JP2011223962A - New cellulase - Google Patents

New cellulase Download PDF

Info

Publication number
JP2011223962A
JP2011223962A JP2010099291A JP2010099291A JP2011223962A JP 2011223962 A JP2011223962 A JP 2011223962A JP 2010099291 A JP2010099291 A JP 2010099291A JP 2010099291 A JP2010099291 A JP 2010099291A JP 2011223962 A JP2011223962 A JP 2011223962A
Authority
JP
Japan
Prior art keywords
cbd
bgl1
cellulase
aculeatus
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099291A
Other languages
Japanese (ja)
Inventor
Junichi Sumiya
順一 炭谷
Shuji Tani
修治 谷
Goji Kawaguchi
剛司 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2010099291A priority Critical patent/JP2011223962A/en
Publication of JP2011223962A publication Critical patent/JP2011223962A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide new cellulase that has much improved cellulose degradability in order to achieve efficient saccharification of plant-derived biomass.SOLUTION: A cellulose binding domain of cellobiohydrolase I derived from A. aculeatus, preferably, a strain of A. aculeatus No.F-50 is added via a linker to a catalytic domain of β-glucosidase 1 derived from A. aculeatus, preferably, a strain of A. aculeatus No.F-50 or a catalytic domain of carboxymethylcellulase 1 and the C-terminal side and/or the N-terminal side of the catalytic domain.

Description

本発明は新規セルラーゼに関する。   The present invention relates to a novel cellulase.

バイオマスから生産する燃料は環境への負荷が小さく、資源として豊富であり、地球上に植物が存在する限り消費しても再生可能な資源であるため、化石燃料に代わる有力な燃料として注目を集めている。特に植物由来のバイオマスに著量存在するセルロースからエタノール(バイオエタノール)を生産する方法は、その資源量が多いことやバイオマス資源として世界的に利用可能なこと、エタノールに変換する過程で生成する糖や副産物を用いて石油製品に代わるポリマーを合成できるなどの利点がある。   Fuel produced from biomass has a low environmental impact, is abundant as a resource, and is a renewable resource even if it is consumed as long as plants are present on the earth. Therefore, it attracts attention as a powerful alternative to fossil fuels. ing. In particular, the method of producing ethanol (bioethanol) from cellulose present in significant amounts in plant-derived biomass is abundant in resources, available worldwide as a biomass resource, and sugars produced in the process of conversion to ethanol There is an advantage that a polymer to replace petroleum products can be synthesized by using or by-products.

植物由来のバイオマスからエタノールを生産する場合には、植物が持つセルロースを強酸やセルラーゼを用いて糖化し、その後酵母などによりアルコール発酵を行わせるのが一般的である。   In the case of producing ethanol from plant-derived biomass, it is common to saccharify the cellulose possessed by the plant using a strong acid or cellulase, followed by alcohol fermentation with yeast or the like.

セルラーゼはセルロースを加水分解する酵素の総称で、セルラーゼはその性質により大きく3種類に分類される。1つ目は結晶セルロースに作用し、セルロース鎖の末端から二糖単位で分解するセロビオヒドロラーゼ(cellobiohydrolase:CBH)、2つ目は結晶セルロースを分解できないが、非結晶セルロース鎖をランダムに切断するエンドグルカナーゼ(endo-glucanase:EG)、そして3つ目が可溶化したセロビオース並びにセロオリゴ糖に作用し、グルコースを生成するβ−グルコシダーゼ(β−glucosidase:BGL)である。これらの酵素によるセルロース分解において、それぞれ単独の酵素による反応では非常に遅い反応となるが、これらの酵素が複合して作用する場合には、それぞれの酵素が協奏的に作用し、効率的な分解を行うことが知られている(非特許文献1)。   Cellulase is a general term for enzymes that hydrolyze cellulose, and cellulases are roughly classified into three types depending on their properties. The first is cellulobiohydrolase (CBH), which acts on crystalline cellulose and breaks down at the disaccharide unit from the end of the cellulose chain. The second cannot break down crystalline cellulose, but randomly breaks amorphous cellulose chains. Endoglucanase (EG), and the third is β-glucosidase (BGL) that acts on solubilized cellobiose and cellooligosaccharide to produce glucose. Cellulose degradation by these enzymes is a very slow reaction when each enzyme reacts. However, when these enzymes act in a complex manner, each enzyme acts in concert and efficient degradation. (Non-patent Document 1).

ところで、セルロースはグルコースがβ−1、4結合で連なった直鎖状ポリマーであり、分子同士が互いに水素結合によって結合し強固な結晶構造をとっているため、セルラーゼによるセルロースの分解(糖化)は非常に遅い。また、結晶構造にもIαとIβという2相構造があることや、完全な結晶ではない非結晶領域(アモルファス)も含まれていることが知られており、これらに対するセルラーゼの反応性も異なる。さらに、セルロースは水溶性が低く、グルコースの重合度が6〜7程度のセルロースはほとんど水に溶けなくなるという性質もセルラーゼによる分解が困難な要因の一つとなっている。 By the way, cellulose is a linear polymer in which glucose is linked by β-1,4 bonds, and molecules are bonded to each other by hydrogen bonds to form a strong crystal structure. Very slow. In addition, it is known that the crystal structure has a two-phase structure of I α and I β and also includes an amorphous region (amorphous) that is not a complete crystal. Different. Furthermore, the property that cellulose has low water solubility, and cellulose having a degree of polymerization of glucose of about 6 to 7 hardly dissolves in water is one of the factors that make it difficult to decompose by cellulase.

糸状菌Trichoderma. reeseiはセルロースを分解する酵素として古くから研究され、それが生産するセルラーゼは最強のセルラーゼと言われている。このセルラーゼは結晶性セルロースの分解には優れるものの、単糖を生成する力は弱く、糖化液中にはセロオリゴ糖(β−グルカンオリゴ糖)が多く残ってしまう。また、植物性バイオマスに含まれるような天然のセルロースはセルロース単独で存在することは少なく、ヘミセルロースやリグニンなどを伴うためセルロースを分解するにはまずこれらを除く必要がある。しかし、T.reeseiのセルラーゼはヘミセルラーゼ活性が弱いため、天然セルロースを効率的に分解することができない。   The filamentous fungus Trichoderma. Reesei has long been studied as an enzyme that degrades cellulose, and the cellulase that it produces is said to be the strongest cellulase. Although this cellulase is excellent in the degradation of crystalline cellulose, it has a weak ability to produce monosaccharides, and a large amount of cellooligosaccharide (β-glucan oligosaccharide) remains in the saccharified solution. In addition, natural cellulose such as contained in plant biomass is rarely present alone, and is accompanied by hemicellulose, lignin, etc., and therefore it is necessary to first remove them in order to decompose the cellulose. However, since T. reesei cellulase has a weak hemicellulase activity, it cannot efficiently degrade natural cellulose.

T.reeseiのセルラーゼのこうした弱点を補い、かつT.reeseiのセルラーゼと強い相乗作用を示すセルラーゼ酵素群を生産する微生物として、A.aculeatus No.F-50株が知られている(非特許文献1)。この菌の生産するセルラーゼ酵素群は非常に強い単糖生成力を有することに加え、ヘミセルラーゼ活性も強く、セルロースだけでなくヘミセルロースを含めた植物性バイオマスの糖化に非常に有効である。A.aculeatusは基本的な上記3種類(3分類)のセルラーゼ(CBH、EG、BGL)を含む9種類のセルラーゼを生産する。A.aculeatusは3種類のBGLを持つが、いずれも糖転移反応を起こさず単糖のみを生成するというセルロース分解にとっては、非常に優れた特長を持つ(非特許文献2)。中でもBGL1は、セロビオースだけでなくセロペンタオースやセロヘキサオースなど比較的長鎖のセロオリゴ糖に対しても強い分解活性を有し、単糖のみを生成するためセルロースの糖化に重要な役割を果たす。BGL3はBGL1に比べセロビオースやセロトリオ―スのようなセロオリゴ糖基質に対する活性は低いものの、BGL1同様、糖転移反応を起こさず単糖のみを生成する。BGL2については、現段階では、BGL1と同一の遺伝子から発現するものであるが糖鎖修飾の違いにより別の酵素として取得されたものである、と考えられている。   A. aculeatus No. F-50 strain is known as a microorganism that compensates for these weaknesses of T. reesei cellulase and produces a cellulase enzyme group exhibiting a strong synergistic effect with T. reesei cellulase (non-patent document). 1). The cellulase enzyme group produced by this bacterium has a very strong ability to produce monosaccharides and also has a strong hemicellulase activity, which is very effective for saccharification of plant biomass including not only cellulose but also hemicellulose. A. aculeatus produces nine types of cellulases including the above three types (three categories) of cellulases (CBH, EG, BGL). A. aculeatus has three types of BGL, all of which have very excellent features for cellulose degradation in which only a monosaccharide is produced without causing a transglycosylation reaction (Non-patent Document 2). Among them, BGL1 has a strong degrading activity not only on cellobiose but also on relatively long-chain cellooligosaccharides such as cellopentaose and cellohexaose, and plays an important role in cellulose saccharification because it produces only monosaccharides. . BGL3 is less active against cellooligosaccharide substrates such as cellobiose and cellotriose than BGL1, but, like BGL1, does not cause a transglycosylation reaction and produces only a monosaccharide. At present, BGL2 is expressed from the same gene as BGL1, but is considered to have been obtained as a separate enzyme due to a difference in sugar chain modification.

一方、EGの一種であるcarboxymethylcellulase1(CMC1)はA.aculeatusのセルラーゼの中でも発現量が多くセルロースの糖化に重要な役割を果たしていると考えられるが、セルロース結合ドメイン(CBD)を持たないため結晶セルロースに作用することができない。逆に、CMC2は、発現量は少ないがC末端側にセルロース結合ドメインを持ち、結晶セルロースに作用できるため、結晶セルロース中に部分的に含まれる非結晶部分を分解するのに重要な役割を果たしていると考えられる。   On the other hand, carboxymethylcellulase 1 (CMC1), which is a kind of EG, is highly expressed in A. aculeatus cellulase and is thought to play an important role in saccharification of cellulose. However, it does not have a cellulose binding domain (CBD), so it is crystalline cellulose. Can not act on. On the contrary, CMC2 plays an important role in decomposing the non-crystalline part partially contained in crystalline cellulose because it has a cellulose-binding domain on the C-terminal side although it is expressed in a small amount and can act on crystalline cellulose. It is thought that there is.

Exo-glucanaseであるCBHについては、A.aculeatusは2種類のCBH(CBHI、CBHII)に加えてさらに1種類のハイドロセルラーゼ(HCase)を有する。HCaseはAvicelをほとんど分解しないものの、アルカリ膨潤セルロース(ASC)やリン酸膨潤セルロース(PSC)のような非結晶セルロースに対し高い活性を示す。CBHI及びCBHIIはいずれもCBDを持ち結晶セルロースを末端からセロビオース単位で分解するが、CBHIはセルロース鎖の還元末端側から分解するのに対し、CBHIIは非還元末端側から分解する。   For CBH, which is an Exo-glucanase, A. aculeatus has one more type of hydrocellulase (HCase) in addition to two types of CBH (CBHI, CBHII). Although HCase hardly decomposes Avicel, it exhibits high activity against amorphous cellulose such as alkali swollen cellulose (ASC) and phosphate swollen cellulose (PSC). Both CBHI and CBHII have CBD and decompose crystalline cellulose from the end in cellobiose units, whereas CBHI decomposes from the reducing end side of the cellulose chain, whereas CBHII decomposes from the non-reducing end side.

このように、セルラーゼ酵素群によるセルロースの分解においては、最強のセルラーゼ生産菌と言われているT.reeseiよりも有利であるとされるA.aculeatus No.F-50株においてさえ、単糖のみを生成しセルロースの加水分解にその重要な役割を果たすBGL1や発現量の多いCMC1はそれぞれセルロースに対する結合性が劣る。一方、セルロースに対する結合性が優れるCBHIやCBHIIはセロビオース単位でセルロースを加水分解するので、単糖まで分解されず、アルコール発酵に必要とされる単糖(グルコース)の生成効率が悪いという状況にある。   Thus, in the degradation of cellulose by the cellulase enzymes, even in A. aculeatus No. F-50 strain, which is said to be more advantageous than T. reesei, which is said to be the strongest cellulase producing bacterium, only monosaccharides BGL1 that plays an important role in the hydrolysis of cellulose and CMC1 with a high expression level are inferior in binding to cellulose. On the other hand, CBHI and CBHII, which have excellent binding properties to cellulose, hydrolyze cellulose in cellobiose units, so that even monosaccharides are not decomposed, and the production efficiency of monosaccharides (glucose) required for alcoholic fermentation is poor. .

かかる状況下、近年では、セルラーゼ酵素群中の各セルラーゼの最適な混合比を決定する、分子生物学的手法を用いて各セルラーゼの生産量を高める、各セルラーゼ自体の分解能や安定性を高める、異種セルラーゼタンパク質同士を融合させるなど、セルラーゼの機能を改善することについて様々な研究が行われている。この方法の一つとして、例えば、セルロース結合ドメイン(CBD)を利用してセルラーゼの特性、すなわちセルラーゼが不溶性セルロースへ吸着するように改良、改変することが、開示されている。例えば、特開2009−142260号公報(特許文献1)や特開2008−193990号公報(特許文献2)、特表2007−530054号公報(特許文献3)、特表2004−536593号公報(特許文献4)、特表2003−522517号公表(特許文献5)、特表2001−504352号公報(特許文献6)などに開示されている。   Under such circumstances, in recent years, the optimum mixing ratio of each cellulase in the cellulase enzyme group is determined, the production amount of each cellulase is increased using molecular biological techniques, the resolution and stability of each cellulase itself is increased, Various studies have been conducted on improving cellulase functions, such as fusing different cellulase proteins. As one of the methods, for example, improvement and modification of cellulase properties, that is, cellulase is adsorbed to insoluble cellulose by using cellulose binding domain (CBD) is disclosed. For example, Japanese Patent Application Laid-Open No. 2009-142260 (Patent Document 1), Japanese Patent Application Laid-Open No. 2008-193990 (Patent Document 2), Japanese Translation of PCT International Publication No. 2007-530054 (Patent Document 3), Japanese Patent Application Publication No. 2004-536593 (Patent Document). Document 4), publication of Japanese translations of PCT publication No. 2003-522517 (patent document 5), and Japanese translations of PCT publication No. 2001-504352 (patent document 6).

CBDは、セルロース加水分解ドメイン(触媒ドメイン)とつながった一つのタンパク質として生産され、セルロースの加水分解に重要な役割を果たす。CBDはそれ自身分解活性を持たないが、単独でセルロースに結合する能力を有する。CBDの機能として、不溶性の基質に吸着することで、基質周辺におけるCBDに付随する触媒ドメインの濃度を上昇させてセルロースの分解速度を向上させたり、CBDの結合によってセルロース鎖間の水素結合を切り離して結晶構造を崩したりすることが知られている(非特許文献3、4)。また、結晶性セルロースを分解するセロビオヒドロラーゼ(CBH)からCBDを除くと可溶性基質に対する反応性は変わらないにも係わらず、結晶セルロースに対する分解活性や親和性が極端に低下することから、CBDは酵素が結晶セルロースに作用するために必要なドメインであると考えられている(非特許文献5)。逆に、本来CBDを持たないEGの一種にCBDを付加することで結晶セルロースへの親和性や分解能が上昇するという報告もある(非特許文献6)。   CBD is produced as a protein linked to a cellulose hydrolysis domain (catalytic domain), and plays an important role in cellulose hydrolysis. CBD itself has no degrading activity but has the ability to bind to cellulose alone. As a function of CBD, by adsorbing to an insoluble substrate, the concentration of the catalytic domain associated with the CBD around the substrate is increased to improve the decomposition rate of cellulose, or the hydrogen bond between cellulose chains is separated by CBD binding. It is known that the crystal structure is destroyed (Non-Patent Documents 3 and 4). In addition, when CBD is removed from cellobiohydrolase (CBH) that degrades crystalline cellulose, although the reactivity to soluble substrates does not change, the decomposition activity and affinity for crystalline cellulose are extremely reduced. It is considered to be a domain necessary for the enzyme to act on crystalline cellulose (Non-patent Document 5). Conversely, there is also a report that the affinity and resolution to crystalline cellulose increase by adding CBD to a kind of EG that does not originally have CBD (Non-patent Document 6).

しかしながら、これまでに数多くのCBDが見つかっており、現在ではそのアミノ酸配列の相同性によりCarbohydrate-binding module(CBM)familiyとして17種類のFamilyに分類されていることに鑑みると(非特許文献7)、CBDとセルラーゼの組み合わせが数多く考えられ、あるCBDを付加することによって、特定のセルラーゼ活性が向上することが必ずしも期待できるものでもなかった。   However, in view of the fact that many CBDs have been found so far, and are classified into 17 types of Family as Carbohydrate-binding module (CBM) family by the homology of their amino acid sequences (Non-patent Document 7). Many combinations of CBD and cellulase are conceivable, and it has not always been expected that specific cellulase activity will be improved by adding a certain CBD.

特開2009−142260号公報JP 2009-142260 A 特開2008−193990号公報JP 2008-193990 A 特表2007−530054号公報Special table 2007-530054 gazette 特表2004−536593号公報JP-T-2004-536593 特表2003−522517号公表Special table 2003-522517 published 特表2001−504352号公報JP-T-2001-504352

Murao S. Kanamoto J. Arai M. Isolation and identification of a cellulolytic enzyme producing microorganisms. J. Ferment Techol.,57, 151, 1979Murao S. Kanamoto J. Arai M. Isolation and identification of a cellulolytic enzyme producing microorganisms. J. Ferment Techol., 57, 151, 1979 阪本禮一郎 Aspergillus aculeatus No. F-50 のセルラーゼ系に関する研究, 大阪府立大学大学院 博士論文, 1984Soichiro Sakamoto Study on cellulase system of Aspergillus aculeatus No. F-50, Doctoral dissertation, Osaka Prefecture University, 1984 Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331 (Pt3) 775-781, 1998Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331 (Pt3) 775- 781, 1998 DIN N, DAMUDE HG, GILKES NR, MILLER RC, WARREN RAJ, KILBURN DG : C1-Cx, revisited: Intramolecular synergism in a cellulose. Proc. Nati. Acad. Sci. USA Vol. 91, pp. 11383-11387, 1994DIN N, DAMUDE HG, GILKES NR, MILLER RC, WARREN RAJ, KILBURN DG: C1-Cx, revisited: Intramolecular synergism in a cellulose. Proc. Nati. Acad. Sci. USA Vol. 91, pp. 11383-11387, 1994 Riedel K, Ritter F, Bauer S, Bronnenmeier K : The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiology Letters, 164 261-267, 1998Riedel K, Ritter F, Bauer S, Bronnenmeier K: The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiology Letters, 164 261-267, 1998 Mahadevan SA, Wi SG, Lee DS, Bae HJ : Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287 : 205-211, 2008Mahadevan SA, Wi SG, Lee DS, Bae HJ: Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287: 205-211, 2008 http://www.cazy.org/index.htmlhttp://www.cazy.org/index.html

本発明は上記の背景技術に鑑みてなされたものであって、植物由来のバイオマス資源の効率的な糖化を目指し、セルロースの分解性をさらに向上させた新規なセルラーゼを提供することを目的とする。   The present invention has been made in view of the above-mentioned background art, and aims to provide a novel cellulase with further improved degradability of cellulose aiming at efficient saccharification of plant-derived biomass resources. .

本発明のセルラーゼは、Aspergillus aculeatus(A.aculeatus)由来のβ−グルコシダーゼ1(BGL1)の触媒ドメインを含む領域又はA.aculeatus由来のカルボキシメチルセルラーゼ1(CMC1)の触媒ドメインを含む領域と、当該領域にリンカーを介するかあるいはリンカーを介さずに付加されたA.aculeatus由来のセルロース結合ドメイン(CBD)を有するセルラーゼである。   The cellulase of the present invention includes a region containing the catalytic domain of β-glucosidase 1 (BGL1) derived from Aspergillus aculeatus (A. aculeatus) or a region containing the catalytic domain of carboxymethyl cellulase 1 (CMC1) derived from A. aculeatus; It is a cellulase having a cellulose-binding domain (CBD) derived from A. aculeatus added to a region via a linker or not via a linker.

本発明によると、CBDが付加された、不溶性セロオリゴ糖に対する分解活性の高いβ−グルコシダーゼ、及びCMCに対する分解活性の高いカルボキシメチルセルラーゼが提供される。この何れか又はその両方を使用することによって、植物由来のバイオマス資源の中心であるセルロースを、糖転移反応を起こすことなく、また、発酵プロセスで微生物により資化されないセロオリゴ糖などの分解産物を生じることなく、単糖であるグルコースにまで分解できる。   According to the present invention, β-glucosidase having a high decomposing activity for insoluble cellooligosaccharide and carboxymethyl cellulase having a high degrading activity for CMC, to which CBD is added, are provided. By using either or both of these, cellulose, which is the center of plant-derived biomass resources, does not undergo a transglycosylation reaction and produces degradation products such as cellooligosaccharides that are not assimilated by microorganisms in the fermentation process. Without breaking down to glucose, which is a simple sugar.

BGL1にCBDが結合したタンパク質をコードする遺伝子を組み込んだベクターの構築方法を示す図の一部である。It is a part of figure which shows the construction method of the vector which integrated the gene which codes the protein which couple | bonded CBD with BGL1. 図1の続図である。FIG. 2 is a continuation diagram of FIG. 1. 糸状菌用高発現ベクターpNAN8142の遺伝子構造を示す図である。Aはその制限酵素地図、Bは改変されたプロモーターの構造を示す。It is a figure which shows the gene structure of the high expression vector pNAN8142 for filamentous fungi. A shows the restriction enzyme map, and B shows the structure of the modified promoter. PCR増幅産物の電気泳動による結果を示す画像である。レーン1はcbhl-LC、レーン2はcmc2-LC、レーン3はbgl1、レーン4はcbhII-CL、レーンMはλDNA Pst I digestである。It is an image which shows the result by electrophoresis of a PCR amplification product. Lane 1 is cbhl-LC, lane 2 is cmc2-LC, lane 3 is bgl1, lane 4 is cbhII-CL, and lane M is λDNA Pst I digest. A、Bはそれぞれ細胞から遊離された粗タンパク質(酵素)の酵素活性を示す図である。A and B are diagrams showing the enzyme activity of crude protein (enzyme) released from cells. 生産された粗タンパク質(酵素)の電気泳動による結果を示す画像である。レーン1はBGL1-CBDCBHI、レーン2はBGL1-CBDCMC2、レーン3はpNAN8142vector、レーン4はBGL1、レーン5はCBDCBHI-BGL1、レーン6はBGL1、レーン7は精製されたBGL1、レーンMは分子量マーカーである。It is an image which shows the result by electrophoresis of the produced crude protein (enzyme). Lane 1 is BGL1-CBD CBHI , Lane 2 is BGL1-CBD CMC2 , Lane 3 is pNAN8142vector, Lane 4 is BGL1, Lane 5 is CBD CBHI- BGL1, Lane 6 is BGL1, Lane 7 is purified BGL1, Lane M is Molecular weight marker. BGL1粗タンパク質(酵素)の精製の際におけるカラムクロマトグラムであって、AはDEAE-TOYOPEARL650Mを用いたクロマトグラム、BはButyl-TOYOPEARL650Mを用いたクロマトグラムである。It is a column chromatogram in the refinement | purification of BGL1 crude protein (enzyme), Comprising: A is a chromatogram using DEAE-TOYOPEARL650M, B is a chromatogram using Butyl-TOYOPEARL650M. BGL1-CBDCBHI粗タンパク質(酵素)の精製の際におけるカラムクロマトグラムであって、AはDEAE-TOYOPEARL650Mを用いたクロマトグラム、BはButyl-TOYOPEARL650Mを用いたクロマトグラムである。It is a column chromatogram in the refinement | purification of BGL1-CBD CBHI crude protein (enzyme), A is a chromatogram using DEAE-TOYOPEARL650M, B is a chromatogram using Butyl-TOYOPEARL650M. CBDCBHII-BGL1粗タンパク質(酵素)の精製の際におけるカラムクロマトグラムであって、AはDEAE-TOYOPEARL650Mを用いたクロマトグラム、BはButyl-TOYOPEARL650Mを用いたクロマトグラムである。It is a column chromatogram in the case of refinement | purification of CBD CBHII- BGL1 crude protein (enzyme), A is a chromatogram using DEAE-TOYOPEARL650M, B is a chromatogram using Butyl-TOYOPEARL650M. CBDCBHII-BGL1-CBDCBHI粗タンパク質(酵素)の精製の際におけるカラムクロマトグラムであって、AはDEAE-TOYOPEARL650Mを用いたクロマトグラム、BはButyl-TOYOPEARL650Mを用いたクロマトグラムである。CBD CBHII -BGL1-CBD CBHI A column chromatogram in the purification of crude protein (enzyme), A is a chromatogram using DEAE-TOYOPEARL650M, and B is a chromatogram using Butyl-TOYOPEARL650M. 生産された精製タンパク質(酵素)の電気泳動による結果を示す画像である。レーン1、3はCBDCBHII-BGL1、レーン2、4、7はBGL1-CBDCBHI、レーン5、6はBGL1、レーン8はBGL1-CBDCMC2である。It is an image which shows the result by electrophoresis of the produced purified protein (enzyme). Lanes 1 and 3 are CBD CBHII -BGL1, lanes 2, 4, and 7 are BGL1-CBD CBHI , lanes 5 and 6 are BGL1, and lane 8 is BGL1-CBD CMC2 . 生産された精製タンパク質(酵素)のASCへの吸着を示すグラフである。It is a graph which shows adsorption | suction to the ASC of the produced purified protein (enzyme). 生産された精製タンパク質(酵素)の基質分解活性を示すグラフである。AはASCの分解を、BはICOSの分解を示す。It is a graph which shows the substrate decomposition activity of the produced purified protein (enzyme). A shows the decomposition of ASC and B shows the decomposition of ICOS. 生産された精製タンパク質(酵素)の安定性を示すグラフである。Aは熱安定性を、BはpH安定性を示す。It is a graph which shows stability of the produced purified protein (enzyme). A shows thermal stability and B shows pH stability. 生産された精製タンパク質(酵素)のASC分解活性を示すグラフである。It is a graph which shows the ASC degradation activity of the produced purified protein (enzyme). CMC1にCBDが結合したタンパク質をコードする遺伝子を組み込んだ大腸菌発現用ベクターの構築方法を示す図である。It is a figure which shows the construction method of the vector for E. coli expression which integrated the gene which codes the protein which CBD couple | bonded with CMC1. CMC1にCBDが結合したタンパク質をコードする遺伝子を組み込んだA.oryzae発現用ベクターの構築方法を示す図である。It is a figure which shows the construction method of the vector for A.oryzae expression which integrated the gene which codes the protein which CBD couple | bonded with CMC1. PCR増幅産物の電気泳動による結果を示す画像である。レーン1はcmc1g、レーン2はcmc1c、レーン3はλDNA Pst I digestである。It is an image which shows the result by electrophoresis of a PCR amplification product. Lane 1 is cmc1g, Lane 2 is cmc1c, and Lane 3 is λDNA Pst I digest. 大腸菌により生産されたタンパク質(酵素)の電気泳動(IPTG 0mM)による結果を示す画像である。Sは可溶性画分、Iは不溶性画分、Mは分子量マーカーである。It is an image which shows the result by electrophoresis (IPTG 0 mM) of the protein (enzyme) produced by colon_bacillus | E._coli. S is a soluble fraction, I is an insoluble fraction, and M is a molecular weight marker. 大腸菌により生産されたタンパク質(酵素)の電気泳動(IPTG 1mM)による結果を示す画像である。Sは可溶性画分、Iは不溶性画分、Mは分子量マーカーである。It is an image which shows the result by electrophoresis (IPTG 1mM) of the protein (enzyme) produced by colon_bacillus | E._coli. S is a soluble fraction, I is an insoluble fraction, and M is a molecular weight marker. A.oryzaeによる生産物の電気泳動の結果を示す画像である。レーン1はCMC1-CBDCBHI、レーン2はA.oryzae8142である。It is an image which shows the result of electrophoresis of the product by A.oryzae. Lane 1 is CMC1-CBD CBHI and lane 2 is A.oryzae8142 . 大腸菌及びA.oryzaeによる生産物を分析した結果であって、Aはその酵素活性について示す図、Bはその電気泳動による結果を示す画像である。No.1−5はCMC-CBDCBHIを、No.6−9はCMC1-CBDCMC2、No10はpNAN8142vector、Mは分子量マーカーである。It is the result of having analyzed the product by E. coli and A. oryzae, A is a figure which shows the enzyme activity, B is the image which shows the result by the electrophoresis. No. 1-5 is CMC-CBD CBHI , No. 6-9 is CMC1-CBD CMC2 , No10 is pNAN8142vector, and M is a molecular weight marker. CMC1-BCDCBHI粗タンパク質(酵素)の精製の際におけるカラムクロマトグラムであって、AはDEAE-TOYOPEARL650Mを用いたクロマトグラム、BはButyl-TOYOPEARL650Mを用いたクロマトグラムである。It is a column chromatogram in the case of refinement | purification of CMC1-BCD CBHI crude protein (enzyme), A is a chromatogram using DEAE-TOYOPEARL650M, B is a chromatogram using Butyl-TOYOPEARL650M. CMC1精製タンパク質(酵素)及びCMC1-BCDCBHI精製タンパク質(酵素)の電気泳動による結果を示す画像である。レーン1はCMC1-BCDCBHI、レーン2はCMC1、レーンMは分子量マーカーである。It is an image which shows the result by electrophoresis of CMC1 purified protein (enzyme) and CMC1-BCD CBHI purified protein (enzyme). Lane 1 is CMC1-BCD CBHI , lane 2 is CMC1, and lane M is a molecular weight marker. CMC1精製タンパク及びCMC1-BCDCBHI精製タンパク質(酵素)の基質への吸着を示すグラフである。AはASCの吸着を、BはICOSの吸着を示す。It is a graph which shows adsorption | suction to the substrate of CMC1 purified protein and CMC1-BCD CBHI purified protein (enzyme). A shows adsorption of ASC, and B shows adsorption of ICOS. CMC1精製タンパク及びCMC1-BCDCBHI精製タンパク(酵素)の分解活性を示すグラフである。AはASCの分解を、BはICOSの分解を示す。It is a graph which shows the decomposition activity of CMC1-purified protein and CMC1-BCD CBHI purified protein (enzyme). A shows the decomposition of ASC and B shows the decomposition of ICOS.

本発明のセルラーゼは、(1)Aspergillus aculeatus由来のβ−グルコシダーゼ1(BGL1)の触媒ドメインを含む領域と当該領域に間接又は直接に付加されたAspergillus aculeatus由来のセルロース結合ドメイン(以下、「CBD」という場合がある。)を有するセルラーゼ、又は(2)Aspergillus aculeatus由来のカルボキシメチルセルラーゼ1の触媒ドメインを含む領域と当該領域に間接又は直接に付加されたAspergillus aculeatus 由来のCBDを有するセルラーゼである。本発明において、触媒ドメインとはいわゆる酵素としての活性ないし機能(酵素活性やセルロースに対する結合能)を発揮する最小限度のポリペプチドを意味する。また、CBDとは、それ自身分解活性を持たないが、単独でセルロースに結合する能力を有する最小限度のポリペプチドを意味する。従って、本発明においては、CBDに付随するリンカーに相当するポリペプチドはCBDには含まれない。   The cellulase of the present invention comprises (1) a region containing the catalytic domain of β-glucosidase 1 (BGL1) derived from Aspergillus aculeatus and a cellulose-binding domain derived from Aspergillus aculeatus (hereinafter referred to as “CBD”) indirectly or directly added to the region. Or (2) a cellulase having a CBD derived from Aspergillus aculeatus and a region containing the catalytic domain of carboxymethyl cellulase 1 derived from Aspergillus aculeatus and indirectly or directly added to the region. In the present invention, the catalytic domain means a minimum polypeptide that exhibits a so-called enzyme activity or function (enzyme activity or binding ability to cellulose). CBD means a minimum polypeptide that does not have degradation activity by itself but has the ability to bind to cellulose alone. Therefore, in the present invention, a polypeptide corresponding to a linker associated with CBD is not included in CBD.

本発明のセルラーゼはA.aculeatusが生産するセルラーゼのうち、CBDを有さないセルラーゼに対してCBDセルロース結合ドメインを付加し、結晶性セルロースないし不溶性セロオリゴ糖に対する分解性を向上させたセルラーゼである。A.aculeatusは3種類のβ−グルコシダーゼ(以下「BGL」と言う場合がある。)を生産するが、いずれも糖転移反応を起こさず単糖のみを生成するという非常に優れた特長を持つ。その中でもβ−グルコシダーゼ1(BGL1)は、セロビオースだけでなくセロペンタオースやセロヘキサオースなど比較的長鎖のオリゴ糖に対しても高い活性を持ち、単糖のみを生成する。本発明のセルラーゼ(1)は、このA.aculeatus由来のBGL1の特徴を利用したものであり、糖転移反応がなく、比較的長鎖のオリゴ糖に対しても高い活性を有するBGLを提供する。   The cellulase of the present invention is a cellulase produced by adding a CBD cellulose-binding domain to a cellulase having no CBD among cellulases produced by A. aculeatus to improve the degradability of crystalline cellulose or insoluble cellooligosaccharide. A. aculeatus produces three types of β-glucosidase (hereinafter sometimes referred to as “BGL”), all of which have very excellent characteristics of producing only a monosaccharide without causing a transglycosylation reaction. Among them, β-glucosidase 1 (BGL1) has high activity not only for cellobiose but also for relatively long-chain oligosaccharides such as cellopentaose and cellohexaose, and produces only monosaccharides. The cellulase (1) of the present invention utilizes the characteristics of BGL1 derived from this A. aculeatus and provides BGL having no transglycosylation reaction and having high activity against relatively long-chain oligosaccharides. .

また、A.aculeatusは3種類のエンド−グルカナーゼであるカルボキシメチルセルラーゼ(以下「CMC」という場合がある。)を生産するが、その中でもカルボキシメチルセルラーゼ1(CMC1)は、A.aculeatusが生産するセルラーゼの中でも発現量が多くセルロースの糖化に重要な役割を果たしていると考えられる。本発明のセルラーゼ(2)はこの発現量の多いセルラーゼに着目したものであり、結晶セルロースに対する分解性を向上させたCMCである。   A. aculeatus produces three types of endo-glucanases, carboxymethyl cellulase (hereinafter sometimes referred to as “CMC”), among which carboxymethyl cellulase 1 (CMC1) is produced by A. aculeatus. It is thought that cellulase has a high expression level and plays an important role in cellulose saccharification. The cellulase (2) of the present invention focuses on this cellulase with a high expression level, and is a CMC with improved degradability for crystalline cellulose.

A.aculeatusの菌株は適宜選択されるが、本発明においては、A.aculeatus No.F-50株が最も望ましく用いられる。この菌株は、他の菌株に比べ、非常に強い単糖生成力を有することに加え、ヘミセルラーゼ活性が強い酵素群を産生するので、セルロースだけでなくヘミセルロースも含有する植物性バイオマスの糖化に非常に有効であると考えられるからである。   A strain of A. aculeatus is appropriately selected. In the present invention, the strain A. aculeatus No. F-50 is most preferably used. Compared to other strains, this strain produces a group of enzymes with strong hemicellulase activity in addition to having a very strong ability to produce monosaccharides, which makes it extremely useful for saccharification of plant biomass containing not only cellulose but also hemicellulose. This is because it is considered effective.

A.aculeatusが生産するBGL1及びCMC1は、それぞれセルロース結合ドメイン(以下「CBD」という場合がある。)を持たない。本発明のセルラーゼは、これらのBGL1及びCMC1に対してCBDを付加したものである。本発明において用いられるCBDの由来は問われないが、CBDとして、A.aculeatusが生産するエキソ−グルカナーゼであるハイドロセルラーゼ(以下「CBH」という場合がある。)が有するCBDが好ましく用いられる。A.aculeatusは2種類のCBHを生産し、その両者(CBHI、CBHII)はいずれもCBDを有し結晶セルロースを末端からセロビオース単位で分解するが、CBHIはセルロース鎖の還元末端側から分解するのに対し、CBHIIは非還元末端側から分解する。しかしながら、セルロースの酵素分解においては、BGL、CMC、CBHの3種類の酵素からなる複合系ではそれぞれの酵素が協奏的作用することが望まれるので、A.aculeatusが有する高いセルラーゼ活性に着目すると、A.aculeatusが有する唯一のCBDであるCBHのCBDが望ましいと言える。このCBHのCBDである限り、還元末端側から分解するCBHIのCBD及び非還元末端側から分解するCBHIIのCBDのいずれでも差し支えない。また、かかる観点から、本発明においては、CBDの由来であるA.aculeatusの菌株としても、A.aculeatus No.F-50株が最も望ましく用いられる。   BGL1 and CMC1 produced by A. aculeatus each do not have a cellulose binding domain (hereinafter sometimes referred to as “CBD”). The cellulase of the present invention is obtained by adding CBD to these BGL1 and CMC1. Although the origin of CBD used in the present invention is not limited, CBD possessed by hydrocellulase (hereinafter sometimes referred to as “CBH”) which is an exo-glucanase produced by A. aculeatus is preferably used as CBD. A. aculeatus produces two types of CBH, both of which (CBHI, CBHII) have CBD and decompose crystalline cellulose from the end in cellobiose units, but CBHI decomposes from the reducing end of the cellulose chain. On the other hand, CBHII is decomposed from the non-reducing terminal side. However, in the enzymatic degradation of cellulose, since it is desired that each enzyme acts in concert in a complex system consisting of three types of enzymes, BGL, CMC, and CBH, focusing on the high cellulase activity of A. aculeatus, The CBD of CBH, which is the only CBD that A. aculeatus has, is desirable. As long as it is CBD of this CBH, either CBD of CBHI decomposing from the reducing end side or CBD of CBHII decomposing from the non-reducing end side may be used. From this point of view, the A. aculeatus No. F-50 strain is most preferably used as the strain of A. aculeatus from which CBD is derived.

本発明において用いられるBGL1、CMC1のアミノ酸配列及びこれらのアミノ酸配列をコードする塩基配列は既に明らかにされている(BGL1:Kawaguchi T, et al., Gene. 1996 )ep 16;173(2):287-8.、CMC1:Ooi T, et al., Nucleic Acids Res., 18(19), 5884, 1990)。また、CBHIやCBHIIのCBDのアミノ酸配列及びこれらのアミノ酸配列をコードする塩基配列も既に明らかにされている(Takada G, Kawaguchi T, Sumitani J, Arai M, Cloning, nucleotide sequence, and transcriptional analysis of Aspergillus aculeatus No. F-50 cellobiohydrolase I (cbhI) gene. J Ferment Bioeng 85:1-9, 1998 31、内藤篤史, Aspergillus aculeatus由来cbhII型セルラーゼ遺伝子のクローニングと高発現. 大阪府立大学 学士論文, 2009)。本発明のセルラーゼにおいては、これらのポリペプチドが有する全てのアミノ酸配列を必ずしも備える必要はなく、いわゆる活性ないし機能(酵素活性やセルロースに対する結合能)を発揮するドメインを備えていればよい。また、当該活性ないし機能を発揮する限り、アミノ酸の一部が欠失、付加、置換、修飾されていても差し支えない。また、塩基配列においても、当該活性ないし機能を発揮する限り、塩基配列の全てを具備する必要はなく、80%の相同性、好ましくは85%、さらに好ましくは95%以上の相同性を有していればよい。   The amino acid sequences of BGL1 and CMC1 used in the present invention and the base sequences encoding these amino acid sequences have already been clarified (BGL1: Kawaguchi T, et al., Gene. 1996) ep 16; 173 (2): 287-8., CMC1: Ooi T, et al., Nucleic Acids Res., 18 (19), 5884, 1990). In addition, the amino acid sequences of CBD of CBHI and CBHII and the base sequences encoding these amino acid sequences have already been clarified (Takada G, Kawaguchi T, Sumitani J, Arai M, Cloning, nucleotide sequence, and transcriptional analysis of Aspergillus J Ferment Bioeng 85: 1-9, 1998 31, Atsushi Naito, Cloning and high expression of cbhII type cellulase gene from Aspergillus aculeatus. Osaka Prefecture University, Bachelor thesis, 2009). Aculeatus No. F-50 cellobiohydrolase I (cbhI) gene. The cellulase of the present invention is not necessarily provided with all the amino acid sequences possessed by these polypeptides, and may be provided with a domain that exhibits so-called activity or function (enzyme activity or binding ability to cellulose). Further, as long as the activity or function is exhibited, a part of the amino acid may be deleted, added, substituted, or modified. In addition, the base sequence need not have the entire base sequence as long as it exhibits the activity or function, and has 80% homology, preferably 85%, more preferably 95% or more. It only has to be.

本発明のセルラーゼ(1)は、A.aculeatus由来のβ−グルコシダーゼ1の触媒ドメインを含む領域と当該領域に間接又は直接に付加されたA.aculeatus由来のCBDを有するBGLである。また、本発明のセルラーゼ(2)は、A.aculeatus由来のカルボキシメチルセルラーゼ1のドメイン領域と当該領域に間接又は直接に付加されたA.aculeatus由来のセルロース結合ドメインを有するCMCである。ここにおいて、間接とは、BGL1やCMC1の触媒ドメインを含む領域とCBDとの間にリンカーを有することを意味する。リンカーは1〜100程度のアミノ酸から構成される。リンカーはセルラーゼ活性等の酵素活性や機能を有しない部分であって、結合された触媒ドメインとCBDの間に生じる立体障害を防止する機能を有する。リンカーのアミノ酸配列は限定されるものではないが、ドメイン同士の立体的配置の自由度を増すようなアミノ酸配列が好ましく用いられる。自然界で見いだされるCBDにはリンカーが付随している。このようなリンカー、例えばCBHIやCBHIIのCBDに付随しているリンカー(ペプチド)がそのまま利用される。また、CBDに付随したリンカー(ペプチド)に、リンカーとして機能するペプチドが結合したペプチドもリンカーとして利用できる。直接とは、BGL1やCMC1の触媒ドメインを含む領域とCBDとの間にリンカーを介しないことを意味する。また、CBDの結合位置は、BGL1やCMC1のC末端側、N末端側のいずれの位置でもよく、また、それらのC末端側、N末端側双方の位置に付加されてもよい。   The cellulase (1) of the present invention is a BGL having a region containing the catalytic domain of β-glucosidase 1 derived from A. aculeatus and a CBD derived from A. aculeatus indirectly or directly added to the region. Cellulase (2) of the present invention is a CMC having a domain region of carboxymethyl cellulase 1 derived from A. aculeatus and a cellulose binding domain derived from A. aculeatus added indirectly or directly to the region. Here, indirect means having a linker between the region containing the catalytic domain of BGL1 or CMC1 and CBD. The linker is composed of about 1 to 100 amino acids. The linker is a portion having no enzyme activity or function such as cellulase activity, and has a function of preventing steric hindrance generated between the bound catalytic domain and the CBD. The amino acid sequence of the linker is not limited, but an amino acid sequence that increases the degree of freedom of steric arrangement between domains is preferably used. A CBD found in nature is associated with a linker. Such a linker, for example, a linker (peptide) attached to the CBD of CBHI or CBHII is used as it is. A peptide in which a peptide functioning as a linker is bound to a linker (peptide) associated with CBD can also be used as a linker. Direct means that no linker is interposed between the region containing the catalytic domain of BGL1 or CMC1 and CBD. Further, the binding position of CBD may be any of the C-terminal side and N-terminal side of BGL1 and CMC1, and may be added to both the C-terminal side and N-terminal side positions thereof.

本発明のセルラーゼは公知である種々の遺伝子工学的手法を用いて生産される。すなわち、セルラーゼ(1)の生産においては、少なくともBGL1の触媒ドメインをコードする塩基配列と少なくとも付加するCBDのドメイン領域をコードする塩基配列を含むようにして、必要であればリンカーをコードする塩基配列を介在させて両者を結合し、目的とするセルラーゼをコードする塩基配列を有するポリヌクレオチドを作製する。また、セルラーゼ(2)の生産においては、少なくともCMC1の触媒ドメインをコードする塩基配列と少なくとも付加するCBDのドメインをコードする塩基配列を含むようにして、必要であればリンカーをコードする塩基配列を介在させて両者を結合し、目的とするセルラーゼをコードする塩基配列を有するポリヌクレオチドを作製する。   The cellulase of the present invention is produced using various known genetic engineering techniques. That is, in the production of cellulase (1), at least a base sequence encoding the catalytic domain of BGL1 and at least a base sequence encoding the domain region of CBD to be added are included, and if necessary, a base sequence encoding a linker is interposed. Thus, both are combined to produce a polynucleotide having a base sequence encoding the target cellulase. In the production of cellulase (2), at least a base sequence encoding the catalytic domain of CMC1 and at least a base sequence encoding the domain of CBD to be added are included, and if necessary, a base sequence encoding a linker is interposed. Are combined to produce a polynucleotide having a base sequence encoding the target cellulase.

得られたポリヌクレオチドは、常法によって、プロモーター、ターミネーターなどが付加された発現ベクターに組み入れられる。そして、当該ベクターは宿主細胞に導入されて、セルラーゼ遺伝子が発現してセルラーゼの生産が行われる。この際、大腸菌などの原核細胞を宿主細胞とする場合には、配列番号5、配列番号7、配列番号9、配列番号11に示された塩基配列を有するポリヌクレオチドを用いればよい。また、Aspergillus属糸状菌などのように真核細胞を宿主細胞とする場合には前記ポリヌクレオチドにイントロン領域を挿入してもよい。宿主細胞が真核細胞である場合、イントロンがスプライシングされたメッセンジャーRNAができ、タンパク質の発現が行われやすいからである。このイントロンはコンセンサス配列を有し、イントロンとして機能する配列であればよく、具体的な配列は適宜決定される。さらに、必要に応じて宿主細胞において生産された酵素を細胞外に分泌するためのシグナル配列が付加される。当該シグナル配列も特定の塩基配列である必要はなく、その機能を発揮する限りにおいて任意的な配列であればよい。例えば、A.aculeatus由来のBGL1が備えているシグナル配列が用いられる。   The obtained polynucleotide is incorporated into an expression vector to which a promoter, terminator and the like are added by a conventional method. Then, the vector is introduced into a host cell, the cellulase gene is expressed, and cellulase is produced. In this case, when a prokaryotic cell such as Escherichia coli is used as a host cell, a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, or SEQ ID NO: 11 may be used. In addition, when a eukaryotic cell is used as a host cell, such as an Aspergillus genus filamentous fungus, an intron region may be inserted into the polynucleotide. This is because, when the host cell is a eukaryotic cell, a messenger RNA with an intron spliced is formed, and protein expression is easily performed. The intron has a consensus sequence and may be a sequence that functions as an intron, and a specific sequence is determined as appropriate. Furthermore, a signal sequence for secreting the enzyme produced in the host cell outside the cell is added as necessary. The signal sequence need not be a specific base sequence, and may be any sequence as long as the function is exhibited. For example, a signal sequence provided in BGL1 derived from A. aculeatus is used.

配列番号1〜4に示された塩基配列は、本発明のセルラーゼを生産させるためのポリヌクレオチドの塩基配列の一例である。配列番号1〜4に示されたポリヌクレオチドはそれぞれ配列番号6、配列番号8、配列番号10、配列番号12に示されたアミノ酸配列を有するセルラーゼ(ポリペプチド)をコードし、A.aculeatus属糸状菌のような真核細胞を宿主細胞に用いて生産させるために用いられるポリヌクレオチドである。配列番号5、配列番号7、配列番号9、配列番号11に示されるポリヌクレオチドはシグナル配列を含まない。配列番号1に示された塩基配列を有するポリヌクレオチドは、A.aculeatus由来BGL1のC末端側に制限酵素Nsi Iの認識部位とA.aculeatus由来のCBHIに付随するリンカー(ペプチド)を含むリンカーを介してA.aculeatus由来CBHIのCBDが結合したセルラーゼをコードする。配列番号2に示された塩基配列は、A.aculeatus由来BGL1のN末端側にA.aculeatus由来のCBHIIに付属するリンカー(ポプチド)を介してA.aculeatus由来CBHIIのCBDが結合したセルラーゼをコードする。配列番号3に示された塩基配列は、A.aculeatus由来BGL1のN末端側にA.aculeatus由来のCBHIIに付属するリンカー(ペプチド)を介してA.aculeatus由来CBHIIに付随したCBDが結合し、そのC末端側に制限酵素Nsi Iの認識部位とA.aculeatus由来のCBHIに付随するリンカー(ペプチド)を含むリンカーを介してA.aculeatus由来CBHIのCBDが結合したセルラーゼをコードする。配列番号4に示された塩基配列は、A.aculeatus由来CMCIのN末端側に、制限酵素Nsi Iの認識部位とA.aculeatus由来のCBHIに付随するリンカー(ペプチド)を含むリンカーを介してA.aculeatus由来CBHIのCBDが結合したセルラーゼをコードする。これら配列番号1から配列番号4までで示したポリヌクレオチドは、いずれもイントロンを含んでいる。   The base sequences shown in SEQ ID NOs: 1 to 4 are examples of the base sequence of the polynucleotide for producing the cellulase of the present invention. The polynucleotides shown in SEQ ID NOs: 1 to 4 encode cellulases (polypeptides) having the amino acid sequences shown in SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, and SEQ ID NO: 12, respectively. It is a polynucleotide used for producing eukaryotic cells such as fungi using host cells. The polynucleotides shown in SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, and SEQ ID NO: 11 do not contain a signal sequence. A polynucleotide having the base sequence shown in SEQ ID NO: 1 comprises a linker containing a recognition site for the restriction enzyme Nsi I and a linker (peptide) associated with CBHI derived from A. aculeatus on the C-terminal side of BGL1 derived from A. aculeatus A cellulase in which CBD of A. aculeatus-derived CBHI is bound is encoded. The base sequence shown in SEQ ID NO: 2 encodes a cellulase in which the CBD of A.aculeatus-derived CBHII is bound to the N-terminal side of BGL1 derived from A.aculeatus via a linker (peptide) attached to CBHII derived from A.aculeatus To do. In the base sequence shown in SEQ ID NO: 3, CBD associated with CBHII derived from A.aculeatus binds to the N-terminal side of BGL1 derived from A.aculeatus via a linker (peptide) attached to CBHII derived from A.aculeatus, It encodes a cellulase in which the CBD of A. aculeatus-derived CBHI is bound to the C-terminal side via a linker containing a recognition site for restriction enzyme Nsi I and a linker (peptide) associated with A. aculeatus-derived CBHI. The base sequence shown in SEQ ID NO: 4 is formed on the N-terminal side of A. aculeatus-derived CMCI via a linker containing a restriction enzyme Nsi I recognition site and a linker (peptide) associated with A. aculeatus-derived CBHI. It encodes a cellulase bound to CBD of CBHI derived from .aculeatus. All of the polynucleotides shown in SEQ ID NO: 1 to SEQ ID NO: 4 contain introns.

本発明において用いるベクターや宿主細胞も限定されるものではないが、宿主細胞としては、原核細胞としては大腸菌や枯草菌などの細菌、また真核細胞としては酵母ないしAspergillus属やTrichoderma属の糸状菌、例えばA.aculeatus又はA.oryzaeが例示される。本発明においては、Aspergillus属の糸状菌が好ましい。Aspergillus属の糸状菌は、BGL1、CMC1及びCBHが由来するA.aculeatusと同属であり、本発明のセルラーゼが発現しやすいからである。また、A.aculeatusは本発明のセルラーゼだけでなく、セルロースの糖化に必要な他のセルラーゼ酵素群も同時に生産できるので宿主としてより好ましい。ベクターとしては公知の細菌用、糸状菌用、酵母用のものを用いることができる。公知のベクターとして大腸菌用としてpBR322、pKK233−2、糸状菌用としてはpAUR316、酵母用としてYip5、Yrp19などが例示される。   The vectors and host cells used in the present invention are not limited, but as host cells, prokaryotic cells such as bacteria such as Escherichia coli and Bacillus subtilis, and eukaryotic cells as yeasts or filamentous fungi of the genus Aspergillus or Trichoderma. For example, A.aculeatus or A.oryzae is exemplified. In the present invention, filamentous fungi of the genus Aspergillus are preferred. This is because filamentous fungi of the genus Aspergillus are of the same genus as A. aculeatus from which BGL1, CMC1 and CBH are derived, and the cellulase of the present invention is easily expressed. A. aculeatus is more preferred as a host because it can produce not only the cellulase of the present invention but also other cellulase enzymes necessary for saccharification of cellulose. Known vectors for bacteria, filamentous fungi, and yeast can be used. Examples of known vectors include pBR322 and pKK233-2 for E. coli, pAUR316 for filamentous fungi, Yip5, Yrp19 and the like for yeast.

また、形質転換の方法としても、粒子又は遺伝子銃、アルカリなどを利用した細胞壁の透過、プロトプラスト法、エレクトポレーションなどの公知の方法を用いることができる。   As a transformation method, a known method such as permeation of a cell wall using a particle or gene gun, alkali, or the like, a protoplast method, or an electroporation method can be used.

宿主細胞において生産された酵素は、常法により菌体あるいは培養液から抽出される。また、細胞外に酵素が分泌される場合には、菌体あるいは培養液を直接植物系バイオマスの糖化に用いることができる。   The enzyme produced in the host cell is extracted from the bacterial cells or the culture solution by a conventional method. In addition, when enzymes are secreted outside the cells, the cells or the culture solution can be used directly for saccharification of plant biomass.

本発明の植物系バイオマスを糖化する方法は、上記で得られたセルラーゼ(1)及び/又はセルラーゼ(2)を用いて植物系バイオマスを糖化する方法である。また、本発明におけるセルラーゼ(1)をコードする塩基配列及び/又は本発明にセルラーゼ(2)をコードする塩基配列を有するベクターを形質転換した形質転換体を用いて植物系バイオマスを糖化することもできる。例えば、配列番号1〜4に示された塩基配列を有するポリヌクレオチドでAspergillus属糸状菌、特にA.aculeatusを形質転換した場合には、形質転換された糸状菌を用いて糖化できる。   The method for saccharifying plant biomass of the present invention is a method for saccharifying plant biomass using cellulase (1) and / or cellulase (2) obtained above. In addition, plant biomass may be saccharified using a transformant obtained by transforming a vector having the base sequence encoding cellulase (1) and / or the base sequence encoding cellulase (2) in the present invention. it can. For example, when an Aspergillus filamentous fungus, particularly A. aculeatus, is transformed with a polynucleotide having the base sequences shown in SEQ ID NOs: 1 to 4, it can be saccharified using the transformed filamentous fungus.

植物系バイオマスは、草や木材、農業廃棄物、紙や食料廃棄物などいわゆるゴミのようなバイオマスが例示され、セルロースを含むものであれば特に限定されるものではない。バイオマスの糖化は公知の方法によればよく、バイオマスの粉砕、酸やアルカリを用いた前処理、高温高圧による前処理など各種前処理を経て、上記セルラーゼや形質転換体を用いてグルコースに糖化される。   The plant-based biomass is exemplified by biomass such as so-called trash such as grass, wood, agricultural waste, paper and food waste, and is not particularly limited as long as it contains cellulose. Biomass saccharification may be carried out by a known method, and is saccharified to glucose using the above-mentioned cellulase or transformant after various pretreatments such as biomass pulverization, pretreatment with acid or alkali, pretreatment with high temperature and pressure. The

本発明のセルラーゼ(1)や(2)は、結晶セルロースに対するセルロース結合ドメインを有するので、より緩やかな条件、例えば低い温度における前処理などの場合でも十分に糖化を行える。また、バイオマスによっては前処理を行わずして糖化処理することも可能となる。特に本発明のセルラーゼ(1)は、糖転移反応が少なく、単糖まで十分に分解できる能力を備えているので、糖化処理後に行われるアルコール発酵工程には非常に有利である。   Since the cellulases (1) and (2) of the present invention have a cellulose-binding domain for crystalline cellulose, they can be sufficiently saccharified even under milder conditions such as pretreatment at a low temperature. Further, depending on the biomass, it is possible to perform saccharification without performing pretreatment. In particular, the cellulase (1) of the present invention is very advantageous for the alcoholic fermentation process performed after the saccharification treatment because it has a small transglycosylation reaction and has the ability to sufficiently decompose even a monosaccharide.

次に、下記実施例に基づいて本発明について詳細に説明する。なお、下記実施例はあくまでも例示であって、本発明は下記の実施例に限られるものではない。   Next, the present invention will be described in detail based on the following examples. The following examples are merely illustrative, and the present invention is not limited to the following examples.

〔セルラーゼ(1)の作製〕
まず、A.aculeatus由来のβ−グルコシダーゼ1にリンカーを介してA.aculeatus由来のセロビオハイドラーゼI(CBHI)又はII(CBHII)のCBDを結合したセルラーゼを作製した。
[Production of cellulase (1)]
First, a cellulase was prepared by binding A. aculeatus-derived β-glucosidase 1 to CBD of A. aculeatus-derived cellobiohydrase I (CBHI) or II (CBHII) via a linker.

A.aculeatus由来のβ−グルコシダーゼ1として、既に塩基配列が決定されているA.aculeatusのF-50株由来のβ−グルコシダーゼ1を用いた。セルロース結合ドメインには、既に塩基配列が決定されているF-50株由来のCBHIのCBD及び/又は同CBHIIのCBD並びにCMC2のCBDを用いた。   As β-glucosidase 1 derived from A. aculeatus, β-glucosidase 1 derived from A. aculeatus F-50 strain whose nucleotide sequence has already been determined was used. As the cellulose-binding domain, CBHI CBD and / or CBHII CBD and CMC2 CBD derived from F-50 strains whose base sequences were already determined were used.

CBDを結合したセルラーゼとして、β−グルコシダーゼ1のC末端側にCBHIのCBDを結合したセルラーゼ(BGL1-CBDCBHI)、β−グルコシダーゼ1のN末端側にCBHIIのCBDを結合したセルラーゼ(CBDCBHII-BGL1)、β−グルコシダーゼ1のC末端側にCBHIのCBDを、N末端側にCBHIIのCBDを結合したセルラーゼ(CBDCBHII-BGL1-CBDCBHI)の3つのセルラーゼ(1)を作製した。セルラーゼ(BGL1-CBDCBHI)のアミノ酸配列は配列番号6に、セルラーゼ(CBDCBHII-BGL1)のアミノ酸配列は配列番号8に、セルラーゼ(CBDCBHII-BGL1-CBDCBHI)のアミノ酸配列は配列番号10に示される。また、CMCのN末側にCMC2のCBDを結合したセルラーゼ(BGL1-CBDCMC2)も併せて作製した。 As cellulase conjugated with CBD, cellulase conjugated with CBD of CBHI on the C-terminal side of β-glucosidase 1 (BGL1-CBD CBHI ), cellulase conjugated with CBD of CBHII on the N-terminal side of β-glucosidase 1 (CBD CBHII − Three cellulases (1) of BGL1) and a cellulase (CBD CBHII -BGL1-CBD CBHI ) in which CBD of CBHI was bound to the C-terminal side of β-glucosidase 1 and CBD of CBHII were bound to the N-terminal side were prepared. The amino acid sequence of cellulase (BGL1-CBD CBHI ) is SEQ ID NO: 6, the amino acid sequence of cellulase (CBD CBHII -BGL1) is SEQ ID NO: 8, and the amino acid sequence of cellulase (CBD CBHII -BGL1-CBD CBHI ) is SEQ ID NO: 10. Indicated. A cellulase (BGL1-CBD CMC2 ) in which CBD of CMC2 was bound to the N-terminal side of CMC was also prepared.

1.発現プラスミドの構築
BGL1にCBDを付加するため、PCRによって増幅したA.aculeatusのbgl1遺伝子と、cbhI、cbhII、cmc2からlinker領域とCBDをコードするDNA配列のそれぞれのうちいずれかをクローニングベクターpBluescript II KS (+)上で結合させ、BGL1のN末端側にCBHII由来のCBDとLinkerが、BGL1のC末端側にCBHIもしくはCMC2由来のLinkerとCBDが結合するようそれぞれの遺伝子を構築した(図1及び図2)。
1. Construction of expression plasmids To add CBD to BGL1, cloning vector of A. aculeatus bgl1 gene amplified by PCR and DNA sequence encoding linker region and CBD from cbhI, cbhII, cmc2 The genes were constructed by binding on pBluescript II KS (+) so that CBD and Linker derived from CBHII bind to the N-terminal side of BGL1 and Linker and CBD derived from CBHI or CMC2 bind to the C-terminal side of BGL1 ( 1 and 2).

次に構築された遺伝子はそれぞれ、糸状菌用高発現ベクターpNAN8142(図3参照:大関(株)による)のプロモーター下流領域にbgl1遺伝子断片を挿入し、宿主であるAspergillus oryzae niaD300株の染色体上にniaD部位で相同組替えを行った。   Next, each constructed gene has a bgl1 gene fragment inserted into the promoter downstream region of the high-expression vector pNAN8142 for filamentous fungi (see FIG. 3; according to Ozeki Co., Ltd.), on the chromosome of the host Aspergillus oryzae niaD300 strain. Homologous recombination was performed at the niaD site.

A.コンピテントセルの調製
Inoueらの方法(Inoue H、Nojima H、Okayama H:High efficiency transformation of Escherichia coli with plasmids. Gene 96:23-28, 1990)に従った。大腸菌(E.coli DH5αF´株)をLB培地plate(Ampicillin含まず)にストリークした後、37℃で一晩培養した。2L三角フラスコ中の250mLSOB培地に数コロニーを植菌し、OD660=0.4〜0.6になるまで18℃で振盪培養した。三角フラスコを氷上で10分間冷却した後、遠心分離(3000rpm、10min、4℃)を行った。上清をデカンテーションで除いた後、沈澱した大腸菌をもとの培地に対して1/3量(約84mL)の0℃に冷却したTransformation buffer(TB)(10mMPIPES、15mMCaCl2、15mMKCl、55mMMnCl2)に懸濁し氷上で10分間冷却した後、再び遠心分離(3000rpm、10min、4℃)を行い、上清を除いた。沈澱した大腸菌を20mLの0℃に冷却したTBに懸濁した後、終濃度7.5%になるようDMSO(Dimethyl Sulfoxide)を添加し氷上で10分間冷却した。その後エッペンチューブに200μLずつ分注し、液体窒素中で凍結させ、−80℃で保存した。
A. Preparation of competent cells
The method of Inoue et al. (Inoue H, Nojima H, Okayama H: High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28, 1990) was followed. Escherichia coli (E. coli DH5αF ′ strain) was streaked on an LB medium plate (not containing Ampicillin) and then cultured at 37 ° C. overnight. Several colonies were inoculated into 250 mL SOB medium in a 2 L Erlenmeyer flask and cultured at 18 ° C. with shaking until OD 660 = 0.4 to 0.6. The Erlenmeyer flask was cooled on ice for 10 minutes, and then centrifuged (3000 rpm, 10 min, 4 ° C.). After removing the supernatant by decantation, the precipitated E. coli was transformed into 1/3 volume (about 84 mL) of transformation buffer (TB) cooled to 0 ° C. (10 mM PIPES, 15 mM CaCl 2 , 15 mM KCl, 55 mM MnCl 2). ) And cooled on ice for 10 minutes, centrifuged again (3000 rpm, 10 min, 4 ° C.), and the supernatant was removed. The precipitated Escherichia coli was suspended in 20 mL of TB cooled to 0 ° C., DMSO (Dimethyl Sulfoxide) was added to a final concentration of 7.5%, and the mixture was cooled on ice for 10 minutes. Thereafter, 200 μL each was dispensed into an Eppendorf tube, frozen in liquid nitrogen, and stored at −80 ° C.

B.大腸菌への形質転換
Cohenらの方法(Cohen SN、Chang AC、Hsu L:Nonchromosomal antibiotic resistance in bacteria : genetic transformation of Escherichia coli by R-factor DNA. Proc Natl AcadSci USA 69:2110-2114,1972)に従って行った。上記で調整されたコンピテントセルを氷上で溶解し、同じく氷上に静置した適量のプラスミド溶液もしくはライゲーション反応液を添加し、氷上で約30分間静置した。その後、42℃で45秒間のヒートショック後、氷上で約2分間静置した。1000μLの2×TY培地を加え、45分間、37℃で振盪培養した後、100μg/mLのAmpicillinを含むLB培地plateにスプレッドし、37℃で一晩培養した。
B. Transformation into E. coli
Cohen et al. (Cohen SN, Chang AC, Hsu L: Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl AcadSci USA 69: 2110-2114, 1972). The competent cell prepared as described above was dissolved on ice, an appropriate amount of plasmid solution or ligation reaction solution which was also allowed to stand on ice was added, and the mixture was allowed to stand on ice for about 30 minutes. Then, after heat shock at 42 ° C. for 45 seconds, the mixture was allowed to stand on ice for about 2 minutes. After adding 1000 μL of 2 × TY medium and shaking culture at 37 ° C. for 45 minutes, it was spread on an LB medium plate containing 100 μg / mL Ampicillin and cultured at 37 ° C. overnight.

C.プラスミドDNAの調製
Alkalinelysis法(Sambrook J.、Russell DW:Molecular Cloning :a laboratory manual. 1.31-1.34, 2001)に従った。LBplate上で生育したシングルコロニーを2×TY培地(Ampicillinを含む)1.7mLに爪楊枝を用いて接種し、37℃にて一晩振盪培養を行った。培養液をエッペンチューブに入れ、遠心分離(10000rpm、1min)により菌体を回収した。培養上清を取り除いた後、SolutionI(50mMGlucose、10mMEDTA、25mMTris-HCl(pH8.0))を100μL添加し菌体を懸濁した。そこにSolutionII(02NNaOH、1.0%SDS)を200μL添加し穏やかに撹拌した。5分間静置した後、SolutionIII(3MPotassium acetate(pH4.8))を150μL添加し、撹拌後、氷上で10分間静置した。遠心分離(15000rpm、10min)して上清を回収し、フェノール/クロロホルム抽出し、常温で遠心分離(15000rpm、5min)を行った。上清を別エッペンに分取し、2.5倍量のEtOH(ice cold)を加え、氷上で10分間放置した。4℃にて遠心分離(15000rpm、5min)を行い、上清を取り除いた後、70%EtOH(ice cold)にて洗浄後、再び4℃にて遠心分離(15000rpm、5min)を行い、上清を取り除いた後、真空乾燥させた。沈殿を約100μLのTEbuffer(10mMTris-HCl、1mMEDTA、pH8.0)に溶解し、10mg/mLRNase A2μLを添加し37℃で30分間放置し、これをプラスミド溶液とした。
C. Preparation of plasmid DNA
The Alkalinelysis method (Sambrook J., Russell DW: Molecular Cloning: a laboratory manual. 1.31-1.34, 2001) was followed. A single colony grown on the LBplate was inoculated into 1.7 mL of 2 × TY medium (including Ampicillin) using a toothpick and cultured overnight at 37 ° C. with shaking. The culture solution was put into an Eppendorf tube, and the cells were collected by centrifugation (10000 rpm, 1 min). After removing the culture supernatant, 100 μL of Solution I (50 mM Glucose, 10 mM EDTA, 25 mM Tris-HCl (pH 8.0)) was added to suspend the cells. 200 μL of Solution II (02N NaOH, 1.0% SDS) was added thereto and gently stirred. After leaving still for 5 minutes, 150 μL of Solution III (3M Potassium acetate (pH 4.8)) was added, and after stirring, allowed to stand on ice for 10 minutes. The supernatant was collected by centrifugation (15000 rpm, 10 min), extracted with phenol / chloroform, and centrifuged (15000 rpm, 5 min) at room temperature. The supernatant was separated into a separate eppen, 2.5 volumes of EtOH (ice cold) was added, and the mixture was allowed to stand on ice for 10 minutes. Centrifugation (15000 rpm, 5 min) at 4 ° C., removal of the supernatant, washing with 70% EtOH (ice cold), and centrifugation (15000 rpm, 5 min) at 4 ° C. Was removed and vacuum-dried. The precipitate was dissolved in about 100 μL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0), 2 μL of 10 mg / mL RNase A was added, and the mixture was allowed to stand at 37 ° C. for 30 minutes to obtain a plasmid solution.

D.アガロースゲル電気泳動
制限酵素等で消化したDNA断片等を分析するためにアガロース電気泳動に供した。Agarose-LE Classic TypeをTAEbuffer(0.04Tris、0.02MAcetic acid、1mMEDTA、pH8.0)に0.7〜1.5%(w/v)となるように加熱融解し臭化エジジウムを0.5μg/mLになるように加えアガロースゲルとした。このゲルをTAEbufferで満たされたMupidミニゲル電気泳動装置(Advance社製)に置き、DNA溶液に対して1/10量の10×Loading Buffer(0.1%Bromophenol blue(BPB)、10%Glycerol、0.5%ドデシル硫酸ナトリウム(SDS)、TEで容量を調節する)を加えアガロースゲルに負荷した。50Vもしくは100Vの定電圧下で泳動後、トランスイルミネーター(VILVERLOURMAT社製)上でDNAを観察した。
D. Agarose gel electrophoresis In order to analyze DNA fragments digested with restriction enzymes and the like, they were subjected to agarose electrophoresis. Agarose-LE Classic Type was heated and melted in TAE buffer (0.04Tris, 0.02MAcetic acid, 1mM EDTA, pH 8.0) to a concentration of 0.7 to 1.5% (w / v), and edidium bromide was added to 0.5%. Agarose gel was prepared by adding 5 μg / mL. This gel was placed in a Mupid mini gel electrophoresis apparatus (Advance) filled with TAE buffer, and 1/10 amount of 10 × Loading Buffer (0.1% Bromophenol blue (BPB), 10% Glycerol, 0.5% sodium dodecyl sulfate (SDS), volume adjusted with TE) was added to the agarose gel. After electrophoresis under a constant voltage of 50V or 100V, DNA was observed on a transilluminator (manufactured by VILVERLOURMAT).

E.制限酵素処理および修飾酵素処理
制限酵素処理および修飾酵素処理は基本的に添付のプロトコルに従って行った。必要時にフェノール抽出、フェノール/クロロホルム抽出およびエタノール沈殿を行った。
E. Restriction enzyme treatment and modification enzyme treatment Restriction enzyme treatment and modification enzyme treatment were basically performed according to the attached protocol. When necessary, phenol extraction, phenol / chloroform extraction, and ethanol precipitation were performed.

F.アガロースゲルからのDNA断片の回収
Wangらの方法に従った(Wang Z., Rossman TG : Isolation of DNA fragments from agarose gel by centrifugation. Nucleic Acids Research, Vol. 22, No. 14, 2862-2863,1994)。制限酵素処理もしくはPCRによって得られたDNA断片をアガロースゲル電気泳動に供し、目的の断片を含むゲルを切り出しそこから以下のステップで回収を行った。
F. Recovery of DNA fragments from agarose gel
According to the method of Wang et al. (Wang Z., Rossman TG: Isolation of DNA fragments from agarose gel by centrifugation. Nucleic Acids Research, Vol. 22, No. 14, 2862-2863, 1994). A DNA fragment obtained by restriction enzyme treatment or PCR was subjected to agarose gel electrophoresis, and a gel containing the target fragment was excised and recovered from it in the following steps.

エッペンチューブの底に穴を開け、その穴を4mm径の濾紙(FILTER PAPER GA-100,ADVANTEC社製)で塞ぎ、SephadexG-10(TEbufferに膨潤させたもの)を300μL重層し、別のエッペンチューブにのせ遠心分離(15000rpm、1min)を行い、TEbufferを取り除いた。上部のエッペンチューブに切り出したアガロースゲルを入れ、新しいエッペンチューブにのせ遠心分離(15000rpm、10min、4℃)し、下部のエッペンに残ったDNA溶液に対してフェノール抽出、フェノール/クロロホルム抽出を行った後、エタノール沈澱(2.5倍量EtOH、1/10倍量3MSodium acetate(pH5.2)を添加)を行った。氷上で10分間静置した後遠心分離(15000rpm、10min、4℃)を行った。沈澱を70%EtOHで洗浄した後、真空乾燥を行い、適量のTEbufferに溶解しこれをDNA溶液とした。   A hole is made in the bottom of the Eppendorf tube, the hole is closed with 4 mm diameter filter paper (FILTER PAPER GA-100, manufactured by ADVANTEC), 300 μL of Sephadex G-10 (swollen in TEbuffer) is overlaid, and another Eppendorf tube is formed. Then, centrifugation (15000 rpm, 1 min) was performed to remove TEbuffer. The cut agarose gel was put into the upper Eppendorf tube, placed on a new Eppendorf tube and centrifuged (15000 rpm, 10 min, 4 ° C.), and the DNA solution remaining in the lower Eppendorf was subjected to phenol extraction and phenol / chloroform extraction. Then, ethanol precipitation (2.5 times amount EtOH, 1/10 times amount 3M Sodium acetate (pH 5.2) was added) was performed. After standing for 10 minutes on ice, centrifugation (15000 rpm, 10 min, 4 ° C.) was performed. The precipitate was washed with 70% EtOH and then vacuum dried, and dissolved in an appropriate amount of TE buffer to obtain a DNA solution.

G.ライゲーション反応
プラスミドを制限酵素処理した後、電気泳動後アガロースゲルから回収を行い、プラスミドベクターとした。ライゲーション反応条件としてはDNA断片とベクターのモル比を3:1とし、そこに10×ligation bufferを全量の1/10量を加えて撹拌後、T4 DNA ligase(500unit/μL)を1μL添加し、16℃で3時間反応させた。
G. Ligation reaction After treating the plasmid with a restriction enzyme, it was recovered from an agarose gel after electrophoresis to obtain a plasmid vector. As the ligation reaction conditions, the molar ratio of the DNA fragment to the vector was set to 3: 1, 1/10 of the total amount of 10 × ligation buffer was added and stirred, and then 1 μL of T4 DNA ligase (500 units / μL) was added. The reaction was performed at 16 ° C. for 3 hours.

H.PCR法を用いたDNA断片の増幅
PCR法にはPrime STARHS DNA polymerase(タカラバイオ社製)および各添付bufferを用いた。反応装置はTaKaRa Thermal cycler(タカラバイオ社製)を用いた。反応溶液の調製及び反応条件は以下に示した条件を基本とし、Template、primer対の組合せを表1に示した。但し、cbhIIかCBDとLinkerをコードするDNA配列を増幅する時のみ、伸長時間を30秒とした。また、各PCR産物をそれぞれbgl1、cbhI-LC、cmc2-LC、cbhIICL-1と命名した。
H. Amplification of DNA fragment using PCR method For the PCR method, Prime STARHS DNA polymerase (manufactured by Takara Bio Inc.) and each attached buffer were used. As a reaction apparatus, TaKaRa Thermal cycler (manufactured by Takara Bio Inc.) was used. Preparation of the reaction solution and reaction conditions are based on the following conditions, and combinations of Template and primer pairs are shown in Table 1. However, the extension time was set to 30 seconds only when the DNA sequence encoding cbhII or CBD and Linker was amplified. Each PCR product was named bgl1, cbhI-LC, cmc2-LC, and cbhIICL-1.

(PCRreaction mixture)
Template(0.5ng/μL) 2
Fprimer(5μM) 2
Rprimer(5μM) 2
dNTP Mixture(2.5mMeach) 4
5×Prime STAR buffer 10
Prime STARHS DNA polymerase(0.625U/μL) 2
Distilled water 28
Total 50(μL)
(PCRcondition)
Denature 98℃ 0min 10sec
Anneal 55℃ 0min 5sec 30cycle
Extend 72℃ 3min 0sec
72℃ 10min 0sec 1cycle
(PCRreaction mixture)
Template (0.5 ng / μL) 2
Fprimer (5 μM) 2
Rprimer (5 μM) 2
dNTP Mixture (2.5 mMeach) 4
5 x Prime STAR buffer 10
Prime STARHS DNA polymerase (0.625 U / μL) 2
Distilled water 28
Total 50 (μL)
(PCRcondition)
Denature 98 ℃ 0min 10sec
Anneal 55 ℃ 0min 5sec 30cycle
Extend 72 ℃ 3min 0sec
72 ℃ 10min 0sec 1cycle

I.発現プラスミドの構築
上記のPCR法によって得られたPCR産物cbhI-LC、cmc2-LCをEcoR IとBamH Iで消化し、pBluescript II KS (+)(pBs)のマルチクローニングサイト内にあるEcoR IサイトとBamH Iサイトに挿入した(pBs-CBDcbhI、pBs-CBDcmc2)。さらに、PCR産物bgl1をNsi IとXho Iで消化し、pBs-CBDcbhI及びpBs-CBDcmc2のCBDの5´末端側に付加したNsi Iサイトと、さらにその上流にあるpBsのマルチクローニングサイト内のSal Iサイトに挿入した。これをbgl1の5´末端側に付加したNot Iサイトと、各CBDの3´末端側に付加したNde Iサイトで切断して目的遺伝子を切り出し、糸状菌用高発現ベクターpNAN8142のマルチクローニングサイト内にあるNot IサイトとNde Iサイトに挿入した。このようにして得られたプラスミドをpNAN-bgl1-CBDcbhI及びpNAN-bgl1-CBDcmc2とした。一方、BGL1のN末端側にCBDを付加させるため、PCR産物cbhII-CL1の5´末端側をXho Iで消化したものを、pH3Kのbgl1遺伝子の翻訳開始点より64bp上流にあるXho Iサイトと翻訳開始点から54bp下流にあるEco47 IIIサイトに挿入した。これにより、bgl1のシグナル配列(57bp)を除き、かつリンカーと触媒ドメインの間に1アミノ酸残基(アラニン)のみの挿入でBGL1のN末端側にCBDを付加させた。これをCBDの5´末端側に付加したXho Iサイトと、bgl1の終止コドンより319bp下流に存在するSph Iサイトで切り出し、pNAN8142のマルチクローニングサイト内にあるXho IサイトとSph Iサイトに挿入した。このようにして得られたプラスミドをpNAN-CBDcbhII-bgl1とし、それぞれ構築された計3種類のプラスミドをA.oryzaeの形質転換に用いた。
I. Construction of Expression Plasmid PCR products cbhI-LC and cmc2-LC obtained by the above PCR method are digested with EcoR I and BamH I, and EcoR located in the multiple cloning site of pBluescript II KS (+) (pBs) They were inserted into the I site and the BamH I site (pBs-CBD cbhI , pBs-CBD cmc2 ). Furthermore, the PCR product bgl1 was digested with Nsi I and Xho I, and added to the 5 ′ end of the CBD of pBs-CBD cbhI and pBs-CBD cmc2 , and further inside the multiple cloning site of pBs upstream of it. Inserted into the Sal I site. This is cleaved at the Not I site added to the 5 ′ end side of bgl1 and the Nde I site added to the 3 ′ end side of each CBD to cut out the target gene, and within the multi-cloning site of the high expression vector pNAN8142 for filamentous fungi Inserted into the Not I and Nde I sites. The plasmids thus obtained were designated as pNAN-bgl1-CBD cbhI and pNAN-bgl1-CBD cmc2 . On the other hand, in order to add CBD to the N-terminal side of BGL1, the PCR product cbhII-CL1 digested with Xho I was converted to the Xho I site 64 bp upstream from the translation start point of the bgl1 gene at pH 3K. It was inserted into the Eco47 III site 54 bp downstream from the translation start point. As a result, the signal sequence (57 bp) of bgl1 was removed, and CBD was added to the N-terminal side of BGL1 by inserting only one amino acid residue (alanine) between the linker and the catalytic domain. This was excised at the Xho I site added to the 5 'end side of CBD and the Sph I site present 319 bp downstream from the stop codon of bgl1, and inserted into the Xho I site and Sph I site within the multi-cloning site of pNAN8142. . The thus obtained plasmid was designated as pNAN-CBD cbhII- bgl1, and a total of three plasmids constructed respectively were used for transformation of A. oryzae.

BGL1のN末端及び/又はC末端にCBDを結合させるため、bgl1の開始コドンから終止コドンを除く2937bp(図1参照)と、cbhIの1384bp目から終止コドンまでの240bp(図1参照)、cmc2の1140bp目から終止コドンまでの327bp(図1参照)、及びcbhIIの開始コドンから377bp目(図1参照)までをPCRによって増幅した。PCR産物をアガロースゲル電気泳動に供することで正しい長さの断片が増幅されたことを確認した(図4)。また、これらを組み合わせて構築した発現プラスミドpNAN-bgl1-CBDcbhI、pNAN-bgl1-CBDcmc2、pNAN-CBDcbhII-bgl1は目的遺伝子を発現ベクターに挿入する際に用いたNot IとNde Iや、Pst I、Sal Iなどを用いて目的遺伝子が正しく挿入されていることを確認した(データを示さず)。 In order to bind CBD to the N-terminal and / or C-terminal of BGL1, 2937 bp (see FIG. 1) excluding the stop codon from the start codon of bgl1, 240 bp (see FIG. 1) from 1384 bp to the stop codon of cbhI, cmc 2 The 327 bp from the 1140 bp to the stop codon (see FIG. 1) and the cbhII start codon to the 377 bp (see FIG. 1) were amplified by PCR. The PCR product was subjected to agarose gel electrophoresis, and it was confirmed that a fragment of the correct length was amplified (FIG. 4). Moreover, and Not I and Nde I was used when inserting expression was constructed by combining these plasmids pNAN-bgl1-CBD cbhI, pNAN -bgl1-CBD cmc2, pNAN-CBD cbhII -bgl1 is a gene of interest into an expression vector, It was confirmed that the target gene was correctly inserted using Pst I, Sal I, etc. (data not shown).

J.使用試薬等
発現プラスミドの構築に使用した菌株、プラスミド、培地、プライマーなどは以下のとおりである。
a)使用菌株
Escherichia coli DH5αF´ F' / endA1 hsdR17(rK -mK +)supE44、thi-1、
recA1, gyrA (Nalr)、 relA1、
Δ(lacZYA-argF)U169 (m80lacZΔM15)
b)使用プラスミド
pNAN8142
pBluescript II KS (+)
pH3K
pUC118、bgl1
pNANBGL1 pNAN8142、bgl1
pGA1 pSL1180/1190、cbhI
pNANcbhII pNAN8142、cbhII
pGC2 pUC118/119、cmc2 genome
c)使用培地
大腸菌の培養には以下の培地を使用した。平板培地には1.5%濃度の寒天を加えた。必要に応じて、終濃度が100μg/mLとなるようにAmpicillinを添加した。
i)LB培地(pH7.0)
Polypepton 1.0%
Bacto-yeast extract(Difco社製) 0.5%
NaCl 0.5%
ii)2×TY培地(pH7.0)
Bacto-tryptone(Difco社製) 1.6%
Bacto-yeast extract(Difco社製) 1.0%
NaCl 0.5%
iii)SOB培地(pH7.0)
Bacto-tryptone(Difco社製) 2.0%
Bacto-yeast extract(Difco社製) 0.5%
NaCl 10mM
KCl 2.5mM
MgCl2 5mM
MgSO4 5mM
d)使用試薬
i)制限酵素、修飾酵素
制限酵素および修飾酵素は、ニッポンジーン社製、東洋紡社製、タカラバイオ社製、あるいはNEW ENGLAND BIOLABS(NEB)社製のものを使用し、それぞれの処理は各社のプロトコルに従った。
制限酵素:BamHI、Eco47III、EcoRI、NdeI、NotI、NsiI、SalI、XhoI
修飾酵素:T4 DNA ligase、Prime STARHS DNA polymelase
ii)プライマー
目的遺伝子の増幅には表2に示すプライマーを使用した。
iii)その他の試薬
その他は特に示さない限り、和光純薬工業社製、またはナカライテスク社製の特級試薬を用いた。
J. Reagents used, etc. The strains, plasmids, media, primers, etc. used for the construction of the expression plasmid are as follows.
a) Strains used
Escherichia coli DH5αF´F '/ endA1 hsdR17 (r K - m K + ) supE44, thi-1,
recA1, gyrA (Nal r ), relA1,
Δ (lacZYA-argF) U169 (m80lacZΔM15)
b) Plasmid used
pNAN8142
pBluescript II KS (+)
pH3K
pUC118, bgl1
pNANBGL1 pNAN8142, bgl1
pGA1 pSL1180 / 1190, cbhI
pNANcbhII pNAN8142, cbhII
pGC2 pUC118 / 119, cmc2 genome
c) Medium used The following medium was used for the culture of E. coli. Agar with 1.5% concentration was added to the plate medium. If necessary, Ampicillin was added so that the final concentration was 100 μg / mL.
i) LB medium (pH 7.0)
Polypepton 1.0%
Bacto-yeast extract (Difco) 0.5%
NaCl 0.5%
ii) 2 × TY medium (pH 7.0)
Bacto-tryptone (Difco) 1.6%
Bacto-yeast extract (Difco) 1.0%
NaCl 0.5%
iii) SOB medium (pH 7.0)
Bacto-tryptone (Difco) 2.0%
Bacto-yeast extract (Difco) 0.5%
NaCl 10 mM
KCl 2.5 mM
MgCl 2 5 mM
MgSO 4 5 mM
d) Reagents used i) Restriction enzymes and modification enzymes Restriction enzymes and modification enzymes are manufactured by Nippon Gene, Toyobo, Takara Bio, or NEW ENGLAND BIOLABS (NEB). Each company's protocol was followed.
Restriction enzymes: BamHI, Eco47III, EcoRI, NdeI, NotI, NsiI, SalI, XhoI
Modification enzyme: T4 DNA ligase, Prime STARHS DNA polymelase
ii) Primer
The primers shown in Table 2 were used for amplification of the target gene.
iii) Other reagents Unless otherwise indicated, special grade reagents manufactured by Wako Pure Chemical Industries or Nacalai Tesque were used.

2.A.oryzaeにおける酵素発現
上記で構築した発現プラスミドをA.oryzaeに形質転換して、酵素を発現させた。
A.プロトプラスト調製
MM(NH4 +)プレートに生育したA.oryzae niaD300株にTween80/Saline solution(0.01%Tween80、0.9%NaCl)12mLを加え、スプレッダーを用いて胞子を集めよく懸濁した。これを500mL容バッフル付き三角フラスコ中のMM(NH4 +)150mLに5mL加え、30℃、160min-1で16〜20h振盪した。培養終了後、菌体をミラクロス上で集菌しProtoplasting Buffer(PB、0.8MNaCl、10mMNaH2PO4)で洗浄した。回収した菌体の一部を50mL容遠心チューブ中のYatalase40mg、Lysing Enzyme30mgの入ったPB10mLに懸濁し、30℃で120分間ゆっくりと振盪しながらインキュベートした。この間、30分毎にピペッティングによって菌体を穏やかにほぐした。反応後、菌糸などのかすを除くため反応液をミラクロスでろ過し、ろ液を4℃、2000rpmで5分間遠心した。沈殿をAspergillus Transformation Buffer(ATB、0.8MNaCl、10mMTris-HCl(pH7.5)、50mMCaCl2)約10mLに懸濁し4℃、2000rpmで5分間遠心した。沈殿を適量のATBに懸濁しプロトプラスト溶液とした。
2. Enzyme expression in A.oryzae The expression plasmid constructed above was transformed into A.oryzae to express the enzyme.
A. Protoplast preparation Add 12 mL of Tween 80 / Saline solution (0.01% Tween 80, 0.9% NaCl) to A. oryzae niaD300 strain grown on MM (NH 4 + ) plate, and collect spores using a spreader. It became cloudy. 5 mL of this was added to 150 mL of MM (NH 4 + ) in a 500 mL baffled Erlenmeyer flask, and the mixture was shaken at 30 ° C. and 160 min −1 for 16 to 20 h. After completion of the culture, the cells were collected on Miracloth and washed with Protoplasting Buffer (PB, 0.8M NaCl, 10 mM NaH 2 PO 4 ). A part of the collected cells was suspended in 10 mL of PB containing 40 mg of Yatalase and 30 mg of Lysing Enzyme in a 50 mL centrifuge tube, and incubated at 30 ° C. for 120 minutes with gentle shaking. During this time, the cells were gently loosened by pipetting every 30 minutes. After the reaction, the reaction solution was filtered with Miracloth to remove debris such as mycelia, and the filtrate was centrifuged at 4 ° C. and 2000 rpm for 5 minutes. The precipitate was suspended in about 10 mL of Aspergillus Transformation Buffer (ATB, 0.8 M NaCl, 10 mM Tris-HCl (pH 7.5), 50 mM CaCl 2 ), and centrifuged at 4 ° C. and 2000 rpm for 5 minutes. The precipitate was suspended in an appropriate amount of ATB to obtain a protoplast solution.

B. A.oryzaeの形質転換
プロトプラスト溶液100μL(1×10-9個-plotoplast/mL)に2×ATBを等量加えた各種プラスミド溶液(pNAN8142、pNAN-bgl1-CBDcbhI、pNAN-bgl1-CBDcmc2、pNAN-CBDcbhII-bgl1各10μg-DNA)を加えた。この溶液に対し20%量のPEG solution(60%PEG4000、10mMTris-HCl(pH7.5)、50mMCaCl2)を添加し、穏やかに混合した。氷上で10分間静置した後、PEG solution1mLを加えて緩やかに混和した。室温で10分間静置した後、10mLのATBを加えてよく混合し、4℃、2000rpmで5分間遠心した。沈殿を適量のATBに懸濁し、45℃に保温したTop Agar(RMに0.7%のAgaroseを溶解させたもの)5mLと混合し、RMプレート上に重層した。30℃で3日間培養し、それぞれの形質転換体を得た。なお、取得した菌株をそれぞれ以下のように命名した。
プラスミド 菌株名
pNAN8142 A.oryzae8142
pNAN-bgl1-CBDcbh1 A.oryzaeBGL1-CBDCBHI1
pNAN-bgl1-CBDcmc2 A.oryzaeBGL1-CBDCMC1
pNAN-CBDcbhII-bgl1 A oryzaeCBDCBHII-BGL1
B. Transformation of A. oryzae Various plasmid solutions (pNAN8142, pNAN-bgl1-CBD cbhI , pNAN-bgl1-CBD) in which equal amounts of 2 × ATB were added to 100 μL of protoplast solution (1 × 10 -9 plopplast / mL) cmc2 , pNAN-CBD cbhII- bgl1 10 μg-DNA each). A 20% amount of PEG solution (60% PEG 4000, 10 mM Tris-HCl (pH 7.5), 50 mM CaCl 2 ) was added to this solution and mixed gently. After standing for 10 minutes on ice, 1 mL of PEG solution was added and gently mixed. After leaving still at room temperature for 10 minutes, 10 mL ATB was added and mixed well, and it centrifuged at 4 degreeC and 2000 rpm for 5 minutes. The precipitate was suspended in an appropriate amount of ATB, mixed with 5 mL of Top Agar (0.7% Agarose dissolved in RM) kept at 45 ° C., and overlaid on the RM plate. Each transformant was obtained by culturing at 30 ° C. for 3 days. The obtained strains were named as follows.
Plasmid strain name
pNAN8142 A.oryzae8142
pNAN-bgl1-CBD cbh1 A.oryzaeBGL1 -CBD CBHI1
pNAN-bgl1-CBD cmc2 A.oryzaeBGL1 -CBD CMC1
pNAN-CBD cbhII -bgl1 A oryzaeCBD CBHII -BGL1

C.培養
目的タンパク質の発現を確認するため、取得された形質転換体をMM(NO3 -)で培養した。MM(NO3 -)のGlucoseを5%、NaNO3を1%にした培地10mLが入った太試験管に1白金耳ずつ植菌し、30℃、170min-1で3日間培養を行った。
C. Culture In order to confirm the expression of the target protein, the obtained transformant was cultured in MM (NO 3 ). One platinum loop was inoculated into a thick test tube containing 10 mL of medium containing 5% MM (NO 3 ) lucose and 1% NaNO 3, and cultured at 30 ° C. and 170 min −1 for 3 days.

D.BGL1及びCBD結合型BGL1の遊離
BGL1は分泌後、菌体表層に結合することが知られている。そこで、菌体表層に結合したBGL1及び各種CBD結合型BGL1を遊離させるため、培養した形質転換体を以下のように処理した。
培養液を、菌体ごとろ紙を敷いたブフナー漏斗に流し込み、吸引ろ過して培地を除いた。ろ紙上に残った菌体を20mMAcetate buffer(pH5.0)150mLで洗浄し、培地成分を完全に除いた。得られた菌体を培地と等量の遊離バッファー(Cycloheximide20μg/mL、1mMPhenylmethylsulfonyl fluoride、0.2%TritonX-100、20mMAcetate buffer(pH5.0))に加え、30℃、160min-1で4日間振盪した。
D. Release of BGL1 and CBD-bound BGL1 It is known that BGL1 binds to the cell surface after secretion. Therefore, the cultured transformants were treated as follows in order to release BGL1 and various CBD-bound BGL1 bound to the surface of the cells.
The culture solution was poured into a Buchner funnel covered with filter paper together with the cells and suction filtered to remove the medium. The cells remaining on the filter paper were washed with 150 mL of 20 mM acetate buffer (pH 5.0) to completely remove the medium components. The obtained bacterial cells were added to a free buffer (Cycloheximide 20 μg / mL, 1 mM phenylmethylsulfonyl fluoride, 0.2% Triton X-100, 20 mM acetate buffer (pH 5.0)) equivalent to the medium and shaken at 30 ° C. and 160 min −1 for 4 days. did.

E.活性測定
BGL1の酵素活性測定は、pNP法により行った。基質として3mMp-Nitrophenyl-β-D-glucopyranoside(pNP -Glc)溶液(in 100mM Acetate buffer pH5.0)を用い、酵素溶液は100mMAcetate buffer(pH5.0)で適切な濃度に希釈して用いた。また、BGL1の安定化のため酵素溶液の希釈の際に、反応液中に10μgのオボアルブミンを含むように1mg/mLオボアルブミンを加えた。酵素反応は、5分間37℃でプレインキュベートした酵素溶液100μLに、同じくプレインキュベートした基質溶液100μLを加えてよく混合し、37℃にて10分間反応させることにより行った。反応後、2mLの1MNa2CO3を加え反応を停止させ、405nmの吸光度からp-Nitrophenol(pNP)の吸光係数を用いて遊離したpNP濃度を算出し、活性を求めた。ブランクには、酵素溶液の代わりに100mMAcetate buffer(pH5.0)100μLを用いて、基質溶液100μL、1MNa2CO32mLを加えたものを用いた。
E. Activity measurement The enzyme activity of BGL1 was measured by the pNP method. A 3 mM p-Nitrophenyl-β-D-glucopyranoside (pNP-Glc) solution (in 100 mM Acetate buffer pH 5.0) was used as a substrate, and the enzyme solution was diluted to an appropriate concentration with 100 mM Acetate buffer (pH 5.0). In addition, 1 mg / mL ovalbumin was added so that 10 μg of ovalbumin was contained in the reaction solution when the enzyme solution was diluted to stabilize BGL1. The enzyme reaction was performed by adding 100 μL of the same pre-incubated substrate solution to 100 μL of the enzyme solution preincubated for 5 minutes at 37 ° C., mixing well, and reacting at 37 ° C. for 10 minutes. After the reaction, 2 mL of 1M Na 2 CO 3 was added to stop the reaction, and the released pNP concentration was calculated from the absorbance at 405 nm using the extinction coefficient of p-Nitrophenol (pNP) to determine the activity. As a blank, 100 μL of 100 mM acetate buffer (pH 5.0) was used instead of the enzyme solution, and 100 μL of substrate solution and 2 mL of 1M Na 2 CO 3 were added.

また、1unit(1U)は1分間に1μmolのpNPを遊離させる酵素量と定義し、以下の式により酵素活性を算出した。吸光係数は、ε(405)=0.0185mL/nmol・cm-1を用いた。
酵素活性(units/mL)=
x/18.5×2.2mL/(10min)×(1/0.1mL)×希釈率
x:A405(ただしtest値からblank値を引いた値とする)
1 unit (1 U) was defined as the amount of enzyme that liberates 1 μmol of pNP per minute, and the enzyme activity was calculated by the following formula. As the extinction coefficient, ε (405) = 0.0185 mL / nmol · cm −1 was used.
Enzyme activity (units / mL) =
x / 18.5 × 2.2 mL / (10 min) × (1 / 0.1 mL) × dilution rate
x: A 405 (however, the value obtained by subtracting the blank value from the test value)

F.SDS-PAGE(SDS-ポリアクリルアミドゲル電気泳動)
SDS-PAGEはLeammliの方法(Laemmli UK : Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680-685、 1970)に従った。分離ゲルは9.0%、濃縮ゲルは5%の二層からなるポリアクリルアミドゲル(Acrylamide:N、N'-Methylene bisacrylamide=29.2:0.8)を作製した。試料酵素溶液に等量の2×Sample buffer(0.125MTris-HCl、20%Glycerol、2%SDS、2%1-Mercaptoethanol、0.001%Bromophenol blue、pH6.8)を添加し、100℃で10分間処理して試料とした。縦型スラブ電気泳動装置(ATTO社製)を用い、泳動用緩衝液(0.1%SDS、25mMTrisbase、192mMGlycine)中で20mAの定電流下で電気泳動を行った。
F.SDS-PAGE (SDS-polyacrylamide gel electrophoresis)
SDS-PAGE followed the method of Leammli (Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685, 1970). A polyacrylamide gel (Acrylamide: N, N′-Methylene bisacrylamide = 29.2: 0.8) consisting of two layers of 9.0% separation gel and 5% concentration gel was prepared. Add equal volume of 2x Sample buffer (0.125M Tris-HCl, 20% Glycerol, 2% SDS, 2% 1-Mercaptoethanol, 0.001% Bromophenol blue, pH 6.8) to the sample enzyme solution at 100 ° C. Samples were processed for 10 minutes. Using a vertical slab electrophoresis apparatus (manufactured by ATTO), electrophoresis was performed in a buffer for electrophoresis (0.1% SDS, 25 mM Trisbase, 192 mM Glycine) at a constant current of 20 mA.

G.使用試薬等
酵素発現のために使用した菌株、培地などは以下のとおりである。
a)使用菌株
A.oryzae niaD300(RIB40由来) ΔniaD
A.oryzae BGL1 bgl1
A.oryzae BGL1株は、A.aculeatusのbgl1を、pNAN8142ベクターを用いてA.oryzaeに組込んだ株であり、西槇らによって取得されたものである(西槇徹、Aspergillus aculeatus 由来b-glucosidase 1 遺伝子の Aspergillus oryzae における高発現、大阪府立大学大学院 修士論文、2003)。
b)使用培地
A.oryzaeの培養には以下の培地を使用した。平板培地には1.5%濃度の寒天を加えた。
i)Minimum medium(NO3 -)(MM(NO3 -))(pH6.5)
Salts solution 5.0%
Trace element mixture※※ 0.10%
Glucose 1.0%
NaNO3 0.3%
ii)Minimum medium(NH4 +)(MM(NH4 +))(pH6.5)
MM(NO3 -)のNaNO3の代わりにAmmonium tartrate 0.18%を使用したもの。
iii)Regeneration Medium(RM) (pH6.5)
Salts solution 5.0%
Trace element mixture※※ 0.10%
Glucose 1.0%
NaNO3 0.3%
NaCl 4.68%
※Salts solution
KCl 2.6%
MgSO4・7H2O 2.6%
KH2PO4 7.6%
※※Trace element mixture
Mo7O24・4H2O 0.11%
H3BO3 0.11%
CoCl・6H2O 0.16%
CuSO4・5H2O 0.16%
EDTA 5.0%
FeSO4・7H2O 0.50%
MnCl2・4H2O 0.50%
ZnSO4・7H2O 2.2%
c)使用試薬
プロトプラスト調製のために、以下の酵素を使用した。
Yatalase(タカラバイオ社製)、Lysing Enzyme(Sigma社製)
d)その他の試薬
その他は特に示さない限り、和光純薬工業社製、またはナカライテスク社製の特級試薬を用いた。
H.結果
上記で構築したpNAN-bgl1-CBDcbhI、pNAN-bgl1-CBDcmc2、pNAN-CBDcbhII-bgl1、及びインサートの入っていないpNAN8142ベクターを用いてA.oryzaeを形質転換した。モノスポア化を2〜3回繰り返し、最終的に得られた株はA.oryzae8142株が16株、A.oryzae BGL1-CBDCBHI株が8株、A.oryzae BGL1-CBDCMC2株が7株、A.oryzae CBDCBHII-BGL1株が8株となった。
G. Reagents etc. The strains and culture media used for enzyme expression are as follows.
a) Strains used
A.oryzae niaD300 (derived from RIB40) ΔniaD
A.oryzae BGL1 bgl1
A.oryzae BGL1 strain is a strain in which bgl1 of A.aculeatus is incorporated into A.oryzae using pNAN8142 vector, and was obtained by Saijo et al. (Toru Nishijo, b-derived from Aspergillus aculeatus High expression of glucosidase 1 gene in Aspergillus oryzae, Master's thesis, Osaka Prefecture University, 2003).
b) Medium used
The following media were used for the culture of A.oryzae. Agar with 1.5% concentration was added to the plate medium.
i) Minimum medium (NO 3 - ) (MM (NO 3 -)) (pH6.5)
Salts solution * 5.0%
Trace element mixture ** 0.10%
Glucose 1.0%
NaNO 3 0.3%
ii) Minimum medium (NH 4 + ) (MM (NH 4 + )) (pH 6.5)
MM (NO 3 -) in place of NaNO 3 of those using Ammonium tartrate 0.18%.
iii) Regeneration Medium (RM) (pH 6.5)
Salts solution * 5.0%
Trace element mixture ** 0.10%
Glucose 1.0%
NaNO 3 0.3%
NaCl 4.68%
* Salts solution
KCl 2.6%
MgSO 4 · 7H 2 O 2.6%
KH 2 PO 4 7.6%
※※ Trace element mixture
Mo 7 O 24・ 4H 2 O 0.11%
H 3 BO 3 0.11%
CoCl ・ 6H 2 O 0.16%
CuSO 4 · 5H 2 O 0.16%
EDTA 5.0%
FeSO 4・ 7H 2 O 0.50%
MnCl 2 · 4H 2 O 0.50%
ZnSO 4 · 7H 2 O 2.2%
c) Reagents used The following enzymes were used for the preparation of protoplasts.
Yatalase (manufactured by Takara Bio Inc.), Lysing Enzyme (manufactured by Sigma)
d) Other reagents Unless otherwise specified, special grade reagents manufactured by Wako Pure Chemical Industries, Ltd. or Nacalai Tesque were used.
H. Results pNAN-bgl1-CBD cbhI constructed above, pNAN-bgl1-CBD cmc2, pNAN-CBD cbhII -bgl1, and was transformed into A.oryzae using pNAN8142 vector containing no insert. Monospore formation was repeated 2-3 times, and the final strains were 16 A.oryzae8142 strains, 8 A.oryzae BGL1-CBD CBHI strains, 7 A.oryzae BGL1-CBD CMC2 strains, A .oryzae CBD CBHII -BGL1 stock became 8 stocks.

それぞれの株を複数株ずつ培養し、遊離操作を行ってpNP-Glcに対する活性を追跡したところ、A.oryzae8142株では活性がほとんど検出されなかったが、A.oryzae BGL1-CBDCBHI株とA.oryzae CBDCBHII-BGL1株ではA.oryzae BGL1株と同等の活性が検出された(図5)。また、SDS-PAGEによってBGL1よりサイズが僅かに大きい、それぞれBGL1-CBDCBHI、CBDCBHII-BGL1と思われるタンパク質の存在を確認した(図6)。一方、A.oryzae BGL1-CBDCMC2株では他のCBD結合型BGL1に比べ遊離バッファー当たりの活性が低く酵素生産量も少なかった(図6)。 When each strain was cultured in multiple strains and released, and the activity against pNP-Glc was followed, almost no activity was detected in A. oryzae8142 , but A.oryzae BGL1-CBD CBHI and A. oryzae strains were detected. In the oryzae CBD CBHII- BGL1 strain, an activity equivalent to that of the A.oryzae BGL1 strain was detected (FIG. 5). Furthermore, the presence of proteins that were slightly larger than BGL1 and considered to be BGL1-CBD CBHI and CBD CBHII -BGL1, respectively, was confirmed by SDS-PAGE (FIG. 6). On the other hand, in the A. oryzae BGL1-CBD CMC2 strain, the activity per free buffer was low and the amount of enzyme produced was small compared to other CBD-bound BGL1 (FIG. 6).

3.酵素の精製
A.培養
上記1−2のC)の方法で種培養を行い、同培地200mLの入った500mL容バッフル付き三角フラスコに種培養した培養液全量を加え、さらに30℃、160min-1で3日間培養した。
3. Purification of enzyme A. Culture Seed culture was carried out by the method of 1-2 above C), and the whole culture solution was added to a 500 mL baffled Erlenmeyer flask containing 200 mL of the same medium, and further 30 ° C., 160 min. -1 for 3 days.

B.粗酵素液の調製
上記2.D.に示したように、培養した菌体を回収後、Triton X-100を含まない遊離バッファー(Cycloheximide 20μgmL、1mMPhenylmethylsulfonyl fluoride、20mM Acetate buffer(pH5.0))を用いて菌体表層から酵素を遊離させた(30℃、160min-1、4days)。次に、この溶液を菌体ごとストッキングで濾して菌体を大まかに除き、更にろ液を遠心分離(4℃、10800rpm、30min)して上清を取得することで菌体を完全に除いた。これを粗酵素液とし、以下の精製に用いた。
B. Preparation of Crude Enzyme Solution As shown in 2.D. above, after recovering the cultured cells, free buffer without Triton X-100 (Cycloheximide 20 μgmL, 1 mM phenylmethylsulfonyl fluoride, 20 mM Acetate buffer (pH 5.0)) ) Was used to release the enzyme from the cell surface (30 ° C., 160 min −1 , 4 days). Next, this solution was filtered with stockings together with stockings to roughly remove the cells, and the filtrate was centrifuged (4 ° C., 10800 rpm, 30 min) to obtain a supernatant to completely remove the cells. . This was used as a crude enzyme solution for the following purification.

C.精製
各酵素は以下の要領で精製した。
粗酵素液を20mM Acetate buffer(pH5.0)で平衡化したDEAE-TOYOPEARL650Mに吸着させ、0〜0.3MNaCl溶液(in20mM Acetate buffer(pH5.0))1Lのリニアグラジェントで溶出した後、pNP-Glcに対する分解活性を示す画分を回収した。次に、回収した活性画分に硫酸アンモニウムを30%飽和となるように加え、予め30%飽和硫酸アンモニウム溶液(in20mM Acetate buffer(pH5.0))で平衡化したButyl-TOYOPEARL650Mに吸着させ、30〜0%飽和の硫酸アンモニウム溶液(in 20mM Acetate buffer(pH5.0))1Lのリバースリニアグラジェントで溶出した。活性画分を回収し硫酸アンモニウムを加えて80%飽和とし、硫安塩析を行った。遠心分離(4℃、10800rpm、30min)によって沈殿を回収後、少量の20mM Acetate buffer(pH5.0)に溶解した。これを、透析膜(三光純薬社製)を用いて20mM Acetate buffer(pH5.0)中で一晩透析し精製サンプルとした。一方、BGL1-CBDCBHI、BGL1-CBDCMC2、CBDCBHII-BGL1は等量の99.5%エタノールを加えることによりエタノール沈殿を行った。沈殿を遠心分離(4℃、8000rpm、30min)によって回収し、50%エタノール溶液(in 20mM Acetate buffer(pH5.0))で洗い、遠心分離(4℃、8000rpm、30min)によって再び沈殿を分離した。この洗浄を2回行った後、上清を完全に除き、デシケーターを用いて減圧乾燥し、沈殿を適量の20mM Acetate buffer(pH5.0)に溶解させ精製サンプルとした。
C. Purification Each enzyme was purified as follows.
The crude enzyme solution was adsorbed on DEAE-TOYOPEARL650M equilibrated with 20 mM Acetate buffer (pH 5.0) and eluted with 1 L linear gradient of 0-0.3 M NaCl solution (in 20 mM Acetate buffer (pH 5.0)), then pNP The fraction showing the degradation activity against -Glc was collected. Next, ammonium sulfate is added to the collected active fraction so as to be 30% saturated, and adsorbed on Butyl-TOYOPEARL650M equilibrated in advance with a 30% saturated ammonium sulfate solution (in 20 mM Acetate buffer (pH 5.0)). Elution was performed with 1 L of a reverse linear gradient of a saturated ammonium sulfate solution (in 20 mM Acetate buffer (pH 5.0)). The active fraction was collected and added with ammonium sulfate to 80% saturation, and ammonium sulfate salting out was performed. The precipitate was recovered by centrifugation (4 ° C., 10800 rpm, 30 min), and then dissolved in a small amount of 20 mM Acetate buffer (pH 5.0). This was dialyzed overnight in a 20 mM acetate buffer (pH 5.0) using a dialysis membrane (manufactured by Sanko Junyaku Co., Ltd.) to obtain a purified sample. On the other hand, BGL1-CBD CBHI , BGL1-CBD CMC2 , and CBD CBHII -BGL1 were subjected to ethanol precipitation by adding an equal amount of 99.5% ethanol. The precipitate was collected by centrifugation (4 ° C., 8000 rpm, 30 min), washed with 50% ethanol solution (in 20 mM Acetate buffer (pH 5.0)), and the precipitate was separated again by centrifugation (4 ° C., 8000 rpm, 30 min). . After performing this washing twice, the supernatant was completely removed and dried under reduced pressure using a desiccator, and the precipitate was dissolved in an appropriate amount of 20 mM Acetate buffer (pH 5.0) to obtain a purified sample.

D.活性測定
上記2.E.活性測定と同様に行った。
D. Activity measurement The measurement was performed in the same manner as 2.E.

E.SDS-PAGE
上記2.F.活性測定と同様に行った。
E.SDS-PAGE
The same measurement as in 2.F.

F.タンパク質量の測定
タンパク質量は280nmの吸光度から、各酵素の吸光係数を用いて算出した。
各酵素の吸光係数はGillらの方法(Gill SC, Hippel PH : Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182 : 319-326, 1989)を参考に、Trpのモル吸光係数を5690cm-1・M-1、Tyrを1280cm-1・M-1、Cysを120cm-1・M-1とし、アミノ酸の一次配列から推定した。
F. Measurement of protein amount The protein amount was calculated from the absorbance at 280 nm using the extinction coefficient of each enzyme.
Extinction coefficient of each enzyme Gill et al. Method (. Gill SC, Hippel PH: Calculation of protein extinction coefficients from amino acid sequence data Anal Biochem 182: 319-326, 1989) with reference to, the molar extinction coefficient of Trp 5690cm - 1 · M -1, 1280cm -1 · M -1 and Tyr, the Cys and 120cm -1 · M -1, and deduced from the primary sequence of amino acids.

G.結果
A.oryzaeで生産させたBGL1及びCBD結合型BGL1をDEAE-TOYOPEARL650MやButyl-TOYOPEARL650M、またはPhenyl-TOYOPEARL650Sを用いて精製した(図7〜9)。各種精製酵素をSDS-PAGEに供したところ、BGL1は約130kDa、BGL1-CBDCBHIは約140kDa、CBDCBHII-BGL1は約145kDa、BGL1-CBDCMC2は約130kDaの位置にそれぞれ単一のバンドが見られ、電気泳動的に均一なタンパク質として精製されたことが確認された。その結果を図11及び表3に示す。
G. Results
BGL1 and CBD-bound BGL1 produced in A. oryzae were purified using DEAE-TOYOPEARL650M, Butyl-TOYOPEARL650M, or Phenyl-TOYOPEARL650S (FIGS. 7 to 9). Were subjected to various purified enzyme to SDS-PAGE, BGL1 about 130kDa, BGL1-CBD CBHI about 140kDa, CBD CBHII -BGL1 about 145kDa, BGL1-CBD CMC2 each observed single band at approximately 130 kDa It was confirmed that the protein was purified as an electrophoretically uniform protein. The results are shown in FIG.

4.酵素の性質
次に、上記で精製された酵素を用いてBGL1へのCBD結合による影響を調べた。
A.アルカリ膨潤セルロース(ASC)の調製
ASCはHashの方法(Hash JH, King KW : On the nature of the b-glucosidases of Myrothecium verrucaria. J Biol Chem, 232 : 381-393, 1958)を用いてフナセル(フナコシ社製)から調製した。フナセル6gを氷冷した35%NaOH200mL中に攪拌しながら徐々に加えて浸漬させ、30min静置した。その後、氷冷した蒸留水3Lを投入し、HClを加えてpH3.0に調整した。pH調整後、4℃で30〜40min静置することでASCを沈殿させ、デカンテーションで上清を除き、予め4℃で冷やしておいた蒸留水3Lを加えた。これを5回繰り返した後、ASCを遠心分離(10800rpm、30min、4℃)によって分離し、沈殿を再び蒸留水に懸濁した。これを5回繰り返した後、再び蒸留水に懸濁し、ULTRASONIC DISRUPTOR UD-201(TOMY社製)を用いて超音波破砕を行った(output8、duty50、10min、インターバル10min、6セット)。蒸留水を加えて全量約400mLとし、ASCのストック液とした。還元糖量及び全糖量(Dubois M, Gilles K., Hamilton JK, Rebers PA, Smith F : A colorimetric method for the determination of sugars. Anal Chem 28 (3), 350-356, 1956)を測定し平均重合度を算出した。また、酵素反応の基質としては全糖量から求めたストック液の濃度を元に、1%(w/v)ASC懸濁液(in 20mM Acetate buffer(pH5.0))として使用した。
4. Properties of enzyme Next, the effect of CBD binding to BGL1 was examined using the enzyme purified above.
A. Preparation of Alkaline Swelling Cellulose (ASC) ASC is a funacell using Hash's method (Hash JH, King KW: On the nature of the b-glucosidases of Myrothecium verrucaria. J Biol Chem, 232: 381-393, 1958). (Manufactured by Funakoshi). 6 g of funacel was gradually added to 200 mL of ice-cooled 35% NaOH while stirring and allowed to stand for 30 min. Thereafter, 3 L of ice-cooled distilled water was added, and HCl was added to adjust to pH 3.0. After pH adjustment, ASC was precipitated by allowing to stand at 4 ° C. for 30 to 40 minutes, the supernatant was removed by decantation, and 3 L of distilled water cooled in advance at 4 ° C. was added. After repeating this 5 times, ASC was separated by centrifugation (10800 rpm, 30 min, 4 ° C.), and the precipitate was suspended again in distilled water. After repeating this 5 times, it was suspended again in distilled water and subjected to ultrasonic crushing using ULTRASONIC DISRUPTOR UD-201 (manufactured by TOMY) (output 8, duty 50, 10 min, interval 10 min, 6 sets). Distilled water was added to make a total volume of about 400 mL to prepare an ASC stock solution. Measure the average amount of reducing sugar and total sugar (Dubois M, Gilles K., Hamilton JK, Rebers PA, Smith F: A colorimetric method for the determination of sugars. Anal Chem 28 (3), 350-356, 1956) The degree of polymerization was calculated. The enzyme reaction substrate was used as a 1% (w / v) ASC suspension (in 20 mM Acetate buffer (pH 5.0)) based on the concentration of the stock solution determined from the total amount of sugar.

B.基質特異性の検討
a)pNP-Glcに対する活性
pNP-Glcに対する活性は上記2.E.活性測定と同様に行った。
b)Salicinに対する活性
Somogyi-Nelson法(福井作蔵:生物化学実験法1、還元糖の定量法、第2版、1990)により行った。適度に希釈した酵素溶液100μLl1%Salicin(in 100mM Acetate buffer(pH5.0))100μLを混合し、37℃で10分間反応させた。Somogyi液500μLを加えることで反応を停止させ、蒸留水を加えて全量を1mLとし、沸騰水中で15分間煮沸した。煮沸後、流水で5分間冷やし、速やかにNelson液500μLを加えてよく混合した。20分間静置させた後、イオン交換水3.5mLを加えてよく混ぜ、500nmの波長の吸光度を測定した。得られた値を、グルコースを用いて得られたスタンダードカーブに代入し、還元糖量を算出した。1unitは1分間に1μmolの還元糖を生成する酵素量と定義した。
B. Examination of substrate specificity a) Activity against pNP-Glc
The activity against pNP-Glc was carried out in the same manner as in 2.E.
b) Activity against Salicin
This was performed by the Somogyi-Nelson method (Sakuzo Fukui: Biochemical Experimental Method 1, Reducing Sugar Quantification Method, Second Edition, 1990). A moderately diluted enzyme solution (100 μL, 1% Salicin (in 100 mM Acetate buffer (pH 5.0)) (100 μL) was mixed and reacted at 37 ° C. for 10 minutes. The reaction was stopped by adding 500 μL of Somogyi solution, and distilled water was added to make a total volume of 1 mL, followed by boiling in boiling water for 15 minutes. After boiling, it was cooled with running water for 5 minutes, and 500 μL of Nelson solution was quickly added and mixed well. After allowing to stand for 20 minutes, 3.5 mL of ion exchange water was added and mixed well, and the absorbance at a wavelength of 500 nm was measured. The obtained value was substituted into a standard curve obtained using glucose, and the amount of reducing sugar was calculated. One unit was defined as the amount of enzyme that produced 1 μmol of reducing sugar per minute.

C.Cellobioseに対する活性
Glucose-oxidase法で行った。適度に希釈した酵素液100μLに1%Cellobiose(in 100mM Acetate buffer(pH5.0))100μLを混合し、37℃で10分間反応させた。1MHCl50μLを加えることで反応を停止させ、5分間静置した後、中和液(1MTris:2MNaOH=8:2)50μLを加えた。この溶液から100μLを取り、発色試薬(グルコースCII-テストワコー(和光純薬社製))100μLと混合して30℃で15分間発色させ、500nmの波長の吸光度を測定した。得られた値を、グルコースを用いて得られたスタンダードカーブに代入し、生成グルコース量を算出した。1unitは1分間に2μmolのグルコースを生成する酵素量と定義した。
Activity against C. Cellobiose
Glucose-oxidase method was used. 100 μL of 1% Cellobiose (in 100 mM Acetate buffer (pH 5.0)) was mixed with 100 μL of an appropriately diluted enzyme solution and reacted at 37 ° C. for 10 minutes. The reaction was stopped by adding 50 μL of 1M HCl, and allowed to stand for 5 minutes, and then 50 μL of neutralizing solution (1MTris: 2MNaOH = 8: 2) was added. 100 μL was taken from this solution, mixed with 100 μL of a color-developing reagent (glucose CII-Test Wako (manufactured by Wako Pure Chemical Industries)), and allowed to develop color at 30 ° C. for 15 minutes, and the absorbance at a wavelength of 500 nm was measured. The obtained value was substituted into a standard curve obtained using glucose, and the amount of produced glucose was calculated. One unit was defined as the amount of enzyme that produces 2 μmol of glucose per minute.

D.ICOS分解のタイムコース
1%(w/v)ICOS懸濁液(in 100mM Acetate buffer(pH5.0)各100μLに、適度に希釈した酵素液100μLずつを分注することで反応を開始した。反応開始から30分後、2時間後、4時間後、8時間後、16時間後にそれぞれ1MHCl50μLを加えて反応を停止させ、上記C.Cellobioseに対する活性と同様Glucose-oxidase法で生成グルコース量を算出した。但し、ICOSは不溶性のため、中和液を添加後、反応液をエッペンにとり、遠心分離(15000rpm、4℃、10min)して得た上清100μLを発色試薬100μLと混合することで発色させた。1unitの定義は1分間に1μmolのグルコースを生成する酵素量と定義した。また、雑菌の繁殖を防ぐため、ICOSの分解反応液中にはアジ化ナトリウムを0.02%加えて反応を行った。
D. Time Course of ICOS Decomposition 1% (w / v) ICOS suspension (in 100 mM Acetate buffer (pH 5.0)) Each reaction was started by dispensing 100 μL of an appropriately diluted enzyme solution. After 30 minutes, 2 hours, 4 hours, 8 hours and 16 hours after the start of the reaction, 50 μL of 1M HCl was added to stop the reaction, and the amount of glucose produced was determined by the Glucose-oxidase method in the same manner as the activity against C. cellobiose. However, since ICOS is insoluble, the neutralizing solution was added, the reaction solution was taken in an eppen, and 100 μL of the supernatant obtained by centrifugation (15000 rpm, 4 ° C., 10 min) was mixed with 100 μL of the coloring reagent. 1 unit is defined as the amount of enzyme that produces 1 μmol of glucose per minute, and in the ICOS decomposition reaction solution, sodium azide is used to prevent the growth of miscellaneous bacteria. The reaction was performed by adding 0.02%.

E.ASC分解のタイムコース
ASCの分解は上記D.ICOS分解のタイムコースと同様の方法で行った。但し、基質量を1%ASC懸濁液(in 100mM Acetate buffer(pH5.0))300μLとし、反応時間を30分、8時間、24時間、48時間とした。なお、全ての酵素反応において、GBL1及びCBD結合型BGL1の安定化のため反応液中に10μgのオボアルブミンを加えている。
E. Time Course of ASC Decomposition ASC was decomposed in the same manner as the time course of D.ICOS decomposition. However, the base mass was 300 μL of 1% ASC suspension (in 100 mM Acetate buffer (pH 5.0)), and the reaction time was 30 minutes, 8 hours, 24 hours, and 48 hours. In all enzyme reactions, 10 μg of ovalbumin was added to the reaction solution in order to stabilize GBL1 and CBD-bound BGL1.

F.ASCに対する吸着
既知濃度の各酵素サンプルを任意の割合で希釈し、エッペン中で1mgのASCと混合(in 100mM Acetate buffer(pH5.0)、Total volume0.6mL)して氷上で120分間吸着させた。但し、吸着開始から30分後、1時間後に反応液を軽く振り混ぜた。反応終了後、遠心分離(15000rpm、4℃、1min)してASCとそれに結合した酵素を沈殿させ、上清500μLを取得した。得られた上清の吸光度A280から上清中の酵素濃度を算出し、初発酵素濃度との差を求めることで吸着した酵素量を算出した。
F. Adsorption to ASC Each enzyme sample of known concentration is diluted at an arbitrary ratio, mixed with 1 mg of ASC in an eppen (in 100 mM Acetate buffer (pH 5.0), total volume 0.6 mL) and adsorbed on ice for 120 minutes. I let you. However, the reaction solution was lightly shaken 30 minutes after the start of adsorption and 1 hour later. After completion of the reaction, centrifugation (15000 rpm, 4 ° C., 1 min) was performed to precipitate ASC and the enzyme bound thereto, and 500 μL of supernatant was obtained. From the absorbance A 280 of the obtained supernatant, the enzyme concentration in the supernatant was calculated, and the amount of the adsorbed enzyme was calculated by calculating the difference from the initial enzyme concentration.

G.熱安定性
酵素200μL(0.264μM、in 100mM Acetate buffer(pH5.0))をエッペンに取り、30〜75℃の任意の温度に設定したウォーターバス中で30分間インキュベートした。インキュベート後、氷中で急冷し、pNG-Glcに対し残存活性を測定した。測定は上記2.E.活性測定と同様にして行った。
G. Thermostability 200 μL of enzyme (0.264 μM, in 100 mM Acetate buffer (pH 5.0)) was taken in an eppen and incubated in a water bath set at an arbitrary temperature of 30 to 75 ° C. for 30 minutes. After incubation, the mixture was quenched in ice and the residual activity against pNG-Glc was measured. The measurement was performed in the same manner as the above 2.E. activity measurement.

H.pH安定性
pHの調整は下記表4に示した各種60mMのbufferを用いて酵素液を10倍希釈することで行った。pH調整を行った酵素液100μL(1.32μM)をエッペンに取り、25℃のエアインキュベーター中で15時間静置した。静置後、速やかに100mM Acetate buffer(pH5.0)を加えて10倍に希釈することでpH5.0に戻し、pNP-Glcに対しする残存活性を測定した。測定は上記2.E.活性測定と同様にして行った。
H. pH stability The pH was adjusted by diluting the enzyme solution 10 times using various 60 mM buffers shown in Table 4 below. 100 μL (1.32 μM) of the enzyme solution whose pH was adjusted was taken in an eppen and allowed to stand in an air incubator at 25 ° C. for 15 hours. After allowing to stand, 100 mM Acetate buffer (pH 5.0) was quickly added to dilute it 10 times to return to pH 5.0, and the residual activity against pNP-Glc was measured. The measurement was performed in the same manner as the above 2.E. activity measurement.

I.使用した試薬等
酵素の性質を調べるために使用した試薬は以下のとおりである。
i)使用試薬
a)不溶性セロオリゴ糖(ICOS)
ICOSは阪本らの方法(阪本禮一郎、Aspergillus aculeatus No. F-50 のセルラーゼ系に関する研究、 大阪府立大学大学院 博士論文、1984)を用いて仲谷らによってCellulosepowderD(ADVANTEC社製)から調製されたものを使用した。平均重合度は(全糖量)/(還元糖量)比から26.7と求められている。
b)Somogyi-Nelson試薬
Somogyi液
Na2SO4 18%
Na2CO3 2.4%
CuSO4・5H2O 0.4%
NaHCO3 1.6%
(CH(OH)COO)2KNa・4H2O 1.2%
Nelson液
(NH4)6Mo7O24・4H2O 5.0%
Na2HAsO4・7H2O 0.6%
H2SO4 4.6%
I. Reagents used The reagents used for examining the properties of the enzyme are as follows.
i) Reagents used a) Insoluble cellooligosaccharide (ICOS)
ICOS was prepared from Cellulosepowder D (manufactured by ADVANTEC) by Nakaya et al. Using the method of Sakamoto et al. (Shinichiro Sakamoto, Research on Cellulase System of Aspergillus aculeatus No. F-50, Osaka Prefecture University Graduate School Doctoral Dissertation, 1984). It was used. The average degree of polymerization is determined to be 26.7 from the ratio of (total sugar amount) / (reducing sugar amount).
b) Somogyi-Nelson reagent
Somogyi liquid
Na 2 SO 4 18%
Na 2 CO 3 2.4%
CuSO 4 · 5H 2 O 0.4%
NaHCO 3 1.6%
(CH (OH) COO) 2 KNa · 4H 2 O 1.2%
Nelson liquid
(NH 4 ) 6 Mo 7 O 24・ 4H 2 O 5.0%
Na 2 HAsO 4 · 7H 2 O 0.6%
H 2 SO 4 4.6%

J.結果
精製酵素を用いてASCに対する吸着検定を行ったところ、BGL1ではASCへの吸着が見られなかったが、BGL1-CBDCBHI及びCBDCBHII-BGL1では吸着が確認された(図12)。両逆数プロット(Seki H, Suzuki A, Maruyama H : Adsorption of egg albumin onto methylated yeast biomass. Journal of Colloid and Interface Science 270 : 304-308, 2004)をとり吸着定数(Ka)及び最大吸着量(Bmax)を求めたところ、BGL1-CBDCBHIとCBDCBHII-BGL1のKaはそれぞれ6.0×106-1、8.7×106-1とCBDCBHII-BGL1の方が僅かに高く、Bmaxはそれぞれ0.78×10-8mol/mg-ASC、0.64×10-9mol/mg-ASCとBGL1-CBDCBHIの方が僅かに高いという結果となった(表5)。なお、BGL1-CBDCMC2についてはASCへの吸着が見られなかったため、その他の性質検討は行わないこととした(データは示さず)。
J. Results When an adsorption assay for ASC was performed using a purified enzyme, BGL1 did not adsorb to ASC, but BGL1-CBD CBHI and CBD CBHII -BGL1 confirmed adsorption (FIG. 12). Both reciprocal plot (Seki H, Suzuki A, Maruyama H:. Adsorption of egg albumin onto methylated yeast biomass Journal of Colloid and Interface Science 270: 304-308, 2004) adsorption constants takes (K a) and the maximum adsorption amount (B was determined to max), BGL1-CBD CBHI and CBD CBHII K a is respectively 6.0 × 10 6 M -1 of -BGL1, slightly better of 8.7 × 10 6 M -1 and CBD CBHII -BGL1 B max was 0.78 × 10 −8 mol / mg-ASC, 0.64 × 10 −9 mol / mg-ASC and BGL1-CBD CBHI , respectively, slightly higher (Table 5). ). Since BGL1-CBD CMC2 was not adsorbed on ASC, other properties were not examined (data not shown).

BGL1、BGL1-CBDCBHI、CBDCBHII-BGL1について可溶性基質(Cellobiose、pNP-Glc、Salicin)に対する分解活性を調べたところ、BGL1と各種CBD結合型BGL1の間に差は見られなかった(表6)。一方、不溶性基質(ASC、ICOS)の分解においてはBGL1とCBD結合型BGL1との間に有意な差が見られた。ASCに対し37℃で48時間は反応させた時点での生成グルコース量を測定したところ、BGL1では11.1μg、BGL1-CBDCBHIでは18.1μg、CBDCBHII-BGL1では14.7μgとなり、BGL1-CBDCBHI、CBDCBHII-BGL1はBGL1に対しそれぞれ1.6倍、1.3倍のグルコース量を生成した(図13A)。また、ICOSに対する分解では37℃、16時間の反応でBGL1では24.3μgのグルコースを生成したのに対し、BGL1-CBDCBHI、CBDCBHII-BGL1ではそれぞれ37.0μg、36.1μgとなりBGL1に対し共に1.5倍のグルコースを生成した(図13B)。
BGL1, BGL1-CBD CBHI , CBD CBHII -BGL1 were examined for degradation activity against soluble substrates (Cellobiose, pNP-Glc, Salicin), and no difference was found between BGL1 and various CBD-bound BGL1 (Table 6). ). On the other hand, in the degradation of insoluble substrates (ASC, ICOS), a significant difference was observed between BGL1 and CBD-bound BGL1. The amount of glucose produced at the time of reaction with ASC at 37 ° C. for 48 hours was measured to be 11.1 μg for BGL1, 18.1 μg for BGL1-CBD CBHI , and 14.7 μg for CBD CBHII -BGL1, and BGL1- CBD CBHI and CBD CBHII -BGL1 produced 1.6 times and 1.3 times the amount of glucose compared to BGL1, respectively (FIG. 13A). In the degradation to ICOS, 24.3 μg of glucose was produced in BGL1 in a reaction at 37 ° C. for 16 hours, whereas in BGL1-CBD CBHI and CBD CBHII -BGL1, 37.0 μg and 36.1 μg, respectively, with respect to BGL1 Both produced 1.5 times as much glucose (FIG. 13B).

各種精製酵素の熱やpHに対する安定性を調べた。等濃度の酵素液200μLを30〜75℃の任意の温度で30分間インキュベートし、急冷後、pNP-Glcに対する残存活性を測定したところ、野生型BGL1とCBD結合型BGL1の間に差は見られなかった(図14A)。野生型、CBD結合型は共に65℃までは80%以上の活性を保持していたが、67.0℃で約50%の活性を失い、70℃ではほぼ完全に失活した。また、pH2.3〜10.1の任意のpHに25℃で15時間さらした後、pNP-Glcに対する残存活性を測定したところ、野生型、CBD結合型は共にpH2.7〜9.1の範囲では80%以上の活性を維持していたが、その範囲外では、活性が急激に低下した(図14B、表5)。     The stability of various purified enzymes to heat and pH was examined. When 200 μL of an enzyme solution with an equal concentration was incubated at an arbitrary temperature of 30 to 75 ° C. for 30 minutes and rapidly cooled, and the residual activity against pNP-Glc was measured, there was a difference between wild type BGL1 and CBD-bound BGL1. There was no (FIG. 14A). Both wild type and CBD binding type retained 80% or more of activity up to 65 ° C, but lost about 50% of activity at 67.0 ° C and almost completely inactivated at 70 ° C. Moreover, when the residual activity against pNP-Glc was measured after exposure to an arbitrary pH of 2.3 to 10.1 at 25 ° C. for 15 hours, both the wild type and CBD binding types had pH of 2.7 to 9.1. While the activity of 80% or more was maintained in the range, the activity decreased rapidly outside the range (FIG. 14B, Table 5).

今回精製したBGL1のサイズはSDS-PAGEで確認したところ約130kDaであった。これは以前の報告(西槇徹、Aspergillus aculeatus 由来β-グルコシダーゼ1のA.oryzaeにおける高発現、 大阪府立大学大学院 修士論文、2003)でA.oryzaeBGL1株から精製されたBGL1のサイズが約130kDaであったことと、またオーセンティックなBGL1は133kDaであること一致した。よって、今回精製されたBGL1はA.aculeatusのbgl1遺伝子から生産されたものであると断定した。     The size of BGL1 purified this time was about 130 kDa as confirmed by SDS-PAGE. This was reported in a previous report (Toru Nishizaki, β-glucosidase 1 derived from Aspergillus aculeatus 1 in A. oryzae, Master's thesis, Osaka Prefecture University, 2003). The size of BGL1 purified from A. oryzae BGL1 strain was about 130 kDa. It was also agreed that the authentic BGL1 was 133 kDa. Therefore, it was concluded that BGL1 purified this time was produced from the Bgl1 gene of A. aculeatus.

これに対し各種CBD結合型BGL1はLinker及びCBDを結合させた分、分子サイズが大きくなることが予想された。結果、BGL1-CBDCBHIとCBDCBHII-BGL1はBGL1より大きい、それぞれ約140kDa、145kDaとなり、正しくLinker及びCBDが結合した形で精製されたと推定された。また、これらの酵素について可溶性基質に対する比活性を求めたところ、測定に用いた全ての基質において差は見られず、CBD付加によりBGL1の触媒活性が妨げられることはないとわかった。一方、BGL1-CBDCMC2はpNP-Glcに対する比活性はBGL1と同等であるが、SDS-PAGEによってBGL1と同じ約130kDaの位置にバンドが見られたため、Linker及びCBDが結合していないことが疑われた。そのため、BGL1-CBDCMC2についてASCに対する吸着を調べたところ、BGL1-CBDCBHIなら十分に結合が確認できる濃度(A280=0.256)で吸着させたにも関わらず、吸着量を表すA280差((初発A280)−(非吸着画分のA280))は僅か0.025となり、他のCBD結合型BGL1の20%以下であった。また、本酵素は精製ステップの初期である粗酵素液の段階で、既にSDS-PAGEによって約130kDaの位置にバンドが示されいることから(データ示さず)、遺伝子が正しく発現されていない、もしくはCBDCMC2またはLinker領域がプロテアーゼの作用を受けやすく、培養もしくは遊離処理の間に切断されてしまったのではないかと考えられる。以上のことからBGL1-CBDCMC2はCBDを結合した状態では精製されていないと判断し、以下の検討は行わないことにした。 In contrast, various CBD-bound BGL1s were expected to increase in molecular size as much as Linker and CBD were bound. As a result, BGL1-CBD CBHI and CBD CBHII- BGL1 were larger than BGL1, being about 140 kDa and 145 kDa, respectively, and it was estimated that they were purified in a form in which Linker and CBD were correctly bound. Moreover, when the specific activity with respect to the soluble substrate was calculated | required about these enzymes, the difference was not seen in all the substrates used for the measurement, and it turned out that the catalytic activity of BGL1 is not prevented by CBD addition. On the other hand, BGL1-CBD CMC2 has a specific activity for pNP-Glc that is equivalent to that of BGL1, but a band was seen at about 130 kDa as BGL1 by SDS-PAGE, suggesting that Linker and CBD are not bound. It was broken. Therefore, when BGL1-CBD CMC2 was adsorbed on ASC, BGL1-CBD CBHI was adsorbed at a concentration (A 280 = 0.256) at which sufficient binding could be confirmed, but A 280 representing the adsorbed amount . the difference ((initial a 280) - (a 280 of non-adsorbed fraction)) is just 0.025 mm was less than 20% of other CBD linked BGL1. In addition, since this enzyme is a crude enzyme solution at the initial stage of the purification step and a band is already shown at about 130 kDa by SDS-PAGE (data not shown), the gene is not expressed correctly, or It is thought that the CBD CMC2 or Linker region is susceptible to protease action and was cleaved during culture or release treatment. Based on the above, it was determined that BGL1-CBD CMC2 was not purified in a state where CBD was bound, and the following examination was not performed.

BGL1及びBGL1-CBDCBHI、CBDCBHII-BGL1についてASCに対する吸着検定を行ったところBGL1では全く吸着がみられなかったのに対し、両CBD結合型BGL1はASCに吸着した。これにより、BGL1-CBDCBHI、CBDCBHII-BGL1がCBDを結合した形で精製されていることが確認された。吸着定数や吸着最大量についてはそれぞれKa=6.0×106-1、8.7×106-1、Bmax=0.78×10-9mol/mg-ASC、0.64×10-9mol/mg-ASCとなった。T.reeseiのCBHI及びCBHIIのKa、Bmaxを参照すると、吸着温度4℃下でCBHI、CBHIIのAvicelに対するKaはそれぞれ0.93×106-1、1.92×106-1、Bmaxは0.74×10-9mol/mg、0.52×10-9mol/mgであった(Medve J, St_hlberg J, Tjerneld F : Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Applied Biochemistry and Biotechnology 66:39-56,1997)。また、同CBHIのBMCCへの吸着のKaは8.33×106-1、Bmaxは6.0×10-9mol/mgである(Reinikainen T, Teleman O, Teeri TT : Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. 22 : 392-403, 1995)。これらの値と比較すると、BGL1-CBDCBHI及びCBDCBHII-BGL1はT.reeseiのCBHIのAvicelへの吸着と同程度の親和性、最大吸着量を示しており、CBDが遜色なく機能していると考えられた。 When BGL1 and BGL1-CBD CBHI and CBD CBHII -BGL1 were adsorbed to ASC, BGL1 did not adsorb at all, whereas both CBD-bound BGL1 adsorbed to ASC. As a result, it was confirmed that BGL1-CBD CBHI and CBD CBHII -BGL1 were purified in a CBD-bound form. Regarding the adsorption constant and the maximum amount of adsorption, K a = 6.0 × 10 6 M −1 , 8.7 × 10 6 M −1 , B max = 0.78 × 10 −9 mol / mg-ASC, 0.7 It became 64 * 10 < -9 > mol / mg-ASC. CBHI and CBHII of Ka of T. reesei, referring to B max, CBHI under adsorption temperature 4 ° C., K a, respectively 0.93 × 10 6 M -1 for Avicel of CBHII, 1.92 × 10 6 M - 1 and B max were 0.74 × 10 −9 mol / mg and 0.52 × 10 −9 mol / mg (Medve J, St_hlberg J, Tjerneld F: Isotherms for adsorption of cellobiohydrolase I and II from Trichoderma reesei on microcrystalline cellulose. Applied Biochemistry and Biotechnology 66: 39-56, 1997). Also, K a of adsorption to BMCC of the CBHI is 8.33 × 10 6 M -1, B max is 6.0 × 10 -9 mol / mg ( Reinikainen T, Teleman O, Teeri TT: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. 22: 392-403, 1995). Compared with these values, BGL1-CBD CBHI and CBD CBHII -BGL1 show the same affinity and maximum adsorption amount as T. reesei CBHI adsorbed on Avicel, and CBD functions inferior. It was considered.

不溶性基質への分解に関しては、各CBD結合型BGL1の親和性の違いにより、CBD結合型BGL1の間でも差が見られると予想された。しかし、実際は同じ酵素量、同じ反応時間で測定した時、ICOSに対しBGL1-CBDCBHI及びCBDCBHII-BGL1は共にBGL1の1.5倍のグルコースを生成しているが、ASCに対してはBGL1-CBDCBHIとCBDCBHII-BGL1の間でも差がみられた。これはASCへの吸着検定においてKaがBGL1-CBDCBHIの方が大きいことから、よりASCを分解するだろうという予想に反するものであった。これについて考察すると、CBD結合型BGL1が不溶性基質のBGL1単独では分解できない部分を分解するには、まず不溶性基質への吸着が起こり、その後触媒ドメインが基質と結合し分解するという段階的な反応が起こっていると予想される(Igarashi K, Wada M, Hori R, Samejima M : Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface. FEBS J 273 : 2869-2878, 2006)。そのため、基質への吸着から触媒ドメインの基質結合への移行がスムーズに行われるか否かも不溶性基質の分解速度に関わってくると考えられる。本研究においてはN末端もしくはC末端へのCBD付加という違いにより立体構造的にCBDと触媒部位との空間的位置関係が異なることが予想される。また、両者はLinkerの長さも異なる(CBDCBHII-BGL1の方が14アミノ酸残基長い)。これらの違いから、BGL1-CBDCBHIの方が吸着から分解への移行がスムーズに行われ、ASCに対しより高い活性を示したのではないかと思われる。一方で、ICOSの方は、ASC(DP=165)に対し平均重合度が低く(DP=26.7)、BGL1にとってASCより分解しやすい基質であるため差が見られないと考えら得る。 Regarding degradation to insoluble substrates, it was expected that differences were also observed among CBD-bound BGL1 due to the difference in affinity of each CBD-bound BGL1. However, when measured with the same amount of enzyme and the same reaction time, BGL1-CBD CBHI and CBD CBHII- BGL1 both produced 1.5 times as much glucose as BGL1 compared to ICOS. There was also a difference between -CBD CBHI and CBD CBHII -BGL1. This is because the K a is greater in BGL1-CBD CBHI in the adsorption test of the ASC, it was contrary to the expectation that it will decompose more ASC. In consideration of this, in order to decompose the portion of CBD-bound BGL1 that cannot be decomposed by BGL1 alone, the stepwise reaction in which adsorption to the insoluble substrate first occurs and then the catalytic domain binds to the substrate and decomposes. FEBS J 273: 2869-2878, Igarashi K, Wada M, Hori R, Samejima M: Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate dynamic kinetics at a solid-liquid interface. 2006). Therefore, it is considered that whether or not the transition from the adsorption to the substrate to the substrate binding of the catalytic domain is performed smoothly also affects the decomposition rate of the insoluble substrate. In this study, it is expected that the spatial positional relationship between the CBD and the catalytic site is three-dimensionally different due to the difference of CBD addition to the N-terminal or C-terminal. In addition, the length of Linker is also different (CBD CBHII- BGL1 is 14 amino acid residues longer). From these differences, it seems that BGL1-CBD CBHI transitioned more smoothly from adsorption to decomposition and showed higher activity against ASC. On the other hand, ICOS has a lower average degree of polymerization than ASC (DP = 165) (DP = 26.7), and BGL1 is a substrate that is more easily decomposed than ASC, so it can be considered that there is no difference.

K.ASCの分解試験
CBD結合の効果をより厳密に評価するため、さらに以下の試験を行った。なお、ここにおいては、上記と同様の手順にして作製及び精製されたCBDCBHII-BGL1-CBDCBHI(図10)についても評価を行った。
1%ASC懸濁液(in 100mM Acetate buffer(pH5.0))各300μlに、6.60μMBGL1の溶液100μlずつを分注し、37℃で16時間反応させた。続けて、6.60μMのBGL1溶液100μl、もしくは段階的に希釈した各種CBDが結合されたCBD結合型BGL1(0.0985−4.8μM)100μlを加えて37℃でさらに24時間反応させ、1MHCl125μlを加えて反応を停止させた。以下、Glucose-oxidase法で生成グルコース量を測定した。反応停止後、中和液(1MTris:2MNaOH=8:2混合液)125μlを加え、反応液全量をエッペンに取り13500rpm、4℃、10min遠心分離した上清を取得し、そのうちの100μlを96穴プレート中で発色試薬(グルコースCII テストワコー)100μlと混合し、30℃で15分間反応させ、波長500nmにおける吸光度を測定した。得られた値を、グルコースを用いて得られたスタンダードカーブに代入し、生成グルコース量を算出した。blankは前反応(BGL1だけを使用)16時間の時点で1MHCl100μlを加えて反応を停止させ、上記と同様の方法で生成グルコース量を算出した。但し、中和液の添加は100μlとした。各サンプル(16時間+24時間)の生成グルコース量から、blankの生成グルコース量(16時間)を差し引き、新たに酵素を添加した時点から新規に生成されたグルコース量を求めた。新たに添加した酵素量に対して新規生成グルコース量をプロットし、BGL1を添加したサンプルの新規生成グルコース量(6.97μg)を挟む直近の2点間の一次式からBGL1と等量のグルコースを生成するのに必要なCBD結合型BGL1量をそれぞれ算出した。なお、加水分解反応において、BGL1及びCBD結合型BGL1の安定化のため反応液中に10μgのオボアルブミンを加えた。また、雑菌の繁殖を防ぐため、ASCの分解反応液中に0.02%のアジ化ナトリウムを加えて反応を行った。この結果を図15及び表7に示す。
K. Degradation test of ASC In order to evaluate the effect of CBD binding more strictly, the following test was further performed. Here, CBD CBHII- BGL1-CBD CBHI (FIG. 10) prepared and purified by the same procedure as described above was also evaluated.
100 μl of a 6.60 μMBGL1 solution was dispensed into 300 μl of 1% ASC suspension (in 100 mM Acetate buffer (pH 5.0)) and reacted at 37 ° C. for 16 hours. Subsequently, 100 μl of 6.60 μM BGL1 solution or 100 μl of CBD-bound BGL1 (0.0985-4.8 μM) to which various CBDs diluted in stages were added and reacted at 37 ° C. for another 24 hours, 125 μl of 1M HCl To stop the reaction. Hereinafter, the amount of produced glucose was measured by the Glucose-oxidase method. After stopping the reaction, add 125 μl of neutralizing solution (1M Tris: 2M NaOH = 8: 2 mixed solution), take the whole amount of the reaction solution in an eppen, obtain the supernatant obtained by centrifugation at 13500 rpm, 4 ° C., 10 min, 100 μl of which is 96 holes The plate was mixed with 100 μl of a coloring reagent (glucose CII test Wako), reacted at 30 ° C. for 15 minutes, and the absorbance at a wavelength of 500 nm was measured. The obtained value was substituted into a standard curve obtained using glucose, and the amount of produced glucose was calculated. For blank, the reaction was stopped by adding 100 μl of 1M HCl at the time of 16 hours in the previous reaction (using only BGL1), and the amount of produced glucose was calculated in the same manner as described above. However, the addition of the neutralizing solution was 100 μl. The amount of glucose produced in blank (16 hours) was subtracted from the amount of glucose produced in each sample (16 hours + 24 hours), and the amount of newly produced glucose was determined from the time when a new enzyme was added. The amount of newly produced glucose is plotted against the amount of newly added enzyme, and the amount of glucose equivalent to BGL1 is calculated from a linear expression between the two nearest points sandwiching the amount of newly produced glucose (6.97 μg) of the sample to which BGL1 is added. The amount of CBD-bound BGL1 required for production was calculated. In the hydrolysis reaction, 10 μg of ovalbumin was added to the reaction solution in order to stabilize BGL1 and CBD-bound BGL1. Further, in order to prevent the propagation of various bacteria, the reaction was carried out by adding 0.02% sodium azide to the ASC decomposition reaction solution. The results are shown in FIG.

BGL1及びBGL1-CBDCBHI、BGL1-CBDCBHIについて可溶性基質(Cellobiose, pNP-Glc, Salicin)に対する分解活性を調べたところ、上記表6に示されたようにBGL1と各種CBD結合型BGL1の間に差は見られなかった。一方、不溶性基質(ASC, ICOS)の分解においてはBGL1とCBD結合型BGL1との間に有意な差が見られた。また、前反応として、BGL1を用いてASCを37℃で16時間分解したところへ、BGL1若しくは各種CBD結合型BGL1を加え、さらに37℃で24時間反応させ、新たに生成したグルコース量を測定した。その結果、BGL1を加えたものは新たに6.97μgのグルコースを生成し、これと等量のグルコースを生成するために必要な酵素量を算出した結果、それぞれBGL1-CBDCBHIは0.0299nmol、BGL1-CBDCBHIは0.0437nmol、CBDCBHII-BGL1-CBDCBHIは0.0504nmolとなり、BGL1(0.662nmol)と比べるとそれぞれ22.2倍、15.0倍、13.1倍となった。 BGL1 and BGL1-CBD CBHI and BGL1-CBD CBHI were examined for degradation activity against soluble substrates (Cellobiose, pNP-Glc, Salicin). As shown in Table 6 above, between BGL1 and various CBD-binding BGL1 There was no difference. On the other hand, in the degradation of insoluble substrates (ASC, ICOS), a significant difference was observed between BGL1 and CBD-bound BGL1. As a pre-reaction, AGL was decomposed at 37 ° C. for 16 hours using BGL1, BGL1 or various CBD-bound BGL1 was added, and the mixture was further reacted at 37 ° C. for 24 hours, and the amount of newly formed glucose was measured. . As a result, the addition of BGL1 newly produced 6.97 μg of glucose, and as a result of calculating the amount of enzyme required to produce the same amount of glucose, BGL1-CBD CBHI was 0.0299 nmol, BGL1-CBD CBHI was 0.0437 nmol and CBD CBHII -BGL1-CBD CBHI was 0.0504 nmol, which was 22.2 times, 15.0 times and 13.1 times compared to BGL1 (0.662 nmol), respectively.

このように、A.aculeatus由来のBGL1のC末端側にCBHI由来のLinker及びCBDを、もしくはN末端側にCBHII由来のCBD及びLinkerを付加することによりBGL1本来の性質を残したまま、不溶性セルロースへの親和性を高め、飛躍的に分解活性を向上させることができた。     Thus, by adding a CBHI-derived Linker and CBD to the C-terminal side of A. aculeatus-derived BGL1, or a CBHII-derived CBD and Linker to the N-terminal side, the insoluble cellulose remains while maintaining the original properties of BGL1. It was possible to increase the affinity for and dramatically improve the degradation activity.

〔セルラーゼ(2)の作製〕
次に、A.aculeatus由来のカルボキシメチルセルラーゼ1にリンカー領域を介してA.aculeatus由来のセロビオハイドラーゼI又はIIのセルロース結合ドメインを結合したセルラーゼを作製した。
[Production of cellulase (2)]
Next, a cellulase was prepared by binding A. aculeatus-derived carboxymethyl cellulase 1 to a cellulose binding domain of A. aculeatus-derived cellobiohydrase I or II via a linker region.

A.aculeatus由来のカルボキシメチルセルラーゼ1として、既に塩基配列が決定されているA.aculeatusのF-50株由来のカルボキシメチルセルラーゼ1を用いた。セルロース結合ドメインには、既に塩基配列が決定されているF-50株由来のセロビオハイドラーゼIのCBD又は同セロビオハイドラーゼIIのCBDを用いた。   As carboxymethyl cellulase 1 derived from A. aculeatus, carboxymethyl cellulase 1 derived from A. aculeatus F-50 strain already determined was used. For the cellulose-binding domain, CBD of cellobiohydrase I or CBD of cellobiohydrase II derived from the F-50 strain whose nucleotide sequence has already been determined was used.

CBDを結合したセルラーゼとして、カルボキシメチルセルラーゼ1のC末端側にCBHIのCBDを結合したセルラーゼ(CMC1-CBDCBHI)、βカルボキシメチルセルラーゼ1のC末端側にCBHIIのCBDを結合したセルラーゼ(CMC1-CBDCBHI)の2つのセルラーゼを作製した。これらのセルラーゼは、大腸菌及びA.oryzaeの別々の宿主で発現させた。 As cellulases conjugated with CBD, cellulases (CMC1-CBD CBHI ) in which CBD of CBHI is bound to the C-terminal side of carboxymethyl cellulase 1 and cellulases ( CMC1-- ) in which CBD of CBHII is bound to the C-terminal side of β-carboxymethyl cellulase 1 Two cellulases of CBD CBHI were made. These cellulases were expressed in separate hosts of E. coli and A. oryzae.

1.発現プラスミドの構築
大腸菌用にはcmc1のcDNAからシグナル配列と終止コドンを除いた666bpをA.oryzae用にはcmc1ゲノム遺伝子の開始コドンから終止コドン直前までの895bp(配列番号5)をPCRによって増幅した。PCR産物をアガロースゲル電気泳動に供することで正しい長さの断片が増幅されたことを確認した(図18)。また、PCR産物cmc1g及びcmc1cを実施例1の1.発現プラスミドの項で構築したpBs-CBDcbhI、pBs-CBDCMC2の各cbdの5´側に挿入することでCMC1のC末端側にCBHIもしくはCMC2由来のLinker及びCBDが結合するよう遺伝子を構築した。これを発現ベクターpET20b (+)もしくはpNAN8142に組み込むことで、大腸菌用発現プラスミドpET-cmc1c-CBDcbhI、pET-cmc1c-CBDcmc2及び糸状菌用発現プラスミドpNAN-cmc1g-CBDcbhI、pNAN-cmc1g-CBDcmc2を得た。また、インサートを発現ベクターに挿入する際に用いたNot I、Nde Iや、EcoR I、Hinc IIなどを用いて目的遺伝子が正しく挿入されていることを確認した(データ示さず)。
1. Construction of expression plasmid For E. coli, 666 bp from the cDNA of cmc1 except for the signal sequence and the stop codon is used. For A. oryzae, 895 bp (SEQ ID NO: 5) from the start codon of the cmc1 genomic gene to immediately before the stop codon is used. Amplified by The PCR product was subjected to agarose gel electrophoresis, confirming that a fragment of the correct length was amplified (FIG. 18). In addition, the PCR products cmc1g and cmc1c are inserted into the 5 ′ side of each cbd of pBs-CBD cbhI and pBs-CBD CMC2 constructed in the section 1. Expression plasmid of Example 1, so that CBHI or The gene was constructed so that CMC2-derived Linker and CBD were bound. By incorporating this into the expression vector pET20b (+) or pNAN8142, the expression plasmids pET-cmc1c-CBD cbhI and pET-cmc1c-CBD cmc2 for E. coli and the expression plasmids pNAN-cmc1g-CBD cbhI and pNAN-cmc1g-CBD for filamentous fungi cmc2 was obtained. Moreover, it was confirmed that the target gene was correctly inserted using Not I, Nde I, EcoR I, Hinc II and the like used when inserting the insert into the expression vector (data not shown).

A.PCR法を用いたDNA断片の増幅
実施例1の1.発現プラスミドの構築における方法と同様の条件で行った。また、各PCR産物をそれぞれcmc1g、cmc1cと命名した。Template、primer対の組合せを表8に示した。
A. Amplification of DNA fragment using PCR method The procedure was the same as in Example 1. 1. Construction of expression plasmid. Each PCR product was named cmc1g and cmc1c, respectively. Table 8 shows combinations of Template and primer pairs.

B.発現プラスミドの構築
CBD結合型CMC1は、大腸菌、A.oryzaeの二通りの宿主で発現させるために、以下の要領でそれぞれの発現プラスミドを構築した。
a)大腸菌用発現プラスミドの構築
上記のPCR法によって得られたPCR産物cmc1cをXho IとNsi Iで消化し、Sal IとNsi Iで消化したpBs-CBDcbhI及びpBs-CBDcmc2に挿入した。これをcmc1cの5´末端側に付加したNde Iサイトと、各CBDの3´末端側に付加したBgl IIサイトで切断して目的遺伝子を切り出し、pET20b(+)のマルチクローニングサイト内にあるNde IサイトとBamH Iサイトに挿入した。このようにして得られたプラスミドをpET-cmc1c-CBDcbhI、pET-cmc1c-CBDcmc2とし、E.coli JM109(DE3)の形質転換に用いた(図16)。
b)糸状菌用高発現プラスミドの構築
上記のPCR法によって得られたPCR産物cmc1gをXho IとNsi Iで消化し、Sal IとNsi Iで消化したpBs-CBDcbhI及びpBs-CBDcmc2に挿入した。これをcmc1gの5´末端側に付加したNot Iサイトと、各CBDの3´末端側に付加したNde Iサイトで切断して目的遺伝子を切り出し、糸状菌用高発現ベクターpNAN8142のマルチクローニングサイト内にあるNot IサイトとNde Iサイトに挿入した。このようにして得られたプラスミドをpNAN-cmc1g-CBDcbhI、pNAN-cmc1g-CBDcmc2としA.oryzaeの形質転換に用いた(図17)。
B. Construction of Expression Plasmid In order to express CBD-bound CMC1 in two hosts, E. coli and A. oryzae, each expression plasmid was constructed in the following manner.
a) Construction of expression plasmid for E. coli The PCR product cmc1c obtained by the PCR method described above was digested with Xho I and Nsi I, and inserted into pBs-CBD cbhI and pBs-CBD cmc2 digested with Sal I and Nsi I. This is cleaved at the Nde I site added to the 5 'end of cmc1c and the Bgl II site added to the 3' end of each CBD to cut out the target gene, and the Nde within the multiple cloning site of pET20b (+) Inserted into I site and BamH I site. The plasmids thus obtained were designated as pET-cmc1c-CBD cbhI and pET-cmc1c-CBD cmc2 and used for transformation of E. coli JM109 (DE3) (FIG. 16).
b) Construction of high-expression plasmid for filamentous fungi PCR product cmc1g obtained by the above PCR method was digested with Xho I and Nsi I and inserted into pBs-CBD cbhI and pBs-CBD cmc2 digested with Sal I and Nsi I did. This is cleaved at the Not I site added to the 5 'end of cmc1g and the Nde I site added to the 3' end of each CBD, and the target gene is excised, within the multi-cloning site of the high expression vector pNAN8142 for filamentous fungi. Inserted into the Not I and Nde I sites. The thus obtained plasmids were used as pNAN-cmc1g-CBD cbhI and pNAN-cmc1g-CBD cmc2 for transformation of A. oryzae (FIG. 17).

C.その他遺伝子工学的操作
実施例1の1.発現プラスミドの構築と同様に行った。
C. Other genetic engineering procedure The same procedure as in Example 1, 1. Construction of expression plasmid was performed.

D.使用試薬等
発現プラスミドの構築に使用した菌株、プラスミド、培地、プライマーなどは以下のとおりである。
a)使用菌株
実施例1の1.発現プラスミドの構築に用いたものと同じである。
b)使用プラスミド
pNAN8142
pET20b(+)
pCMG14 pUC18、cmc1(genome)
pCMC31 pUC13、cmc1(cDNA)
及び実施例1で構築したpBs-CBDcbhI、pBs-CBDcmc2
c)使用培地
実施例1の1.発現プラスミドの構築で用いたものと同じである。
d)使用試薬
i)制限酵素、修飾酵素
制限酵素および修飾酵素は、ニッポンジーン社製、東洋紡社製、タカラバイオ社製、あるいは NEW ENGLAND BIOLABS (NEB) 社製のものを使用し、それぞれの処理は各社のプロトコルに従った。
制限酵素:BamH I、Bgl II、Nde I、Not I、Nsi I、Sal I、Xho I
修飾酵素:T4 DNA ligase、PrimeSTAR HS DNA polymelase
ii)プライマー
目的遺伝子の増幅には表9に示すプライマーを使用した。
iii)その他の試薬
その他は特に示さない限り、和光純薬工業社製、またはナカライテスク社製の特級試薬を用いた。
D. Reagents used, etc. The strains, plasmids, media, primers, etc. used for the construction of the expression plasmid are as follows.
a) Strain used The same as used in Example 1. 1. Construction of expression plasmid.
b) Plasmid used
pNAN8142
pET20b (+)
pCMG14 pUC18, cmc1 (genome)
pCMC31 pUC13, cmc1 (cDNA)
And pBs-CBD cbhI and pBs-CBD cmc2 constructed in Example 1
c) Medium used The same as that used in 1. Construction of expression plasmid in Example 1.
d) Reagents used i) Restriction enzymes and modification enzymes Restriction enzymes and modification enzymes are manufactured by Nippon Gene, Toyobo, Takara Bio, or NEW ENGLAND BIOLABS (NEB). Each company's protocol was followed.
Restriction enzymes: BamH I, Bgl II, Nde I, Not I, Nsi I, Sal I, Xho I
Modification enzyme: T4 DNA ligase, PrimeSTAR HS DNA polymelase
ii) Primers Primers shown in Table 9 were used for amplification of the target gene.
iii) Other reagents Unless otherwise indicated, special grade reagents manufactured by Wako Pure Chemical Industries or Nacalai Tesque were used.

2.酵素発現
2−1.Escherichia coliにおける酵素発現
A.E. coli JM 109(DE3)株の形質転換
実施例1のB. A.oryzaeの形質転換と同様の方法で行った。但し、プラスミド溶液はpET20b (+)、pET-cmc1c-CBDcbhI、pET-cmc1c-CBDcmc2を使用した。また、これにより得られた株をそれぞれE. coli pET株、E. coli CMC1c-CBDCBHI株、E. coli CMC1c-CBDCMC2株と命名し、以下の実験に用いた。
2. Enzyme Expression 2-1. Enzyme Expression in Escherichia coli Transformation of A. E. coli JM 109 (DE3) Strain It was carried out in the same manner as the transformation of B. A. oryzae in Example 1. However, pET20b (+), pET-cmc1c-CBD cbhI , and pET-cmc1c-CBD cmc2 were used as the plasmid solution. The resulting strains were designated as E. coli pET strain, E. coli CMC1c-CBD CBHI strain, and E. coli CMC1c-CBD CMC2 strain, respectively, and used in the following experiments.

B.その他遺伝子工学的操作
実施例1のB. A.oryzaeの形質転換と同様の方法で行った。
B. Other genetic engineering operations The same procedure as in the transformation of B. A. oryzae in Example 1 was performed.

C.培養
LBplate上で生育した大腸菌のシングルコロニーを2×TY培地(Ampicillinを含む) 1.7mLに爪楊枝を用いて接種し、30℃、130min-1で15時間種培養を行った。培養液を、新しい2×TY培地(Ampicillinを含む)1.7mL/本×6本にそれぞれ17μLずつ植菌し、3本は37℃で、残り3本は30℃でさらに6時間培養を続けた。6時間後、各温度3本ずつある培養液に0.1M Isopropyl-β-D-thiogalactopyranoside(IPTG)をそれぞれ0μL(無添加)、1.7μL、17μL加え、同じ温度でさらに6時間培養を続けた。
C. Culture A single colony of E. coli grown on LBplate was inoculated into 1.7 mL of 2 × TY medium (including Ampicillin) using a toothpick, and seed culture was performed at 30 ° C. and 130 min −1 for 15 hours. Inoculate 17 μL of each culture solution into 1.7 mL / tube x 6 of fresh 2 × TY medium (including Ampicillin), 3 at 37 ° C, and 3 at 30 ° C for another 6 hours. It was. Six hours later, 0.1 M Isopropyl-β-D-thiogalactopyranoside (IPTG) was added in an amount of 0 μL (no addition), 1.7 μL, and 17 μL, respectively, to the culture medium at three temperatures, and the culture was continued at the same temperature for another 6 hours. It was.

D.菌体抽出液の調製
上記の、菌株、培養温度、IPTG濃度の違う計18種類の培養液をそれぞれエッペンに移し、遠心分離(4℃、10000rpm、1min)して上清を除き、菌体を回収した。そこへ20mM Acetate buffer (pH5.0)1mLを加えて菌体を懸濁し、氷水中でよく冷却しながらHandy Sonic UR-20P(TOMY SEIKO社製)を用いて超音波破砕を行った(30sec、Power7、4セット)。破砕後、遠心分離(4℃、15000rpm、10min)して得られた上清を可溶性画分として取得した。沈殿は20mM Acetate buffer (pH5.0)1mLに懸濁し不溶性画分とした。
D. Preparation of bacterial cell extract A total of 18 culture solutions with different strains, culture temperatures, and IPTG concentrations were transferred to Eppens, centrifuged (4 ° C, 10,000 rpm, 1 min) to remove the supernatant, The body was recovered. Thereto, 1 mL of 20 mM Acetate buffer (pH 5.0) was added to suspend the cells, and ultrasonic crushing was performed using Handy Sonic UR-20P (TOMY SEIKO) while cooling well in ice water (30 sec, Power7, 4 sets). After crushing, the supernatant obtained by centrifugation (4 ° C., 15000 rpm, 10 min) was obtained as a soluble fraction. The precipitate was suspended in 1 mL of 20 mM Acetate buffer (pH 5.0) to obtain an insoluble fraction.

E.SDS-PAGEによる発現確認
実施例1のB. A.oryzaeの形質転換と同様に行った。ただし、分離ゲルの濃度は15%のものを使用した。
E. Confirmation of expression by SDS-PAGE It was carried out in the same manner as the transformation of B. A. oryzae in Example 1. However, the separation gel concentration was 15%.

F.使用試薬等
形質転換のために使用した菌株、培地などは以下のとおりである。
a)使用菌株
Escherichia coli JM109(DE3)
endA1、 recA1、 gyrA96、 thi、 hsdR17 (rk - mk +)、 relA1、 supE44、
Δ(lac-proAB)、[F'、traD36、proAB、lacIqZΔM15]、λ(DE3)
b)使用プラスミド
pET20b (+)、pET-cmc1c-CBDcbhI、pET-cmc1c-CBDcmc2
c)使用培地
実施例1のB. A.oryzaeの形質転換で使用したものと同じである。
d)使用試薬
特に示さない限り、和光純薬工業社製、またはナカライテスク社製の特級試薬を用いた。
F. Reagents used The strains and culture media used for transformation are as follows.
a) Strains used
Escherichia coli JM109 (DE3)
endA1, recA1, gyrA96, thi, hsdR17 (r k - m k + ), relA1, supE44,
Δ (lac-proAB), [F ', traD36, proAB, lacI q ZΔM15], λ (DE3)
b) Plasmid used
pET20b (+), pET-cmc1c-CBD cbhI , pET-cmc1c-CBD cmc2
c) Medium used The same as that used in the transformation of B. A. oryzae in Example 1.
d) Reagents used Unless otherwise indicated, special grade reagents manufactured by Wako Pure Chemical Industries or Nacalai Tesque were used.

G.結果
上記で構築したpET-CMC1c-CBDcbhI、pET-CMC1c-CBDcmc2及びインサートの入っていないベクターpET20b (+) を用いてE. coli JM109(DE3)を形質転換した。取得した各菌株が目的遺伝子を持つことは、培養した形質転換体からプラスミド抽出を行い、制限酵素処理及びアガロースゲル電気泳動により確認した(データは示さず)。目的タンパク質の生産を確認するため、それぞれの形質転換体を培養温度とIPTG濃度を変えて培養し、菌体破砕液の可溶性画分と不溶性画分をそれぞれSDS-PAGEに供した(図19及び図20)。タンパク質CMC1-CBDCBHI及びCMC1-CBDCMC2のアミノ酸は配列から推定される平均分子量はそれぞれ32100、35200であったが、CMC1-CBDCBHIにおいてはどの培養条件においても目的タンパク質の生産は見られなかった。一方、CMC1-CBDCMC2においては各温度及びIPTG濃度全ての培養条件において目的タンパク質と思われるバンド(約35kDa)が確認されたが、いずれも可溶性画分には全く見られず、不溶性画分にのみ存在が確認された。これは、糸状菌由来の酵素のLinker領域には通常、O−結合型糖鎖が多く付加されるが(Reinikainen T, Teleman O, Teeri TT : Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. 22 : 392-403, 1995)、大腸菌では糖鎖付加が行われないため、タンパク質の相対的な疎水性が高まり凝集したと考えられる。図21には、大腸菌及びA.oryzaeによる生産物を分析した結果を示す。
G. Results E. coli JM109 (DE3) was transformed with the above-constructed pET-CMC1c-CBD cbhI , pET-CMC1c-CBD cmc2 and the vector pET20b (+) containing no insert. It was confirmed by carrying out plasmid extraction from the cultured transformant that the obtained strains had the target gene, by restriction enzyme treatment and agarose gel electrophoresis (data not shown). In order to confirm the production of the target protein, each transformant was cultured at different culture temperatures and IPTG concentrations, and the soluble and insoluble fractions of the cell disruption solution were each subjected to SDS-PAGE (FIG. 19 and FIG. 19). FIG. 20). The average molecular weights estimated for the amino acids of the proteins CMC1-CBD CBHI and CMC1-CBD CMC2 were 32100 and 35200, respectively, but no production of the target protein was observed in CMC1-CBD CBHI under any culture conditions. . On the other hand, in CMC1-CBD CMC2 , a band (about 35 kDa) that seems to be the target protein was observed at all temperatures and IPTG concentrations, but none was found in the soluble fraction and the insoluble fraction was not found at all. Only the presence was confirmed. This is because many O-linked sugar chains are usually added to the Linker region of enzymes derived from filamentous fungi (Reinikainen T, Teleman O, Teeri TT: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. 22: 392-403, 1995), it is considered that the protein was relatively agglomerated due to the increased relative hydrophobicity of the protein because glycosylation was not performed. In FIG. 21, the result of having analyzed the product by colon_bacillus | E._coli and A.oryzae is shown.

2−2Aspergillus oryzaeにおける発現
A.A.oryzaeの形質転換
実施例1のB. A.oryzaeの形質転換と同様に行った。また、取得した菌株をそれぞれ以下のように命名した。
プラスミド 菌株名
pNAN-cmc1g-CBDcbhI A.oryzae CMC1-CBDCBHI
pNAN-cmc1g-CBDCMC2 A.oryzae CMC1-CBDCMC2
2-2 Expression in Aspergillus oryzae Transformation of A.A.oryzae It was carried out in the same manner as the transformation of B.A.oryzae in Example 1. The obtained strains were named as follows.
Plasmid strain name
pNAN-cmc1g-CBD cbhI A.oryzae CMC1-CBD CBHI
pNAN-cmc1g-CBD CMC2 A.oryzae CMC1-CBD CMC2

B.培養
実施例1のB. A.oryzaeの形質転換と同様に行った。但し、培養は6日間行い、培養3日目に20% Glucose溶液1mLを添加した。
B. Culture The culture was carried out in the same manner as the transformation of B. A. oryzae in Example 1. However, the culture was performed for 6 days, and 1 mL of 20% Glucose solution was added on the third day of culture.

C.活性測定
基質は0.625% Carboxymethyl cellulose(CMC)溶液(in 100mM Acetate buffer(pH5.0))を用いた。基質400μLに酵素液100μLを加えて混合し、37℃で10分間反応させた。以下、実施例1の4.B.b)Salicinに対する活性の項で示した通り生成還元糖量をSomogyi-Nelson法により測定した。ただし、OD500の測定はイオン交換水3.5mLを加えて混合した後、遠心分離(4℃、2000rpm、10min)して不溶性成分を分離した上清について行った。
C. Activity measurement The substrate used was a 0.625% Carboxymethyl cellulose (CMC) solution (in 100 mM Acetate buffer (pH 5.0)). 100 μL of enzyme solution was added to 400 μL of the substrate, mixed, and reacted at 37 ° C. for 10 minutes. Hereinafter, the amount of produced reducing sugar was measured by the Somogyi-Nelson method as shown in the section of 4.B.b) Activity for Salicin in Example 1. However, the OD 500 was measured on the supernatant obtained by adding and mixing 3.5 mL of ion exchange water and then separating the insoluble components by centrifugation (4 ° C., 2000 rpm, 10 min).

D.SDS-PAGE(SDS-ポリアクリルアミドゲル電気泳動)
実施例1の2.E.SDS-PAGEと同様に行った。但し、分離ゲルの濃度は15%のものを使用した。
D. SDS-PAGE (SDS-polyacrylamide gel electrophoresis)
This was carried out in the same manner as 2.E.SDS-PAGE in Example 1. However, the separation gel concentration was 15%.

E.使用試薬等
酵素発現のために使用した菌株、培地などは以下のとおりである。
a)使用菌株及びプラスミド
菌株: A.oryzae niaD300 ΔniaD
プラスミド pNAN-cmc1g-CBDcbhI、pNAN-cmc1g-CBDcmc2
b)使用培地
実施例1の2.A.oryzaeにおける酵素発現で用いたものと同じである。
c)使用試薬
実施例1の2.A.oryzaeにおける酵素発現で用いたものと同じである。
d)その他の試薬
その他の試薬は特に示さない限り、和光純薬工業社製およびナカライテスク社製の特級試薬を用いた。
E. Reagents used The strains, media, etc. used for enzyme expression are as follows.
a) Strain and plasmid used: A.oryzae niaD300 ΔniaD
Plasmid pNAN-cmc1g-CBD cbhI , pNAN-cmc1g-CBD cmc2
b) Medium used The same as that used in the enzyme expression in 2.A.oryzae of Example 1.
c) Reagent used The same as that used in the enzyme expression in 2.A.oryzae of Example 1.
d) Other Reagents Unless otherwise indicated, special reagents manufactured by Wako Pure Chemical Industries and Nacalai Tesque were used.

F.結果
上記で構築したpNAN-cmc1g-CBDcbhI、pNAN-cmc1g-CBDcmc2を用いてA.oryzaeを形質転換した。モノスポア化を2〜3回繰り返し、最終的に得られた株はA.oryzae CMC1-CBDCBHIが5株、A.oryzae CMC1-CBDCMC2が7株であった。目的タンパク質の生産を確認するため、得られた各菌株を複数株ずつ培養し、培養上清を用いてCMCに対する活性測定及びSDS-PAGEを行ったところ、A.oryzae CMC1-CBDCBHI株のうちの1株が他の株に比べ培養液当たり約4倍の活性(6日目で20.8unit/mL)を示し、約45kDaの位置に酵素活性に比例した強度のバンドが検出された(図21)。よって、この株をA.oryzae CMC1-CBDCBHI株を代表し以下の実験に用いることとした。一方、A.oryzae CMC1-CBDCMC2株においては、いずれも培養液当たりの活性が低く(6日目で2.82unit/mL)、SDS-PAGEにおいてCMC1-CBDCMC2と思われるタンパク質の生産も確認できなかったため(データは示さず。)、今回は大量生産が確認されたCMC1-CBDCBHIのみを精製し、以下の性質の検討に用いることとした。
F. Results A. oryzae was transformed with pNAN-cmc1g-CBD cbhI and pNAN-cmc1g-CBD cmc2 constructed as described above. Monosupoa the repeated 2-3 times, finally strain obtained A.oryzae CMC1-CBD CBHI 5 strain, A. oryzae CMC1-CBD CMC2 was 7 strain. In order to confirm the production of the target protein, each of the obtained strains was cultured several times, and the activity against CMC and SDS-PAGE were performed using the culture supernatant. As a result, of the A. oryzae CMC1-CBD CBHI strains, One of the strains showed about 4 times the activity (20.8 units / mL on the 6th day) per culture compared to the other strains, and a band with an intensity proportional to the enzyme activity was detected at a position of about 45 kDa (Fig. 21). Therefore, this strain was used for the following experiments on behalf of the A.oryzae CMC1-CBD CBHI strain. On the other hand, the A.oryzae CMC1-CBD CMC2 strains all have low activity per culture (2.82 units / mL on the 6th day), and the production of a protein that seems to be CMC1-CBD CMC2 is confirmed by SDS-PAGE. Since it was not possible (data not shown), only CMC1-CBD CBHI, which was confirmed to be mass-produced this time, was purified and used for the examination of the following properties.

4.酵素の精製
A.粗酵素液の調製
実施例1の3.A.酵素の精製と同様の方法で種培養を3日間行った後、本培養を4日間行った。但し、本培養の3日目に栄養源の枯渇によるプロテアーゼの生産を抑えるため20% Glucose/5%NaNO3溶液を培地の1/4量加えた。培養後、培養液を菌体ごとストッキングで濾して菌体を大まかに除き、ろ液を遠心分離(4℃、10800rpm、30min)して上清を取得することで菌体を完全に除いた。これを粗酵素液とし、以下の精製に用いた。
4. Purification of enzyme A. Preparation of crude enzyme solution Seed culture was carried out for 3 days in the same manner as 3.A. Enzyme purification in Example 1, followed by main culture for 4 days. However, in order to suppress protease production due to depletion of nutrients on the third day of the main culture, a 1/4 volume of 20% Glucose / 5% NaNO 3 solution was added. After culturing, the culture broth was filtered through stockings together with the stockings to roughly remove the cells, and the filtrate was centrifuged (4 ° C., 10800 rpm, 30 min) to obtain a supernatant to completely remove the cells. This was used as a crude enzyme solution for the following purification.

B.精製
CMC1-CBDCBHIの精製は以下の要領で行った。
粗酵素液に硫酸アンモニウムを加えて30%飽和とし、予め30%飽和硫酸アンモニウム溶液(in 20mM Acetate buffer(pH5.0))で平衡化したButyl-TOYOPEARL 650 Mに吸着させ、30〜0%飽和の硫酸アンモニウム溶液1Lのリバースリニアグラジェントで溶出した。CMCに対し活性を有する画分を回収し、回収した活性画分に硫酸アンモニウム80%飽和として硫安塩析を行った。遠心分離(4℃、10800rpm、30min)により沈殿を回収後、少量の20mMGlycine-HCl buffer(pH3.5)に溶解し、予め20mM Glycine-HCl buffer(pH3.5)で平衡化したBio-Gel P-2に通して脱塩した。脱塩後、活性画分を回収し、予め20mM Glycine-HCl buffer(pH3.5)で平衡化したSP-TOYOPEARL 650Mに吸着させ、0〜0.3MNaCl 1Lのリニアグラジェントによって溶出した。活性画分を回収後、再び硫酸アンモニウム80%飽和として硫安塩析を行い、遠心分離(4℃、10800rpm、30min)により沈殿を回収後、少量の20mMAcetate buffer(pH5.0)に溶解し、Viva Spin 20を用いて脱塩した。このようにして得られた溶液を精製サンプルとした。
B. Purification CMC1-CBD CBHI was purified as follows.
Ammonium sulfate is added to the crude enzyme solution to make it 30% saturated, adsorbed on Butyl-TOYOPEARL 650 M previously equilibrated with 30% saturated ammonium sulfate solution (in 20 mM Acetate buffer (pH 5.0)), and 30 to 0% saturated ammonium sulfate The solution was eluted with a 1 L reverse linear gradient. Fractions having activity against CMC were collected, and ammonium sulfate salting out was performed on the collected active fractions with 80% ammonium sulfate saturation. The precipitate was recovered by centrifugation (4 ° C., 10800 rpm, 30 min), dissolved in a small amount of 20 mM Glycine-HCl buffer (pH 3.5), and pre-equilibrated with 20 mM Glycine-HCl buffer (pH 3.5). Desalted through -2. After desalting, the active fraction was recovered, adsorbed on SP-TOYOPEARL 650M previously equilibrated with 20 mM Glycine-HCl buffer (pH 3.5), and eluted with a linear gradient of 0 to 0.3 M NaCl 1 L. After collecting the active fraction, ammonium sulfate salting out is performed again with 80% ammonium sulfate saturation, and the precipitate is collected by centrifugation (4 ° C., 10800 rpm, 30 min), and then dissolved in a small amount of 20 mM acetate buffer (pH 5.0). 20 for desalting. The solution thus obtained was used as a purified sample.

C.活性測定
実施例1の2.E.活性測定と同様に行った。
C. Activity measurement The measurement was performed in the same manner as the 2.E. activity measurement in Example 1.

D.SDS-PAGE   D.SDS-PAGE

実施例1の2.F.SDS-PAGEと同様に行った。但し、分離ゲルの濃度は12.5%のものを用いた。     It carried out like 2.F.SDS-PAGE of Example 1. However, the concentration of the separation gel was 12.5%.

E.タンパク質量の測定
実施例1の3.F.タンパク質量と同様に行った。
E. Measurement of protein amount It was carried out in the same manner as 3.F. protein amount in Example 1.

F.使用試薬等
酵素の精製に使用した菌株などは次のとおりである。
a)使用菌株
A.oryzae CMC1-CBDCBHI、A.oryzae 8142
b)使用培地
実施例2の2.酵素発現に用いたものと同様である。
c)使用試薬
特に示さない限り、和光純薬工業社製、またはナカライテスク社製の特級試薬を用いた。
F. Reagents used The strains used for the purification of the enzyme are as follows.
a) Strains used
A.oryzae CMC1-CBD CBHI , A.oryzae 8142
b) Medium used It is the same as that used in 2. Enzyme Expression in Example 2.
c) Reagents used Unless otherwise indicated, special grade reagents manufactured by Wako Pure Chemical Industries or Nacalai Tesque were used.

5.酵素の性質
A.基質特異性の検討
酵素反応後の生成還元糖量を上記実施例2の5.A.基質特異性の検討と同様Somogyi-Nelson法によって測定した。1unitは、1分間当たりに1μmolの還元糖を生成する酵素量と定義した。
a)CMCに対する活性
実施例2の2−2、C.活性測定の項と同様の方法で行った。
b)ASCに対する活性
0.5%ASC懸濁液(in 100mM Acetate buffer(pH5.0)100μLに酵素液100μLを加え、37℃で1時間反応させた。
c)ICOSに対する活性
0.5%ICOS懸濁液(in 100mM Acetate buffer(pH5.0))100μLに酵素液100μLを加え、37℃で4時間反応させた。
d)Avicelに対する活性
1%Avicel懸濁液200μLに、それぞれΔOD500値が同じ値を示すように希釈した酵素液500μLを加え、37℃で24時間反応させた。
5. Properties of enzyme A. Examination of substrate specificity The amount of reducing sugar produced after the enzyme reaction was measured by the Somogyi-Nelson method in the same manner as in 5.A. Substrate specificity in Example 2 above. One unit was defined as the amount of enzyme that produced 1 μmol of reducing sugar per minute.
a) Activity against CMC The activity was the same as in Example 2, section 2-2, C. Activity measurement.
b) Activity against ASC 100 μL of enzyme solution was added to 100 μL of 0.5% ASC suspension (in 100 mM Acetate buffer (pH 5.0)), and reacted at 37 ° C. for 1 hour.
c) Activity against ICOS 100 μL of enzyme solution was added to 100 μL of 0.5% ICOS suspension (in 100 mM Acetate buffer (pH 5.0)) and reacted at 37 ° C. for 4 hours.
d) Activity against Avicel To 200 μL of 1% Avicel suspension, 500 μL of enzyme solution diluted so that each ΔOD500 value shows the same value was added and reacted at 37 ° C. for 24 hours.

B.不溶性基質に対する吸着
a)ASCに対する吸着
実施例2の5.A.基質特異性の検討と同様の方法で行った。
b)Avicelに対する吸着
ASCに対する吸着と同様に行った。ただし、吸着に用いるAvicel量は10mgとした。
B. Adsorption to Insoluble Substrate a) Adsorption to ASC The same method as in Example 2, 5.A. Substrate specificity was examined.
b) Adsorption on Avicel The same as the adsorption on ASC. However, the amount of Avicel used for adsorption was 10 mg.

C.熱安定性試験
実施例2の5.A.基質特異性の検討と同様の方法で行った。但し、酵素液は0.685μMのものを200μL使用し、残存活性はCMCに対する活性を実施例2の2−2、C.活性測定の項と同様の方法で行った。
C. Thermal stability test The test was performed in the same manner as in Example 2, 5.A. However, 200 μL of an enzyme solution having a concentration of 0.685 μM was used, and the residual activity was the same as that in Example 2-2, C. Activity measurement section, with respect to CMC.

D.pH安定性
pHの調整は実施例1の5.H.pH安定性の項に示したbufferに加え、下記表10に示したbufferを用いて酵素液を10倍希釈することで行った。pH調整を行った酵素液200μL(1.37μM)をエッペンに取り、25℃のエアインキュベーター中で4時間静置した。静置後、pH2.3〜9.6までのものには100mM Acetate buffer(pH5.0)を加えて10倍に希釈することでpH5.0に戻した。一方、pH10.1以上のものについては200 mM Acetate buffer(pH5.0)を加えて7倍に希釈することでpH5.0に戻し、それぞれCMCに対する残存活性を上記実施例2の5.と同様の方法で測定した。
D. pH stability The pH was adjusted by diluting the enzyme solution 10 times using the buffer shown in Table 10 below in addition to the buffer shown in 5. H. pH stability of Example 1. . 200 μL (1.37 μM) of the enzyme solution whose pH was adjusted was taken in an eppen and allowed to stand in an air incubator at 25 ° C. for 4 hours. After standing, 100 mM Acetate buffer (pH 5.0) was added to those having a pH of 2.3 to 9.6, and the pH was returned to 5.0 by diluting 10 times. On the other hand, those having a pH of 10.1 or more are returned to pH 5.0 by adding 200 mM Acetate buffer (pH 5.0) and diluted 7-fold, and the residual activity against CMC is the same as in Example 2 above. It measured by the method of.

E.使用試薬等
酵素の性質に使用した菌株などは次のとおりである。
a)使用酵素
CMC1、CMC1-CBDCBHI
CMC1は、A.aculeatusのcmc1をpNAN8142ベクターを用いてA.oryzaeで発現させたものであり、小林ら(小林恵理子 : Aspergillus aculeatus No. F-50株由来セルラーゼ成分の再構成系による相乗効果の検証, 大阪府立大学 学士論文, 2005)によって精製されたものである。
b)その他の試薬
実施例1の4.酵素の性質で用いたものと同じである。
E. Reagents Used The strains used for the properties of the enzyme are as follows.
a) Enzymes used CMC1, CMC1-CBD CBHI
CMC1 was expressed in A.oryzae using A.aculeatus cmc1 using the pNAN8142 vector. Kobayashi et al. (Kebayashi Eriko: Aspergillus aculeatus No. F-50 cellulase-derived cellulase component derived from synergistic effects. Verification, Osaka Prefectural University Bachelor thesis, 2005).
b) Other reagents Same as those used in Example 4, 4. Enzyme Properties.

F.結果
A.oryzaeで生産させたCMC1-CBDCBHIをButyl-TOYOPEARL 650M及びSP-TOYOPEARL 650Mを用いて精製した(図23、表11)。精製したCMC-CBDCBHIをSDS-PAGEに供したところ、約45kDaの位置に単一のバンドが観察され、電気泳動的に均一なタンパク質として精製されたことが確認された(図24)。このサイズはアミノ酸配列から推定される平均分子量32100よりかなり大きいが、これはLinker領域への糖鎖付加によるものと考えられる(Srisodsuk M, Reinikainen T, Penttila M, Teeri TT : Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. Journal of Biological Chemistry 268 : 20756-20761, 1993)。よって、これを精製CMC1-CBDCBHIとし、既に精製されているCMC1(小林恵理子 : Aspergillus aculeatus No. F-50株由来セルラーゼ成分の再構成系による相乗効果の検証, 大阪府立大学 学士論文, 2005)を用い、以下の性質検討を行うこととした。
F. Results
CMC1-CBD CBHI produced in A. oryzae was purified using Butyl-TOYOPEARL 650M and SP-TOYOPEARL 650M (FIG. 23, Table 11). When purified CMC-CBD CBHI was subjected to SDS-PAGE, a single band was observed at a position of about 45 kDa, confirming that it was purified as an electrophoretically uniform protein (FIG. 24). This size is considerably larger than the average molecular weight estimated from the amino acid sequence of 32100, which is thought to be due to the addition of a sugar chain to the Linker region (Srisodsuk M, Reinikainen T, Penttila M, Teeri TT: Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. Journal of Biological Chemistry 268: 20756-20761, 1993). Therefore, this was designated as purified CMC1-CBD CBHI and already purified CMC1 (Eriko Kobayashi: Verification of synergistic effect by reconstitution of cellulase components derived from Aspergillus aculeatus No. F-50, Osaka Prefecture University Bachelor thesis, 2005) The following properties were examined using

不溶性セルロースに対する吸着を調べるため、ASCとAvicelに対して吸着検定を行った。その結果、野生型のCMC1はASCに対し、僅かな吸着しか見られなかったが、CMC1-CBDCBHIではCMC1と比べ明らかに吸着量が増加した。また、Avicelに対する吸着では、CMC1はほとんど吸着が見られなかったが、CMC1-CBDCBHIではどちらの高い吸着活性を示した(図25)。両逆数プロットをとって、吸着定数Ka及び吸着最大量Bmaxを算出したところ、ASCに対するKa及びBmaxはそれぞれ、CMC1では0.77×106-1、0.32×10-9mol/mg-ASCとなったのに対し、CMC1-CBDCBHIでは27×106-1、0.97×10-9mol/mg-ASCとなり、親和性が約35倍に、最大吸着量が約3倍に高まった。さらに、Avicelに対する吸着においてはCMC1ではほとんど吸着が見られなかったのに対し、CMC1-CBDCBHIではKaが1.2×106-1、Bmaxが0.13×10-9mol/mg-Avicelとなった。これらの結果より、CBD付加により不溶性基質への親和性が向上したことが確認された(表12)。 To examine adsorption to insoluble cellulose, adsorption tests were performed on ASC and Avicel. As a result, wild-type CMC1 showed only slight adsorption to ASC, but CMC1-CBD CBHI clearly increased the amount of adsorption compared to CMC1. Further, in the adsorption to Avicel, almost no adsorption of CMC1 was observed, but CMC1-CBD CBHI showed either higher adsorption activity (FIG. 25). Taking both reciprocal plot, adsorption constant was calculated K a and adsorption maximum amount B max, respectively K a and B max for ASC, CMC1 in 0.77 × 10 6 M -1, 0.32 × 10 - In contrast to 9 mol / mg-ASC, CMC1-CBD CBHI has 27 × 10 6 M −1 and 0.97 × 10 −9 mol / mg-ASC, and the maximum adsorption is about 35 times. The amount increased about 3 times. Furthermore, the adsorption to Avicel whereas was observed almost the CMC1 adsorption, CMC1-CBD in CBHI K a is 1.2 × 10 6 M -1, B max is 0.13 × 10 -9 mol / It became mg-Avicel. From these results, it was confirmed that the affinity to an insoluble substrate was improved by addition of CBD (Table 12).

次に、両酵素の基質特異性を調べた。可溶性基質であるCMCに対する両酵素の比活性には、ほとんど差がみられなかった。一方、不溶性基質であるICOS、ASC、Avicelに対する活性はCMC1とCMC1-CBDCBHIの間に有意な差が見られた。ASCを基質として37℃で1時間反応させ、酵素活性を算出したところ、CMC1及びCMC1-CBDCBHIの活性はそれぞれ5.79unit/μmol、6.65unit/μmolとなり、CMC1-CBDCBHIはCMC1の1.2倍となった。また、ICOSに対し37℃で4時間反応させ、酵素活性を算出したところCMC1及びCMC1-CBDCBHIの活性はそれぞれ1.54unit/μmol、2.78unit/μmolとなり1.8倍の活性となった。さらに、結晶セルロースであるAvicelに対して、等濃度の還元糖量を生成するようCMC1及びCMC1-CBDCBHIの酵素濃度を調整し、37℃で24時間反応させたところ、CMC1では0.00597unit/μmolとなったのに対し、CMC1-CBDCBHIでは0.0263nit/μmolとなり、4.4倍の活性が得られた(表13)。これら不溶性基質に対する分解活性の向上は、CBDが付加されたことによる不溶性基質への親和性の増加によって、触媒ドメインが基質に作用できる領域が増加したことに起因すると考えられた。 Next, the substrate specificity of both enzymes was examined. There was little difference in the specific activity of both enzymes relative to the soluble substrate CMC. On the other hand, there was a significant difference between CMC1 and CMC1-CBD CBHI in activity against insoluble substrates ICOS, ASC, and Avicel. When the enzyme activity was calculated by reacting at 37 ° C. for 1 hour using ASC as a substrate, the activities of CMC1 and CMC1-CBD CBHI were 5.79 unit / μmol and 6.65 unit / μmol, respectively, and CMC1-CBD CBHI was 1 of CMC1. Doubled. When enzyme activity was calculated by reacting with ICOS at 37 ° C. for 4 hours, the activities of CMC1 and CMC1-CBD CBHI were 1.54 units / μmol and 2.78 units / μmol, respectively, which was 1.8 times higher. . Furthermore, when the enzyme concentrations of CMC1 and CMC1-CBD CBHI were adjusted to produce equal amounts of reducing sugars with respect to Avicel, which is crystalline cellulose, and reacted at 37 ° C. for 24 hours, 0.005 7 unit / Whereas it was μmol, CMC1-CBD CBHI was 0.0263 nit / μmol, and 4.4 times the activity was obtained (Table 13). The improvement of the degradation activity for these insoluble substrates was thought to be due to the increase in the region where the catalytic domain can act on the substrate due to the increased affinity for the insoluble substrate due to the addition of CBD.

精製されたCMC1-CBDCBHI及びCMC1について酵素の安定性について調べたところ、CMC1に比べCMC1-CBDCBHIの熱安定性が僅かに低下していた(図26A)。等モル濃度に調製した両酵素を30〜67.5の任意の温度で30分間インキュベートし、急冷後、CMCに対する活性を測定した。その結果、野生型CMC1は62.5℃まで80%以上の活性を保持していたのに対し、CMC1-CBDCBHIは同温度での残存活性は32%となった。この熱安定性の低下は触媒ドメインのC末端へのCBD付加により、耐熱性酵素によく見られるN末端とC末端の結合やルーズエンド構造の固定(Voutilainen SP, Boer H, Alapuranen M, Janis J, Vehmaanpera J, Koivula A : Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 83 : 261-272, 2009)のような活性部位を安定化するような構造に変化をもたらし、熱安定性が低下したものと考えられる。一方、pH安定性については両酵素の間に差は見られなかった。任意のpHで25℃、4時間インキュベートし、pH5.0に戻してCMCに対する残存活性を測定したところ、両者は共にpH2〜9.5の間で安定であり、pH10以上で不安定化した(図26B、表12)。 When the enzyme stability of the purified CMC1-CBD CBHI and CMC1 was examined, the thermal stability of CMC1-CBD CBHI was slightly lower than that of CMC1 (FIG. 26A). Both enzymes prepared at equimolar concentrations were incubated at an arbitrary temperature of 30 to 67.5 for 30 minutes, and after rapid cooling, the activity against CMC was measured. As a result, wild-type CMC1 retained 80% or more activity up to 62.5 ° C., whereas CMC1-CBD CBHI had a residual activity of 32% at the same temperature. This decrease in thermal stability is due to the addition of CBD to the C-terminal of the catalytic domain, and the binding of the N-terminal and C-terminal and the loose-end structure often found in thermostable enzymes (Voutilainen SP, Boer H, Alapuranen M, Janis J , Vehmaanpera J, Koivula A: Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Appl Microbiol Biotechnol 83: 261-272, 2009). It is thought that it decreased. On the other hand, there was no difference between the two enzymes in terms of pH stability. When the residual activity against CMC was measured by incubating at 25 ° C. for 4 hours at an arbitrary pH, returning to pH 5.0, both were stable between pH 2 and 9.5 and destabilized at pH 10 or higher ( FIG. 26B, Table 12).

以上の結果より、CMC1にCBHI由来のLinker及びCBDを付加することにより不溶性基質への親和性の向上、および分解活性の向上が達成され、CMC1の高機能化が図れる。     From the above results, the addition of CBHI-derived Linker and CBD to CMC1 achieves an improvement in affinity for insoluble substrates and an improvement in degradation activity, thereby achieving a higher function of CMC1.

本発明によると、セルロース結合ドメインを有し、セルラーゼ活性の高い新規なセルラーゼが提供される。このセルラーゼを用いることによって従来よりもさらに効率的なバイオマスの糖化を行うことができる。   According to the present invention, a novel cellulase having a cellulose binding domain and high cellulase activity is provided. By using this cellulase, saccharification of biomass can be performed more efficiently than before.

Claims (11)

A.aculeatus由来のβ−グルコシダーゼ1の触媒ドメインを含む領域又はA.aculeatus由来のカルボキシメチルセルラーゼ1の触媒ドメインを含む領域と、当該領域に直接的又は間接的に付加されたA.aculeatus由来のセルロース結合ドメインを有するセルラーゼ。   A region containing the catalytic domain of β-glucosidase 1 derived from A. aculeatus or a region containing the catalytic domain of carboxymethyl cellulase 1 derived from A. aculeatus, and a region derived from A. aculeatus directly or indirectly added to the region Cellulase having a cellulose binding domain. 前記セルロース結合ドメインが、A.aculeatus由来のセロビオハイドロラーゼI又はA.aculeatus由来のセロビオハイドロラーゼIIのセルロース結合ドメインである請求項1に記載のセルラーゼ。   The cellulase according to claim 1, wherein the cellulose binding domain is a cellulose binding domain of cellobiohydrolase I derived from A. aculeatus or cellobiohydrolase II derived from A. aculeatus. 前記セルロース結合ドメインが、A.aculeatus由来のβ−グルコシダーゼ1の触媒ドメインを含む領域又はA.aculeatus由来のカルボキシメチルセルラーゼ1の触媒ドメインを含む領域のC末端側及び/又はN末端側に付加された請求項1又は2のセルラーゼ。   The cellulose-binding domain is added to the C-terminal side and / or the N-terminal side of the region containing the catalytic domain of β-glucosidase 1 derived from A. aculeatus or the region containing the catalytic domain of carboxymethyl cellulase 1 derived from A. aculeatus. The cellulase according to claim 1 or 2. 前記A.aculeatusは、A.aculeatus No.F-50株である請求項1〜3のいずれか1項に記載のセルラーゼ。   The cellulase according to any one of claims 1 to 3, wherein the A. aculeatus is A. aculeatus No. F-50 strain. 配列番号6、配列番号8、配列番号10、配列番号12で示されるアミノ酸配列を有するポリペプチド、ないし当該アミノ酸配列において1ないし数個の欠失・置換・付加されたアミノ酸配列を有しかつセルラーゼ活性を有するポリペプチド。   A polypeptide having the amino acid sequence represented by SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, or SEQ ID NO: 12, or an amino acid sequence having 1 to several deletions / substitutions / additions in the amino acid sequence and a cellulase A polypeptide having activity. 請求項5に記載のポリペプチドをコードするポリヌクレオチド。 A polynucleotide encoding the polypeptide of claim 5. 配列番号1〜4、配列番号5、配列番号7、配列番号9、配列番号11の何れかに示される塩基配列を有するポリヌクレオチド。   A polynucleotide having the base sequence represented by any one of SEQ ID NOs: 1-4, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, and SEQ ID NO: 11. 請求項6及び請求項7に記載の配列を有するポリヌクレオチドを含有するベクター。   A vector containing a polynucleotide having the sequence according to claim 6 or 7. 請求項8に記載のベクターで形質転換された形質転換細胞。   A transformed cell transformed with the vector according to claim 8. 前記形質転換細胞が、大腸菌、枯草菌、糸状菌、酵母の何れかである請求項9に記載の形質転換細胞。   The transformed cell according to claim 9, wherein the transformed cell is any one of Escherichia coli, Bacillus subtilis, filamentous fungus, and yeast. 請求項1〜4の何れか1項に記載のセルラーゼ、又は請求項9若しくは10に記載された形質転換細胞を用いて植物系バイオマスを糖化する方法。   A method for saccharifying plant biomass using the cellulase according to any one of claims 1 to 4 or the transformed cell according to claim 9 or 10.
JP2010099291A 2010-04-22 2010-04-22 New cellulase Pending JP2011223962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099291A JP2011223962A (en) 2010-04-22 2010-04-22 New cellulase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099291A JP2011223962A (en) 2010-04-22 2010-04-22 New cellulase

Publications (1)

Publication Number Publication Date
JP2011223962A true JP2011223962A (en) 2011-11-10

Family

ID=45040142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099291A Pending JP2011223962A (en) 2010-04-22 2010-04-22 New cellulase

Country Status (1)

Country Link
JP (1) JP2011223962A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133354A1 (en) 2012-03-08 2013-09-12 独立行政法人海洋研究開発機構 Novel cellulase
WO2019163886A1 (en) * 2018-02-26 2019-08-29 花王株式会社 MUTANT β-GLUCOSIDASE
CN112300963A (en) * 2020-11-03 2021-02-02 广西大学 Composite microbial inoculum for promoting compost maturity and preparation method thereof
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133354A1 (en) 2012-03-08 2013-09-12 独立行政法人海洋研究開発機構 Novel cellulase
US9340811B2 (en) 2012-03-08 2016-05-17 Independent Administrative Institution, Japan Agency For Marine-Earth Science And Technology Cellulase
WO2019163886A1 (en) * 2018-02-26 2019-08-29 花王株式会社 MUTANT β-GLUCOSIDASE
JP2019146499A (en) * 2018-02-26 2019-09-05 花王株式会社 Mutant β-glucosidase
US11261436B2 (en) 2018-02-26 2022-03-01 Kao Corporation Mutant β-glucosidase
JP7051491B2 (en) 2018-02-26 2022-04-11 花王株式会社 Mutant β-glucosidase
CN112300963A (en) * 2020-11-03 2021-02-02 广西大学 Composite microbial inoculum for promoting compost maturity and preparation method thereof
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Similar Documents

Publication Publication Date Title
Demain et al. Cellulase, clostridia, and ethanol
US8323947B2 (en) Recombinant β-glucosidase variants for production of soluble sugars from cellulosic biomass
CA2657684C (en) Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose
Gaudin et al. CelE, a multidomain cellulase from Clostridium cellulolyticum: a key enzyme in the cellulosome?
US9512416B2 (en) Endoglucanase variants
US20130280764A1 (en) Method of improving the activity of cellulase enzyme mixtures in the saccharification (ligno)cellulosic material
Hwangbo et al. Effective one-step saccharification of lignocellulosic biomass using magnetite-biocatalysts containing saccharifying enzymes
Zhu et al. Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii
Maharjan et al. Fusion of carbohydrate binding modules to bifunctional cellulase to enhance binding affinity and cellulolytic activity
JP2012510262A (en) Cellulase Cel5H related reagents and their use in microorganisms
López-Contreras et al. Clostridium beijerinckii cells expressing Neocallimastix patriciarum glycoside hydrolases show enhanced lichenan utilization and solvent production
US9109235B2 (en) Methods and compositions for degrading pectin
JP2011223962A (en) New cellulase
US20120115235A1 (en) Enhanced cellulase expression in s. degradans
Tang et al. Improving endoglucanase activity by adding the carbohydrate-binding module from Corticium rolfsii
KR20140048904A (en) Cellulase fusion protein and method of degrading cellulosic material using the same
JP2023145205A (en) Enzyme composition for biomass saccharification
Bista Cloning and Characterization of a Novel Thermostable Endoglucanase from Caldicellulosiruptor Bescii in Heterologous Host Escherichia Coli
January Functional characterisation of a thermophilic cellulase from a Malawian metagenomic library
López-Contreras et al. Clostridium beijerinckii Expressing Neocallimastix patriciarum Glycoside Hydrolases Show Enhanced Lichenan Utilization and Solvent Production