction. For example, priority is given to liquid leakage when the pressure regulating chamber pressure is increased. When it is desired to suppress the pressure, the pressure receiving area in the pressure reducing valve closing direction may be designed to be larger than the pressure receiving area in the pressure reducing valve opening direction. Also, for example, when it is desired to suppress the occurrence of hysteresis of pressure characteristics, in other words, when it is desired to reduce the force when opening the pressure reducing valve, the pressure receiving area in the pressure reducing valve opening direction is larger than the pressure receiving area in the pressure reducing valve closing direction. You may design as follows.

(6)前記ハウジングが、さらに、前記調圧室の前記高圧室側とは反対側に設けられた補助室と、その補助室と前記調圧室とを繋ぐ第3室間部とを有し、
前記移動部材が、前記第3室間部まで延びてそれに挿入される(1)項ないし(5)項のいずれか1つに記載の液圧弁装置。
(6) The housing further includes an auxiliary chamber provided on the opposite side of the pressure regulating chamber from the high pressure chamber side, and a third chamber connecting portion between the auxiliary chamber and the pressure regulating chamber. ,
The hydraulic valve device according to any one of (1) to (5), wherein the moving member extends to the third chamber and is inserted into the third chamber.

本項に記載の液圧弁装置においては、移動部材が調圧室をも貫いており、移動部材が第1室間部と第3室間部とによって支持されている。したがって、本項の液圧弁装置によれば、例えば、移動部材の軸ズレを抑制することが可能となる。本項に記載の「補助室」は、作動液で満たされる部屋であってもよく、作動液が入らないようにされた部屋であってもよい。「補助室」が、例えば、作動液で満たされる部屋である場合には、低圧源と連通し、ドレイン室として機能するものであってもよい。   In the hydraulic valve device described in this section, the moving member also penetrates the pressure regulating chamber, and the moving member is supported by the first chamber portion and the third chamber portion. Therefore, according to the hydraulic valve device of this section, for example, it is possible to suppress the axial displacement of the moving member. The “auxiliary chamber” described in this section may be a room filled with the working fluid or a room where the working fluid is prevented from entering. For example, when the “auxiliary chamber” is a chamber filled with hydraulic fluid, it may communicate with a low-pressure source and function as a drain chamber.

(7)当該液圧弁装置が、
前記移動部材の内部に形成され、その移動部材の外周面において前記調圧室に開口するとともに、前記移動部材の前記一端部の側の端面において前記補助室に開口する内部室と、
その内部室の前記端面における開口にその開口を塞ぐようにして一端部が摺動可能に挿入されるとともに、他端部が前記補助室内において前記ハウジングによって支持されるピンとを備えた(6)項に記載の液圧弁装置。
(7) The hydraulic valve device is
An internal chamber that is formed inside the moving member, opens to the pressure regulating chamber on an outer peripheral surface of the moving member, and opens to the auxiliary chamber on an end surface on the one end side of the moving member;
(6) Item comprising an opening in the end face of the inner chamber slidably inserted at one end so as to close the opening and a pin supported at the other end by the housing in the auxiliary chamber. The hydraulic valve device according to 1.

移動部材の一端部側の端面に開口する内部室が形成されるとともに、その開口にピンを摺動可能に挿入することによって、減圧弁開方向受圧面積を減らすことが可能となる。減圧弁開方向受圧面積と減圧弁閉方向受圧面積とのバランスを調整するためには、移動部材の外径,移動部材のシール箇所の受圧面積等を変更する必要があり、移動部材の形状が複雑化する場合がある。本項に記載の液圧弁装置においては、内部室の端面への開口の大きさを変更するだけで、減圧弁開方向受圧面積と減圧弁閉方向受圧面積とのバランスを調整することが可能となり、移動部材の形状を比較的シンプルなものとすることが可能となる。   An internal chamber that opens to the end face on the one end portion side of the moving member is formed, and the pressure receiving area in the pressure reducing valve opening direction can be reduced by slidably inserting a pin into the opening. In order to adjust the balance between the pressure receiving area in the pressure reducing valve opening direction and the pressure receiving area in the pressure reducing valve closing direction, it is necessary to change the outer diameter of the moving member, the pressure receiving area of the sealing portion of the moving member, etc. May be complicated. In the hydraulic valve device described in this section, it is possible to adjust the balance between the pressure receiving area in the pressure reducing valve opening direction and the pressure receiving area in the closing direction of the pressure reducing valve only by changing the size of the opening to the end face of the inner chamber. The shape of the moving member can be made relatively simple.

(8)前記移動部材が、前記第3室間部に挿入された部分に前記補助室に対向する段差面を有する段付形状とされるとともに、
前記補助室が、前記低圧源と連通しており、
当該液圧弁装置が、
前記第3室間部に設けられ、前記移動部材を貫通させるとともに、前記段差面に密着した状態で前記補助室と前記調圧室との間の作動液の流通を遮断する環状の第3室間部内ゴム部材を備えた(6)項または(7)項に記載の液圧弁装置。
(8) The moving member has a stepped shape having a stepped surface facing the auxiliary chamber at a portion inserted in the third inter-chamber portion,
The auxiliary chamber communicates with the low pressure source;
The hydraulic valve device is
An annular third chamber that is provided between the third chambers, penetrates the moving member, and blocks the flow of hydraulic fluid between the auxiliary chamber and the pressure regulating chamber while being in close contact with the step surface. The hydraulic valve device according to item (6) or (7), comprising an inner rubber member.

(9)前記移動部材が、それの前記一端部の側の端面が前記第3室間部内に位置するように前記第3室間部まで延びてそれに挿入されるとともに、
前記補助室が、前記低圧源と連通しており、
当該液圧弁装置が、
前記第3室間部に設けられ、前記移動部材の前記端面に密着した状態で前記補助室と前記調圧室との間の作動液の流通を遮断する第3室間部内ゴム部材を備えた(6)項または(7)項に記載の液圧弁装置。
(9) The moving member extends to and inserted into the third chamber so that the end surface on the one end side thereof is located in the third chamber.
The auxiliary chamber communicates with the low pressure source;
The hydraulic valve device is
A third inter-chamber rubber member that is provided in the inter-third chamber portion and blocks the flow of hydraulic fluid between the auxiliary chamber and the pressure regulating chamber in a state of being in close contact with the end surface of the moving member. The hydraulic valve device according to (6) or (7).

(10)前記移動部材が、前記第1室間部に挿入された部分に前記低圧室に対向する段差面を有する段付形状とされるとともに、
当該液圧弁装置が、
前記第1室間部に設けられ、前記移動部材を貫通させるとともに、前記段差面に密着した状態で前記低圧室と前記高圧室との間の作動液の流通を遮断する環状の第1室間部内ゴム部材を備えた(1)項ないし(9)項のいずれか1つに記載の液圧弁装置。
(10) The moving member has a stepped shape having a step surface facing the low-pressure chamber at a portion inserted in the first inter-chamber portion,
The hydraulic valve device is
Between the first chambers, provided between the first chambers, between the annular first chambers that penetrates the moving member and blocks the flow of the working fluid between the low pressure chambers and the high pressure chambers in close contact with the step surface. The hydraulic valve device according to any one of (1) to (9), comprising an internal rubber member.

一般的な液圧弁装置において、ハウジング内に摺動可能に設けられるものには、通常、Oリング等のシールがその摺動するものの外周面に装着される。Oリング等のシールが外周面に装着されることで、液漏れ等は抑制されるが、ハウジング内を摺動するものの摺動抵抗が高くなる。上記3つの項に記載の液圧弁装置では、ゴム部材を外周面ではなく、段差面若しくは端面に密着させることで、そのゴム部材をシールとして機能させている。したがって、本項に記載の液圧弁装置によれば、移動部材の外周面にOリング等のシールが装着される液圧弁装置より、ハウジング内での移動部材の摺動抵抗を小さくすることが可能となる。   In a general hydraulic valve device, what is slidably provided in a housing is usually fitted with a seal such as an O-ring on the outer peripheral surface of the sliding member. By mounting a seal such as an O-ring on the outer peripheral surface, liquid leakage or the like is suppressed, but the sliding resistance of the one that slides in the housing increases. In the hydraulic valve device described in the above three items, the rubber member is caused to function as a seal by bringing the rubber member into close contact with the stepped surface or the end surface instead of the outer peripheral surface. Therefore, according to the hydraulic valve device described in this section, it is possible to reduce the sliding resistance of the moving member in the housing as compared with the hydraulic valve device in which a seal such as an O-ring is mounted on the outer peripheral surface of the moving member. It becomes.

2番目の項に記載の「第3室間部内ゴム部材」は、移動部材の端面からの作動液の液漏れを禁止する形状であればよく、平板状であっても環状であってもよい。また、「第3室間部内ゴム部材」が環状である場合には、上記した項に記載の内部室に挿入されるピンを環状の「第3室間部内ゴム部材」に嵌合させるようにして配設してもよい。このようにピンを配設すれば、ピンの軸ズレ等を抑制することが可能となる。   The “rubber member in the third chamber” described in the second section may be in a shape that prohibits leakage of the working fluid from the end face of the moving member, and may be flat or annular. . Further, when the “rubber member in the third chamber” is annular, the pin inserted into the inner chamber described in the above section is fitted to the annular “rubber member in the third chamber”. May be arranged. By disposing the pins in this way, it is possible to suppress pin misalignment and the like.

(11)前記移動力発生器が、前記プランジャをそれが前記低圧室側開口に接近する方向に移動させるための電磁力を発生させるコイルを有する(1)項ないし(10)項のいずれか1つに記載の液圧弁装置。   (11) The moving force generator includes a coil for generating an electromagnetic force for moving the plunger in a direction in which the plunger approaches the low pressure chamber side opening. The hydraulic valve device according to one.

(12)前記ハウジングが、さらに、前記低圧室の前記高圧室側とは反対側に設けられた移動力発生室と、その移動力発生室と前記低圧室とを繋ぐ第4室間部とを有し、
前記プランジャが、前記第4室間部に摺動可能に挿入されるとともに、
前記移動力発生器が、
前記高圧源と連通するとともに作動液の液圧を前記自身に供給される電力に応じた高さに増圧可能な電磁式増圧弁と、前記低圧源と連通するとともに作動液の液圧を前記自身に供給される電力とは異なる電力に応じた高さに減圧可能な電磁式減圧弁とを有し、前記電磁式増圧弁と前記電磁式減圧弁とによって作動液を調圧するとともに、その調圧された作動液が前記移動力発生室に供給されることによって、前記プランジャをそれが前記低圧室側開口に接近する方向に移動させるための力を発生させるように構成された(1)項ないし(10)項のいずれか1つに記載の液圧弁装置。
(12) The housing further includes a moving force generating chamber provided on the opposite side of the low pressure chamber from the high pressure chamber side, and a fourth chamber connecting the moving force generating chamber and the low pressure chamber. Have
The plunger is slidably inserted between the fourth chambers,
The moving force generator is
An electromagnetic pressure increasing valve that communicates with the high-pressure source and can increase the hydraulic pressure of the hydraulic fluid to a height corresponding to the electric power supplied to the high-pressure source, and communicates with the low-pressure source and reduces the hydraulic pressure of the hydraulic fluid. An electromagnetic pressure-reducing valve that can be depressurized to a height corresponding to power different from the power supplied to itself, and adjusts the hydraulic fluid by the electromagnetic pressure-increasing valve and the electromagnetic pressure-reducing valve. The pressurized hydraulic fluid is supplied to the moving force generation chamber, thereby generating a force for moving the plunger in a direction in which the plunger approaches the low pressure chamber side opening (1). Thru | or the hydraulic valve apparatus as described in any one of (10).

上記2つの項に記載の液圧弁装置においては、移動力発生器が具体的に限定されている。上記2つの項に記載の液圧弁装置によれば、コイル、若しくは、電磁式増圧弁と電磁式減圧弁とへの供給電力量を変化させることでプランジャを移動させるための力を変化させることが可能であり、プランジャを移動させるための力を容易に制御することが可能となる。   In the hydraulic valve device described in the above two terms, the moving force generator is specifically limited. According to the hydraulic valve device described in the above two items, the force for moving the plunger can be changed by changing the amount of power supplied to the coil or the electromagnetic pressure increasing valve and the electromagnetic pressure reducing valve. This is possible, and the force for moving the plunger can be easily controlled.

請求可能発明の第1実施例の液圧弁装置を備えた車両用液圧ブレーキシステムを概略的に示す図である。1 is a diagram schematically illustrating a vehicle hydraulic brake system including a hydraulic valve device according to a first embodiment of the claimable invention; FIG. 図1の車両用液圧ブレーキシステムの備える液圧弁装置を構成する増減圧弁を示す概略断面図である。It is a schematic sectional drawing which shows the pressure increase / reduction valve which comprises the hydraulic valve apparatus with which the hydraulic brake system for vehicles of FIG. 1 is provided. 図2の増減圧弁の各部材が受ける受圧面積を示す図である。It is a figure which shows the pressure receiving area which each member of the pressure increase / reduction valve of FIG. 2 receives. 請求可能発明の第2実施例の液圧弁装置を備えた車両用液圧ブレーキシステムを概略的に示す図である。It is a figure which shows roughly the hydraulic brake system for vehicles provided with the hydraulic valve apparatus of 2nd Example of claimable invention. 図4の車両用液圧ブレーキシステムの備える液圧弁装置を示す概略断面図である。It is a schematic sectional drawing which shows the hydraulic valve apparatus with which the hydraulic brake system for vehicles of FIG. 4 is provided. 図5の液圧弁装置の各部材が受ける受圧面積を示す図である。It is a figure which shows the pressure receiving area which each member of the hydraulic valve apparatus of FIG. 5 receives. 請求可能発明の第3実施例の液圧弁装置を示す概略断面図である。It is a schematic sectional drawing which shows the hydraulic valve apparatus of 3rd Example of claimable invention. 図7の液圧弁装置の各部材が受ける受圧面積を示す図である。It is a figure which shows the pressure receiving area which each member of the hydraulic valve apparatus of FIG. 7 receives. 請求可能発明の第4実施例の液圧弁装置を示す概略断面図である。It is a schematic sectional drawing which shows the hydraulic valve apparatus of 4th Example of claimable invention. 図9の液圧弁装置の各部材が受ける受圧面積を示す図である。It is a figure which shows the pressure receiving area which each member of the hydraulic valve apparatus of FIG. 9 receives. 請求可能発明の第5実施例の液圧弁装置を示す概略断面図である。It is a schematic sectional drawing which shows the hydraulic valve apparatus of 5th Example of claimable invention. 図11の液圧弁装置の各部材が受ける受圧面積を示す図である。It is a figure which shows the pressure receiving area which each member of the hydraulic valve apparatus of FIG. 11 receives.

以下、請求可能発明のいくつかの実施例を、図を参照しつつ詳しく説明する。なお、本請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。   Several embodiments of the claimable invention will now be described in detail with reference to the drawings. The claimable invention is not limited to the embodiments described below, and includes various aspects in which various modifications and improvements have been made based on the knowledge of those skilled in the art, including the aspects described in the above [Aspect of the Invention] section. Can be implemented.

<車両用ブレーキシステムの構成>
図1に、第1実施例の液圧弁装置を備えた車両用液圧ブレーキシステム10を示す。本液圧ブレーキシステム10は、ブレーキ液を加圧するためのシリンダ装置20を有している。車両の運転者は、シリンダ装置20に連結された操作装置22を操作することでシリンダ装置20を作動させことができ、シリンダ装置20は、自身の作動によってブレーキ液を加圧する。その加圧されたブレーキ液は、シリンダ装置20に接続されるアンチロック装置24を介して、各車輪に設けられたブレーキ装置26に供給される。ブレーキ装置26は、加圧されたブレーキ液の圧力に依拠して、車輪の回転を制止するための力、すなわち、液圧制動力を発生させる。
<Configuration of vehicle brake system>
FIG. 1 shows a vehicle hydraulic brake system 10 having a hydraulic valve device according to a first embodiment. The hydraulic brake system 10 has a cylinder device 20 for pressurizing brake fluid. The driver of the vehicle can operate the cylinder device 20 by operating the operation device 22 connected to the cylinder device 20, and the cylinder device 20 pressurizes the brake fluid by its own operation. The pressurized brake fluid is supplied to a brake device 26 provided on each wheel via an antilock device 24 connected to the cylinder device 20. The brake device 26 generates a force for stopping the rotation of the wheel, that is, a hydraulic braking force, depending on the pressure of the pressurized brake fluid.

ブレーキ装置26の詳しい構造についての説明は省略するが、各ブレーキ装置26は、ブレーキキャリパと、そのブレーキキャリパに取り付けられたホイールシリンダ(ブレーキシリンダ)およびブレーキパッドと、各車輪とともに回転するブレーキディスクとを含んで構成されている。ブレーキシリンダは、シリンダ装置20によって加圧されたブレーキ液の出力圧に依拠して、ブレーキパッドをブレーキディスクに押し付ける。その押し付けによって発生する摩擦によって、各ブレーキ装置26では、車輪の回転を制止する液圧制動力が発生し、車両は制動されるのである。   Although a detailed description of the structure of the brake device 26 is omitted, each brake device 26 includes a brake caliper, a wheel cylinder (brake cylinder) and a brake pad attached to the brake caliper, and a brake disk that rotates with each wheel. It is comprised including. The brake cylinder presses the brake pad against the brake disc depending on the output pressure of the brake fluid pressurized by the cylinder device 20. Due to the friction generated by the pressing, each brake device 26 generates a hydraulic braking force that stops the rotation of the wheel, and the vehicle is braked.

なお、以下の説明において、「ブレーキ装置26」等のいくつかの構成要素は、総称として使用するが、4つの車輪のいずれかに対応するものであることを示す場合には、左前輪,右前輪,左後輪,右後輪にそれぞれ対応して、添え字「FL」,「FR」,「RL」,「RR」を付すこととする。また、「前方」は図1における左方、「後方」は図1における右方をそれぞれ表している。また、「前側」、「前端」、「前進」や、「後側」、「後端」、「後進」等も同様に表すものとされている。   In the following description, some components such as “brake device 26” are used as a general term, but in the case of indicating that they correspond to any of the four wheels, the left front wheel, the right Subscripts “FL”, “FR”, “RL”, and “RR” are attached to the front wheel, the left rear wheel, and the right rear wheel, respectively. “Front” represents the left side in FIG. 1, and “Back” represents the right side in FIG. In addition, “front side”, “front end”, “forward”, “rear side”, “rear end”, “reverse”, and the like are also represented in the same manner.

i)シリンダ装置の構成
シリンダ装置20は、それの筐体であるハウジング30と、ブレーキ装置26に供給するブレーキ液を加圧する第1加圧ピストン32および第2加圧ピストン34と、運転者の操作力によって前進する中間ピストン36と、運転者の操作が操作装置22を通じて入力される入力ピストン38とを含んで構成されている。なお、図1は、シリンダ装置20が動作していない状態、つまり、ブレーキ操作がされていない状態を示している。
i) Configuration of Cylinder Device The cylinder device 20 includes a housing 30 that is a housing of the cylinder device 20, a first pressurizing piston 32 and a second pressurizing piston 34 that pressurize brake fluid supplied to the brake device 26, and a driver's It includes an intermediate piston 36 that moves forward by operating force, and an input piston 38 to which a driver's operation is input through the operating device 22. FIG. 1 shows a state where the cylinder device 20 is not operating, that is, a state where the brake operation is not performed.

ハウジング30は、主に、2つの部材から、具体的には、第1ハウジング部材40、第2ハウジング部材42から構成されている。第1ハウジング部材40は、前端部が閉塞された概して円筒状を有し、後端部の外周にフランジ44が形成されており、そのフランジ44において車体に固定される。第1ハウジング部材40は、内径が互いに異なる3つの部分、具体的には、前方側に位置して内径の最も小さい前方小径部46、後方側に位置して内径の最も大きい後方大径部48、それら前方小径部46と後方大径部48との中間に位置しそれらの内径の中間の内径を有する中間部50に区分けされている。   The housing 30 is mainly composed of two members, specifically, a first housing member 40 and a second housing member 42. The first housing member 40 has a generally cylindrical shape with the front end closed, and a flange 44 is formed on the outer periphery of the rear end. The first housing member 40 is fixed to the vehicle body at the flange 44. The first housing member 40 has three portions having different inner diameters, specifically, a front small diameter portion 46 having the smallest inner diameter located on the front side, and a rear large diameter portion 48 having the largest inner diameter located on the rear side. The intermediate portion 50 is located between the front small-diameter portion 46 and the rear large-diameter portion 48 and has an intermediate inner diameter between them.

第2ハウジング部材42は、前方側に位置して外径の大きい前方大径部52、後方側に位置して外径の小さい後方小径部54とを有する円筒形状をなしている。第2ハウジング部材42は、前方大径部52の前端部が第1ハウジング部材40の中間部50と後方大径部48との段差面に接する状態で、その後方大径部48に嵌め込まれている。それら第1ハウジング部材40,第2ハウジング部材42は、第1ハウジング部材40の後端部の内周面に嵌め込まれたロック環56によって、互いに締結されている。   The second housing member 42 has a cylindrical shape having a front large diameter portion 52 having a large outer diameter located on the front side and a rear small diameter portion 54 having a small outer diameter located on the rear side. The second housing member 42 is fitted into the rear large diameter portion 48 in a state where the front end portion of the front large diameter portion 52 is in contact with the step surface between the intermediate portion 50 and the rear large diameter portion 48 of the first housing member 40. Yes. The first housing member 40 and the second housing member 42 are fastened to each other by a lock ring 56 fitted on the inner peripheral surface of the rear end portion of the first housing member 40.

第1加圧ピストン32および第2加圧ピストン34は、それぞれ、後端部が塞がれた有底円筒形状をなしており、第1ハウジング部材40の前方小径部46に摺動可能に嵌め合わされている。第1加圧ピストン32は、第2加圧ピストン34の後方に配設されている。第1加圧ピストン32と第2加圧ピストン34との間には、右前輪のブレーキ装置26FRに供給されるブレーキ液を加圧するための第1加圧室R1が区画形成されており、また、第2加圧ピストン34の前方には、左前輪に設けられたブレーキ装置26FLに供給されるブレーキ液を加圧するための第2加圧室R2が区画形成されている。なお、第1加圧ピストン32と第2加圧ピストン34とは、第1加圧ピストン32の後端部に立設された有頭ピン60と、第2加圧ピストン34の後端面に固設されたピン保持筒62とによって、離間距離が設定範囲内に制限されている。また、第1加圧室R1内,第2加圧室R2内には、それぞれ、圧縮コイルスプリング64、66が配設されており、それらスプリング64、66によって、第1加圧ピストン32,第2加圧ピストン34はそれらが互いに離間する方向に付勢されるとともに、第1加圧ピストン32、第2加圧ピストン34は後方に向かって付勢されており、第1加圧ピストン32は中間ピストン36の前端面に当接されている。   Each of the first pressurizing piston 32 and the second pressurizing piston 34 has a bottomed cylindrical shape whose rear end is closed, and is slidably fitted to the front small-diameter portion 46 of the first housing member 40. Are combined. The first pressure piston 32 is disposed behind the second pressure piston 34. Between the first pressurizing piston 32 and the second pressurizing piston 34, a first pressurizing chamber R1 for pressurizing the brake fluid supplied to the brake device 26FR for the right front wheel is defined. In front of the second pressurizing piston 34, a second pressurizing chamber R2 for pressurizing the brake fluid supplied to the brake device 26FL provided on the left front wheel is defined. The first pressure piston 32 and the second pressure piston 34 are fixed to the headed pin 60 erected at the rear end portion of the first pressure piston 32 and the rear end surface of the second pressure piston 34. The separation distance is limited within the set range by the pin holding cylinder 62 provided. In addition, compression coil springs 64 and 66 are disposed in the first pressurizing chamber R1 and the second pressurizing chamber R2, respectively. The two pressurizing pistons 34 are biased in a direction in which they are separated from each other, and the first pressurizing piston 32 and the second pressurizing piston 34 are biased rearward, and the first pressurizing piston 32 is It is in contact with the front end surface of the intermediate piston 36.

中間ピストン36は、両端部が開口された円筒形状の本体部70と、本体部70の前端部を塞ぐ蓋部72とから構成されている。中間ピストン36は、前端が第1加圧ピストン32の後端に当接した状態で、第1ハウジング部材40の中間部50の内周面に、摺動可能に嵌め合わされている。中間ピストン36の後方には、第2ハウジング部材42の前端部との間に、入力室R3が区画形成されている。ちなみに、図1では、ほとんど潰れた状態で示されている。また、ハウジング30の内部には、第1ハウジング部材40の内周面と第1加圧ピストン32の外周面との間に形成された空間が存在する。その空間が、中間ピストン36の前端面と、第1ハウジング部材40の前方小径部46と中間部50との段差面とによって区画されることで、常時大気圧とされる環状の液室(以下、「大気圧室」という場合がある)R4が形成されている。   The intermediate piston 36 includes a cylindrical main body 70 having both ends opened and a lid 72 that closes the front end of the main body 70. The intermediate piston 36 is slidably fitted to the inner peripheral surface of the intermediate portion 50 of the first housing member 40 with the front end in contact with the rear end of the first pressure piston 32. An input chamber R3 is defined between the rear end of the intermediate piston 36 and the front end portion of the second housing member 42. Incidentally, in FIG. 1, it is shown in the almost collapsed state. In addition, a space formed between the inner peripheral surface of the first housing member 40 and the outer peripheral surface of the first pressurizing piston 32 exists inside the housing 30. The space is partitioned by the front end surface of the intermediate piston 36 and the step surface between the front small-diameter portion 46 and the intermediate portion 50 of the first housing member 40, so that an annular liquid chamber (hereinafter referred to as atmospheric pressure) that is always at atmospheric pressure (hereinafter referred to as the atmospheric pressure chamber). , Sometimes referred to as “atmospheric pressure chamber”).

入力ピストン38は、前方が塞がれて後端部の開口する円筒形状をなす外筒部材80と、概して円柱形状のロッド部材82とを主体として構成されている。入力ピストン38は、ロッド部材82が、外筒部材80に、それの後端側から挿し込まれている。入力ピストン38は、第2ハウジング部材42に保持された状態で、中間ピストン36の本体部70の前端部から挿し込まれるとともに、中間ピストン36に対して進退可能とされている。このように構成された中間ピストン36の内部には、中間ピストン36と入力ピストン38との相対移動によって自身の容積が変化する液室(以下、「内部室」という場合がある)R5が区画形成されている。ちなみに、入力ピストン38の後退は、外筒部材80の前端部に形成される鍔部が、中間ピストン36の本体部70の後端部に当接することで制限されている。   The input piston 38 is mainly composed of an outer cylinder member 80 having a cylindrical shape whose front end is closed and whose rear end is open, and a rod member 82 having a generally columnar shape. As for the input piston 38, the rod member 82 is inserted in the outer cylinder member 80 from the rear end side. The input piston 38 is inserted from the front end portion of the main body 70 of the intermediate piston 36 while being held by the second housing member 42, and can be advanced and retracted with respect to the intermediate piston 36. Inside the intermediate piston 36 configured in this manner, a liquid chamber R5 (hereinafter sometimes referred to as “internal chamber”) whose volume changes due to the relative movement of the intermediate piston 36 and the input piston 38 is partitioned. Has been. Incidentally, the backward movement of the input piston 38 is restricted by the flange portion formed at the front end portion of the outer cylinder member 80 coming into contact with the rear end portion of the main body portion 70 of the intermediate piston 36.

内部室R5には、中間ピストン36の内底面と入力ピストン38の前端面との間に、2つの圧縮コイルスプリングである第1反力スプリング90および第2反力スプリング92が配設されている。第1反力スプリング90は、第2反力スプリング92の前方に直列に配設されており、鍔付ロッド形状の浮動座94が、それらの反力スプリング90,92に挟まれて浮動支持されている。第1反力スプリング90は、それの前端部が中間ピストン36の前端部に支持され、後端部が浮動座94の前方側のシート面に支持されている。一方、第2反力スプリング92は、それの前端部が浮動座94の後方側のシート面に支持され、後端部が入力ピストン38の前端部に支持されている。また、浮動座94の前端部には第1緩衝ゴム96、後端部には第2緩衝ゴム98がそれぞれ嵌め込まれており、その第1緩衝ゴム96が中間ピストン36の前端面に当接し、第2緩衝ゴム98が入力ピストン38の前端面に当接することで、浮動座94と中間ピストン36との接近、および、浮動座94と入力ピストン38との接近は、ある範囲に制限されている。   In the internal chamber R5, a first reaction force spring 90 and a second reaction force spring 92, which are two compression coil springs, are disposed between the inner bottom surface of the intermediate piston 36 and the front end surface of the input piston 38. . The first reaction force spring 90 is arranged in series in front of the second reaction force spring 92, and a rod-shaped floating seat 94 is supported by floating between the reaction force springs 90, 92. ing. The first reaction force spring 90 has a front end portion supported by the front end portion of the intermediate piston 36 and a rear end portion supported by the seat surface on the front side of the floating seat 94. On the other hand, the front end of the second reaction force spring 92 is supported by the seat surface on the rear side of the floating seat 94, and the rear end is supported by the front end of the input piston 38. A first buffer rubber 96 is fitted into the front end portion of the floating seat 94 and a second buffer rubber 98 is fitted into the rear end portion. The first buffer rubber 96 abuts against the front end surface of the intermediate piston 36, Since the second buffer rubber 98 abuts against the front end surface of the input piston 38, the approach between the floating seat 94 and the intermediate piston 36 and the approach between the floating seat 94 and the input piston 38 are limited to a certain range. .

入力ピストン38のロッド部材82の後端部には、操作装置22のブレーキペダル100に加えられた操作力を入力ピストン38に伝達すべく、また、ブレーキペダル100の操作量に応じて入力ピストン38を進退させるべく、操作装置22のオペレーションロッド102の前端部が連結されている。ちなみに、入力ピストン38は、ロッド部材82の後端部が第2ハウジング部材42の後端部によって係止されることで、後退が制限されている。また、オペレーションロッド102には、円形の支持板104が付設されており、この支持板104とハウジング30との間にはブーツ106が渡されており、シリンダ装置20の後部の防塵が図られている。   At the rear end of the rod member 82 of the input piston 38, the operating force applied to the brake pedal 100 of the operating device 22 is transmitted to the input piston 38, and the input piston 38 is controlled according to the operation amount of the brake pedal 100. The front end portion of the operation rod 102 of the operating device 22 is connected to advance and retract. Incidentally, the backward movement of the input piston 38 is restricted by the rear end portion of the rod member 82 being locked by the rear end portion of the second housing member 42. In addition, a circular support plate 104 is attached to the operation rod 102, and a boot 106 is passed between the support plate 104 and the housing 30, so that the dust at the rear part of the cylinder device 20 is achieved. Yes.

第1加圧室R1は、開口が出力ポートとなる連通孔110を介して、右前輪のブレーキ装置26FLに繋がる主液通路112と連通しており、第1加圧ピストン32に設けられた連通孔114および開口がドレインポートとなる連通孔116を介して、低圧源としてのリザーバ118に、非連通となることが許容された状態で連通している。一方、第2加圧室R2は、開口が出力ポートとなる連通孔120を介して、左前輪のブレーキ装置26FLに繋がる主液通路122と連通しており、第2加圧ピストン34に設けられた連通孔124および開口がドレインポートとなる連通孔126を介して、リザーバ118に、非連通となることが許容された状態で連通している。   The first pressurizing chamber R1 communicates with a main liquid passage 112 connected to the brake device 26FL of the right front wheel through a communication hole 110 whose opening serves as an output port, and communicates with the first pressurizing piston 32. A hole 114 and a communication hole 116 whose opening is a drain port communicate with a reservoir 118 serving as a low-pressure source in a state where it is allowed to be disconnected. On the other hand, the second pressurizing chamber R2 communicates with the main liquid passage 122 connected to the brake device 26FL of the left front wheel via the communication hole 120 whose opening serves as an output port, and is provided in the second pressurizing piston 34. The communication hole 124 and the communication hole 126 whose opening is a drain port communicate with the reservoir 118 in a state where it is allowed to be non-communication.

中間ピストン36は、第1ハウジング部材40の中間部50の内径よりある程度小さい外径とされており、それらの間にはある程度の流路面積を有する液通路130が形成されている。入力室R3は、その液通路130および開口が連結ポートとなる連通孔131を介して、外部に連通可能となっている。その連通孔131は、連通路132を介して制御圧連通路133に繋げられている。   The intermediate piston 36 has an outer diameter that is somewhat smaller than the inner diameter of the intermediate portion 50 of the first housing member 40, and a liquid passage 130 having a certain flow path area is formed between them. The input chamber R3 can communicate with the outside through a communication hole 131 having a liquid passage 130 and an opening serving as a connection port. The communication hole 131 is connected to the control pressure communication path 133 via the communication path 132.

中間ピストン36には、蓋部72において、大気圧室R4と内部室R5とを連通する連通孔134が設けられている。また、第1加圧ピストン32は、第1ハウジング部材40の前方小径部46の内径よりある程度小さい外径とされており、それらの間にはある程度の流路面積を有する液通路136が形成されている。大気圧室R4は、その液通路136および連通孔116を介して、リザーバ118に連通されている。したがって、大気圧室R4および内部室R5は、常時、大気圧とされており、それらのブレーキ液は、リザーバ118に対して流出入可能とされている
ii)アンチロック装置および液通路の構成
The intermediate piston 36 is provided with a communication hole 134 in the lid portion 72 for communicating the atmospheric pressure chamber R4 and the internal chamber R5. The first pressurizing piston 32 has an outer diameter that is somewhat smaller than the inner diameter of the front small-diameter portion 46 of the first housing member 40, and a liquid passage 136 having a certain flow passage area is formed between them. ing. The atmospheric pressure chamber R4 is communicated with the reservoir 118 through the liquid passage 136 and the communication hole 116. Therefore, the atmospheric pressure chamber R4 and the inner chamber R5 are always at atmospheric pressure, and their brake fluid can flow into and out of the reservoir 118.
ii) Configuration of anti-lock device and liquid passage

主液通路112および主液通路122には、それぞれ、非励磁状態で開弁し、励磁状態で閉弁する電磁式の開閉弁(以下、「シリンダ装置カット弁」という場合がある)140、142が設けられており、それらの開閉によって、シリンダ装置20によって加圧されたブレーキ液のブレーキ装置26FL,FRへの供給を許容する状態と供給を禁止する状態とが選択的に実現される。   The main liquid passage 112 and the main liquid passage 122 are electromagnetic open / close valves (hereinafter, also referred to as “cylinder device cut valves”) 140, 142 that open in a non-excited state and close in an excited state, respectively. The state where the supply of the brake fluid pressurized by the cylinder device 20 to the brake devices 26FL and FR is permitted and the state where the supply is prohibited are selectively realized by opening and closing them.

アンチロック装置24は、非励磁状態において閉弁し、励磁状態において開弁する4つの電磁式の開閉弁(以下、「減圧弁」という場合がある)150を有しており、それら4つの減圧弁150は、リザーバ118に繋がる減圧連通路152と連通している。さらに、アンチロック装置24は、非励磁状態において閉弁し、励磁状態において開弁する2つの電磁式の開閉弁(以下、「常閉増圧弁」という場合がある)154と、非励磁状態において開弁し、励磁状態において閉弁する2つの電磁式の開閉弁(以下、「常開増圧弁」という場合がある)156とを有しており、それら4つの増圧弁154,156は、液圧弁装置158に繋がる制御圧連通路133と連通している。   The anti-lock device 24 has four electromagnetic on-off valves (hereinafter sometimes referred to as “pressure reducing valves”) 150 that close in the non-excited state and open in the excited state. The valve 150 communicates with a decompression communication path 152 that is connected to the reservoir 118. Further, the anti-lock device 24 is closed in a non-excited state and is opened in the excited state by two electromagnetic on-off valves (hereinafter sometimes referred to as “normally closed pressure increasing valves”) 154, It has two electromagnetic on-off valves (hereinafter sometimes referred to as “normally open pressure increasing valves”) 156 that are opened and closed in an excited state, and these four pressure increasing valves 154 and 156 It communicates with a control pressure communication path 133 connected to the pressure valve device 158.

2つの減圧弁150と2つの常閉増圧弁154とは、前輪のブレーキ装置26FL,FRの各々に1つずつ設けられており、1組の常閉増圧弁154および減圧弁150はそれぞれ、前輪のブレーキ装置26FL,FRの対応するものに繋がる主液通路112,122に、接続通路160FL,FRによって接続されている。また、2つの減圧弁150と2つの常開増圧弁156とは、後輪のブレーキ装置26RL,RRの各々に1つずつ設けられており、1組の常開増圧弁156および減圧弁150はそれぞれ、後輪のブレーキ装置26RL,RRの対応するものに接続通路160RL,RRによって接続されている。   Two pressure reducing valves 150 and two normally closed pressure increasing valves 154 are provided for each of the front wheel brake devices 26FL and FR, and each of the pair of normally closed pressure increasing valves 154 and pressure reducing valves 150 is a front wheel. Are connected to main liquid passages 112 and 122 connected to corresponding ones of the brake devices 26FL and FR by connecting passages 160FL and FR. In addition, two pressure reducing valves 150 and two normally open pressure increasing valves 156 are provided for each of the brake devices 26RL and RR of the rear wheel, and one set of normally open pressure increasing valves 156 and pressure reducing valves 150 are Respectively connected to the corresponding ones of the brake devices 26RL, RR of the rear wheels by connecting passages 160RL, RR.

また、液圧弁装置158は、高圧源としての高圧源装置162に繋がる高圧連通路164と連通しており、その高圧源装置162は、リザーバ118からブレーキ液を汲み上げる液圧ポンプ166と、その液圧ポンプ166を駆動するモータ168と、液圧ポンプ166から吐出されたブレーキ液を加圧された状態で蓄えるアキュムレータ170とを有している。液圧弁装置158は、さらに、主液通路112のシリンダ装置カット弁140の下流側に繋がるバックアップ通路172と連通するとともに、減圧連通路152とも連通している。   The hydraulic valve device 158 communicates with a high-pressure communication path 164 connected to a high-pressure source device 162 serving as a high-pressure source. The high-pressure source device 162 includes a hydraulic pump 166 that pumps brake fluid from the reservoir 118, A motor 168 that drives the pressure pump 166 and an accumulator 170 that stores the brake fluid discharged from the hydraulic pump 166 in a pressurized state are provided. The hydraulic valve device 158 further communicates with a backup passage 172 connected to the downstream side of the cylinder device cut valve 140 in the main fluid passage 112 and also communicates with the decompression communication passage 152.

iii)液圧弁装置の構成
液圧弁装置158は、電磁式増圧弁としての増圧用リニア弁180と電磁式減圧弁としての減圧用リニア弁182と増減圧弁184とを有している。増減圧弁184は、増圧用リニア弁180によって増圧、若しくは減圧用リニア弁182によって減圧されたブレーキ液の高さに応じて、高圧源装置160によって加圧されたブレーキ液を流入させてブレーキ液の液圧を増圧させたり、リザーバ118にブレーキ液を流出させてブレーキ液の液圧を減圧させたりすることで、ブレーキ液の液圧を調圧することが可能な構造とされている。その調圧されたブレーキ液は、シリンダ装置20の入力室R3および、アンチロック装置24を介して各ブレーキ装置26のホイールシリンダに供給される。つまり、液圧弁装置158は、ホイールシリンダの液圧であるホイールシリンダ圧を連続的に変化させることができ、ホイールシリンダ圧を任意の高さに制御することが可能となっている。
iii) Configuration of Fluid Pressure Valve Device The fluid pressure valve device 158 includes a pressure increasing linear valve 180 as an electromagnetic pressure increasing valve, a pressure reducing linear valve 182 as an electromagnetic pressure reducing valve, and a pressure increasing / reducing valve 184. The pressure increasing / decreasing valve 184 causes the brake fluid pressurized by the high pressure source device 160 to flow in according to the height of the brake fluid increased by the pressure increasing linear valve 180 or reduced by the pressure reducing linear valve 182. The hydraulic pressure of the brake fluid can be adjusted by increasing the hydraulic pressure of the brake fluid or by reducing the hydraulic pressure of the brake fluid by flowing the brake fluid into the reservoir 118. The adjusted brake fluid is supplied to the wheel cylinder of each brake device 26 via the input chamber R3 of the cylinder device 20 and the antilock device 24. That is, the hydraulic valve device 158 can continuously change the wheel cylinder pressure, which is the hydraulic pressure of the wheel cylinder, and can control the wheel cylinder pressure to an arbitrary height.

増減圧弁184は、図2に示すように、中空形状のハウジング190と、そのハウジング190内にそれの軸線方向に移動可能に設けられたプランジャ192と、そのプランジャ192の下方において軸線方向に移動可能に設けられた円柱状の棒状ピストン194と、プランジャ192の上方において軸線方向に移動可能に設けられた移動部材196とを備えている。ハウジング190は、概して円筒状の外郭部材198と、その外郭部材198の下端部が固定的に嵌合される有底円筒部材200と、外郭部材198の上端を塞ぐ蓋部材202とによって構成されており、内部にブレーキ液が充填されている。   As shown in FIG. 2, the pressure increasing / reducing valve 184 is a hollow housing 190, a plunger 192 provided in the housing 190 so as to be movable in the axial direction thereof, and movable in the axial direction below the plunger 192. A cylindrical rod-shaped piston 194 provided on the movable member 196 and a moving member 196 provided above the plunger 192 so as to be movable in the axial direction. The housing 190 includes a generally cylindrical outer member 198, a bottomed cylindrical member 200 to which a lower end portion of the outer member 198 is fixedly fitted, and a lid member 202 that closes the upper end of the outer member 198. The brake fluid is filled inside.

外郭部材198の内周面は、5つの異なる内径を有する部分によって構成されており、上方へ向かうほど内径は大きくなっている。つまり、下端部から順番に、内径の最も小さい第1内径部204,その第1内径部204の内径より大きい内径の第2内径部206,その第2内径部206の内径より大きい内径の第3内径部208,その第3内径部208の内径より大きい内径の第4内径部210,内径の最も大きい第5内径部212が位置しており、外郭部材198の内周面は段付形状とされている。   The inner peripheral surface of the outer member 198 is composed of portions having five different inner diameters, and the inner diameter increases toward the top. That is, in order from the lower end, the first inner diameter portion 204 having the smallest inner diameter, the second inner diameter portion 206 having an inner diameter larger than the inner diameter of the first inner diameter portion 204, and the third inner diameter larger than the inner diameter of the second inner diameter portion 206. An inner diameter portion 208, a fourth inner diameter portion 210 having an inner diameter larger than the inner diameter of the third inner diameter portion 208, and a fifth inner diameter portion 212 having the largest inner diameter are located, and the inner peripheral surface of the outer shell member 198 has a stepped shape. ing.

棒状ピストン194の外周面も段付形状とされており、上端部に位置し外径の大きい大径部214と、下端部に位置し外径の小さい小径部216との区分けされている。その棒状ピストン194の小径部216は外郭部材198の第1内径部204に摺動可能に嵌合されており、大径部214は第2内径部206に摺動可能に嵌合されている。大径部214と小径部216との間の段差面と、第1内径部204と第2内径部206との間の段差面とは当接しており、棒状ピストン194の下方への移動範囲が制限されている。なお、外郭部材198に棒状ピストン194が嵌合された状態で、外郭部材198と棒状ピストン194と有底円筒部材200とによって第1液室218が区画されている。   The outer peripheral surface of the rod-shaped piston 194 has a stepped shape, and is divided into a large-diameter portion 214 having a large outer diameter located at the upper end portion and a small-diameter portion 216 having a small outer diameter located at the lower end portion. The small diameter portion 216 of the rod-shaped piston 194 is slidably fitted to the first inner diameter portion 204 of the outer member 198, and the large diameter portion 214 is slidably fitted to the second inner diameter portion 206. The step surface between the large diameter portion 214 and the small diameter portion 216 and the step surface between the first inner diameter portion 204 and the second inner diameter portion 206 are in contact with each other, and the downward movement range of the rod-shaped piston 194 is small. Limited. The first liquid chamber 218 is defined by the outer member 198, the rod-shaped piston 194, and the bottomed cylindrical member 200 in a state where the rod-shaped piston 194 is fitted to the outer member 198.

プランジャ192は、円柱状の本体部220と、その本体部220の上方に位置しその本体部220の外径より小さな外径の中間部222と、中間部222の上方に位置しその中間部222の外径より小さな外径のロッド部224とによって構成されている。プランジャ192の本体部220は、外郭部材198の第4室間部としての第2内径部206に摺動可能に嵌合されており、本体部220の下端面が棒状ピストン194の上端面に形成された凸部226と当接している。凸部226と本体部220の下端面とが当接した状態でも、本体部220の下端面と棒状ピストン194の上端面との間にはクリアランスが存在し、そのクリアランスが第2液室228として機能している。   The plunger 192 includes a cylindrical main body 220, an intermediate part 222 having an outer diameter smaller than the outer diameter of the main body part 220, and an intermediate part 222 positioned above the intermediate part 222. And a rod portion 224 having an outer diameter smaller than the outer diameter. The main body portion 220 of the plunger 192 is slidably fitted to the second inner diameter portion 206 as the fourth chamber portion of the outer member 198, and the lower end surface of the main body portion 220 is formed on the upper end surface of the rod-shaped piston 194. It is in contact with the projected portion 226. Even in a state in which the convex portion 226 and the lower end surface of the main body portion 220 are in contact with each other, there is a clearance between the lower end surface of the main body portion 220 and the upper end surface of the rod-shaped piston 194, and the clearance serves as the second liquid chamber 228. It is functioning.

移動部材196の外周面も段付形状とされており、最も外径の大きいフランジ部230と、フランジ部230の上方に位置しフランジ部230の外径より小さな外径の上方第1外径部232と、その上方第1外径部232の上方に位置し上方第1外径部232の外径より小さな外径の上方第2外径部234と、フランジ部230の下方に位置しフランジ部230の外径より小さな外径の下方第1外径部236と、その下方第1外径部236の下方に位置し下方第1外径部236の外径より小さな外径の下方第2外径部238とによって構成されている。下方第2外径部238は、外郭部材198の第3内径部208に摺動可能に嵌合されており、第2室間部としての第3内径部208の上方への開口に移動部材196の外周面が着座可能とされている。詳しく言えば、第3内径部208と第4内径部210との間の段差面240がテーパ状とされており、下方第1外径部236と下方第2外径部238との間の段差面が、弁体として機能し、テーパ状とされた上記段差面240に着座可能とされている。   The outer peripheral surface of the moving member 196 is also stepped, and has a flange portion 230 having the largest outer diameter, and an upper first outer diameter portion located above the flange portion 230 and having an outer diameter smaller than the outer diameter of the flange portion 230. 232, an upper second outer diameter portion 234 having an outer diameter smaller than the outer diameter of the upper first outer diameter portion 232 located above the upper first outer diameter portion 232, and a flange portion located below the flange portion 230 The lower first outer diameter portion 236 having an outer diameter smaller than the outer diameter of 230, and the lower second outer portion having an outer diameter smaller than the outer diameter of the lower first outer diameter portion 236, which is located below the lower first outer diameter portion 236. And a diameter portion 238. The lower second outer diameter portion 238 is slidably fitted to the third inner diameter portion 208 of the outer member 198, and the moving member 196 is disposed at an opening upward of the third inner diameter portion 208 as the second chamber portion. The outer peripheral surface can be seated. More specifically, the step surface 240 between the third inner diameter portion 208 and the fourth inner diameter portion 210 is tapered, and the step between the lower first outer diameter portion 236 and the lower second outer diameter portion 238. The surface functions as a valve body and can be seated on the stepped surface 240 having a tapered shape.

ハウジング190の上端に固定的に嵌合された蓋部材202の下面には、凹部250が形成されており、第3室間部としての凹部250の下方への開口に移動部材196の上方第2外径部234が摺動可能に嵌合されている。蓋部材202の下面と移動部材196のフランジ部230との間にはコイルスプリング252が圧縮された状態で配設されており、そのコイルスプリング252の弾性力によって移動部材196が下方に付勢されている。つまり、コイルスプリング252の弾性力によって、移動部材196の外周面の弁体として機能する部分が外郭部材198の内周面に形成された段差面240に接近する方向に、移動部材196が付勢されている。ちなみに、移動部材196の外周面が段差面240に着座した状態において、外郭部材198の第4内径部210と移動部材196とによって第3液室254が区画されている。また、移動部材196の下方第2外径部238の外周面は僅かに凹んでおり、着座状態において、下方第2外径部238の外周面の凹んだ部分と外郭部材198の第3内径部208とによって第4液室256が区画されている。   A concave portion 250 is formed on the lower surface of the lid member 202 fixedly fitted to the upper end of the housing 190, and the second upper portion of the moving member 196 is inserted into the lower opening of the concave portion 250 as the third chamber portion. The outer diameter part 234 is slidably fitted. A coil spring 252 is disposed between the lower surface of the lid member 202 and the flange portion 230 of the moving member 196 in a compressed state, and the moving member 196 is biased downward by the elastic force of the coil spring 252. ing. That is, due to the elastic force of the coil spring 252, the moving member 196 is biased in a direction in which a portion functioning as a valve body on the outer peripheral surface of the moving member 196 approaches the stepped surface 240 formed on the inner peripheral surface of the outer member 198. Has been. Incidentally, the third liquid chamber 254 is partitioned by the fourth inner diameter portion 210 of the outer member 198 and the moving member 196 in a state where the outer peripheral surface of the moving member 196 is seated on the stepped surface 240. In addition, the outer peripheral surface of the lower second outer diameter portion 238 of the moving member 196 is slightly recessed, and the recessed portion of the outer peripheral surface of the lower second outer diameter portion 238 and the third inner diameter portion of the outer member 198 in the seated state. 208 divides the fourth liquid chamber 256.

移動部材196の内部には、それの軸線方向に貫通する貫通穴260が形成されており、その貫通穴260は、移動部材196の上端面および下端面に開口している。移動部材196の内部には、さらに、下方第1外径部236の外周面と貫通穴260とに開口する接続穴261が径方向に延びるように形成されている。内部室としての貫通穴260にはそれの上端の開口から、概して円柱状のピン262が摺動可能に挿入されており、そのピン262の上端面は蓋部材202の補助室としての凹部250の内面において支持されている。蓋部材202の凹部250の内部には、ピン262を貫通させた状態で環状のゴム部材266が設けられており、そのゴム部材266の下面に移動部材196の上端面が密着している。ゴム部材266はシールとして機能しており、そのゴム部材266によって移動部材196と蓋部材202との間の液漏れが禁止されている。   A through hole 260 penetrating in the axial direction of the moving member 196 is formed inside the moving member 196, and the through hole 260 is open to the upper end surface and the lower end surface of the moving member 196. Inside the moving member 196, a connection hole 261 that opens to the outer peripheral surface of the lower first outer diameter portion 236 and the through hole 260 is further formed to extend in the radial direction. A generally cylindrical pin 262 is slidably inserted into the through-hole 260 as an internal chamber from the opening at the upper end thereof, and the upper end surface of the pin 262 is formed in a recess 250 as an auxiliary chamber of the lid member 202. Supported on the inner surface. An annular rubber member 266 is provided inside the concave portion 250 of the lid member 202 with the pin 262 penetrated, and the upper end surface of the moving member 196 is in close contact with the lower surface of the rubber member 266. The rubber member 266 functions as a seal, and liquid leakage between the moving member 196 and the lid member 202 is prohibited by the rubber member 266.

貫通穴260にはそれの下端の開口から、プランジャ192のロッド部224および中間部222が挿入されており、貫通穴260の下端の開口に、プランジャ192の外周面が着座可能とされている。詳しく言えば、貫通穴260の下端の開口がテーパ状とされており、プランジャ192の中間部222と本体部220との間の段差面が、弁体として機能し、テーパ状とされた開口に着座可能とされている。また、プランジャ192のロッド部224と中間部222との間の段差面と、貫通穴260の内部に形成された段差面との間にはコイルスプリング270が圧縮された状態で配設されており、そのコイルスプリング270の弾性力によってプランジャ192が下方に付勢されている。つまり、コイルスプリング270の弾性力によって、プランジャ192の外周面の弁体として機能する部分が貫通穴260の下端の開口から離隔する方向に、プランジャ192が付勢されている。ちなみに、プランジャ192がコイルスプリング270の弾性力に抗して貫通穴260の下端の開口に着座した状態において、外郭部材198の第3内径部208とプランジャ192の本体部220と移動部材196の下端面とによって第5液室272が区画されている。   The rod portion 224 and the intermediate portion 222 of the plunger 192 are inserted into the through hole 260 from the lower end opening thereof, and the outer peripheral surface of the plunger 192 can be seated in the opening of the lower end of the through hole 260. More specifically, the opening at the lower end of the through hole 260 is tapered, and the step surface between the intermediate portion 222 of the plunger 192 and the main body portion 220 functions as a valve body. It can be seated. In addition, a coil spring 270 is disposed in a compressed state between a step surface between the rod portion 224 and the intermediate portion 222 of the plunger 192 and a step surface formed inside the through hole 260. The plunger 192 is biased downward by the elastic force of the coil spring 270. That is, due to the elastic force of the coil spring 270, the plunger 192 is biased in a direction in which a portion functioning as a valve body on the outer peripheral surface of the plunger 192 is separated from the opening at the lower end of the through hole 260. Incidentally, in a state where the plunger 192 is seated on the opening at the lower end of the through hole 260 against the elastic force of the coil spring 270, the third inner diameter portion 208 of the outer member 198, the main body portion 220 of the plunger 192, The fifth liquid chamber 272 is partitioned by the end face.

外郭部材198の第3内径部208には、第4液室256と外郭部材198の外周面とに開口する第1連通路274が径方向に延びるように形成されており、その第1連通路274の外周面への開口に上記高圧連通路164が接続されている。つまり、第4液室256は、高圧連通路164および第1連通路274を介して、高圧源装置162によって加圧されたブレーキ液が流入するものとされており、高圧室として機能している。以下、第4液室256を高圧室256という場合がある。また、外郭部材198の第3内径部208には、第5液室272と外郭部材198の外周面とに開口する第2連通路276が径方向に延びるように形成されており、その第2連通路276の外周面への開口に上記減圧連通路152が接続されている。つまり、第5液室272は、減圧連通路152および第2連通路276を介して、リザーバ118にブレーキ液を流出させるものとされており、低圧室として機能している。以下、第5液室272を低圧室272という場合がある。ちなみに、第2室間部としての第3内径部208に移動部材196の下方第2外径部238が嵌合されることで、低圧室272と高圧室256との間のブレーキ液の流通は遮断されている。なお、第2連通路276には、外郭部材198の第1内径部204に開口するドレイン路278が繋がっている。   A first communication passage 274 that opens to the fourth liquid chamber 256 and the outer peripheral surface of the outer member 198 is formed in the third inner diameter portion 208 of the outer member 198 so as to extend in the radial direction. The high-pressure communication path 164 is connected to an opening to the outer peripheral surface of 274. That is, the fourth fluid chamber 256 is configured such that the brake fluid pressurized by the high-pressure source device 162 flows in through the high-pressure communication passage 164 and the first communication passage 274, and functions as a high-pressure chamber. . Hereinafter, the fourth liquid chamber 256 may be referred to as a high pressure chamber 256. Further, a second communication path 276 that opens to the fifth liquid chamber 272 and the outer peripheral surface of the outer member 198 is formed in the third inner diameter portion 208 of the outer member 198 so as to extend in the radial direction. The decompression communication path 152 is connected to an opening to the outer peripheral surface of the communication path 276. That is, the fifth fluid chamber 272 is configured to cause the brake fluid to flow out to the reservoir 118 via the decompression communication passage 152 and the second communication passage 276, and functions as a low pressure chamber. Hereinafter, the fifth liquid chamber 272 may be referred to as a low pressure chamber 272. Incidentally, the flow of the brake fluid between the low pressure chamber 272 and the high pressure chamber 256 is achieved by fitting the lower second outer diameter portion 238 of the moving member 196 into the third inner diameter portion 208 as the second chamber portion. Blocked. A drain path 278 that opens to the first inner diameter portion 204 of the outer member 198 is connected to the second communication path 276.

外郭部材198の第2内径部206には、第2液室228と外郭部材198の外周面とに開口する第3連通路280が径方向に延びるように形成されており、その第3連通路280の外周面への開口には、上記高圧連通路164に繋がる接続通路282が接続されている。接続通路282には、図1に示すように、常閉弁とされた電磁式の増圧用リニア弁180が設けられている。接続通路282の増圧用リニア弁180と増減圧弁184との間には、減圧連通路152に繋がる分岐通路284が接続されており、その分岐通路284に常開弁とされた電磁式の減圧用リニア弁182が設けられている。   A third communication passage 280 that opens to the second liquid chamber 228 and the outer peripheral surface of the outer member 198 is formed in the second inner diameter portion 206 of the outer member 198 so as to extend in the radial direction. A connection passage 282 connected to the high-pressure communication passage 164 is connected to the opening to the outer peripheral surface of 280. As shown in FIG. 1, the connection passage 282 is provided with an electromagnetic pressure-increasing linear valve 180 that is a normally closed valve. A branch passage 284 connected to the pressure reducing communication passage 152 is connected between the pressure increasing linear valve 180 and the pressure increasing / decreasing valve 184 in the connection passage 282. A linear valve 182 is provided.

外郭部材198の第4内径部210には、第3液室254と外郭部材198の外周面とに開口する第4連通路286が径方向に延びるように形成されており、その第4連通路286の外周面への開口に上記制御圧連通路133が接続されている。つまり、第3液室254は、調圧室として機能しており、以下、第3液室254を調圧室254という場合がある。なお、有底円筒部材200には、第1液室218に開口するポート288が形成されており、そのポート288を介して、上記バックアップ通路172が第1液室218に接続されている。   A fourth communication passage 286 that opens to the third liquid chamber 254 and the outer peripheral surface of the outer member 198 is formed in the fourth inner diameter portion 210 of the outer member 198 so as to extend in the radial direction. The control pressure communication path 133 is connected to the opening to the outer peripheral surface of 286. That is, the third liquid chamber 254 functions as a pressure regulating chamber, and hereinafter, the third liquid chamber 254 may be referred to as a pressure regulating chamber 254. The bottomed cylindrical member 200 is formed with a port 288 that opens to the first liquid chamber 218, and the backup passage 172 is connected to the first liquid chamber 218 via the port 288.

iv)液圧弁装置の作動
上述した構造によって、増減圧弁184は、移動力発生室としての第2液室228に供給されるブレーキ液の液圧(以下、「制御用液圧」という場合がある)に応じて各液室間のブレーキ液の流通状態を切り換えることで、調圧室254内のブレーキ液の液圧(以下、「調圧室圧」という場合がある)を制御可能に増減させることが可能とされている。詳しく言えば、制御用液圧が大気圧となっている場合には、高圧室256と調圧室254との間のブレーキ液の流れが遮断されるとともに、調圧室254と低圧室272との間のブレーキ液の流れが許容されている。つまり、制御用液圧が大気圧となっている場合には、調圧室254は低圧室272を介してリザーバ118と連通しており、調圧室圧も大気圧となっている。そして、制御用液圧が増圧されると、調圧室254と低圧室272との間のブレーキ液の流れが遮断されるとともに、高圧室256と調圧室254との間のブレーキ液の流れが許容されることで、調圧室圧を増圧させることが可能とされている。さらに、調圧室圧を増圧させた後に制御用液圧が減圧されると、高圧室256と調圧室254との間のブレーキ液の流れが遮断されるとともに、調圧室254と低圧室272との間のブレーキ液の流れが許容されることで、増圧された調圧室圧を減圧させることが可能とされている。
iv) Operation of Hydraulic Pressure Valve Device Due to the above-described structure, the pressure increasing / reducing valve 184 may be referred to as the hydraulic pressure of the brake fluid supplied to the second hydraulic chamber 228 as the moving force generating chamber (hereinafter referred to as “control hydraulic pressure”). ), The fluid pressure of the brake fluid in the pressure regulating chamber 254 (hereinafter sometimes referred to as “pressure regulating chamber pressure”) is controlled and increased in a controllable manner. It is possible. More specifically, when the control hydraulic pressure is atmospheric pressure, the flow of brake fluid between the high pressure chamber 256 and the pressure regulating chamber 254 is blocked, and the pressure regulating chamber 254 and the low pressure chamber 272 are Brake fluid flow between is allowed. That is, when the control hydraulic pressure is atmospheric pressure, the pressure regulating chamber 254 communicates with the reservoir 118 via the low pressure chamber 272, and the pressure regulating chamber pressure is also atmospheric pressure. When the control hydraulic pressure is increased, the flow of the brake fluid between the pressure regulating chamber 254 and the low pressure chamber 272 is interrupted, and the brake fluid between the high pressure chamber 256 and the pressure regulating chamber 254 is blocked. By allowing the flow, the pressure regulating chamber pressure can be increased. Further, when the control hydraulic pressure is reduced after increasing the pressure regulating chamber pressure, the flow of the brake fluid between the high pressure chamber 256 and the pressure regulating chamber 254 is interrupted, and the pressure regulating chamber 254 and the low pressure are reduced. By allowing the flow of the brake fluid to and from the chamber 272, it is possible to reduce the pressure-regulating chamber pressure that has been increased.

具体的に言えば、制御用液圧が大気圧となっている場合には、第1付勢部材としてのコイルスプリング252の弾性力によって、移動部材196の外周面が外郭部材198に形成された段差面240に着座しており、高圧室256と調圧室254との間のブレーキ液の流れが遮断されている。さらに、第2付勢部材としてのコイルスプリング270の弾性力によってプランジャ192は移動部材196に形成された貫通穴260の下端への開口から離隔しており、ブレーキ液は、貫通穴260と接続穴261とを介して、調圧室254と低圧室272との間を流通可能となっている。つまり、貫通穴260と接続穴261とが連通路として機能し、その連通路によって調圧室圧は大気圧となっている。なお、貫通穴260の下端への開口は、低圧室側開口として機能し、接続穴261の外周面への開口は、調圧室側開口として機能している。   Specifically, when the control hydraulic pressure is atmospheric pressure, the outer peripheral surface of the moving member 196 is formed on the outer member 198 by the elastic force of the coil spring 252 as the first biasing member. It is seated on the stepped surface 240 and the flow of brake fluid between the high pressure chamber 256 and the pressure regulating chamber 254 is blocked. Further, the plunger 192 is separated from the opening to the lower end of the through hole 260 formed in the moving member 196 by the elastic force of the coil spring 270 as the second urging member, and the brake fluid is separated from the through hole 260 and the connection hole. Through the H.261, the pressure regulating chamber 254 and the low pressure chamber 272 can be circulated. That is, the through hole 260 and the connection hole 261 function as a communication path, and the pressure regulation chamber pressure is atmospheric pressure by the communication path. In addition, the opening to the lower end of the through hole 260 functions as a low pressure chamber side opening, and the opening to the outer peripheral surface of the connection hole 261 functions as a pressure regulating chamber side opening.

ちなみに、制御用液圧は、増圧用リニア弁180および減圧用リニア弁182への通電量が制御されることで増減されるようになっている。詳しく言えば、増圧用リニア弁180および減圧用リニア弁182への通電量が0とされている状態において増圧用リニア弁180は閉弁されるとともに減圧用リニア弁182は開弁されており、制御用液圧は大気圧となっている。そして、減圧用リニア弁182への通電量をある程度多くし、増圧用リニア弁180への通電量を制御することで、減圧用リニア弁182は閉弁されるとともに増圧用リニア弁180の開弁量が制御される。この際、制御用液圧は、増圧用リニア弁180への通電量に応じて増圧される。制御用液圧が増圧された後に、増圧用リニア弁180への通電量を0とし、減圧用リニア弁182への通電量を制御することで、増圧用リニア弁180は閉弁されるとともに減圧用リニア弁182の開弁量が制御される。この際、制御用液圧は、減圧用リニア弁182への通電量に応じて減圧されるのである。   Incidentally, the control hydraulic pressure is increased or decreased by controlling the energization amount to the pressure increasing linear valve 180 and the pressure reducing linear valve 182. More specifically, the pressure-increasing linear valve 180 is closed and the pressure-decreasing linear valve 182 is opened while the energization amount to the pressure-increasing linear valve 180 and the pressure-decreasing linear valve 182 is zero. The hydraulic pressure for control is atmospheric pressure. The depressurization linear valve 182 is closed while the depressurization linear valve 182 is closed by increasing the energization amount to the depressurization linear valve 182 to some extent and controlling the energization amount to the depressurization linear valve 180. The amount is controlled. At this time, the control hydraulic pressure is increased according to the energization amount to the pressure increasing linear valve 180. After the control hydraulic pressure is increased, the energization amount to the pressure increasing linear valve 180 is set to 0, and the energizing amount to the pressure reducing linear valve 182 is controlled, whereby the pressure increasing linear valve 180 is closed. The valve opening amount of the pressure reducing linear valve 182 is controlled. At this time, the control hydraulic pressure is reduced according to the amount of current supplied to the pressure-reducing linear valve 182.

上述したように、減圧用リニア弁182が閉弁されるとともに増圧用リニア弁180の開弁量が制御されると制御用液圧が増圧されて、プランジャ192が上方へ付勢される。つまり、増圧用リニア弁180と減圧用リニア弁182とから構成される移動力発生器によって、プランジャ192が貫通穴260の下端への開口(以下、「低圧室側開口」という場合がある)に接近する方向にプランジャ192を移動させようとする力が生じるのである。この力によって、まず、プランジャ192がコイルスプリング270の弾性力に抗して上方に移動して、プランジャ192の外周面が貫通穴260の下端への開口へ着座する。この状態において、調圧室254と低圧室272との間のブレーキ液の流れは遮断されるとともに、高圧室256と調圧室254との間のブレーキ液の流れも遮断されている。そして、プランジャ192の外周面が低圧室側開口へ着座した状態、つまり、プランジャ192が移動部材196に当接した状態でプランジャ192が上方へ移動すると、移動部材196も上方に移動する。移動部材196の上方への移動に伴って、移動部材196の外周面が外郭部材198に形成された段差面240から離隔することで、高圧室256と調圧室254との間のブレーキ液の流れが許容されるのである。この際、制御用液圧を制御することで調圧室圧を制御可能に増圧させることが可能となっている。つまり、増圧用リニア弁180への通電量に応じて調圧室圧を増圧させることが可能となっている。   As described above, when the pressure reducing linear valve 182 is closed and the valve opening amount of the pressure increasing linear valve 180 is controlled, the control hydraulic pressure is increased and the plunger 192 is urged upward. That is, the plunger 192 is opened to the lower end of the through hole 260 (hereinafter, may be referred to as “low pressure chamber side opening”) by the moving force generator composed of the pressure increasing linear valve 180 and the pressure reducing linear valve 182. A force for moving the plunger 192 in the approaching direction is generated. By this force, first, the plunger 192 moves upward against the elastic force of the coil spring 270, and the outer peripheral surface of the plunger 192 is seated on the opening at the lower end of the through hole 260. In this state, the flow of brake fluid between the pressure regulating chamber 254 and the low pressure chamber 272 is blocked, and the flow of brake fluid between the high pressure chamber 256 and the pressure regulating chamber 254 is also blocked. When the plunger 192 moves upward with the outer peripheral surface of the plunger 192 seated on the low-pressure chamber side opening, that is, with the plunger 192 in contact with the moving member 196, the moving member 196 also moves upward. As the moving member 196 moves upward, the outer peripheral surface of the moving member 196 is separated from the step surface 240 formed on the outer member 198, so that the brake fluid between the high pressure chamber 256 and the pressure adjusting chamber 254 is removed. Flow is allowed. At this time, the pressure regulating chamber pressure can be increased in a controllable manner by controlling the control hydraulic pressure. That is, the pressure regulating chamber pressure can be increased in accordance with the amount of current supplied to the pressure increasing linear valve 180.

また、図3に示すように、高圧室256内のブレーキ液の液圧(以下、「高圧室圧」という場合がある)と調圧室圧との差圧を受ける箇所の受圧面積A1と、低圧室272内のブレーキ液の液圧、つまり大気圧と高圧室圧との差圧を受ける箇所の受圧面積A2とは同じとなっている。言い換えれば、上方向への高圧室圧を受ける移動部材196の受圧面積A1と、下方向への高圧室圧を受ける移動部材196の受圧面積A2とは同じとなっている。このため、調圧室圧が大気圧である場合には、シール等による摺動抵抗を無視すれば、コイルスプリング252の弾性力に相当する力を僅かに超えた力を移動部材196に付与することで、移動部材196の外周面を外郭部材198の段差面240から離隔することが可能となっている。つまり、移動部材196の初期動作において、シール等による摺動抵抗を無視すれば、2つのコイルスプリング252,270の弾性力に相当する力を僅かに超える力をプランジャ192に付与すれば、調圧室圧を増圧することが可能となっている。つまり、移動部材196の初期動作における増圧用リニア弁180への通電量を低減することが可能となり、消費電力を低減することが可能となっている。 In addition, as shown in FIG. 3, the pressure receiving area A 1 of the portion that receives the pressure difference between the hydraulic pressure of the brake fluid in the high pressure chamber 256 (hereinafter sometimes referred to as “high pressure chamber pressure”) and the pressure regulating chamber pressure, has become a low-pressure chamber of the brake fluid in 272 hydraulic, that is, the pressure receiving area a 2 of a portion receiving a pressure difference between the atmospheric pressure and the pressure in the high pressure chamber same. In other words, the pressure receiving area A 1 of the moving member 196 that receives the high pressure chamber pressure in the upward direction is the same as the pressure receiving area A 2 of the moving member 196 that receives the high pressure chamber pressure in the downward direction. For this reason, when the pressure adjusting chamber pressure is atmospheric pressure, a force slightly exceeding the force corresponding to the elastic force of the coil spring 252 is applied to the moving member 196 if the sliding resistance due to the seal or the like is ignored. Thus, the outer peripheral surface of the moving member 196 can be separated from the step surface 240 of the outer member 198. In other words, in the initial operation of the moving member 196, if the sliding resistance due to the seal or the like is ignored, the pressure adjustment is performed if a force slightly exceeding the force corresponding to the elastic force of the two coil springs 252 and 270 is applied to the plunger 192. The chamber pressure can be increased. That is, the energization amount to the pressure-increasing linear valve 180 in the initial operation of the moving member 196 can be reduced, and the power consumption can be reduced.

また、調圧室254が密閉されている状態において、移動部材196には調圧室圧によって移動部材196を軸線方向へ移動させようとする力が作用する。詳しく言えば、上方向への調圧室圧を受ける移動部材196の受圧面積に応じた大きさの力が、移動部材196を上方へ移動させようとする力として作用し、下方向への調圧室圧を受ける移動部材196の受圧面積に応じた大きさの力が、移動部材196を下方へ移動させようとする力として作用する。このため、上方向への調圧室圧を受ける移動部材196の受圧面積が、下方向への調圧室圧を受ける移動部材196の受圧面積より大きいような場合には、調圧室圧の増圧時に調圧室254から低圧室272へ液漏れが生じる虞がある。一方、下方向への調圧室圧を受ける移動部材196の受圧面積が、上方向への調圧室圧を受ける移動部材196の受圧面積より大きいような場合には、調圧室圧を減圧する際にプランジャ192が貫通穴260の開口から離隔し難くなり、圧力特性にヒステリシスが生じる虞がある。そこで、本増減圧弁184は、下方向への調圧室圧を受ける移動部材196の受圧面積と、上方向への調圧室圧を受ける移動部材196の受圧面積とが同じとなるように設計されており、調圧室圧の増圧時の液漏れ,圧力特性のヒステリシスの発生が抑制されている。   Further, in a state where the pressure regulating chamber 254 is sealed, a force for moving the moving member 196 in the axial direction by the pressure regulating chamber pressure acts on the moving member 196. More specifically, a force having a magnitude corresponding to the pressure receiving area of the moving member 196 that receives the pressure adjusting chamber pressure in the upward direction acts as a force for moving the moving member 196 upward, and is adjusted in the downward direction. A force having a magnitude corresponding to the pressure receiving area of the moving member 196 that receives the pressure chamber pressure acts as a force for moving the moving member 196 downward. Therefore, when the pressure receiving area of the moving member 196 that receives the pressure regulating chamber pressure in the upward direction is larger than the pressure receiving area of the moving member 196 that receives the pressure regulating chamber pressure in the downward direction, There is a risk of liquid leakage from the pressure regulating chamber 254 to the low pressure chamber 272 when the pressure is increased. On the other hand, when the pressure receiving area of the moving member 196 receiving the pressure regulating chamber pressure in the downward direction is larger than the pressure receiving area of the moving member 196 receiving the pressure regulating chamber pressure in the upward direction, the pressure regulating chamber pressure is reduced. In doing so, the plunger 192 becomes difficult to separate from the opening of the through hole 260, and there is a risk that hysteresis will occur in the pressure characteristics. Therefore, the pressure increasing / reducing valve 184 is designed such that the pressure receiving area of the moving member 196 that receives the pressure regulating chamber pressure in the downward direction is the same as the pressure receiving area of the moving member 196 that receives the pressure regulating chamber pressure in the upward direction. Therefore, the occurrence of liquid leakage and pressure characteristic hysteresis when the pressure regulating chamber pressure is increased is suppressed.

具体的には、移動部材196の外周面が外郭部材198の段差面240に着座している箇所の受圧面積(上記重圧面積A1に相当)からプランジャ192の外周面が低圧室側開口へ着座している箇所の受圧面積A3(図3参照)を減じたものが、下方向への調圧室圧を受ける移動部材196の受圧面積に相当し、移動部材196が蓋部材202の凹部250に摺動可能に嵌合されている箇所の受圧面積A4(図3参照)からピン262の断面積A5(図3参照)を減じたものが、上方向への調圧室圧を受ける移動部材196の受圧面積に相当する。つまり、受圧面積の関係が以下の式を満たすように設計されている。
1−A3=A4−A5
なお、本増減圧弁184では、受圧面積A1と受圧面積A4とは同じとされているため、受圧面積A3とピン262の断面積A5とは同じとなっている。
Specifically, the seating from the pressure receiving area of a portion the outer peripheral surface of the moving member 196 is seated on the stepped surface 240 of the outer member 198 (corresponding to the pressure area A 1) outer peripheral surface of the plunger 192 to the low pressure chamber side opening The reduced pressure receiving area A 3 (see FIG. 3) corresponding to the position corresponds to the pressure receiving area of the moving member 196 that receives the pressure regulating chamber pressure in the downward direction, and the moving member 196 is the recess 250 of the lid member 202. Is obtained by subtracting the cross-sectional area A 5 (see FIG. 3) of the pin 262 from the pressure receiving area A 4 (see FIG. 3) of the portion slidably fitted in the pressure chamber, and receives the pressure regulating chamber pressure in the upward direction. This corresponds to the pressure receiving area of the moving member 196. That is, it is designed so that the relationship between the pressure receiving areas satisfies the following formula.
A 1 −A 3 = A 4 −A 5
In the pressure increase valve 184, since it is the same as the pressure receiving area A 1 and the pressure receiving area A 4, has the same the cross-sectional area A 5 of the pressure receiving area A 3 and the pin 262.

また、調圧室圧が増圧された後に、増圧用リニア弁180を閉弁するとともに減圧用リニア弁182の開弁量を制御することで制御用液圧が減圧されると、移動部材196の外周面が外郭部材198の段差面240に着座する。移動部材196の外周面が段差面240に着座するとともにプランジャ192が低圧室側開口に着座している状態では、調圧室圧は増圧された液圧に維持される。そして、その状態からさらに制御用液圧を減圧させることで、プランジャ192が低圧室側開口から離隔して、低圧室272と調圧室254との間のブレーキ液の流れが許容される。つまり、減圧用リニア弁182への通電量に応じて調圧室圧を減圧させることが可能となっている。   Further, after the pressure regulating chamber pressure is increased, when the control hydraulic pressure is reduced by closing the pressure increasing linear valve 180 and controlling the valve opening amount of the pressure reducing linear valve 182, the moving member 196. Is seated on the stepped surface 240 of the outer member 198. In a state where the outer peripheral surface of the moving member 196 is seated on the stepped surface 240 and the plunger 192 is seated in the low pressure chamber side opening, the pressure regulating chamber pressure is maintained at the increased hydraulic pressure. Then, by further reducing the control hydraulic pressure from this state, the plunger 192 is separated from the low-pressure chamber side opening, and the flow of brake fluid between the low-pressure chamber 272 and the pressure regulating chamber 254 is allowed. That is, the pressure regulation chamber pressure can be reduced in accordance with the amount of current supplied to the pressure-reducing linear valve 182.

上述したように、本増減圧弁184は、増圧用リニア弁180および減圧用リニア弁182への通電量を制御することで、調圧室圧を制御可能に増減圧させることが可能となっている。増圧時には、移動部材196の外周面が外郭部材198に形成された段差面240から離隔し、ブレーキ液が高圧室256から調圧室254へ流れる。この際、ブレーキ液は、移動部材196の弁体として機能する外周面が弁座として機能する段差面240から離隔する方向に流れる。一方、減圧時には、プランジャ192の外周面が低圧室側開口から離隔し、ブレーキ液が調整室254から低圧室272へ流れる。この際、ブレーキ液は、プランジャ192の弁体として機能する外周面が弁座として機能する貫通穴260の開口から離隔する方向に流れる。つまり、本増減圧弁184は、調圧室圧が制御される際にブレーキ液は、弁体が弁座から離間する方向、つまり、ブレーキ液によって弁が開弁させられる方向(以下、「自開方向」という場合がある)に流れる構造とされている。   As described above, the main pressure increasing / decreasing valve 184 can increase or decrease the pressure regulation chamber pressure in a controllable manner by controlling the energization amount to the pressure increasing linear valve 180 and the pressure reducing linear valve 182. . When the pressure is increased, the outer peripheral surface of the moving member 196 is separated from the step surface 240 formed on the outer member 198, and the brake fluid flows from the high pressure chamber 256 to the pressure adjusting chamber 254. At this time, the brake fluid flows in a direction in which the outer peripheral surface that functions as the valve body of the moving member 196 is separated from the step surface 240 that functions as the valve seat. On the other hand, at the time of depressurization, the outer peripheral surface of the plunger 192 is separated from the low-pressure chamber side opening, and the brake fluid flows from the adjustment chamber 254 to the low-pressure chamber 272. At this time, the brake fluid flows in a direction in which the outer peripheral surface that functions as the valve body of the plunger 192 is separated from the opening of the through hole 260 that functions as the valve seat. That is, in the pressure increasing / decreasing valve 184, when the pressure adjusting chamber pressure is controlled, the brake fluid is separated from the valve seat, that is, in the direction in which the valve is opened by the brake fluid (hereinafter, “self-opening”). It may be called “direction”).

一方、従来の増減圧弁は、調圧室圧の制御時に、ブレーキ液が、弁体が弁座に接近する方向、つまり、ブレーキ液によって弁が閉弁させられる方向(以下、「自閉方向」という場合がある)に流れる構造とされている。調圧時にブレーキ液が自閉方向に流れると、ブレーキ液の流れによって、弁体が弁座に接近させられて閉弁する場合がある。このため、調圧時において、ブレーキ液の流れによる閉弁と、調圧室圧の制御のための開弁とが頻繁に繰り返される現象、所謂、ハンチング現象が生じる虞があり、精度よく調圧室圧の制御を実行できない虞がある。本増減圧弁184では、上述したように、増圧時および減圧時においても、ブレーキ液は自開方向に流れるようにされており、ハンチング現象の発生が抑制されている。したがって、本増減圧弁184では、調圧室圧の制御精度が良好となっている。   On the other hand, in the conventional pressure increasing / decreasing valve, when controlling the pressure regulating chamber pressure, the brake fluid is in the direction in which the valve body approaches the valve seat, that is, the direction in which the valve is closed by the brake fluid (hereinafter referred to as “self-closing direction”). It may be said that the structure flows through. When the brake fluid flows in the self-closing direction at the time of pressure adjustment, the valve body may be brought close to the valve seat by the flow of the brake fluid and may be closed. For this reason, during pressure regulation, there is a possibility that a so-called hunting phenomenon may occur, in which the valve closing due to the flow of the brake fluid and the valve opening for controlling the pressure regulating chamber pressure are frequently repeated. There is a possibility that the control of the room pressure cannot be executed. In the present pressure increasing / decreasing valve 184, as described above, the brake fluid flows in the self-opening direction even at the time of pressure increase and pressure reduction, and the occurrence of the hunting phenomenon is suppressed. Therefore, in the pressure increasing / reducing valve 184, the control accuracy of the pressure regulating chamber pressure is good.

また、本増減圧弁184は、上述したような作動によって、調圧室圧を増圧用リニア弁180および減圧用リニア弁182への通電量に応じた高さの圧力にすることが可能となっている。ただし、増圧用リニア弁180および減圧用リニア弁182への通電が何らかの理由によって停止したような場合には、プランジャ192を移動させることができなくなり、調圧室圧を増圧させることができなくなる虞がある。本増減圧弁184では、そのような場合に、電力に依拠することなく、シリンダ装置20の作動によって加圧されたブレーキ液に依拠して調圧室圧を増圧させるようになっている。   Further, the pressure increasing / reducing valve 184 can adjust the pressure regulating chamber pressure to a pressure corresponding to the energization amount to the pressure increasing linear valve 180 and the pressure reducing linear valve 182 by the operation as described above. Yes. However, if the energization of the pressure-increasing linear valve 180 and the pressure-reducing linear valve 182 is stopped for some reason, the plunger 192 cannot be moved and the pressure-regulating chamber pressure cannot be increased. There is a fear. In such a case, the pressure increasing / reducing valve 184 increases the pressure regulating chamber pressure depending on the brake fluid pressurized by the operation of the cylinder device 20 without relying on electric power.

詳しく言えば、液圧ブレーキシステム10への電力供給が断たれた場合には、後に詳しく説明するように、バックアップ通路172にシリンダ装置20の作動によって加圧されたブレーキ液が流れ、その加圧されたブレーキ液が第1液室218に流入するようになっている。このため、第1液室218内のブレーキ液の液圧の増加に伴って、棒状ピストン194が上方に移動し、その棒状ピストン194によってプランジャ192も上方へ移動する。プランジャ192の上方への移動に伴って、プランジャ192が低圧室側開口に着座し、移動部材196の外周面が外郭部材198の段差面240から離隔することで、高圧室256と調圧室254との間のブレーキ液の流れが許容される。このように、本増減圧弁184では、電力失陥時等であっても、電力に依拠することなく、調整室圧を増圧させることが可能とされている。   More specifically, when power supply to the hydraulic brake system 10 is cut off, as will be described in detail later, brake fluid pressurized by the operation of the cylinder device 20 flows into the backup passage 172, and the pressurization is performed. The brake fluid thus made flows into the first fluid chamber 218. For this reason, as the hydraulic pressure of the brake fluid in the first fluid chamber 218 increases, the rod-shaped piston 194 moves upward, and the plunger 192 also moves upward by the rod-shaped piston 194. As the plunger 192 moves upward, the plunger 192 is seated on the low-pressure chamber side opening, and the outer peripheral surface of the moving member 196 is separated from the step surface 240 of the outer member 198, so that the high-pressure chamber 256 and the pressure regulating chamber 254 are separated. Brake fluid flow between is allowed. As described above, in the present pressure increasing / decreasing valve 184, it is possible to increase the adjustment chamber pressure without depending on the electric power even when the electric power fails.

v)液圧ブレーキシステムの制御
ブレーキペダル100が運転者によって操作された場合には、そのブレーキペダル100に加えられた操作力により、入力ピストン38が前進し、2つの反力スプリング90,92が圧縮される。これらの反力スプリング90,92の弾性反力により中間ピストン36は前進し、第1加圧ピストン32は前進する。この第1加圧ピストン32の前進に伴って第2加圧ピストン34は前進し、第1加圧室R1,第2加圧室R2のブレーキ液が加圧される。一方、液圧弁装置158によって調圧されたブレーキ液が入力室R3に入力された場合、その調圧されたブレーキ液によって中間ピストン36は前進させられ、同様にして、第1加圧室R1,第2加圧室R2のブレーキ液が加圧される。つまり、シリンダ装置20では、運転者による操作力と液圧弁装置158によって調圧されたブレーキ液の液圧とのいずれによってもブレーキ液の加圧がなされ、それらの両方が入力された場合には、それらの両方に依拠して加圧されたブレーキ液が出力可能とされている。
v) Control of the hydraulic brake system When the brake pedal 100 is operated by the driver, the input piston 38 moves forward by the operation force applied to the brake pedal 100, and the two reaction force springs 90 and 92 are moved. Compressed. The intermediate piston 36 moves forward and the first pressurizing piston 32 moves forward due to the elastic reaction force of the reaction force springs 90 and 92. As the first pressurizing piston 32 advances, the second pressurizing piston 34 advances, and the brake fluid in the first pressurizing chamber R1 and the second pressurizing chamber R2 is pressurized. On the other hand, when the brake fluid regulated by the hydraulic valve device 158 is inputted to the input chamber R3, the intermediate piston 36 is advanced by the regulated brake fluid, and similarly, the first pressurizing chamber R1, The brake fluid in the second pressurizing chamber R2 is pressurized. That is, in the cylinder device 20, the brake fluid is pressurized by both the operating force by the driver and the fluid pressure of the brake fluid regulated by the fluid pressure valve device 158, and when both of them are input, The brake fluid pressurized depending on both of them can be output.

ただし、本ブレーキシステム10において、通常時には、シリンダ装置20によって加圧されたブレーキ液に依拠することなく、液圧弁装置158によって調圧されたブレーキ液に依拠してブレーキ装置26のブレーキシリンダを作動させる制御である電気制動制御が実行される。電気制動制御は、本発明とは直接関係ないことから、簡単に説明すると、本制御では、シリンダ装置カット弁140,142が、励磁されて閉弁状態とされ、アンチロック装置24の2つの常閉増圧弁154が、励磁されて開弁状態とされる。また、アンチロック装置24の2つの常開増圧弁156は、励磁されず、開弁状態とされ、4つの減圧弁150も、励磁されず、閉弁状態とされている。ブレーキペダル100の踏込み量に応じて目標となる目標液圧を決定し、制御室圧がその目標液圧となるように、上述したように増圧用リニア弁180および減圧用リニア弁182に通電される。そして、目標液圧に調圧されたブレーキ液が、制御圧連通路133を介して各車輪のブレーキ装置26へ供給される。このように、液圧弁装置158の作動を制御することで、ブレーキペダル100の踏込み量に応じた制動力が発生させられるのである。   However, in the brake system 10, the brake cylinder of the brake device 26 is operated based on the brake fluid regulated by the hydraulic valve device 158 without relying on the brake fluid pressurized by the cylinder device 20 in the normal state. Electric braking control that is control to be performed is executed. Since electric braking control is not directly related to the present invention, in brief explanation, in this control, the cylinder device cut valves 140 and 142 are energized to be in a closed state, and two anti-lock devices 24 are normally connected. The closed pressure increasing valve 154 is excited and opened. In addition, the two normally open pressure increasing valves 156 of the antilock device 24 are not excited and are opened, and the four pressure reducing valves 150 are not excited and are closed. A target target hydraulic pressure is determined according to the depression amount of the brake pedal 100, and the pressure increasing linear valve 180 and the pressure reducing linear valve 182 are energized as described above so that the control chamber pressure becomes the target hydraulic pressure. The Then, the brake fluid adjusted to the target hydraulic pressure is supplied to the brake device 26 of each wheel via the control pressure communication path 133. Thus, by controlling the operation of the hydraulic valve device 158, a braking force corresponding to the amount of depression of the brake pedal 100 is generated.

一方、電力失陥時には、各制御弁に電力供給がされないため、シリンダ装置カット弁140,142は開弁状態とされており、アンチロック装置24の2つの常開増圧弁156は開弁状態とされ、2つの常閉増圧弁154は閉弁状態とされている。また、4つの減圧弁150は、閉弁状態とされている。この状態において、シリンダ装置20によって加圧されたブレーキ液は、主液通路112を介して、バックアップ通路172に流れ、さらに、増減圧弁184の第1液室218に流入する。第1液室218内のブレーキ液の液圧の増加に伴って、上述したように、棒状ピストン194が移動させられて、制御室圧が増圧させられる。そして、増圧させられたブレーキ液が、制御圧連通路133を介して後輪側のブレーキ装置26RL,RRへ供給される。また、増圧させられたブレーキ液は、連通路132を介して入力室R3に供給され、その供給されたブレーキ液の液圧と運転者による操作力とによって、シリンダ装置20はブレーキ液を加圧する。そのシリンダ装置20によって加圧されたブレーキ液が、主液通路112,122を介して、前輪側のブレーキ装置26FL,FRへ供給される。つまり、電力失陥時においては、後輪側のブレーキ装置26RL,RRは、液圧弁装置158を介して増圧されたブレーキ液に依拠して制動力を発生させるとともに、前輪側のブレーキ装置26FL,FRは、液圧弁装置158を介して増圧されたブレーキ液と運転者による操作力とに依拠して制動力を発生させている。   On the other hand, when power is lost, power is not supplied to each control valve. Therefore, the cylinder device cut valves 140 and 142 are opened, and the two normally open pressure increasing valves 156 of the antilock device 24 are opened. The two normally closed pressure increasing valves 154 are closed. Further, the four pressure reducing valves 150 are closed. In this state, the brake fluid pressurized by the cylinder device 20 flows into the backup passage 172 via the main fluid passage 112 and further flows into the first fluid chamber 218 of the pressure increasing / reducing valve 184. As described above, as the brake fluid pressure in the first fluid chamber 218 increases, the rod-shaped piston 194 is moved to increase the control chamber pressure. The increased brake fluid is supplied to the brake devices 26RL and RR on the rear wheel side via the control pressure communication path 133. Further, the increased brake fluid is supplied to the input chamber R3 through the communication passage 132, and the cylinder device 20 applies the brake fluid by the hydraulic pressure of the supplied brake fluid and the operating force by the driver. Press. The brake fluid pressurized by the cylinder device 20 is supplied to the brake devices 26FL and FR on the front wheel side through the main fluid passages 112 and 122. That is, at the time of power failure, the brake devices 26RL and RR on the rear wheel side generate braking force based on the brake fluid increased through the hydraulic valve device 158, and also the brake device 26FL on the front wheel side. , FR generates a braking force based on the brake fluid increased in pressure via the hydraulic valve device 158 and the operating force by the driver.

図4に、第2実施例の液圧弁装置300を備えた車両用液圧ブレーキシステム302を示す。本ブレーキシステム302は、液圧弁装置300を除いて、先のブレーキシステム10と略同様の構成とされており、先のシステム10と共通する構成要素を多く備えている。このため、本システム302の説明において、先のシステム10と共通する構成要素については、同じ符号を用い、それらの説明は省略あるいは簡略に行うものとする。   FIG. 4 shows a vehicle hydraulic brake system 302 including a hydraulic valve device 300 according to the second embodiment. The brake system 302 has substantially the same configuration as that of the previous brake system 10 except for the hydraulic valve device 300, and includes many components common to the previous system 10. For this reason, in the description of the present system 302, the same reference numerals are used for the components common to the previous system 10, and the description thereof will be omitted or simplified.

液圧弁装置300は、図5に示すように、中空形状のハウジング310と、そのハウジング310内にそれの軸線方向に移動可能に設けられたプランジャ312と、プランジャ312の上方において軸線方向に移動可能に設けられた移動部材314と、ハウジング310の外周に設けられた円筒状のコイル316とを備えている。ハウジング310は、下端部に設けられた有底円筒状の下部外殻部材318と、上端部に設けられた有蓋円筒状の上部外殻部材320と、それら下部外郭部材318と上部外殻部材320とを連結する概して円柱状のコア322とを有している。   As shown in FIG. 5, the hydraulic valve device 300 has a hollow housing 310, a plunger 312 that is provided in the housing 310 so as to be movable in the axial direction thereof, and is movable in the axial direction above the plunger 312. And a cylindrical coil 316 provided on the outer periphery of the housing 310. The housing 310 includes a bottomed cylindrical lower outer shell member 318 provided at the lower end portion, a covered cylindrical upper outer shell member 320 provided at the upper end portion, the lower outer shell member 318, and the upper outer shell member 320. And a generally cylindrical core 322 connecting the two.

コア322は、最も外径の大きいフランジ部330と、そのフランジ部330の下方に位置しフランジ部330の外径より小さな外径の下方部332と、フランジ部330の上方に位置しフランジ部330の外径より小さな外径の上方第1外径部334と、その上方第1外径部334の上方に位置し上方第1外径部334の外径より小さな外径の上方第2外径部336とを有している。コア322の下方部332は下部外殻部材318に固定的に嵌合されており、コア322のフランジ部330の下面と、下部外殻部材318の外周面とにコイル316が固定されている。   The core 322 includes a flange portion 330 having the largest outer diameter, a lower portion 332 having an outer diameter smaller than the outer diameter of the flange portion 330 that is located below the flange portion 330, and a flange portion 330 that is located above the flange portion 330. An upper first outer diameter portion 334 having an outer diameter smaller than the outer diameter of the upper first outer diameter portion 334 and an upper second outer diameter having an outer diameter smaller than the outer diameter of the upper first outer diameter portion 334. Part 336. The lower portion 332 of the core 322 is fixedly fitted to the lower outer shell member 318, and the coil 316 is fixed to the lower surface of the flange portion 330 of the core 322 and the outer peripheral surface of the lower outer shell member 318.

コア322には、ハウジング310の軸線方向に貫通する貫通穴338が形成されており、プランジャ312は、その貫通穴338に挿入されるロッド部340と、コア322の下端面と下部外殻部材318の内底面との間に配設される本体部342とを有している。ロッド部340は、下端部に位置し外径の大きい大径部344と、上端部に位置し外径の小さい小径部346とを有しており、貫通穴338は、下端部に位置し内径の大きい大内径部348と、上端部に位置し内径の小さい小内径部350とを有している。ロッド部340の大径部344は貫通穴338の大内径部348に摺動可能に嵌合されており、ロッド部340の小径部346は貫通穴338の小内径部350にクリアランスのある状態で挿入されている。大径部344と小径部346との間の段差面と、大内径部348と小内径部350との間の段差面との間には、コイルスプリング352が圧縮された状態で配設されており、そのコイルスプリング352の弾性力によってプランジャ312は下方に付勢されている。   The core 322 is formed with a through hole 338 penetrating in the axial direction of the housing 310, and the plunger 312 has a rod portion 340 inserted into the through hole 338, a lower end surface of the core 322, and a lower outer shell member 318. And a main body portion 342 disposed between the inner bottom surface and the inner bottom surface. The rod portion 340 has a large diameter portion 344 having a large outer diameter located at the lower end portion and a small diameter portion 346 having a small outer diameter located at the upper end portion, and the through hole 338 is located at the lower end portion and has an inner diameter. Large inner diameter part 348 and a small inner diameter part 350 having a small inner diameter located at the upper end. The large diameter portion 344 of the rod portion 340 is slidably fitted to the large inner diameter portion 348 of the through hole 338, and the small diameter portion 346 of the rod portion 340 is in a state where there is a clearance in the small inner diameter portion 350 of the through hole 338. Has been inserted. A coil spring 352 is disposed in a compressed state between a step surface between the large diameter portion 344 and the small diameter portion 346 and a step surface between the large inner diameter portion 348 and the small inner diameter portion 350. The plunger 312 is urged downward by the elastic force of the coil spring 352.

上部外殻部材320は、下端部に位置し最も内径の大きい第1内径部360と、その第1内径部360の上方に位置し第1内径部360の内径より小さな内径の第2内径部362と、上端部に位置し最も内径の小さい第3内径部364と、その第3内径部364と第2内径部362との間に位置し第2内径部362の内径より小さく、かつ第3内径部364の内径より大きい内径の第4内径部366とを有する。コア322の上方第2外径部336は上部外殻部材320の第2内径部362に固定的に嵌合されており、コア322の上方第1外径部334は上部外殻部材320の第1内径部360に固定的に嵌合されている。上方第1外径部334と上方第2外径部336との間の段差面と、第1内径部360と第2内径部362との間の段差面とは離隔しており、それら2つの段差面と上方第2外径部336と第1内径部360とによって第1液室368が区画されている。   The upper outer shell member 320 has a first inner diameter portion 360 having the largest inner diameter located at the lower end portion, and a second inner diameter portion 362 having an inner diameter smaller than the inner diameter of the first inner diameter portion 360 located above the first inner diameter portion 360. And the third inner diameter portion 364 having the smallest inner diameter located at the upper end portion, and located between the third inner diameter portion 364 and the second inner diameter portion 362 and smaller than the inner diameter of the second inner diameter portion 362 and the third inner diameter portion. And a fourth inner diameter portion 366 having an inner diameter larger than the inner diameter of the portion 364. The upper second outer diameter portion 336 of the core 322 is fixedly fitted to the second inner diameter portion 362 of the upper outer shell member 320, and the upper first outer diameter portion 334 of the core 322 is the upper outer shell member 320 of the upper outer shell member 320. The inner diameter portion 360 is fixedly fitted. The step surface between the upper first outer diameter portion 334 and the upper second outer diameter portion 336 and the step surface between the first inner diameter portion 360 and the second inner diameter portion 362 are separated from each other. A first liquid chamber 368 is defined by the step surface, the upper second outer diameter portion 336, and the first inner diameter portion 360.

上部外殻部材320の第4内径部336には、概して円筒状の円筒部材370が摺動可能に嵌合されており、その円筒部材370は、下端部に位置し最も内径の小さい下端部372と、その下端部372の上方に位置し下端部372の内径より大きい内径の第1中間部374と、上端部に位置し最も内径の大きい上端部376と、その上端部376と第1中間部374との間に位置し第1中間部374の内径より大きく、かつ上端部376の内径より小さい内径の第2中間部378とを有している。上端部376には、円柱状の蓋部材380が固定的に嵌合されており、その蓋部材380の上部は、円筒部材370の上端から延び出すとともに、上部外郭部材320の第3内径部364に摺動可能に嵌合されている。   A generally cylindrical cylindrical member 370 is slidably fitted to the fourth inner diameter portion 336 of the upper outer shell member 320, and the cylindrical member 370 is located at the lower end portion and the lower end portion 372 having the smallest inner diameter. A first intermediate portion 374 that is located above the lower end portion 372 and has an inner diameter larger than the inner diameter of the lower end portion 372, an upper end portion 376 that is located at the upper end portion and has the largest inner diameter, and the upper end portion 376 and the first intermediate portion And a second intermediate portion 378 having an inner diameter larger than the inner diameter of the first intermediate portion 374 and smaller than the inner diameter of the upper end portion 376. A cylindrical lid member 380 is fixedly fitted to the upper end portion 376, and the upper portion of the lid member 380 extends from the upper end of the cylindrical member 370 and the third inner diameter portion 364 of the upper outer member 320. It is slidably fitted to.

円筒部材370の下端面とコア322の上端面との間には、コイルスプリング382が圧縮された状態で配設されている。そのコイルスプリング382の弾性力によって円筒部材370と蓋部材380とが上方に付勢されており、蓋部材380の上端面と上部外殻部材320の蓋内面とが当接している。蓋部材380の上端面は僅かに凹んでおり、その凹んだ部分と上部外殻部材320の蓋内面とによって第2液室384が区画されている。また、上部外郭部材320の第3内径部364と第4内径部336との間の段差面と円筒部材370の上端面とは離隔しており、それら2つの面と蓋部材380と第4内径部336とによって第3液室386が区画されている。   A coil spring 382 is disposed in a compressed state between the lower end surface of the cylindrical member 370 and the upper end surface of the core 322. The cylindrical member 370 and the lid member 380 are biased upward by the elastic force of the coil spring 382, and the upper end surface of the lid member 380 and the lid inner surface of the upper outer shell member 320 are in contact with each other. The upper end surface of the lid member 380 is slightly recessed, and the second liquid chamber 384 is defined by the recessed portion and the inner surface of the lid of the upper outer shell member 320. Further, the step surface between the third inner diameter portion 364 and the fourth inner diameter portion 336 of the upper outer member 320 is separated from the upper end surface of the cylindrical member 370, and these two surfaces, the lid member 380, and the fourth inner diameter portion are separated. A third liquid chamber 386 is partitioned by the portion 336.

蓋部材380の下面には凹部388が形成されており、その凹部388と円筒部材370の内部に移動部材314が挿入されている。移動部材314は、最も外径の大きいフランジ部390と、そのフランジ部390の下方に位置しフランジ部390の外径より小さな外径の下方第1外径部392と、その下方第1外径部392の下方に位置し下方第1外径部392の外径より小さな外径の下方第2外径部394と、フランジ部390の上方に位置しフランジ部390の外径より小さな外径の上方第1外径部396と、その上方第1外径部396の上方に位置し上方第1外径部396の外径より小さな外径の上方第2外径部398とを有している。下方第1外径部392は円筒部材370の第1中間部374に、下方第2外径部394は第1室間部としての下端部372に、それぞれ摺動可能に嵌合されており、上方第2外径部398と上方第1外径部396の上端部とは凹部388に挿入されている。上方第1外径部396の下端部とフランジ部390とは第2中間部378内に位置しており、そのフランジ部390が第2室間部としての第1中間部374の上方への開口に着座可能とされている。詳しく言えば、第1中間部374と第2中間部378との間の段差面400はテーパ状とされており、その段差面400が弁座として機能し、弁体として機能するフランジ部390が段差面400に着座可能とされている。   A recess 388 is formed on the lower surface of the lid member 380, and a moving member 314 is inserted into the recess 388 and the cylindrical member 370. The moving member 314 includes a flange portion 390 having the largest outer diameter, a lower first outer diameter portion 392 having an outer diameter smaller than the outer diameter of the flange portion 390 and a lower first outer diameter thereof. A lower second outer diameter portion 394 having an outer diameter smaller than the outer diameter of the lower first outer diameter portion 392 and an outer diameter smaller than the outer diameter of the flange portion 390, which is positioned above the flange portion 390. It has an upper first outer diameter portion 396 and an upper second outer diameter portion 398 that is located above the upper first outer diameter portion 396 and has an outer diameter smaller than the outer diameter of the upper first outer diameter portion 396. . The lower first outer diameter portion 392 is slidably fitted to the first intermediate portion 374 of the cylindrical member 370, and the lower second outer diameter portion 394 is slidably fitted to the lower end portion 372 as the first inter-chamber portion. The upper second outer diameter portion 398 and the upper end portion of the upper first outer diameter portion 396 are inserted into the recess 388. The lower end portion of the upper first outer diameter portion 396 and the flange portion 390 are located in the second intermediate portion 378, and the flange portion 390 opens upwardly of the first intermediate portion 374 as the second chamber portion. It is possible to sit on. More specifically, the step surface 400 between the first intermediate portion 374 and the second intermediate portion 378 is tapered, and the step surface 400 functions as a valve seat, and a flange portion 390 that functions as a valve body is provided. It is possible to sit on the step surface 400.

そのフランジ部390の上端面と蓋部材380の下面との間には、第1付勢部材としてのコイルスプリング402が圧縮された状態で配設されており、そのコイルスプリング402の弾性力によって下方、つまり、フランジ部390が円筒部材370内に形成された段差面400に着座する方向に、移動部材314が付勢されている。フランジ部390が段差面400に着座している状態において、円筒部材370の第2中間部378と移動部材314と蓋部材380とによって第4液室404が区画されている。また、移動部材314の下方第1外径部392の外周面は僅かに凹んでおり、その下方第1外径部392の凹んだ部分と円筒部材370の第1中間部374とによって第5液室406が区画されている。   A coil spring 402 as a first urging member is disposed in a compressed state between the upper end surface of the flange portion 390 and the lower surface of the lid member 380. The coil spring 402 is lowered by the elastic force of the coil spring 402. That is, the moving member 314 is biased in a direction in which the flange portion 390 is seated on the step surface 400 formed in the cylindrical member 370. In a state where the flange portion 390 is seated on the step surface 400, the fourth liquid chamber 404 is defined by the second intermediate portion 378, the moving member 314, and the lid member 380 of the cylindrical member 370. The outer peripheral surface of the lower first outer diameter portion 392 of the moving member 314 is slightly recessed, and the fifth liquid is formed by the recessed portion of the lower first outer diameter portion 392 and the first intermediate portion 374 of the cylindrical member 370. A chamber 406 is defined.

蓋部材380の第3室間部としての凹部388内には、円環状のゴム部材410が設けられている。その第3室間部内ゴム部材としてのゴム部材410に移動部材314の上方第2外径部398が挿入されており、ゴム部材410の下面に上方第1外径部396と上方第2外径部398との間の段差面が密着している。ゴム部材410はシールとして機能しており、そのゴム部材410によって移動部材314と蓋部材380との間の液漏れが禁止されている。また、円筒部材370の第1室間部としての下端部372にも、円環状のゴム部材412が設けられている。その第1室間部内ゴム部材としてのゴム部材412に移動部材314の下方第2外径部394が挿入されており、ゴム部材412の上面に下方第1外径部392と下方第2外径部394との間の段差面が密着している。そのゴム部材412もシールとして機能しており、ゴム部材412によって移動部材314と円筒部材370の下端部372との間の液漏れが禁止されている。   An annular rubber member 410 is provided in the recess 388 serving as the third chamber portion of the lid member 380. The upper second outer diameter portion 398 of the moving member 314 is inserted into the rubber member 410 as the third inter-chamber rubber member, and the upper first outer diameter portion 396 and the upper second outer diameter are formed on the lower surface of the rubber member 410. The step surface between the portions 398 is in close contact. The rubber member 410 functions as a seal, and liquid leakage between the moving member 314 and the lid member 380 is prohibited by the rubber member 410. An annular rubber member 412 is also provided at the lower end 372 as the first chamber portion of the cylindrical member 370. The lower second outer diameter portion 394 of the moving member 314 is inserted into the rubber member 412 as the first inner chamber rubber member, and the lower first outer diameter portion 392 and the lower second outer diameter are formed on the upper surface of the rubber member 412. The step surface between the portions 394 is in close contact. The rubber member 412 also functions as a seal, and liquid leakage between the moving member 314 and the lower end 372 of the cylindrical member 370 is prohibited by the rubber member 412.

移動部材314の下方第2外径部394は、円筒部材370の下端から延び出しており、コア322に形成された貫通穴338の第1室間部としての小内径部350に摺動可能に嵌合されている。このような構造によって、下方第2外径部394とコア322の上端面と円筒部材370の下端面と上部外郭部材320の第4内径部366とによって第6液室414が区画されている。下方第2外径部394には、外周面に開口するとともに、下端面に開口する移動部材内連通路416が形成されており、貫通穴338の内部と第6液室414とが移動部材内連通路416によって連通されている。その移動部材内連通路416の貫通穴338内部への開口は、テーパ状とされており、上記プランジャ312のロッド部340の先端と向かい合っている。プランジャ312は、第2付勢部材としてのコイルスプリング352の弾性力によってプランジャ312が移動部材内連通路416の開口から離隔する方向に付勢されており、そのコイルスプリング352の弾性力に抗してプランジャ312が上方に移動することで、プランジャ312の先端が、移動部材内連通路416の開口に着座するようにされている。   The lower second outer diameter portion 394 of the moving member 314 extends from the lower end of the cylindrical member 370 and is slidable on the small inner diameter portion 350 as the first chamber portion of the through hole 338 formed in the core 322. It is mated. With such a structure, the sixth liquid chamber 414 is defined by the lower second outer diameter portion 394, the upper end surface of the core 322, the lower end surface of the cylindrical member 370, and the fourth inner diameter portion 366 of the upper outer member 320. The lower second outer diameter portion 394 is formed with a moving member communication path 416 that opens to the outer peripheral surface and opens to the lower end surface, and the inside of the through hole 338 and the sixth liquid chamber 414 are located inside the moving member. The communication path 416 communicates. The opening of the moving member communication path 416 into the through hole 338 is tapered and faces the tip of the rod portion 340 of the plunger 312. The plunger 312 is urged in the direction in which the plunger 312 is separated from the opening of the moving member communication path 416 by the elastic force of the coil spring 352 as the second urging member, and resists the elastic force of the coil spring 352. When the plunger 312 moves upward, the distal end of the plunger 312 is seated on the opening of the moving member communication path 416.

また、上部外殻部材320の第1内径部360には、第1液室368に開口する低圧ポート420が形成されており、その低圧ポート420を介して、減圧連通路152が第1液室368に接続されている。つまり、第1液室368は、低圧室として機能している。その第1液室368と貫通穴338の大内径部348とを連通する第1連通路422が、コア322内に径方向に延びるように形成されており、その第1連通穴422および貫通穴338も低圧室として機能している。以下、第1液室368と第1連通穴422と貫通穴338とをまとめて低圧室368等という場合がある。また、上部外殻部材320の第4内径部366には、補助室としての第3液室386に開口するドレインポート424が形成されており、減圧連通路152に繋がる接続路426が、ドレインポート424を介して第3液室386に接続されている。その第3液室386と蓋部材380の凹部388とを連通する第2連通路428が、蓋部材380内に形成されており、移動部材314の移動に伴う凹部388内の容積変化が許容されている。   In addition, a low pressure port 420 that opens to the first liquid chamber 368 is formed in the first inner diameter portion 360 of the upper outer shell member 320, and the decompression communication path 152 is connected to the first liquid chamber via the low pressure port 420. 368. That is, the first liquid chamber 368 functions as a low pressure chamber. A first communication passage 422 that communicates the first liquid chamber 368 and the large inner diameter portion 348 of the through hole 338 is formed in the core 322 so as to extend in the radial direction, and the first communication hole 422 and the through hole are formed. 338 also functions as a low pressure chamber. Hereinafter, the first liquid chamber 368, the first communication hole 422, and the through hole 338 may be collectively referred to as a low pressure chamber 368 or the like. In addition, a drain port 424 that opens to the third liquid chamber 386 as an auxiliary chamber is formed in the fourth inner diameter portion 366 of the upper outer shell member 320, and the connection path 426 that leads to the decompression communication path 152 is connected to the drain port. It is connected to the third liquid chamber 386 via 424. A second communication passage 428 that communicates the third liquid chamber 386 and the recess 388 of the lid member 380 is formed in the lid member 380, and the volume change in the recess 388 accompanying the movement of the moving member 314 is allowed. ing.

円筒部材370の外周面には僅かに凹んだ部分があり、その凹んだ部分と上部外殻部材320の第4内径部366との間にクリアランス430が形成されている。そのクリアランス430に開口する高圧ポート432が第4内径部366に形成されており、クリアランス430と第5液室406とを連通する第3連通路434が円筒部材370の径方向に延びるように形成されている。また、高圧ポート432は、高圧連通路164に接続されている。つまり、高圧ポート432とクリアランス430と第3連通路434とを介して、高圧連通路164が第5液室406に接続されており、第5液室406は、高圧室として機能している。以下、第5液室406を高圧室406という場合がある。   There is a slightly recessed portion on the outer peripheral surface of the cylindrical member 370, and a clearance 430 is formed between the recessed portion and the fourth inner diameter portion 366 of the upper outer shell member 320. A high-pressure port 432 that opens to the clearance 430 is formed in the fourth inner diameter portion 366, and a third communication path 434 that communicates the clearance 430 and the fifth liquid chamber 406 is formed to extend in the radial direction of the cylindrical member 370. Has been. The high pressure port 432 is connected to the high pressure communication path 164. That is, the high pressure communication path 164 is connected to the fifth liquid chamber 406 via the high pressure port 432, the clearance 430, and the third communication path 434, and the fifth liquid chamber 406 functions as a high pressure chamber. Hereinafter, the fifth liquid chamber 406 may be referred to as a high pressure chamber 406.

円筒部材370には、第4液室404と第6液室414とに開口し、それら2つの液室を連通する円筒部材内連通路440が形成されている。また、第6液室414に開口する調圧ポート442が、上部外殻部材320の第4内径部366に形成されており、その調圧ポート442に制御圧連通路133が接続されている。つまり、第4液室404は、調圧ポート442と第6液室414と円筒部材内連通路440とを介して、制御圧連通路133に接続されており、調圧室として機能している。以下、第4液室404を調圧室404という場合がある。なお、上部外殻部材320の蓋部には、第2液室384に開口する補助ポート444が形成されており、その補助ポート444を介して、バックアップ通路172が第2液室384に接続されている。   The cylindrical member 370 is formed with a communication passage 440 in the cylindrical member that opens to the fourth liquid chamber 404 and the sixth liquid chamber 414 and communicates the two liquid chambers. A pressure adjustment port 442 that opens to the sixth liquid chamber 414 is formed in the fourth inner diameter portion 366 of the upper outer shell member 320, and the control pressure communication path 133 is connected to the pressure adjustment port 442. That is, the fourth liquid chamber 404 is connected to the control pressure communication path 133 via the pressure adjustment port 442, the sixth liquid chamber 414, and the cylindrical member communication path 440, and functions as a pressure adjustment chamber. Hereinafter, the fourth liquid chamber 404 may be referred to as a pressure regulating chamber 404. An auxiliary port 444 that opens to the second liquid chamber 384 is formed in the lid portion of the upper outer shell member 320, and the backup passage 172 is connected to the second liquid chamber 384 via the auxiliary port 444. ing.

上述した構造によって、本液圧弁装置300においては、コイル316に電流が供給されていないときには、コイルスプリング402の弾性力によって、移動部材314のフランジ部390が円筒部材370の内周面に形成された段差面400に着座している。このため、高圧室406と調圧室404との間のブレーキ液の流れが遮断されている。また、コイルスプリング352の弾性力によって、プランジャ312の先端が移動部材314の移動部材内連通路416の下方への開口から離隔しており、ブレーキ液は、円筒部材内連通路440と第6液室414と移動部材内連通路416とを介して、調圧室404と低圧室368等との間を流通可能となっている。つまり、円筒部材内連通路440と第6液室414と移動部材内連通路416とが連通路として機能し、その連通路によって、調圧室圧は大気圧となっている。ちなみに、円筒部材内連通路440と第6液室414とはハウジング内連通路として機能し、円筒部材内連通路440の調圧室への開口は調圧室側開口として機能している。   With the above-described structure, in the hydraulic valve device 300, when no current is supplied to the coil 316, the flange portion 390 of the moving member 314 is formed on the inner peripheral surface of the cylindrical member 370 by the elastic force of the coil spring 402. Sitting on the stepped surface 400. For this reason, the flow of brake fluid between the high pressure chamber 406 and the pressure regulating chamber 404 is blocked. Further, the tip of the plunger 312 is separated from the downward opening of the moving member communication path 416 of the moving member 314 by the elastic force of the coil spring 352, and the brake fluid is separated from the cylindrical member communication path 440 and the sixth liquid. It is possible to circulate between the pressure regulating chamber 404 and the low pressure chamber 368 and the like via the chamber 414 and the moving member communication path 416. That is, the cylindrical member communication path 440, the sixth liquid chamber 414, and the moving member communication path 416 function as a communication path, and the pressure adjustment chamber pressure is atmospheric pressure by the communication path. Incidentally, the cylindrical member communication path 440 and the sixth liquid chamber 414 function as a housing communication path, and the opening of the cylindrical member communication path 440 to the pressure regulation chamber functions as a pressure regulation chamber side opening.

移動力発生器としてのコイル316に電流が供給されると、プランジャ312の先端が移動部材内連通路416の低圧室368等への開口(以下、「低圧室側開口」という場合がある。)に接近する方向にプランジャ312を移動させようとする電磁力が生じる。この電磁力によって、まず、プランジャ312がコイルスプリング352の弾性力に抗して上方に移動して、プランジャ312の先端が低圧室側開口へ着座する。この状態において、調圧室404と低圧室368等との間のブレーキ液の流れは遮断されるとともに、高圧室406と調圧室404との間のブレーキ液の流れも遮断されている。そして、プランジャ312の先端が低圧室側開口へ着座した状態、つまり、プランジャ312が移動部材314に当接した状態でプランジャ312が上方へ移動すると、移動部材314も上方に移動する。移動部材314の上方への移動に伴って、移動部材314のフランジ部390が円筒部材370の段差面400から離隔することで、高圧室406と調圧室404との間のブレーキ液の流れが許容されるのである。この際、コイル316への通電量を制御することで、調圧室圧を制御可能に増圧させることが可能となっている。   When a current is supplied to the coil 316 as a moving force generator, the tip of the plunger 312 opens the low pressure chamber 368 of the moving member communication path 416 (hereinafter, may be referred to as “low pressure chamber side opening”). An electromagnetic force is generated to move the plunger 312 in a direction approaching the. By this electromagnetic force, first, the plunger 312 moves upward against the elastic force of the coil spring 352, and the tip of the plunger 312 is seated on the low-pressure chamber opening. In this state, the flow of brake fluid between the pressure regulating chamber 404 and the low pressure chamber 368 is cut off, and the flow of brake fluid between the high pressure chamber 406 and the pressure regulating chamber 404 is also cut off. When the plunger 312 moves upward in a state where the tip of the plunger 312 is seated in the low-pressure chamber side opening, that is, in a state where the plunger 312 is in contact with the moving member 314, the moving member 314 also moves upward. As the moving member 314 moves upward, the flange portion 390 of the moving member 314 moves away from the step surface 400 of the cylindrical member 370, so that the flow of brake fluid between the high pressure chamber 406 and the pressure adjusting chamber 404 is increased. It is acceptable. At this time, it is possible to controllably increase the pressure regulation chamber pressure by controlling the energization amount to the coil 316.

また、調圧室圧が増圧された後に、コイル316への通電量を減少させることで、コイルスプリング402の弾性力によって移動部材314のフランジ部390が円筒部材370の段差面400に着座する。フランジ部390が段差面400に着座するとともにプランジャ312の先端が低圧室側開口に着座している状態では、調圧室圧は増圧された液圧に維持される。そして、その状態からコイル316への通電量をさらに減少させることで、コイルスプリング352の弾性力によってプランジャ312の先端が低圧側開口から離隔して、低圧室368等と調圧室404との間のブレーキ液の流れが許容される。この際、コイル316への通電量を制御することで、調圧室圧を制御可能に減圧させることが可能となっている。   Further, after the pressure regulating chamber pressure is increased, the amount of current supplied to the coil 316 is decreased, so that the flange portion 390 of the moving member 314 is seated on the step surface 400 of the cylindrical member 370 by the elastic force of the coil spring 402. . In a state where the flange portion 390 is seated on the step surface 400 and the tip of the plunger 312 is seated in the low-pressure chamber side opening, the pressure regulating chamber pressure is maintained at the increased hydraulic pressure. Then, by further reducing the amount of current supplied to the coil 316 from that state, the tip of the plunger 312 is separated from the low-pressure side opening by the elastic force of the coil spring 352, and the low-pressure chamber 368 and the pressure-regulating chamber 404 are separated from each other. Brake fluid flow is allowed. At this time, by controlling the amount of current supplied to the coil 316, the pressure regulation chamber pressure can be reduced in a controllable manner.

上述したように、本増減圧弁300は、コイル316への通電量を制御することで、調圧室圧を制御可能に増減圧させることが可能となっている。増圧時には、移動部材314のフランジ部390が円筒部材370の段差面400から離隔し、ブレーキ液が高圧室406から調圧室404へ流れる。このため、ブレーキ液は、移動部材314の弁体として機能するフランジ部390が弁座として機能する段差面400から離隔する方向に流れる。一方、減圧時には、プランジャ312が低圧側開口から離隔し、ブレーキ液が調整室404から低圧室368等へ流れる。このため、ブレーキ液は、プランジャ312の弁体として機能する先端が弁座として機能する低圧側開口から離隔する方向に流れる。つまり、本液圧弁装置300においても、調圧室圧が制御される際に、ブレーキ液は弁体が弁座から離間する方向に流れるようになっており、調圧時のハンチング現象が抑制されることで、精度よく調圧室圧を制御することが可能となっている。   As described above, the pressure increasing / decreasing valve 300 can control and increase / decrease the pressure regulating chamber pressure by controlling the amount of current supplied to the coil 316. When the pressure is increased, the flange portion 390 of the moving member 314 is separated from the step surface 400 of the cylindrical member 370, and the brake fluid flows from the high pressure chamber 406 to the pressure adjusting chamber 404. For this reason, the brake fluid flows in a direction in which the flange portion 390 that functions as the valve body of the moving member 314 is separated from the step surface 400 that functions as the valve seat. On the other hand, at the time of decompression, the plunger 312 is separated from the low pressure side opening, and the brake fluid flows from the adjustment chamber 404 to the low pressure chamber 368 and the like. Therefore, the brake fluid flows in a direction in which the tip that functions as the valve body of the plunger 312 is separated from the low-pressure side opening that functions as the valve seat. That is, also in the hydraulic valve device 300, when the pressure regulating chamber pressure is controlled, the brake fluid flows in a direction in which the valve body separates from the valve seat, and the hunting phenomenon during pressure regulation is suppressed. This makes it possible to control the pressure regulating chamber pressure with high accuracy.

また、本増減圧弁158においても、先の増減圧装置158と同様に、電力に依拠することなく、シリンダ装置20の作動によって加圧されたブレーキ液に依拠して調圧室圧を増圧させることが可能となっている。詳しく言えば、液圧ブレーキシステム302への電力供給が断たれた場合には、先のシステム10と同様に、バックアップ通路172にシリンダ装置20の作動によって加圧されたブレーキ液が流れ、その加圧されたブレーキ液が第2液室384に流入するようになっている。このため、第2液室384内のブレーキ液の液圧の増加に伴って、その第2液室384内のブレーキ液の液圧によって蓋部材380および円筒部材370が下方に押される力が、調圧室圧によって蓋部材380および円筒部材370が上方に押される力より大きくなったときに、蓋部材380および円筒部材370が下方に移動する。蓋部材380および円筒部材370の下方への移動に伴って移動部材314も下方に移動し、まず、低圧側開口にプランジャ312の先端が着座する。この状態において、低圧室368等と調圧室404との間のブレーキ液の流れが遮断される。そして、蓋部材380および円筒部材370がさらに下方に移動すると、蓋部材380および円筒部材370は下方に移動するが、移動部材314はプランジャ312と当接しているため、移動部材314は下方に移動せずに、移動部材314のフランジ部390が円筒部材370の段差面400から離隔することで、高圧室406と調圧室404との間のブレーキ液の流れが許容される。このように、本減増圧弁300において、電力失陥時等であっても、電力に依拠することなく、調整室圧を増圧させることが可能とされている。   Further, in the present pressure increasing / reducing valve 158 as well, the pressure regulating chamber pressure is increased by relying on the brake fluid pressurized by the operation of the cylinder device 20 without relying on electric power, similarly to the previous pressure increasing / decreasing device 158. It is possible. More specifically, when the power supply to the hydraulic brake system 302 is cut off, the brake fluid pressurized by the operation of the cylinder device 20 flows into the backup passage 172 as in the case of the previous system 10, and the pressure is applied. The pressurized brake fluid flows into the second fluid chamber 384. For this reason, as the hydraulic pressure of the brake fluid in the second fluid chamber 384 increases, the force by which the lid member 380 and the cylindrical member 370 are pushed downward by the hydraulic pressure of the brake fluid in the second fluid chamber 384 is When the lid member 380 and the cylindrical member 370 become larger than the force by which the lid member 380 and the cylindrical member 370 are pushed upward by the pressure regulation chamber pressure, the lid member 380 and the cylindrical member 370 move downward. As the lid member 380 and the cylindrical member 370 move downward, the moving member 314 also moves downward. First, the tip of the plunger 312 is seated in the low-pressure side opening. In this state, the flow of brake fluid between the low pressure chamber 368 and the pressure regulating chamber 404 is blocked. When the lid member 380 and the cylindrical member 370 move further downward, the lid member 380 and the cylindrical member 370 move downward. However, since the moving member 314 is in contact with the plunger 312, the moving member 314 moves downward. Instead, the flange portion 390 of the moving member 314 is separated from the step surface 400 of the cylindrical member 370, so that the flow of the brake fluid between the high pressure chamber 406 and the pressure regulating chamber 404 is allowed. As described above, in the present pressure reducing valve 300, it is possible to increase the adjustment chamber pressure without depending on the electric power even when the electric power fails.

また、図6に示すように、上方向への高圧室圧を受ける移動部材314の受圧面積A6と、下方向への高圧室圧を受ける移動部材314の受圧面積A7とは同じとなっている。このため、本液圧弁装置300においても、移動部材314の初期動作に必要な力が低減されており、コイル316の消費電力の抑制が図られている。さらに、調圧室圧の増圧時の液漏れ,圧力特性のヒステリシスの発生を抑制するために、下方向への調圧室圧を受ける移動部材196の受圧面積と上方向への調圧室圧を受ける移動部材196の受圧面積とを同じとするべく、各受圧面積の関係が以下の式を満たすように設計されている。
6−A8=A9
ここで、A8は、移動部材314が上方第1外径部396が蓋部材380の凹部388に摺動可能に嵌合されている箇所の受圧面積、A9は、プランジャ312の先端が低圧室側開口へ着座する箇所の受圧面積である。
Also, as shown in FIG. 6, the pressure receiving area A 6 of the moving member 314 that receives the high pressure chamber pressure in the upward direction is the same as the pressure receiving area A 7 of the moving member 314 that receives the high pressure chamber pressure in the downward direction. ing. For this reason, also in this hydraulic valve apparatus 300, the force required for the initial operation of the moving member 314 is reduced, and the power consumption of the coil 316 is suppressed. Further, in order to suppress the occurrence of liquid leakage and pressure characteristic hysteresis when the pressure regulating chamber pressure is increased, the pressure receiving area of the moving member 196 that receives the pressure regulating chamber pressure in the downward direction and the pressure regulating chamber in the upward direction. In order to make the pressure receiving area of the moving member 196 that receives pressure the same, the relationship between the pressure receiving areas is designed to satisfy the following expression.
A 6 -A 8 = A 9
Here, A 8 is the pressure receiving area of a portion moving member 314 upward first outer diameter section 396 is slidably fitted in the recess 388 of the cover member 380, A 9, the tip of the plunger 312 is low It is a pressure-receiving area of the place seated to the chamber side opening.

本実施例の液圧ブレーキシステムにおいては、液圧弁装置を除いて、先のブレーキシステム302と同様の構成とされているため、液圧弁装置500のみを図7に示し、全体の図面を省略することとする。また、本液圧弁装置500は、移動部材および円筒部材を除いて、先のシステム302の液圧弁装置300と略同様の構成であるため、それらを中心に説明し、同様の機能の構成要素については、同じ符号を用いて説明を省略あるいは簡略に行うものとする。   Since the hydraulic brake system of the present embodiment has the same configuration as the previous brake system 302 except for the hydraulic valve device, only the hydraulic valve device 500 is shown in FIG. 7, and the entire drawing is omitted. I will do it. In addition, the hydraulic valve device 500 has substantially the same configuration as the hydraulic valve device 300 of the previous system 302 except for the moving member and the cylindrical member. The description will be omitted or simplified using the same reference numerals.

図7に示すように、本液圧弁装置500において、上部外郭部材320の第4内径部366には、概して円筒状の円筒部材510が摺動可能に嵌合されており、その円筒部材510は、下端部に位置し最も内径の小さい下端部512と、その下端部512の上方に位置し下端部512の内径より大きい内径の第1中間部514と、上端部に位置し最も内径の大きい上端部516と、その上端部516と第1中間部514との間に位置し第1中間部514の内径より大きく、かつ上端部516の内径より小さい内径の第2中間部518とを有している。上端部516には、蓋部材380が固定的に嵌合されており、その蓋部材380の上部は、円筒部材510の上端から延び出すとともに、上部外郭部材320の第3内径部364に摺動可能に嵌合されている。   As shown in FIG. 7, in the hydraulic valve device 500, a generally cylindrical cylindrical member 510 is slidably fitted to the fourth inner diameter portion 366 of the upper outer member 320, and the cylindrical member 510 is A lower end portion 512 having the smallest inner diameter located at the lower end portion, a first intermediate portion 514 having an inner diameter larger than the inner diameter of the lower end portion 512 located above the lower end portion 512, and an upper end located at the upper end portion and having the largest inner diameter. And a second intermediate portion 518 having an inner diameter which is located between the upper end portion 516 and the first intermediate portion 514 and is larger than the inner diameter of the first intermediate portion 514 and smaller than the inner diameter of the upper end portion 516. Yes. A lid member 380 is fixedly fitted to the upper end portion 516, and the upper portion of the lid member 380 extends from the upper end of the cylindrical member 510 and slides on the third inner diameter portion 364 of the upper outer member 320. It can be fitted.

蓋部材380の下面には凹部388が形成されており、その凹部388と円筒部材510の内部に移動部材520が挿入されている。移動部材520は、最も外径の大きいフランジ部522と、そのフランジ部522の下方に位置しフランジ部522の外径より小さな外径の下方第1外径部524と、その下方第1外径部524の下方に位置し下方第1外径部524の外径より小さな外径の下方第2外径部526と、その下方第2外径部526の下方に位置し下方第2外径部526の外径より小さな外径の下方第3外径部528と、フランジ部522の上方に位置しフランジ部522の外径より小さな外径の上方第1外径部530と、その上方第1外径部530の上方に位置し上方第1外径部530の外径より小さな外径の上方第2外径部532とを有している。   A recess 388 is formed on the lower surface of the lid member 380, and the moving member 520 is inserted into the recess 388 and the cylindrical member 510. The moving member 520 includes a flange portion 522 having the largest outer diameter, a lower first outer diameter portion 524 having an outer diameter smaller than the outer diameter of the flange portion 522 and a lower first outer diameter thereof. A lower second outer diameter portion 526 positioned below the lower portion 524 and having an outer diameter smaller than that of the lower first outer diameter portion 524; and a lower second outer diameter portion positioned below the lower second outer diameter portion 526. A lower third outer diameter portion 528 having an outer diameter smaller than the outer diameter of 526, an upper first outer diameter portion 530 having an outer diameter smaller than the outer diameter of the flange portion 522, which is located above the flange portion 522, and an upper first And an upper second outer diameter portion 532 having an outer diameter smaller than the outer diameter of the upper first outer diameter portion 530 and positioned above the outer diameter portion 530.

下方第2外径部526は円筒部材510の第1中間部514に、下方第3外径部528は第1室間部としての下端部512に、それぞれ摺動可能に嵌合されており、上方第2外径部532と上方第1外径部530の上端部とは凹部388に挿入されている。上方第1外径部530の下端部とフランジ部522と下方第1外径部524とは第2中間部518内に位置しており、下方第1外径部524と下方第2外径部526との間の段差面534が円筒部材510の第2室間部としての第1中間部514の上方への開口に着座可能とされている。詳しく言えば、第1中間部514と第2中間部518との間の段差面536はテーパ状とされており、その段差面536が弁座として機能し、その段差面536に弁体として機能する下方第1外径部524と下方第2外径部526との間の段差面534が着座可能とされている。   The lower second outer diameter portion 526 is slidably fitted to the first intermediate portion 514 of the cylindrical member 510, and the lower third outer diameter portion 528 is slidably fitted to the lower end portion 512 serving as the first chamber portion. The upper second outer diameter portion 532 and the upper end portion of the upper first outer diameter portion 530 are inserted into the recess 388. The lower end portion of the upper first outer diameter portion 530, the flange portion 522, and the lower first outer diameter portion 524 are located in the second intermediate portion 518, and the lower first outer diameter portion 524 and the lower second outer diameter portion A step surface 534 between the first member 526 and the second member 526 can be seated in an opening upward of the first intermediate portion 514 serving as the second chamber portion of the cylindrical member 510. Specifically, the step surface 536 between the first intermediate portion 514 and the second intermediate portion 518 is tapered, the step surface 536 functions as a valve seat, and the step surface 536 functions as a valve body. The step surface 534 between the lower first outer diameter portion 524 and the lower second outer diameter portion 526 is seatable.

移動部材520のフランジ部522の上端面と蓋部材380の下面との間には、第1付勢部材としてのコイルスプリング540が圧縮された状態で配設されており、そのコイルスプリング540の弾性力によって下方、つまり、移動部材520の外周面に形成された段差面534が円筒部材510の内周面に形成された段差面536に着座する方向に、移動部材520が付勢されている。着座状態において、円筒部材520の第2中間部518と移動部材520と蓋部材380とによって調圧室542が区画されている。また、移動部材520の下方第2外径部526の外周面は僅かに凹んでおり、その下方第2外径部526の凹んだ部分と円筒部材510の第1中間部514とによって高圧室544が区画されている。その高圧室544に開口する第3連通路546が、円筒部材510の径方向に延びるようにして形成されており、その第3連通路546とクリアランス430と高圧ポート432とを介して、高圧室544が高圧連通路164に接続されている。   A coil spring 540 as a first urging member is disposed in a compressed state between the upper end surface of the flange portion 522 of the moving member 520 and the lower surface of the lid member 380, and the elasticity of the coil spring 540 is provided. Due to the force, the moving member 520 is biased in a direction in which the step surface 534 formed on the outer peripheral surface of the moving member 520 is seated on the step surface 536 formed on the inner peripheral surface of the cylindrical member 510. In the seated state, the pressure adjusting chamber 542 is defined by the second intermediate portion 518 of the cylindrical member 520, the moving member 520, and the lid member 380. The outer peripheral surface of the lower second outer diameter portion 526 of the moving member 520 is slightly recessed, and the high pressure chamber 544 is formed by the recessed portion of the lower second outer diameter portion 526 and the first intermediate portion 514 of the cylindrical member 510. Is partitioned. A third communication passage 546 that opens to the high-pressure chamber 544 is formed so as to extend in the radial direction of the cylindrical member 510, and the high-pressure chamber is interposed via the third communication passage 546, the clearance 430, and the high-pressure port 432. 544 is connected to the high-pressure communication path 164.

移動部材520の内部には、それの軸線方向に貫通する連通路550が形成されており、その連通路550は、移動部材520の上端面および下端面に開口している。その連通路550は、さらに、下方第1外径部524の外周面および下方第3外径部528の外周面にも開口している。内部室として機能する連通路550の上端の開口には、概して円柱状のピン556が摺動可能に挿入されており、そのピン556の上端面は蓋部材380の凹部388の内面において支持されている。蓋部材380の凹部388の内部には、ピン556を貫通させた状態で環状のゴム部材558が設けられており、その第3室間部内ゴム部材としてのゴム部材558の下面に移動部材520の上端面が密着している。ゴム部材558はシールとして機能しており、そのゴム部材558によって移動部材520と蓋部材380との間の液漏れが禁止されている。ちなみに、移動部材520の下方第2外径部526と下方第3外径部528との間の段差面は、環状のゴム部材412の上面に密着しており、それらの間がシールされている。   A communicating path 550 that penetrates in the axial direction of the moving member 520 is formed inside the moving member 520, and the communicating path 550 opens at the upper end surface and the lower end surface of the moving member 520. The communication path 550 is also open to the outer peripheral surface of the lower first outer diameter portion 524 and the outer peripheral surface of the lower third outer diameter portion 528. A generally cylindrical pin 556 is slidably inserted into the opening at the upper end of the communication passage 550 functioning as an internal chamber, and the upper end surface of the pin 556 is supported by the inner surface of the recess 388 of the lid member 380. Yes. An annular rubber member 558 is provided inside the concave portion 388 of the lid member 380 with the pin 556 penetrating therethrough, and the lower surface of the rubber member 558 as the third inter-chamber rubber member is provided on the lower surface of the moving member 520. The upper end surface is in close contact. The rubber member 558 functions as a seal, and liquid leakage between the moving member 520 and the lid member 380 is prohibited by the rubber member 558. Incidentally, the step surface between the lower second outer diameter portion 526 and the lower third outer diameter portion 528 of the moving member 520 is in close contact with the upper surface of the annular rubber member 412 and is sealed between them. .

連通路550が形成された移動部材520の下方第3外径部528の下端部は、コア322に形成された貫通穴338の小外径部350に摺動可能に嵌合されており、連通路550の下端の開口は、貫通穴338内に開口している。また、連通路550の下方第1外径部524の外周面への開口は、調圧室542に開口している。つまり、調圧室542と低圧室368等とが連通路550によって連通されており、連通路550の下方第1外径部524の外周面への開口が調圧室側開口として機能するとともに、連通路550の下端面への開口が低圧室側開口として機能している。連通路550の下端面への開口(以下、「低圧室側開口」という場合がある)はテーパ状とされており、プランジャ312の先端と向かい合っている。プランジャ312は、コイルスプリング352の弾性力によってプランジャ312が低圧室側開口から離隔する方向に付勢されており、弾性力に抗してプランジャ312が上方に移動することで、プランジャ312の先端が、低圧室側開口に着座するようにされている。   The lower end portion of the lower third outer diameter portion 528 of the moving member 520 in which the communication passage 550 is formed is slidably fitted to the small outer diameter portion 350 of the through hole 338 formed in the core 322. The opening at the lower end of the passage 550 opens into the through hole 338. In addition, the opening to the outer peripheral surface of the lower first outer diameter portion 524 of the communication path 550 is open to the pressure regulating chamber 542. That is, the pressure regulating chamber 542 and the low pressure chamber 368 are communicated by the communication path 550, and the opening to the outer peripheral surface of the first outer diameter portion 524 below the communication path 550 functions as the pressure regulating chamber side opening. An opening to the lower end surface of the communication path 550 functions as a low pressure chamber side opening. An opening to the lower end surface of the communication path 550 (hereinafter, sometimes referred to as “low pressure chamber side opening”) is tapered and faces the tip of the plunger 312. The plunger 312 is biased in a direction away from the low-pressure chamber side opening by the elastic force of the coil spring 352, and the plunger 312 moves upward against the elastic force, so that the tip of the plunger 312 is moved upward. It is configured to be seated in the low pressure chamber side opening.

このような構造によって、本液圧弁装置500においても、先のシステム302の液圧弁装置300と同様に、コイル316への通電量を制御することで、調圧室圧を制御可能に増減圧させることが可能となっている。また、調圧室圧が制御される際に、ブレーキ液は弁体が弁座から離間する方向に流れるようになっており、調圧時のハンチング現象が抑制されることで、精度よく調圧室圧を制御することが可能となっている。さらに、電力失陥時においても、第2液室384への加圧されたブレーキ液の流入に伴って、蓋部材380および円筒部材510を下方に移動させることが可能となっており、コイル316の電磁力に依拠することなく制御室圧を増圧することが可能となっている。   With this structure, in the hydraulic valve device 500 as well, as in the hydraulic valve device 300 of the previous system 302, the amount of current supplied to the coil 316 is controlled so that the pressure regulating chamber pressure can be increased or decreased in a controllable manner. It is possible. In addition, when the pressure regulating chamber pressure is controlled, the brake fluid flows in the direction away from the valve seat, and the hunting phenomenon at the time of pressure regulation is suppressed, so that the pressure regulation is performed accurately. The chamber pressure can be controlled. Furthermore, even when power is lost, the lid member 380 and the cylindrical member 510 can be moved downward as the pressurized brake fluid flows into the second fluid chamber 384, and the coil 316 is moved. It is possible to increase the control chamber pressure without relying on the electromagnetic force.

また、図8に示すように、上方向への高圧室圧を受ける移動部材520の受圧面積A10と、下方向への高圧室圧を受ける移動部材520の受圧面積A11とは同じとなっている。このため、本液圧弁装置500においても、移動部材520の初期動作に必要な力が低減されており、コイル316の消費電力の抑制が図られている。さらに、調圧室圧の増圧時の液漏れ,圧力特性のヒステリシスの発生を抑制するために、下方向への調圧室圧を受ける移動部材520の受圧面積と、上方向への調圧室圧を受ける移動部材520の受圧面積とが同じとされている。具体的には、移動部材520の段差面534が円筒部材510の段差面536に着座している箇所の受圧面積(上記受圧面積A10に相当)からプランジャ312の先端が低圧室側開口へ着座している箇所の受圧面積A12を減じたものが、下方向への調圧室圧を受ける移動部材520の受圧面積に相当し、移動部材520の上方第2外径部532が蓋部材380の凹部388に摺動可能に嵌合されている箇所の受圧面積A13からピン556の断面積A14を減じたものが、上方向への調圧室圧を受ける移動部材520の受圧面積に相当する。つまり、受圧面積の関係が以下の式を満たすように設計されている。
10−A12=A13−A14
なお、本液圧弁装置500では、受圧面積A10と受圧面積A13とは同じとされているため、受圧面積A12とピン556の断面積A14とは同じとなっている。
Further, as shown in FIG. 8, the pressure receiving area A 10 of the moving member 520 that receives the high-pressure chamber pressure in the upward direction is the same as the pressure receiving area A 11 of the moving member 520 that receives the high-pressure chamber pressure in the downward direction. ing. For this reason, also in this hydraulic valve apparatus 500, the force required for the initial operation of the moving member 520 is reduced, and the power consumption of the coil 316 is suppressed. Furthermore, in order to suppress the occurrence of liquid leakage and pressure characteristic hysteresis when the pressure adjusting chamber pressure is increased, the pressure receiving area of the moving member 520 that receives the pressure adjusting chamber pressure in the downward direction, and the pressure adjustment in the upward direction. The pressure receiving area of the moving member 520 that receives the chamber pressure is the same. Specifically, from the pressure receiving area (corresponding to the pressure receiving area A 10 ) where the step surface 534 of the moving member 520 is seated on the step surface 536 of the cylindrical member 510, the tip of the plunger 312 is seated on the low pressure chamber side opening. The reduced pressure receiving area A 12 at the position corresponding to the position corresponds to the pressure receiving area of the moving member 520 that receives the pressure regulating chamber pressure in the downward direction, and the upper second outer diameter portion 532 of the moving member 520 is the lid member 380. from the pressure receiving area a 13 of the portion which is slidably fitted into the recess 388 minus the cross-sectional area a 14 of the pin 556, the pressure receiving area of the moving member 520 which receives the pressure regulating chamber pressure to the upward Equivalent to. That is, it is designed so that the relationship between the pressure receiving areas satisfies the following formula.
A 10 -A 12 = A 13 -A 14
In the liquid valve 500, since it is the same as the pressure receiving area A 10 and the pressure receiving area A 13, has the same the cross-sectional area A 14 of the pressure receiving area A 12 and the pin 556.

本実施例の液圧ブレーキシステムにおいても、液圧弁装置を除いて、先のブレーキシステム302と同様の構成とされているため、液圧弁装置600のみを図9に示し、全体の図面を省略することとする。また、本液圧弁装置600は、移動部材および円筒部材等を除いて、先のシステム302の液圧弁装置300と略同様の構成であるため、それらを中心に説明し、同様の機能の構成要素については、同じ符号を用いて説明を省略あるいは簡略に行うものとする。   Also in the hydraulic brake system of the present embodiment, except for the hydraulic valve device, the configuration is the same as that of the previous brake system 302. Therefore, only the hydraulic valve device 600 is shown in FIG. I will do it. The hydraulic valve device 600 has substantially the same configuration as that of the hydraulic valve device 300 of the previous system 302 except for the moving member, the cylindrical member, and the like. The description will be omitted or simplified using the same reference numerals.

図9に示すように、本液圧弁装置600において、上部外郭部材320の第4内径部366には、概して円筒状の円筒部材610が摺動可能に嵌合されており、その円筒部材610は、上端部に位置し最も内径の大きい上端部612と、下端部に位置し上端部612より内径の小さい下端部614と、上端部612と下端部614との間に位置し最も内径の小さい中間部616とを有している。上端部612には、有蓋円筒状の蓋部材618が固定的に嵌合されており、その蓋部材618の上部は、円筒部材610の上端から延び出すとともに、上部外郭部材320の第3内径部364に摺動可能に嵌合されている。なお、蓋部材618の上端面は僅かに凹んでおり、その蓋部材618の凹んだ部分と上部外郭部材320の蓋内面とによって第2液室619が区画されている。   As shown in FIG. 9, in the hydraulic valve device 600, a generally cylindrical cylindrical member 610 is slidably fitted to the fourth inner diameter portion 366 of the upper outer member 320, and the cylindrical member 610 is The upper end 612 having the largest inner diameter located at the upper end, the lower end 614 having the smaller inner diameter than the upper end 612 located at the lower end, and the middle having the smallest inner diameter located between the upper end 612 and the lower end 614 Part 616. A lidded cylindrical lid member 618 is fixedly fitted to the upper end portion 612, and the upper portion of the lid member 618 extends from the upper end of the cylindrical member 610 and the third inner diameter portion of the upper outer member 320. 364 is slidably fitted. The upper end surface of the lid member 618 is slightly recessed, and the second liquid chamber 619 is defined by the recessed portion of the lid member 618 and the inner surface of the lid of the upper outer member 320.

蓋部材380の内部および円筒部材610の内部には、移動部材620が挿入されており、移動部材620は、上端に位置し最も外径の大きいフランジ部622と、そのフランジ部622の下方に位置しフランジ部622の外径より小さな外径の下方第1外径部624と、その下方第1外径部624の下方に位置し下方第1外径部624の外径より小さな外径の下方第2外径部626とを有している。ちなみに、下方第2外径部626には、下方第1外径部624の外径より大きな外径の環状部材628が固定的に嵌合されており、その環状部材628は、下方第1外径部624と下方第2外径部626との間の段差面と当接している。なお、環状部材628は、移動部材620に固定されているため、移動部材620の構成物とみなす。   A moving member 620 is inserted into the lid member 380 and the cylindrical member 610. The moving member 620 is located at the upper end and has a flange portion 622 having the largest outer diameter, and is positioned below the flange portion 622. A lower first outer diameter portion 624 having an outer diameter smaller than the outer diameter of the flange portion 622 and a lower outer diameter located below the first outer diameter portion 624 and smaller than the outer diameter of the lower first outer diameter portion 624 A second outer diameter portion 626. Incidentally, an annular member 628 having an outer diameter larger than the outer diameter of the lower first outer diameter portion 624 is fixedly fitted to the lower second outer diameter portion 626, and the annular member 628 is connected to the lower first outer diameter portion 626. It contacts the step surface between the diameter portion 624 and the lower second outer diameter portion 626. Since the annular member 628 is fixed to the moving member 620, it is regarded as a constituent of the moving member 620.

下方第1外径部624は円筒部材610の中間部616に摺動可能に嵌合されている。下方第1外径部624の下端部および環状部材628は第1室間部としての下端部614に位置しており、下方第1外径部624の下端部および環状部材628と下端部614との間は、環状のシール部材630によってシールされている。フランジ部622は蓋部材618、つまり、円筒部材610の上端部612内に位置しており、フランジ部622が円筒部材610の第2室間部としての中間部616の上方への開口に着座可能とされている。詳しく言えば、上端部612と中間部616との間の段差面632はテーパ状とされており、段差面632が弁座として機能し、その段差面632に弁体として機能する移動部材620のフランジ部622が着座可能とされている。   The lower first outer diameter portion 624 is slidably fitted to the intermediate portion 616 of the cylindrical member 610. The lower end portion of the lower first outer diameter portion 624 and the annular member 628 are located at the lower end portion 614 as the first chamber portion, and the lower end portion of the lower first outer diameter portion 624 and the annular member 628 and the lower end portion 614 The space is sealed by an annular seal member 630. The flange portion 622 is positioned in the lid member 618, that is, the upper end portion 612 of the cylindrical member 610, and the flange portion 622 can be seated in an opening above the intermediate portion 616 as the second chamber portion of the cylindrical member 610. It is said that. More specifically, the step surface 632 between the upper end portion 612 and the intermediate portion 616 is tapered, and the step surface 632 functions as a valve seat, and the step member 620 functions as a valve body on the step surface 632. The flange portion 622 can be seated.

移動部材620のフランジ部622の上端面と蓋部材618の蓋内面との間には、第1付勢部材としてのコイルスプリング634が圧縮された状態で配設されており、そのコイルスプリング634の弾性力によって下方、つまり、フランジ部622が円筒部材610の内周面に形成された段差面632に着座する方向に、移動部材620が付勢されている。着座状態において、移動部材620のフランジ部622と蓋部材618と円筒部材610の段差面632とによって調圧室636が区画されている。また、移動部材620の下方第1外径部624の外周面は僅かに凹んでおり、その下方第1外径部624の凹んだ部分と円筒部材610の中間部616とによって高圧室638が区画されている。その高圧室638に開口する第3連通路640が、円筒部材610の径方向に延びるようにして形成されており、その第3連通路640とクリアランス430と高圧ポート432とを介して、高圧室638が高圧連通路164に接続されている。   A coil spring 634 as a first biasing member is disposed in a compressed state between the upper end surface of the flange portion 622 of the moving member 620 and the inner surface of the lid member 618. The moving member 620 is urged downward by the elastic force, that is, in a direction in which the flange portion 622 is seated on the step surface 632 formed on the inner peripheral surface of the cylindrical member 610. In the seated state, the pressure regulating chamber 636 is defined by the flange portion 622 of the moving member 620, the lid member 618, and the step surface 632 of the cylindrical member 610. Further, the outer peripheral surface of the lower first outer diameter portion 624 of the moving member 620 is slightly recessed, and the high pressure chamber 638 is partitioned by the recessed portion of the lower first outer diameter portion 624 and the intermediate portion 616 of the cylindrical member 610. Has been. A third communication passage 640 that opens to the high-pressure chamber 638 is formed so as to extend in the radial direction of the cylindrical member 610, and the high-pressure chamber is connected via the third communication passage 640, the clearance 430, and the high-pressure port 432. 638 is connected to the high pressure communication path 164.

移動部材620の内部には、それの軸線方向に貫通する連通路650が形成されており、その連通路650は、移動部材620の上端面および下端面に開口している。その連通路650が形成された移動部材620の下方第2外径部626の下端部は、コア322に形成された貫通穴338の小内径部350に摺動可能に嵌合されており、連通路650の下端の開口は、貫通穴338内に開口している。一方、連通路650の上端の開口は、調圧室363に開口している。つまり、調圧室636と低圧室368等とが連通路650によって連通されており、連通路650の上端面への開口が調圧室側開口として機能するとともに、連通路650の下端面への開口が低圧室側開口として機能している。連通路650の下端面への開口(以下、「低圧室側開口」という場合がある)はテーパ状とされており、プランジャ312の先端と向かい合っている。プランジャ312は、コイルスプリング352の弾性力によってプランジャ312が低圧室側開口から離隔する方向に付勢されており、弾性力に抗してプランジャ312が上方に移動することで、プランジャ312の先端が、低圧室側開口に着座するようにされている。なお、連通路650は、さらに、下方第2外径部626の外周面にも開口しており、第6液室414に連通している。   A communicating path 650 that penetrates in the axial direction of the moving member 620 is formed inside the moving member 620, and the communicating path 650 opens to the upper end surface and the lower end surface of the moving member 620. The lower end portion of the lower second outer diameter portion 626 of the moving member 620 in which the communication path 650 is formed is slidably fitted to the small inner diameter portion 350 of the through hole 338 formed in the core 322. The opening at the lower end of the passage 650 opens into the through hole 338. On the other hand, the opening at the upper end of the communication path 650 opens to the pressure regulating chamber 363. That is, the pressure regulating chamber 636 and the low pressure chamber 368 are communicated by the communication passage 650, and the opening to the upper end surface of the communication passage 650 functions as the pressure regulating chamber side opening, and the lower end surface of the communication passage 650 is connected to the lower end surface. The opening functions as a low pressure chamber side opening. The opening to the lower end surface of the communication path 650 (hereinafter, sometimes referred to as “low pressure chamber side opening”) is tapered and faces the tip of the plunger 312. The plunger 312 is biased in a direction away from the low-pressure chamber side opening by the elastic force of the coil spring 352, and the plunger 312 moves upward against the elastic force, so that the tip of the plunger 312 is moved upward. It is configured to be seated in the low pressure chamber side opening. The communication passage 650 is also opened on the outer peripheral surface of the lower second outer diameter portion 626 and communicates with the sixth liquid chamber 414.

このような構造によって、本液圧弁装置600においても、先のシステム302の液圧弁装置300と同様の効果を発揮することが可能となっている。また、図10に示すように、上方向への高圧室圧を受ける移動部材620の受圧面積A15と、下方向への高圧室圧を受ける移動部材620の受圧面積A16とは同じとなっている。このため、本液圧弁装置600においても、移動部材620の初期動作に必要な力が低減されており、コイル316の消費電力の抑制が図られている。さらに、調圧室圧の増圧時の液漏れ,圧力特性のヒステリシスの発生を抑制するために、下方向への調圧室圧を受ける移動部材620の受圧面積と、上方向への調圧室圧を受ける移動部材620の受圧面積とが同じとされている。具体的には、移動部材620のフランジ部622が円筒部材610の段差面632に着座している箇所の受圧面積(上記受圧面積A15に相当)からプランジャ312の先端が低圧室側開口へ着座している箇所の受圧面積A17を減じたものが、下方向への調圧室圧を受ける移動部材620の受圧面積に相当し、移動部材620を構成する環状部材628の受圧面積A18から移動部材620の下方第2外径部626の受圧面積A19を減じたものが、上方向への調圧室圧を受ける移動部材620の受圧面積に相当する。つまり、受圧面積の関係が以下の式を満たすように設計されている。
15−A17=A18−A19
With this structure, the present hydraulic valve device 600 can exhibit the same effects as the hydraulic valve device 300 of the previous system 302. Also, as shown in FIG. 10, the pressure receiving area A 15 of the moving member 620 that receives the high pressure chamber pressure in the upward direction is the same as the pressure receiving area A 16 of the moving member 620 that receives the high pressure chamber pressure in the downward direction. ing. For this reason, also in this hydraulic valve apparatus 600, the force required for the initial operation of the moving member 620 is reduced, and the power consumption of the coil 316 is suppressed. Furthermore, in order to suppress the occurrence of liquid leakage and pressure characteristic hysteresis when the pressure regulating chamber pressure is increased, the pressure receiving area of the moving member 620 that receives the pressure regulating chamber pressure in the downward direction, and the pressure regulating in the upward direction. The pressure receiving area of the moving member 620 that receives the chamber pressure is the same. Specifically, the tip of the plunger 312 is seated on the low pressure chamber side opening from the pressure receiving area (corresponding to the pressure receiving area A 15 ) where the flange portion 622 of the moving member 620 is seated on the stepped surface 632 of the cylindrical member 610. The reduced pressure receiving area A 17 at the position corresponding to the pressure corresponds to the pressure receiving area of the moving member 620 that receives the pressure-adjusting chamber pressure in the downward direction, and from the pressure receiving area A 18 of the annular member 628 constituting the moving member 620. A value obtained by reducing the pressure receiving area A 19 of the lower second outer diameter portion 626 of the moving member 620 corresponds to the pressure receiving area of the moving member 620 that receives the pressure regulating chamber pressure in the upward direction. That is, it is designed so that the relationship between the pressure receiving areas satisfies the following formula.
A 15 -A 17 = A 18 -A 19

本実施例の液圧ブレーキシステムにおいても、液圧弁装置を除いて、先のブレーキシステム302と同様の構成とされているため、液圧弁装置700のみを図11に示し、全体の図面を省略することとする。また、本液圧弁装置700は、移動部材およびプランジャ等を除いて、先のシステム302の液圧弁装置300と略同様の構成であるため、それらを中心に説明し、同様の機能の構成要素については、同じ符号を用いて説明を省略あるいは簡略に行うものとする。   Also in the hydraulic brake system of this embodiment, except for the hydraulic valve device, the configuration is the same as that of the previous brake system 302. Therefore, only the hydraulic valve device 700 is shown in FIG. I will do it. The hydraulic valve device 700 has substantially the same configuration as the hydraulic valve device 300 of the previous system 302 except for the moving member, the plunger, and the like. The description will be omitted or simplified using the same reference numerals.

図11に示すように、本液圧弁装置700において、上部外郭部材320の第3内径部364に蓋部材380が摺動可能に嵌合されるとともに、第4内径部366に円筒部材370が摺動可能に嵌合されており、円筒部材370に蓋部材380が固定的に嵌合されている。円筒部材370および蓋部材380の下面に形成された凹部388には、移動部材710が挿入されている。移動部材710は、最も外径の大きいフランジ部712と、そのフランジ部712の下方に位置しフランジ部712の外径より小さな外径の下方第1外径部714と、その下方第1外径部714の下方に位置し下方第1外径部714の外径より小さな外径の下方第2外径部716と、フランジ部712の上方に位置しフランジ部712の外径より小さな外径の上方第1外径部718と、その上方第1外径部718の上方に位置し上方第1外径部718の外径より小さな外径の上方第2外径部720とを有している。   As shown in FIG. 11, in the hydraulic valve device 700, the lid member 380 is slidably fitted to the third inner diameter portion 364 of the upper outer member 320, and the cylindrical member 370 is slid on the fourth inner diameter portion 366. The lid member 380 is fixedly fitted to the cylindrical member 370. A moving member 710 is inserted into a recess 388 formed on the lower surface of the cylindrical member 370 and the lid member 380. The moving member 710 includes a flange portion 712 having the largest outer diameter, a lower first outer diameter portion 714 having an outer diameter smaller than the outer diameter of the flange portion 712 and a lower first outer diameter thereof. A lower second outer diameter portion 716 having an outer diameter smaller than the outer diameter of the lower first outer diameter portion 714 and an outer diameter smaller than the outer diameter of the flange portion 712 which is positioned above the flange portion 712. It has an upper first outer diameter portion 718 and an upper second outer diameter portion 720 that is located above the upper first outer diameter portion 718 and has an outer diameter smaller than the outer diameter of the upper first outer diameter portion 718. .

円筒部材370は、下端に位置し内径の最も小さい下端部722と、上端に位置し内径の最も大きい上端部724と、下端部722と上端部724との間に位置し、下端部722の内径より大きく、かつ、上端部724の内径より小さい内径の中間部726とを有している。移動部材710の下方第2外径部716は円筒部材370の下端部722に摺動可能に嵌合されており、上方第2外径部720は蓋部材380の凹部388に挿入されている。上方第1外径部718とフランジ部712と下方第1外径部714とは中間部726内に位置しており、下方第1外径部714と下方第2外径部716との間の段差面728が円筒部材370の第2室間部としての下端部722の上方への開口に着座可能とされている。詳しく言えば、下端部722と中間部726との間の段差面730はテーパ状とされており、段差面730が弁座として機能し、その段差面730に弁体として機能する下方第1外径部714と下方第2外径部716との間の段差面728が着座可能とされている。   The cylindrical member 370 is located at the lower end and has the smallest inner diameter 722, the upper end located at the upper end and the largest inner diameter 724, and the lower end 722 and the upper end 724. The intermediate portion 726 is larger and has an inner diameter smaller than the inner diameter of the upper end portion 724. The lower second outer diameter portion 716 of the moving member 710 is slidably fitted to the lower end portion 722 of the cylindrical member 370, and the upper second outer diameter portion 720 is inserted into the concave portion 388 of the lid member 380. The upper first outer diameter portion 718, the flange portion 712, and the lower first outer diameter portion 714 are located in the intermediate portion 726, and are located between the lower first outer diameter portion 714 and the lower second outer diameter portion 716. The step surface 728 can be seated in an opening above the lower end 722 as the second chamber portion of the cylindrical member 370. More specifically, the step surface 730 between the lower end portion 722 and the intermediate portion 726 is tapered, and the step surface 730 functions as a valve seat, and the step first surface outside the step surface 730 functions as a valve body. A step surface 728 between the diameter portion 714 and the lower second outer diameter portion 716 can be seated.

移動部材710のフランジ部712の上端面と蓋部材380の蓋内面との間には、第1付勢部材としてのコイルスプリング732が圧縮された状態で配設されており、そのコイルスプリング732の弾性力によって下方、つまり、移動部材710の外周面に形成された段差面728が円筒部材370の内周面に形成された段差面730に着座する方向に、移動部材710が付勢されている。着座状態において、移動部材710と蓋部材380と円筒部材370の中間部726とによって調圧室734が区画されている。また、移動部材710の下方第2外径部716の外周面は僅かに凹んでおり、その凹んだ部分と円筒部材370の中間部726とによって高圧室736が区画されている。なお、円筒部材370には、高圧室736とクリアランス430とを連通する第3連通路434と、調圧室734と第6液室414とを連通する円筒部材内連通路440とが形成されている。   A coil spring 732 serving as a first urging member is disposed between the upper end surface of the flange portion 712 of the moving member 710 and the inner surface of the lid member 380 in a compressed state. The moving member 710 is urged downward by the elastic force, that is, in a direction in which the step surface 728 formed on the outer peripheral surface of the moving member 710 is seated on the step surface 730 formed on the inner peripheral surface of the cylindrical member 370. . In the seated state, the pressure regulating chamber 734 is defined by the moving member 710, the lid member 380, and the intermediate portion 726 of the cylindrical member 370. Further, the outer peripheral surface of the lower second outer diameter portion 716 of the moving member 710 is slightly recessed, and the high pressure chamber 736 is defined by the recessed portion and the intermediate portion 726 of the cylindrical member 370. The cylindrical member 370 is formed with a third communication path 434 that communicates the high-pressure chamber 736 and the clearance 430, and a cylindrical member communication path 440 that communicates the pressure regulating chamber 734 and the sixth liquid chamber 414. Yes.

移動部材710には、上端面および下方第1外径部714に開口する内部室としての内部通路737が形成されている。その内部通路737の上端の開口には、概して円柱状のピン738が摺動可能に挿入されており、そのピン738の上端面は蓋部材380の凹部388の内面において支持されている。蓋部材380の凹部388の内部には、ピン738を貫通させた状態で環状のゴム部材739が設けられており、その第3室間部内ゴム部材としてのゴム部材739の下面に移動部材710の上端面が密着している。ゴム部材739はシールとして機能しており、そのゴム部材739によって移動部材710と蓋部材380との間の液漏れが禁止されている。   The moving member 710 is formed with an internal passage 737 as an internal chamber that opens to the upper end surface and the lower first outer diameter portion 714. A generally cylindrical pin 738 is slidably inserted into the opening at the upper end of the internal passage 737, and the upper end surface of the pin 738 is supported by the inner surface of the recess 388 of the lid member 380. An annular rubber member 739 is provided inside the concave portion 388 of the lid member 380 with the pin 738 penetrating therethrough, and the moving member 710 The upper end surface is in close contact. The rubber member 739 functions as a seal, and liquid leakage between the moving member 710 and the lid member 380 is prohibited by the rubber member 739.

移動部材710の下方第2外径部716は円筒部材370の下端から延び出しており、その延び出した下方第2外径部716の下端部がコア322に形成された貫通穴338の小内径部350に摺動可能に嵌合されている。下方第2外径部716の下端面には凹部740が形成されており、さらに下方第2外径部716の外周面に開口するとともに凹部740にも開口する接続穴742も形成されている。その接続穴742は第6液室414に開口しており、低圧室368等と調圧室734とが、凹部740と接続穴742と第6液室414と円筒部材内連通路440とから構成される連通路によって連通されている。ここで、凹部740と接続穴742とは移動部材内連通路として機能し、第6液室414と円筒部材内連通路440とはハウジング内連通路として機能している。さらに、円筒部材内連通路440の調圧室734への開口は調圧室側開口として機能し、凹部740の低圧室368等への開口は低圧室側開口として機能している。   The lower second outer diameter portion 716 of the moving member 710 extends from the lower end of the cylindrical member 370, and the lower end of the extended second lower outer diameter portion 716 is a small inner diameter of the through hole 338 formed in the core 322. The portion 350 is slidably fitted. A recess 740 is formed on the lower end surface of the lower second outer diameter portion 716, and a connection hole 742 that opens to the outer peripheral surface of the lower second outer diameter portion 716 and also opens to the recess 740 is also formed. The connection hole 742 opens to the sixth liquid chamber 414, and the low pressure chamber 368 and the like and the pressure regulating chamber 734 are constituted by the recess 740, the connection hole 742, the sixth liquid chamber 414, and the communication passage 440 in the cylindrical member. The communication path is connected. Here, the recess 740 and the connection hole 742 function as a moving member communication path, and the sixth liquid chamber 414 and the cylindrical member communication path 440 function as a housing communication path. Further, the opening of the communication passage 440 in the cylindrical member to the pressure adjusting chamber 734 functions as a pressure adjusting chamber side opening, and the opening of the recess 740 to the low pressure chamber 368 and the like functions as a low pressure chamber side opening.

また、移動部材710の下方には、プランジャ750が設けられており、プランジャ750は、貫通穴338に挿入されるロッド部752と、コア322の下端面と下部外殻部材318の内底面との間に配設される本体部754とを有している。ロッド部752は、下端部に位置し外径の大きい大径部756と、上端部に位置し外径の小さい小径部758と、大径部756と小径部758との間に位置し、大径部756の外径より小さく、かつ、小径部758の外径より大きい外径の中間径部760とを有している。大径部756は貫通穴338の大内径部348に摺動可能に嵌合されており、中間径部760は貫通穴338の大内径部348および小内径部350にクリアランスのある状態で挿入されている。小径部758は、貫通穴338に嵌合された移動部材710の凹部740に挿入されている。   A plunger 750 is provided below the moving member 710. The plunger 750 includes a rod portion 752 inserted into the through hole 338, a lower end surface of the core 322, and an inner bottom surface of the lower outer shell member 318. And a main body portion 754 disposed therebetween. The rod portion 752 is positioned at the lower end portion and has a large outer diameter portion 756, is positioned at the upper end portion and has a small outer diameter portion 758, and is positioned between the large diameter portion 756 and the small diameter portion 758, and is large. And an intermediate diameter portion 760 having an outer diameter smaller than the outer diameter of the diameter portion 756 and larger than the outer diameter of the small diameter portion 758. The large diameter portion 756 is slidably fitted into the large inner diameter portion 348 of the through hole 338, and the intermediate diameter portion 760 is inserted into the large inner diameter portion 348 and the small inner diameter portion 350 of the through hole 338 with clearance. ing. The small diameter portion 758 is inserted into the concave portion 740 of the moving member 710 fitted in the through hole 338.

プランジャ750の小径部758と中間内径部760との間の段差面770は、移動部材740の凹部740の下方への開口(以下、「低圧室側開口」という場合がある)と向かい合っており、その低圧室側開口はテーパ状とされている。プランジャ750の大径部756と中間径部760との間の段差面と、貫通穴338の大内径部348と小内径部350との間の段差面との間には、第2付勢部材としてのコイルスプリング772が圧縮された状態で配設されており、そのコイルスプリング772の弾性力によってプランジャ750は下方に付勢されている。つまり、プランジャ750は、コイルスプリング772の弾性力によってプランジャ750の外周面に形成された段差面770が低圧室側開口から離隔する方向に付勢されており、弾性力に抗してプランジャ750が上方に移動することで、段差面770が低圧室側開口に着座するようにされている。なお、プランジャ750のロッド部752には、上端面と外周面とに開口するロッド部内連通路776が形成されており、プランジャ750の移動に伴う凹部740内の容積変化が許容されている。   A step surface 770 between the small-diameter portion 758 and the intermediate inner-diameter portion 760 of the plunger 750 faces an opening below the recess 740 of the moving member 740 (hereinafter sometimes referred to as “low-pressure chamber side opening”). The low-pressure chamber side opening is tapered. A second urging member is provided between the step surface between the large diameter portion 756 and the intermediate diameter portion 760 of the plunger 750 and the step surface between the large inner diameter portion 348 and the small inner diameter portion 350 of the through hole 338. The coil spring 772 is arranged in a compressed state, and the plunger 750 is urged downward by the elastic force of the coil spring 772. That is, the plunger 750 is biased in a direction in which the stepped surface 770 formed on the outer peripheral surface of the plunger 750 is separated from the low-pressure chamber side opening by the elastic force of the coil spring 772, and the plunger 750 is resisted against the elastic force. By moving upward, the step surface 770 is seated in the low-pressure chamber side opening. In addition, the rod portion 752 of the plunger 750 is formed with an in-rod portion communication passage 776 that opens to the upper end surface and the outer peripheral surface, and the volume change in the concave portion 740 is allowed as the plunger 750 moves.

このような構造によって、本液圧弁装置700においても、先のシステム302の液圧弁装置300と同様の効果を発揮することが可能となっている。また、図12に示すように、上方向への高圧室圧を受ける移動部材710の受圧面積A20と、下方向への高圧室圧を受ける移動部材710の受圧面積A21とは同じとなっている。このため、本液圧弁装置700においても、移動部材710の初期動作に必要な力が低減されており、コイル316の消費電力の抑制が図られている。さらに、調圧室圧の増圧時の液漏れ,圧力特性のヒステリシスの発生を抑制するために、下方向への調圧室圧を受ける移動部材710の受圧面積と、上方向への調圧室圧を受ける移動部材710の受圧面積とが同じとされている。具体的には、移動部材710の段差面728が円筒部材370の段差面730に着座している箇所の受圧面積(上記受圧面積A20に相当)が、下方向への調圧室圧を受ける移動部材710の受圧面積に相当する。一方、移動部材710の上方第2外径部720が蓋部材380の凹部388に摺動可能に嵌合されている箇所の受圧面積A22からピン738の断面積A23を減じたものが、上方向への調圧室圧を受ける移動部材710の受圧面積に相当する。さらに、プランジャ750の段差面770が低圧室側開口へ着座している箇所の受圧面積A24からプランジャ750の小径部758の受圧面積A25を減じたものも、上方向への調圧室圧を受ける移動部材710の受圧面積に相当する。つまり、受圧面積の関係が以下の式を満たすように設計されている。
20=(A22−A23)+(A24−A25
なお、本液圧弁装置700では、受圧面積A20と受圧面積A22とは同じとされているため、受圧面積の関係は以下の式を満たすようになっている。
23=A24−A25
With this structure, the present hydraulic valve device 700 can also exhibit the same effects as the hydraulic valve device 300 of the previous system 302. Also, as shown in FIG. 12, the pressure receiving area A 20 of the moving member 710 that receives the high pressure chamber pressure in the upward direction is the same as the pressure receiving area A 21 of the moving member 710 that receives the high pressure chamber pressure in the downward direction. ing. For this reason, also in this hydraulic valve apparatus 700, the force required for the initial operation of the moving member 710 is reduced, and the power consumption of the coil 316 is suppressed. Furthermore, in order to suppress the occurrence of liquid leakage and pressure characteristic hysteresis when the pressure regulating chamber pressure is increased, the pressure receiving area of the moving member 710 that receives the pressure regulating chamber pressure in the downward direction, and the pressure regulating in the upward direction. The pressure receiving area of the moving member 710 that receives the chamber pressure is the same. Specifically, the pressure receiving area (corresponding to the pressure receiving area A 20 ) where the stepped surface 728 of the moving member 710 is seated on the stepped surface 730 of the cylindrical member 370 receives the pressure regulating chamber pressure in the downward direction. This corresponds to the pressure receiving area of the moving member 710. On the other hand, the one obtained by subtracting the cross-sectional area A 23 of the pin 738 from the pressure receiving area A 22 where the upper second outer diameter portion 720 of the moving member 710 is slidably fitted in the recess 388 of the lid member 380, This corresponds to the pressure receiving area of the moving member 710 that receives the pressure regulating chamber pressure in the upward direction. Further, the pressure-regulating chamber pressure in the upward direction is also obtained by subtracting the pressure-receiving area A 25 of the small-diameter portion 758 of the plunger 750 from the pressure-receiving area A 24 where the stepped surface 770 of the plunger 750 is seated on the low-pressure chamber side opening. This corresponds to the pressure receiving area of the moving member 710 that receives the pressure. That is, it is designed so that the relationship between the pressure receiving areas satisfies the following formula.
A 20 = (A 22 −A 23 ) + (A 24 −A 25 )
In the hydraulic pressure valve device 700, since the pressure receiving area A 20 and the pressure receiving area A 22 are the same, the relationship between the pressure receiving areas satisfies the following expression.
A 23 = A 24 -A 25

118:リザーバ(低圧源) 158:液圧弁装置 162:高圧減装置 180:増圧用リニア弁(電磁式増圧弁)(移動力発生器) 182:減圧用リニア弁(電磁式減圧弁)(移動力発生器) 190:ハウジング 192:プランジャ 196:移動部材 206:第2内径部(第4室間部) 208:第3内径部(第1室間部)(第2室間部) 228:第2液室(移動力発生室) 250:凹部(第3室間部) 252:コイルスプリング(第1付勢部材) 254:第3液室(調圧室) 256:第4液室(高圧室) 260:貫通穴(連通路)(内部室) 261:接続穴(連通路) 262:ピン 270:コイルスプリング(第2付勢部材) 272:第5液室(低圧室) 300:液圧弁装置 310:ハウジング 312:プランジャ 314:移動部材 316:コイル(移動力発生器) 350:小内径部(第1室間部) 352:コイルスプリング(第2付勢部材) 368:第1液室(低圧室) 372:下端部(第1室間部) 374:第1中間部(第2室間部) 386:第3液室(補助室) 388:凹部(第3室間部) 402:コイルスプリング(第1付勢部材) 404:第4液室(調圧室) 406:第5液室(高圧室) 410:ゴム部材(第3室間部内ゴム部材) 412:ゴム部材(第1室間部内ゴム部材) 414:第6液室(ハウジング内連通路)(連通路) 416:移動部材内連通路(連通路) 440:円筒部材内連通路(ハウジング内連通路)(連通路) 500:液圧弁装置 512:下端部(第1室間部) 514:第1中間部(第2室間部) 520:移動部材 540:コイルスプリング(第1付勢部材) 542:調圧室 544:高圧室 550:連通路(内部室) 556:ピン 558:ゴム部材(第3室間部内ゴム部材) 600:液圧弁装置 614:下端径部(第1室間部) 616:中間部(第2室間部) 620:移動部材 634:コイルスプリング(第1付勢部材) 636:調圧室 638:高圧室 650:連通路 700:液圧弁装置 710:移動部材 722:下端部(第1室間部)(第2室間部) 732:コイルスプリング(第1付勢部材) 734:調圧室 736:高圧室 737:内部通路(内部室) 738:ピン 739:ゴム部材(第3室間部内ゴム部材) 740:凹部(移動部材内連通路)(連通路) 742:接続穴(移動部材内連通路)(連通路) 750:プランジャ 772:コイルスプリング(第2付勢部材)   118: reservoir (low pressure source) 158: hydraulic pressure valve device 162: high pressure reducing device 180: pressure increasing linear valve (electromagnetic pressure increasing valve) (moving force generator) 182: pressure reducing linear valve (electromagnetic pressure reducing valve) (moving force) 190): Housing 192: Plunger 196: Moving member 206: Second inner diameter portion (fourth chamber portion) 208: Third inner diameter portion (first chamber portion) (second chamber portion) 228: Second Liquid chamber (moving force generating chamber) 250: Recessed portion (inter-third chamber portion) 252: Coil spring (first biasing member) 254: Third liquid chamber (pressure regulating chamber) 256: Fourth liquid chamber (high pressure chamber) 260: Through hole (communication path) (inner chamber) 261: Connection hole (communication path) 262: Pin 270: Coil spring (second biasing member) 272: Fifth fluid chamber (low pressure chamber) 300: Fluid pressure valve device 310 Housing 312: Plunger 314: Moving member 316: Coil (moving force generator) 350: Small inner diameter portion (inter-first chamber portion) 352: Coil spring (second urging member) 368: First liquid chamber (low pressure chamber) 372: Lower end (first chamber) 374: First intermediate (second chamber) 386: Third liquid chamber (auxiliary chamber) 388: Recess (third chamber) 402: Coil spring (first 404: Fourth liquid chamber (pressure regulating chamber) 406: Fifth liquid chamber (high pressure chamber) 410: Rubber member (rubber member in the third chamber) 412: Rubber member (rubber in the first chamber) 414: sixth fluid chamber (communication path in housing) (communication path) 416: communication path in moving member (communication path) 440: communication path in cylindrical member (communication path in housing) (communication path) 500: hydraulic valve Device 5 12: Lower end portion (first inter-chamber portion) 514: First intermediate portion (second inter-chamber portion) 520: Moving member 540: Coil spring (first biasing member) 542: Pressure regulating chamber 544: High-pressure chamber 550: Communication path (inner chamber) 556: Pin 558: Rubber member (rubber member in the third chamber) 600: Hydraulic valve device 614: Lower end diameter portion (first chamber) 616: Intermediate portion (second chamber) 620: moving member 634: coil spring (first urging member) 636: pressure regulating chamber 638: high pressure chamber 650: communication path 700: hydraulic valve device 710: moving member 722: lower end portion (first chamber portion) (first chamber) 732: Coil spring (first biasing member) 734: Pressure regulating chamber 736: High pressure chamber 737: Internal passage (internal chamber) 738: Pin 739: Rubber member (between third chamber) 750: Plunger 772: Coil spring (second biasing member) 740: Recessed portion (communication passage in moving member) (communication passage) 742: Connection hole (communication passage in moving member) (communication passage)

Claims (9)

作動液を調圧するための液圧弁装置であって、
低圧源と連通する低圧室と、調圧された作動液で満たされる調圧室と、前記低圧室と前記調圧室との間に設けられるとともに高圧源と連通する高圧室と、前記低圧室と前記高圧室とを繋ぐ第1室間部と、前記高圧室と前記調圧室とを繋ぐ第2室間部とを有し、それらを自身の軸線方向に並ぶように区画するハウジングと、
前記高圧室を前記軸線方向に貫くようにして前記第1室間部と前記第2室間部とに挿入されるとともに一端部が前記調圧室内に延び出しており、前記軸線方向に移動可能に前記ハウジング内に配設され、前記第1室間部を塞ぐとともに、前記一端部が前記第2室間部の前記調圧室側の開口に着座することで前記高圧室と前記調圧室との間の作動液の流通を遮断する移動部材と、
その移動部材を、前記一端部が前記開口に着座する方向に付勢する第1付勢部材と、
前記移動部材の他端部に形成されるとともに前記低圧室に開口する低圧室側開口と、前記移動部材の前記一端部と前記ハウジングとのいずれか一方に形成されるとともに前記調圧室に開口する調圧室側開口とを有して、前記低圧室と前記調圧室とを連通する連通路と、
前記軸線方向に移動可能に前記ハウジング内に配設され、前記低圧室側開口に着座することで前記調圧室と前記低圧室との間の作動液の流通を遮断するプランジャと、
そのプランジャを、それが前記低圧室側開口から離隔する方向に付勢する第2付勢部材と、
前記プランジャをそれが前記低圧室側開口に着座する方向に移動させるための力を、自身に供給される電力に応じた大きさで発生させる移動力発生器と
を備えた液圧弁装置。
A hydraulic valve device for regulating hydraulic fluid,
A low pressure chamber communicating with the low pressure source, a pressure regulating chamber filled with a regulated hydraulic fluid, a high pressure chamber provided between the low pressure chamber and the pressure regulating chamber and communicating with the high pressure source, and the low pressure chamber And a first chamber connecting the high pressure chamber and a second chamber connecting the high pressure chamber and the pressure regulating chamber, and a housing that divides them so as to be aligned in the axial direction of the chamber.
It is inserted into the first chamber and the second chamber so as to penetrate the high pressure chamber in the axial direction, and one end portion extends into the pressure regulating chamber and is movable in the axial direction. The high pressure chamber and the pressure regulating chamber are disposed in the housing, block the portion between the first chambers, and the one end portion is seated in an opening on the pressure regulating chamber side of the second chamber portion. A moving member that blocks the flow of hydraulic fluid between the
A first biasing member that biases the moving member in a direction in which the one end is seated in the opening;
A low pressure chamber side opening that is formed at the other end of the moving member and opens to the low pressure chamber, and is formed at one of the one end of the moving member and the housing and is open to the pressure regulating chamber. A pressure adjusting chamber side opening that communicates with the low pressure chamber and the pressure adjusting chamber;
A plunger that is disposed in the housing so as to be movable in the axial direction, and that blocks the flow of hydraulic fluid between the pressure regulating chamber and the low pressure chamber by being seated in the low pressure chamber side opening;
A second urging member that urges the plunger in a direction in which the plunger is separated from the low-pressure chamber side opening;
A hydraulic valve device comprising: a moving force generator that generates a force for moving the plunger in a direction in which the plunger is seated on the low-pressure chamber side opening in a magnitude corresponding to the electric power supplied to the plunger.
前記調圧室側開口が、前記移動部材の前記一端部に形成されるとともに、
前記連通路が、前記移動部材の内部を貫通する請求項1に記載の液圧弁装置。
The pressure regulating chamber side opening is formed at the one end of the moving member,
The hydraulic valve device according to claim 1, wherein the communication path passes through the inside of the moving member.
前記調圧室側開口が、前記ハウジングに形成されるとともに、
前記連通路が、
(a)前記移動部材に形成され、前記第1室間部に開口するとともにその開口と前記低圧室側開口とを連通する移動部材内連通路と、(b)前記ハウジングに形成され、前記移動部材内連通路の前記第1室間部への開口と前記調圧室側開口とを連通するハウジング内連通路とを含んで構成された請求項1に記載の液圧弁装置。
The pressure regulating chamber side opening is formed in the housing,
The communication path is
(a) a moving member communication path formed in the moving member and opening between the first chambers and communicating the opening and the low pressure chamber side opening; and (b) formed in the housing and moving the moving member. 2. The hydraulic valve device according to claim 1, further comprising an in-housing communication path that communicates an opening of the in-member communication path to the first chamber portion and the pressure regulating chamber side opening.
前記移動部材が、
それの前記一端部が前記第2室間部の前記調圧室側の開口に接近する方向に前記高圧室内の作動液の液圧を受ける受圧面積と、前記一端部が前記開口から離隔する方向に前記高圧室内の作動液の液圧を受ける受圧面積とが等しくなる形状とされた請求項1ないし請求項3のいずれか1つに記載の液圧弁装置。
The moving member is
A pressure receiving area for receiving the hydraulic pressure of the working fluid in the high pressure chamber in a direction in which the one end portion thereof approaches the opening on the pressure regulating chamber side of the second chamber portion, and a direction in which the one end portion is separated from the opening The hydraulic valve device according to any one of claims 1 to 3, wherein the pressure receiving area that receives the hydraulic pressure of the hydraulic fluid in the high-pressure chamber is made equal.
前記移動部材が、
前記低圧室側開口が前記プランジャに接近する方向に前記調圧室内の作動液の液圧を受ける受圧面積と、前記低圧室側開口が前記プランジャから離隔する方向に前記調圧室内の作動液の液圧を受ける受圧面積とが等しくなる形状とされた請求項1ないし請求項4のいずれか1つに記載の液圧弁装置。
The moving member is
The pressure receiving area that receives the hydraulic pressure of the hydraulic fluid in the pressure regulating chamber in a direction in which the low pressure chamber side opening approaches the plunger, and the hydraulic fluid in the pressure regulating chamber in a direction in which the low pressure chamber side opening is separated from the plunger. The hydraulic valve device according to any one of claims 1 to 4, wherein the hydraulic pressure device has a shape that is equal to a pressure receiving area that receives hydraulic pressure.
前記ハウジングが、さらに、前記調圧室の前記高圧室側とは反対側に設けられた補助室と、その補助室と前記調圧室とを繋ぐ第3室間部とを有し、
前記移動部材が、前記第3室間部まで延びてそれに挿入されるとともに、
当該液圧弁装置が、
前記移動部材の内部に形成され、その移動部材の外周面において前記調圧室に開口するとともに、前記移動部材の前記一端部の側の端面において前記補助室に開口する内部室と、
その内部室の前記端面における開口にその開口を塞ぐようにして一端部が摺動可能に挿入されるとともに、他端部が前記補助室内において前記ハウジングによって支持されるピンとを備えた請求項1ないし請求項5のいずれか1つに記載の液圧弁装置。
The housing further includes an auxiliary chamber provided on the opposite side of the pressure regulating chamber from the high pressure chamber side, and a third chamber connecting the auxiliary chamber and the pressure regulating chamber,
The moving member extends to and inserted into the third chamber,
The hydraulic valve device is
An internal chamber that is formed inside the moving member, opens to the pressure regulating chamber on an outer peripheral surface of the moving member, and opens to the auxiliary chamber on an end surface on the one end side of the moving member;
A pin having one end slidably inserted into an opening in the end face of the internal chamber so as to close the opening and a pin supported by the housing in the auxiliary chamber. The hydraulic valve device according to claim 5.
前記ハウジングが、さらに、前記調圧室の前記高圧室側とは反対側に設けられるとともに前記低圧源と連通する補助室と、その補助室と前記調圧室とを繋ぐ第3室間部とを有し、
前記移動部材が、前記第3室間部まで延びてそれに挿入されており、前記第3室間部に挿入された部分に前記補助室に対向する段差面を有する段付形状とされるとともに、
当該液圧弁装置が、
前記第3室間部に設けられ、前記移動部材を貫通させるとともに、前記段差面に密着した状態で前記補助室と前記調圧室との間の作動液の流通を遮断する環状の第3室間部内ゴム部材を備えた請求項1ないし請求項6のいずれか1つに記載の液圧弁装置。
The housing is further provided on the opposite side of the pressure regulating chamber from the high pressure chamber side, communicates with the low pressure source, and an inter-third chamber connecting the auxiliary chamber and the pressure regulating chamber. Have
The moving member extends to the third inter-chamber portion and is inserted into the third chamber, and a stepped shape having a step surface facing the auxiliary chamber at a portion inserted into the third inter-chamber portion,
The hydraulic valve device is
An annular third chamber that is provided between the third chambers, penetrates the moving member, and blocks the flow of hydraulic fluid between the auxiliary chamber and the pressure regulating chamber while being in close contact with the step surface. The hydraulic valve device according to any one of claims 1 to 6, further comprising an intermediate rubber member.
前記ハウジングが、さらに、前記調圧室の前記高圧室側とは反対側に設けられるとともに前記低圧源と連通する補助室と、その補助室と前記調圧室とを繋ぐ第3室間部とを有し、
前記移動部材が、それの前記一端部の側の端面が前記第3室間部内に位置するように前記第3室間部まで延びてそれに挿入されるとともに、
当該液圧弁装置が、
前記第3室間部に設けられ、前記移動部材の前記端面に密着した状態で前記補助室と前記調圧室との間の作動液の流通を遮断する第3室間部内ゴム部材を備えた請求項1ないし請求項6のいずれか1つ記載の液圧弁装置。
The housing is further provided on the opposite side of the pressure regulating chamber from the high pressure chamber side, communicates with the low pressure source, and an inter-third chamber connecting the auxiliary chamber and the pressure regulating chamber. Have
The moving member extends to and inserted into the third chamber so that the end surface on the one end side thereof is located in the third chamber.
The hydraulic valve device is
A third inter-chamber rubber member that is provided in the inter-third chamber portion and blocks the flow of hydraulic fluid between the auxiliary chamber and the pressure regulating chamber in a state of being in close contact with the end surface of the moving member. The hydraulic valve device according to any one of claims 1 to 6.
前記移動部材が、前記第1室間部に挿入された部分に前記低圧室に対向する段差面を有する段付形状とされるとともに、
当該液圧弁装置が、
前記第1室間部に設けられ、前記移動部材を貫通させるとともに、前記段差面に密着した状態で前記低圧室と前記高圧室との間の作動液の流通を遮断する環状の第1室間部内ゴム部材を備えた請求項1ないし請求項8のいずれか1つに記載の液圧弁装置。
The moving member has a stepped shape having a step surface facing the low-pressure chamber at a portion inserted in the first inter-chamber portion,
The hydraulic valve device is
Between the first chambers, provided between the first chambers, between the annular first chambers that penetrates the moving member and blocks the flow of the working fluid between the low pressure chambers and the high pressure chambers in close contact with the step surface. The hydraulic valve device according to any one of claims 1 to 8, further comprising an internal rubber member.
JP2010095895A 2010-04-19 2010-04-19 Liquid pressure valve device Pending JP2011226541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095895A JP2011226541A (en) 2010-04-19 2010-04-19 Liquid pressure valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095895A JP2011226541A (en) 2010-04-19 2010-04-19 Liquid pressure valve device

Publications (1)

Publication Number Publication Date
JP2011226541A true JP2011226541A (en) 2011-11-10

Family

ID=45042113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095895A Pending JP2011226541A (en) 2010-04-19 2010-04-19 Liquid pressure valve device

Country Status (1)

Country Link
JP (1) JP2011226541A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107562A (en) * 2011-11-23 2013-06-06 Advics Co Ltd Vehicle brake device
JP2013152510A (en) * 2012-01-24 2013-08-08 Nippon Soken Inc Pressure regulating valve
JP2013209051A (en) * 2012-03-30 2013-10-10 Advics Co Ltd Vehicle brake device
WO2013175628A1 (en) * 2012-05-25 2013-11-28 トヨタ自動車株式会社 Regulator and hydraulic brake system comprising same
CN104284820A (en) * 2012-05-21 2015-01-14 丰田自动车株式会社 Vehicle brake system and pressure regulator used therein

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666502A (en) * 1979-10-11 1981-06-05 Zettergren Ted Convertor
JP2009079637A (en) * 2007-09-26 2009-04-16 Toyota Motor Corp Pressure control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666502A (en) * 1979-10-11 1981-06-05 Zettergren Ted Convertor
JP2009079637A (en) * 2007-09-26 2009-04-16 Toyota Motor Corp Pressure control device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107562A (en) * 2011-11-23 2013-06-06 Advics Co Ltd Vehicle brake device
JP2013152510A (en) * 2012-01-24 2013-08-08 Nippon Soken Inc Pressure regulating valve
JP2013209051A (en) * 2012-03-30 2013-10-10 Advics Co Ltd Vehicle brake device
US9056602B2 (en) 2012-03-30 2015-06-16 Advics Co., Ltd. Vehicle brake device
CN104284820A (en) * 2012-05-21 2015-01-14 丰田自动车株式会社 Vehicle brake system and pressure regulator used therein
CN104284820B (en) * 2012-05-21 2016-09-21 丰田自动车株式会社 Vehicle brake system
WO2013175628A1 (en) * 2012-05-25 2013-11-28 トヨタ自動車株式会社 Regulator and hydraulic brake system comprising same
CN104284819A (en) * 2012-05-25 2015-01-14 丰田自动车株式会社 Regulator and hydraulic brake system comprising same
US9205822B2 (en) 2012-05-25 2015-12-08 Toyota Jidosha Kabushiki Kaisha Pressure regulator and hydraulic brake system equipped with the pressure regulator
CN104284819B (en) * 2012-05-25 2016-09-21 丰田自动车株式会社 Pressure regulator and possess the brake fluid system of this pressure regulator
DE112012006423B4 (en) 2012-05-25 2018-07-19 Toyota Jidosha Kabushiki Kaisha Pressure regulator and hydraulic brake system equipped with the pressure regulator

Similar Documents

Publication Publication Date Title
US8186772B2 (en) Vehicle brake apparatus
KR101582066B1 (en) Two hydraulic-pressure control devices and a hydraulic braking system comprising a first of the hydraulic-pressure control devices
US9211876B2 (en) Hydraulic brake device for vehicle
KR20130121995A (en) Master cylinder device and hydraulic brake system using same
JP3955016B2 (en) Brake device for vehicle
JP3955015B2 (en) Brake device for vehicle
JP2011226541A (en) Liquid pressure valve device
JP4065231B2 (en) Brake device for vehicle
US8661811B2 (en) Vehicle brake device
JP3935141B2 (en) Brake device for vehicle
JP5397303B2 (en) Hydraulic valve device
JP4084741B2 (en) Brake device for vehicle
JP4446725B2 (en) Hydraulic booster
JP2008254467A (en) Vehicular brake device
EP1538045B1 (en) Hydraulic controller
JP3935142B2 (en) Brake device for vehicle
JP4732396B2 (en) Brake device for vehicle
CN107206984B (en) Brake fluid system
JP4446723B2 (en) Brake device for vehicle
JP4446722B2 (en) Hydraulic booster
JP4446724B2 (en) Brake device for vehicle
JP2005162126A (en) Vehicular brake device
JP2005162132A (en) Vehicular brake device
JP2013256210A (en) Master cylinder device
JP2015217884A (en) Regulator and hydraulic brake system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225