JP2011223407A - Optical communication system and optical communication method - Google Patents

Optical communication system and optical communication method Download PDF

Info

Publication number
JP2011223407A
JP2011223407A JP2010091642A JP2010091642A JP2011223407A JP 2011223407 A JP2011223407 A JP 2011223407A JP 2010091642 A JP2010091642 A JP 2010091642A JP 2010091642 A JP2010091642 A JP 2010091642A JP 2011223407 A JP2011223407 A JP 2011223407A
Authority
JP
Japan
Prior art keywords
onu
time
transmission
optical
optical transceiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010091642A
Other languages
Japanese (ja)
Other versions
JP5456547B2 (en
Inventor
Manabu Yoshino
學 吉野
Kazutaka Hara
一貴 原
Hirotaka Nakamura
浩崇 中村
Shunji Kimura
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010091642A priority Critical patent/JP5456547B2/en
Publication of JP2011223407A publication Critical patent/JP2011223407A/en
Application granted granted Critical
Publication of JP5456547B2 publication Critical patent/JP5456547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical communication system and an optical communication method which can freely change a wavelength, a path, or their combination for an upstream signal and a downstream signal and avoid a collision of upstream signals.SOLUTION: In switching a wavelength of an upstream signal or a downstream signal, an Optional Line Terminal (OLT) 200 transmits a gate message GM including a time stamp t1 of the time to which optical transmitting and receiving devices (21 and 22) add a propagation delay difference Δ generated between an Optical Network Unit (ONU) 100A and each of the transmitting and receiving devices (21 and 22) to the time of the OLT 200, a transmission starting time t2 in which an upstream signal of the ONU 100A is permitted, and a transmission available duration time K of the upstream signal of the ONU 100A. In this case, the ONU 100A sets the time of the ONU 100A to the time stamp of the gate message GM when receiving the gate message GM from the OLT 200, and transmits an upstream signal from the transmission starting time t2 included in the gate message GM for the transmission available duration time K included in the gate message GM.

Description

本発明は、対向ごとに波長、方路、又はその組合せの経路が異なる光通信システム及び光通信方法に関する。   The present invention relates to an optical communication system and an optical communication method in which a wavelength, a route, or a combination route thereof is different for each facing.

近年、インターネットやイントラネットの急成長を背景に,大容量通信の需要が高まっており,高速光通信システムの普及が急ピッチで進んでいる中、経済的な高速光アクセスネットワークを実現するためのシステムとして、PON(Passive Optical Network)が知られている。また、PONに用いる受動素子(光スプリッタ等)の代わりに、光スイッチを備える光アクセスネットワークも多くの提案がなされている(例えば、非特許文献3を参照。)。   In recent years, the demand for large-capacity communication has increased against the background of the rapid growth of the Internet and Intranet, and a system for realizing an economical high-speed optical access network is being promoted at a rapid pace. For example, PON (Passive Optical Network) is known. In addition, many proposals have been made on an optical access network including an optical switch instead of a passive element (such as an optical splitter) used for the PON (see, for example, Non-Patent Document 3).

高速光アクセスネットワークで従来用いられている安価なSiGe−BiCMOSプロセスを利用して強度変調−直接検波で時分割多重(TDM:Time Division Multiplexing)技術を上述の光アクセスネットワークに適用することを想定すると、電子デバイスの制約により10Gbit/sが上限と考えられている。   Assuming that time division multiplexing (TDM) technology is applied to the above-mentioned optical access network using an inexpensive SiGe-BiCMOS process conventionally used in high-speed optical access networks and intensity modulation-direct detection. The upper limit is considered to be 10 Gbit / s due to restrictions of electronic devices.

そこで、波長分割多重(WDM:Wavelength Division Multiplexing)や芯線多重を適用することで更なる高速化/広帯域化を実現する提案もなされている。しかし、ユーザ毎に異なる波長を用いるWDMを適用すると、局側装置であるOLT(Optical Line Terminal)には加入者側装置であるONU(Optical Network Unit)の数に応じた光送受信機が必要となる。これは既存のONUやOLTの更改を要し、コスト上昇という課題が発生する。また、芯線多重も、方路である芯線分だけ光送光受信機と方路が必要になるため、コスト上昇という課題が発生する。   In view of this, proposals have been made to realize further higher speed / broadband by applying wavelength division multiplexing (WDM) and core line multiplexing. However, when WDM using different wavelengths for each user is applied, an optical transmitter / receiver corresponding to the number of ONUs (Optical Network Units) serving as subscriber-side devices is required for the OLT (Optical Line Terminal) serving as a station-side device. Become. This requires renewal of existing ONUs and OLTs, resulting in a problem of increased costs. In addition, the core multiplexing also requires a light transmitter / receiver and a route for the core wire that is a route, which causes a problem of cost increase.

この課題に対して、ONU毎に異なる波長を用いる代わりに、ONUを複数のグループにグルーピングし、グループ間でWDMとグループ内でTDMを適用するWDM/TDM−PON(例えば、非特許文献1を参照。)がある。これは、波長を複数のONUで共用することで、総帯域拡張に伴うコスト上昇を抑えている。   In response to this problem, WDM / TDM-PON (for example, Non-Patent Document 1), in which ONUs are grouped into a plurality of groups instead of using different wavelengths for each ONU, and WDM is applied between the groups and TDM is applied within the group. See). This suppresses an increase in cost due to the total bandwidth expansion by sharing the wavelength among a plurality of ONUs.

総帯域拡張のために新規の芯線と送受信機を備える代わりに、冗長構成のための予備芯線を現用芯線として利用する方式(例えば、非特許文献2を参照。)がある。この方式は、冗長芯線を活用することで、総帯域拡張に伴う芯線と送受信器追加によるコスト上昇という課題を解決している。   There is a method (for example, see Non-Patent Document 2) in which a spare core wire for a redundant configuration is used as an active core wire instead of providing a new core wire and a transceiver for total bandwidth extension. This method solves the problem of cost increase due to the addition of a core wire and a transmitter / receiver accompanying the expansion of the total bandwidth by utilizing a redundant core wire.

「総帯域拡張型WDM/TDM−PONと動的波長帯域割当の一提案」、吉野學、原一貴、中村浩崇、木村俊二、吉本直人、雲崎清美、2009年電子情報通信学会総合大会、講演論文集、通信(2)、p.426、B−10−107"A proposal for total bandwidth extension WDM / TDM-PON and dynamic wavelength band allocation", Manabu Yoshino, Kazutaka Hara, Hirotaka Nakamura, Shunji Kimura, Naoto Yoshimoto, Kiyomi Kunzaki, 2009 IEICE General Conference , Proceedings of Communication, Communication (2), p. 426, B-10-107 「ATM−PONのプロテクション方式及び動的帯域割当との連携動作の検討」、吉田俊和、向井宏明、岩崎充佳、浅芝慶弘、一番ケ瀬広、横谷哲也、2001年5月通信方式研究会電子情報通信学会技術研究報告vol.101(53):CS2001−21,pp.25−30"Examination of ATM-PON protection method and dynamic bandwidth allocation", Toshikazu Yoshida, Hiroaki Mukai, Mitsuka Iwasaki, Yoshihiro Asashiba, Hiroshi Ichibanse, Tetsuya Yokoya, May 2001 IEICE Technical Report vol. 101 (53): CS2001-21, pp. 25-30 「光パケットスイッチを適用したアクセスネットワークにおける効率的なディスカバリ方法の提案」、上田裕巳、坪井利憲、河西宏之、2009年4月通信方式研究会電子情報通信学会技術研究報告Vol.109(4):CS2009−12,pp.69−74"Proposal of efficient discovery method in access network using optical packet switch", Hiroaki Ueda, Toshinori Tsuboi, Hiroyuki Kawanishi, April 2009 Communication Society of Japan, IEICE Technical Report Vol. 109 (4): CS2009-12, pp. 69-74

非特許文献1や非特許文献2に記載されるPONシステム、非特許文献3の光スイッチを用いる構成を含む光アクセスネットワークにおいて、WDM又は芯線多重する際は、波長間、芯線間、又はその組合せの間で上り方向と下り方向でそれぞれ通信量を平準化することが望ましい。しかし、任意の下り波長、方路、又はその組合せを受信するONUに対して、任意の上り波長、方路、又はその組合せで送信する送信許可を通知する手段が確立されていない。   In an optical access network including a configuration using the PON system described in Non-Patent Document 1 and Non-Patent Document 2 and the optical switch of Non-Patent Document 3, when multiplexing WDM or core lines, inter-wavelength, inter-core lines, or a combination thereof It is desirable to equalize the traffic in the upstream and downstream directions. However, no means has been established for notifying an ONU that receives an arbitrary downstream wavelength, route, or a combination thereof, of a transmission permission for transmission using an arbitrary upstream wavelength, route, or a combination thereof.

特に、波長、方路、又はその組合せを上り又は下りの一方のみ切り換えた場合、波長分散、方路長、又はその組合せによる伝搬遅延差により、OLTからONUに対して到着する送信許可に記載される同一の値の送信時刻の意味するOLTにおける時刻又はOLTの通知する送信開始時刻の値の意味するOLTにおける時刻が変わり、OLTの通知した送信許可が正しく伝達されない問題が発生する。   In particular, when only one of the uplink, the downlink, and the wavelength, the route, or the combination thereof is switched, it is described in the transmission permission that arrives from the OLT to the ONU due to the propagation delay difference due to the wavelength dispersion, the route length, or the combination. The time in the OLT meaning the transmission time of the same value or the time in the OLT meaning the value of the transmission start time notified by the OLT changes, and the transmission permission notified by the OLT is not correctly transmitted.

以下に、IEEE802.3に示される一般的な上り送信許可とその前段で行われるディスカバリ操作を用いて説明する。   The following description will be made using a general uplink transmission permission shown in IEEE 802.3 and a discovery operation performed in the preceding stage.

ディスカバリ操作は、未登録のONUにフレーム取捨選択に必要な識別番号LLID(Logical Link ID)を付与し、OLTに新たに接続されたONUのOLT−ONU間の往復時間RTT(Round Trip Time)の測定を行う。この処理は、MPCP(Multi−Point Control Protocol)プロトコルに含まれる。OLTは新たにONUがいつPONに接続されてもよいように、定期的にONUに対して、ディスカバリゲートメッセージ(Discovery_GATE Message)を送信する。ディスカバリゲートメッセージは、送信可能な時間を通知するゲートメッセージ(GATE Message)の一種であり、当該メッセージの送信時刻t1、送信を許可する送信開始時刻t2とディスカバリタイムウインドウ(Discovery Time Window)の長さSが示されている。ディスカバリゲートメッセージを受け取った未登録ONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUは上り時の衝突を避けるためディスカバリゲートメッセージで指示された送信開始時刻t2にランダム時間d(0≦d≦D、D:ランダム時間の最大値)加えた送信開始時刻t2*(=t2+d)に、タイムスタンプをt2*としたレジスタリクエストメッセージ(Register_REQ Message)で応答する。レジスタリクエストメッセージはONUのMACアドレスが示されている。OLTは、受け取ったレジスタリクエストメッセージの到着時刻t3を測定するとともに、タイムスタンプからt2*を取得し、ONUまでの往復時間Tx(=t3−t2*)を求める。OLTは、LLIDを決定し、そのLLIDをレジスタメッセージ(Register Message)によりONUに通知する。   In the discovery operation, an unregistered ONU is assigned an identification number LLID (Logical Link ID) necessary for frame selection, and a round trip time RTT (Round Trip Time) between the OLT and the ONU of the ONU newly connected to the OLT. Measure. This process is included in the MPCP (Multi-Point Control Protocol) protocol. The OLT periodically transmits a discovery gate message (Discovery_GATE Message) to the ONU so that the ONU may be newly connected to the PON. The discovery gate message is a kind of gate message (GATE Message) for notifying the time when transmission is possible, the transmission time t1 of the message, the transmission start time t2 permitting transmission, and the length of the discovery time window (Discovery Time Window) S is shown. The unregistered ONU that has received the discovery gate message sets its clock to the transmission time t1 of the message indicated by the time stamp of this message. ONU adds transmission start time t2 * (= t2 + d) by adding random time d (0 ≦ d ≦ D, D: maximum value of random time) to transmission start time t2 instructed by the discovery gate message in order to avoid an uplink collision. In response to a register request message (Register_REQ Message) whose time stamp is t2 *. The register request message indicates the MAC address of the ONU. The OLT measures the arrival time t3 of the received register request message, obtains t2 * from the time stamp, and obtains a round trip time Tx (= t3-t2 *) to the ONU. The OLT determines the LLID and notifies the ONU of the LLID through a register message (Register Message).

またOLTは、次の上りタイミングをこのLLIDで指定したゲートメッセージ(GATE Message)により当該ONUに通知する。ゲートメッセージには、当該ゲートメッセージの送信時刻t1と、通信を許可する送信開始時刻t2と送信許可の継続時間Kが示されている。ゲートメッセージを受け取った当該ONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2から継続時間Kが経過するまでの間に、レジスタAckメッセージ(Register ACK Message)で応答する。以上で、ディスカバリ処理は終了となる。   The OLT notifies the ONU of the next uplink timing by a gate message (GATE Message) designated by the LLID. The gate message includes a transmission time t1 of the gate message, a transmission start time t2 at which communication is permitted, and a transmission permission duration time K. The ONU that has received the gate message sets its clock to the transmission time t1 of the message indicated by the time stamp of the message. The ONU responds with a register Ack message (Register ACK Message) from the transmission start time t2 indicated by the gate message until the continuation time K elapses. This completes the discovery process.

上り信号許可は、ONUからのレポートメッセージ(Report Message)によりOLTが把握したONUの上り蓄積データ量や上り使用帯域等に基づいて、ゲートメッセージで当該ONUに通知する。ゲートメッセージには、当該ゲートメッセージの送信時刻t1と、通信を許可する送信開始時刻t2と送信許可の継続時間Kが示されている。ゲートメッセージを受け取った当該ONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUは送信開始時刻t2から継続時間Kが経過するまでの間に上り信号を送信する。   The upstream signal permission is notified to the ONU by a gate message based on the upstream accumulated data amount of the ONU, the upstream usage band, and the like ascertained by the OLT by the report message (Report Message) from the ONU. The gate message includes a transmission time t1 of the gate message, a transmission start time t2 at which communication is permitted, and a transmission permission duration time K. The ONU that has received the gate message sets its clock to the transmission time t1 of the message indicated by the time stamp of the message. The ONU transmits an uplink signal from the transmission start time t2 until the continuation time K elapses.

この手順から明らかであるように、ONUの認識する送信時刻t1は、OLTにおける送信時刻t1にOLT−ONUの一方向の伝搬遅延時間を加えた時刻である。従って、下り信号の伝搬時間が変動すると、ONUの認識する送信時刻t1のOLTにおける時刻が異なる。上り信号の伝搬時間が変動しても同様である。従って、OLTは、ゲートメッセージの送信許可に示される時刻に上り信号を受信できない場合がある。   As is clear from this procedure, the transmission time t1 recognized by the ONU is a time obtained by adding a one-way propagation delay time to the transmission time t1 in the OLT. Therefore, when the propagation time of the downlink signal varies, the time in the OLT at the transmission time t1 recognized by the ONU differs. The same applies even if the propagation time of the upstream signal varies. Therefore, the OLT may not be able to receive an upstream signal at the time indicated in the gate message transmission permission.

そこで、本発明は、波長、方路、又はこれらの組合せを上り信号と下り信号とで自由に切替可能であり、且つ上り信号又は下り信号において波長、方路、又はこれらの組合せを切り替える際の伝搬遅延の変化を補正して上り信号の衝突を回避できる光通信システム及び光通信方法を提供することを目的とする。   Therefore, the present invention can freely switch the wavelength, the route, or a combination thereof between the upstream signal and the downstream signal, and switches the wavelength, the route, or a combination thereof in the upstream signal or the downstream signal. An object of the present invention is to provide an optical communication system and an optical communication method capable of correcting a change in propagation delay and avoiding an uplink signal collision.

上記目的を達成するために、本発明に係る光通信システム及び光通信方法は、下り信号の波長、方路、又はその組合せを変更する際、その変更に伴う伝搬遅延増加分をゲートメッセージの送信時刻t1に加えた時刻をt1とし、あるいは伝搬遅延増加分を送信開始時間t2から減じた時刻をt2とすることとした。また、本発明に係る光通信システム及び光通信方法は、上り信号の波長、方路、又はその組合せを変更する際、その変更に伴う伝搬遅延増加分をゲートメッセージの送信時刻t1に加えた時刻をt1とし、あるいは送信を許可する送信開始時刻t2から減じた時刻をt2とすることとした。   In order to achieve the above object, the optical communication system and the optical communication method according to the present invention, when changing the wavelength, route, or combination of downlink signals, transmit an increase in propagation delay associated with the change to transmit a gate message. The time added to the time t1 is t1, or the time obtained by subtracting the propagation delay increase from the transmission start time t2 is t2. Further, in the optical communication system and the optical communication method according to the present invention, when the wavelength of the upstream signal, the route, or the combination thereof is changed, the time when the propagation delay increase accompanying the change is added to the transmission time t1 of the gate message Is set to t1, or the time subtracted from the transmission start time t2 at which transmission is permitted is set to t2.

具体的には、本発明に係る光通信システムは、波長、方路、又は波長と方路の組合せの異なる光送受信機を少なくとも2つ有する局側装置(OLT:Optical Line Terminal)と、前記OLTに光伝送路を介して接続され、前記OLTとの間で波長分割多重且つ時分割多重、芯線多重且つ時分割多重、又は波長分割多重、芯線多重且つ時分割多重で光信号を送受する複数の加入者側装置(ONU:Optical Network Unit)と、を備えており、前記OLTは、上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、一の前記光送受信機から、前記ONUとの伝搬遅延が一の前記光送受信機と異なる他の前記光送受信機への送信許可を前記ONUに通知する際に、前記送信許可が、一の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、あるいは、一の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、前記ONUは、前記OLTからの前記送信許可を受信したときに自装置の時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻に他の前記光送受信機へ上り信号を送信し、前記送信開始時刻に前記伝搬遅延差経過後、且つ前記送信許可に含まれる前記継続時間までの間に一の前記光送受信機へ上り信号を送信することを特徴とする。   Specifically, an optical communication system according to the present invention includes a station side apparatus (OLT: Optical Line Terminal) having at least two optical transceivers having different wavelengths, paths, or combinations of wavelengths and paths, and the OLT. A plurality of optical signals transmitted to and received from the OLT by wavelength division multiplexing and time division multiplexing, core line multiplexing and time division multiplexing, or wavelength division multiplexing, core line multiplexing and time division multiplexing. An optical network unit (ONU), and when the OLT switches the wavelength of an upstream signal or a downstream signal, a path, or a combination of a wavelength and a path, the one optical transceiver The transmission permission when the ONU is notified of permission to transmit to another optical transceiver different from the optical transceiver having a propagation delay with the ONU. A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and the one optical transceiver from a propagation delay between the ONU and the other optical transceiver to the current time of the one optical transceiver; It includes a transmission start time that permits transmission of an upstream signal from the ONU and a duration that permits transmission of the upstream signal from the ONU. Alternatively, the current time of the one optical transceiver is permitted to transmit the upstream signal from the ONU. A transmission delay time obtained by subtracting a propagation delay difference between the ONU and one optical transceiver from a propagation delay between the ONU and another optical transceiver from the transmission start time, and an upstream signal of the ONU The ONU, when receiving the transmission permission from the OLT, adjusts the time of its own device to the current time included in the transmission permission and starts the transmission included in the transmission permission. An upstream signal is transmitted to another optical transceiver at the time, and the upstream signal is transmitted to the one optical transceiver after the propagation delay difference has elapsed at the transmission start time and until the duration included in the transmission permission. Is transmitted.

本発明に係る光通信方法は、前記光通信システムにおいて、上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、一の前記光送受信機から、前記ONUとの伝搬遅延が一の前記光送受信機と異なる他の前記光送受信機への送信許可を前記OLTから前記ONUに通知する際に、前記送信許可が、一の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、あるいは、一の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、前記OLTからの前記送信許可を受信したときに前記ONUの時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻に前記ONUから他の前記光送受信機へ上り信号を送信し、前記送信開始時刻に前記伝搬遅延差経過後、且つ前記送信許可に含まれる前記継続時間までの間に前記ONUから一の前記光送受信機へ前記ONUから上り信号を送信することを特徴とする。   In the optical communication system according to the present invention, in the optical communication system, when switching the wavelength, route, or combination of wavelength and route of an upstream signal or downstream signal, propagation from one optical transceiver to the ONU is performed. When the OLT notifies the ONU of transmission permission to another optical transmitter / receiver that is different from the optical transmitter / receiver having one delay, the transmission permission is transmitted to the ONU at the current time of the one optical transmitter / receiver. A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and the one optical transceiver from a propagation delay with the other optical transceiver, a transmission start time for permitting transmission of an upstream signal of the ONU, and The ONU and another optical transceiver including a duration time permitting transmission of the upstream signal of the ONU, or from a current start time of the one optical transceiver and a transmission start time permitting transmission of the upstream signal of the ONU When The transmission permission from the OLT, including a time obtained by subtracting a propagation delay difference obtained by subtracting a propagation delay between the ONU and the one optical transceiver from a propagation delay, and a duration for allowing transmission of the upstream signal of the ONU. The time of the ONU is adjusted to the current time included in the transmission permission when an ON signal is received, and an upstream signal is transmitted from the ONU to another optical transceiver at the transmission start time included in the transmission permission, and the transmission An upstream signal is transmitted from the ONU to the one optical transceiver after the propagation delay difference has elapsed at the start time and until the duration included in the transmission permission.

本発明に係る他の光通信システムは、波長、方路、又は波長と方路の組合せの異なる光送受信機を少なくとも2つ有する局側装置(OLT:Optical Line Terminal)と、前記OLTに光伝送路を介して接続され、前記OLTとの間で波長分割多重且つ時分割多重、芯線多重且つ時分割多重、又は波長分割多重、芯線多重且つ時分割多重で光信号を送受する複数の加入者側装置(ONU:Optical Network Unit)と、を備えており、前記OLTは、上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、複数の前記光送受信機から、前記ONUとの伝搬遅延が他の前記光送受信機と異なる一の前記光送受信機への送信許可を前記ONUに通知する際に、他の前記光送受信機からの前記送信許可が、他の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、あるいは、他の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、前記ONUは、前記OLTからの前記送信許可を受信したときに自装置の時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻から前記送信許可に含まれる前記継続時間までの間に一の前記光送受信機へ上り信号を送信することを特徴とする。   Another optical communication system according to the present invention includes an optical line terminal (OLT) having at least two optical transceivers having different wavelengths, paths, or combinations of wavelengths and paths, and optical transmission to the OLT. A plurality of subscribers that are connected via a path and transmit / receive optical signals to / from the OLT by wavelength division multiplexing and time division multiplexing, core line multiplexing and time division multiplexing, or wavelength division multiplexing, core line multiplexing, and time division multiplexing A device (ONU: Optical Network Unit), and when the OLT switches the wavelength of an upstream signal or a downstream signal, a route, or a combination of a wavelength and a route, a plurality of the optical transceivers When notifying the ONU of permission to transmit to the one optical transceiver having a propagation delay with the ONU different from that of the other optical transceiver, the other optical transceiver The transmission permission is obtained by subtracting the propagation delay between the ONU and the one optical transceiver from the propagation delay between the ONU and the other optical transceiver at the current time of the other optical transceiver. , A transmission start time that permits transmission of the upstream signal of the ONU, and a duration that permits transmission of the upstream signal of the ONU, or the current time of the other optical transceiver, A time obtained by subtracting a propagation delay difference obtained by subtracting a propagation delay between the ONU and one optical transceiver from a propagation delay between the ONU and another optical transceiver from a transmission start time at which transmission of an upstream signal is permitted; and The ONU includes a duration for allowing transmission of an upstream signal from the ONU, and when the ONU receives the transmission permission from the OLT, adjusts the time of its own device to the current time included in the transmission permission, and transmits the transmission permission. Included in The uplink signal is transmitted to one optical transceiver between the transmission start time and the duration included in the transmission permission.

本発明に係る光通信方法は、前記他の光通信システムにおいて、上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、複数の前記光送受信機から、前記ONUとの伝搬遅延が他の前記光送受信機と異なる一の前記光送受信機への送信許可を前記OLTから前記ONUに通知する際に、他の前記光送受信機からの前記送信許可が、他の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、あるいは、他の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、前記OLTからの前記送信許可を受信したときに前記ONUの時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻から前記送信許可に含まれる前記継続時間までの間に一の前記光送受信機へ前記ONUから上り信号を送信することを特徴とする。   In the optical communication method according to the present invention, in the other optical communication system, when switching the wavelength, the route, or the combination of the wavelength and the route of the uplink signal or the downlink signal, the ONU When the OLT notifies the ONU of transmission permission to the one optical transceiver that has a propagation delay different from that of the other optical transceiver, the transmission permission from the other optical transceiver A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and the one optical transceiver from the propagation delay between the ONU and the other optical transceiver at the current time of the optical transceiver; Including a transmission start time permitting transmission of the ONU and a duration time permitting transmission of the upstream signal of the ONU, or a current time of the other optical transceiver, and a transmission start time permitting transmission of the upstream signal of the ONU Before A time obtained by subtracting a propagation delay difference obtained by subtracting a propagation delay between the ONU and one optical transceiver from a propagation delay between the ONU and the other optical transceiver, and a duration time during which transmission of the upstream signal of the ONU is permitted. The ONU time is matched with the current time included in the transmission permission when the transmission permission from the OLT is received, and the continuation included in the transmission permission from the transmission start time included in the transmission permission. An upstream signal is transmitted from the ONU to one of the optical transceivers until time.

本光通信システム及び本光通信方法は、波長、方路、又はその組合せの切り換えに伴う上り信号又は下り信号の伝搬遅延差の増減に応じてゲートメッセージで伝える時刻を増減することでOLT側に着信する時刻を一定にすることができる。このため、本光通信システム及び本光通信方法は、任意の下り波長を受信するONUに対して、任意の上り波長で送信する送信許可を通知することが可能である。   The present optical communication system and the present optical communication method increase or decrease the time transmitted by the gate message according to the increase or decrease of the propagation delay difference of the uplink signal or the downlink signal due to the switching of the wavelength, the route, or the combination thereof. The incoming time can be made constant. For this reason, this optical communication system and this optical communication method can notify the transmission permission to transmit at an arbitrary upstream wavelength to an ONU that receives an arbitrary downstream wavelength.

従って、本発明は、波長、方路、又はその組合せを上り信号と下り信号とで自由に変更でき、且つ上り信号の衝突を回避できる光通信システム及び光通信方法を提供することができる。   Therefore, the present invention can provide an optical communication system and an optical communication method that can freely change the wavelength, the route, or the combination thereof between the upstream signal and the downstream signal and can avoid the collision of the upstream signal.

本発明は、波長、方路、又はこれらの組合せを上り信号と下り信号とで自由に切替可能であり、且つ上り信号又は下り信号において波長、方路、又はこれらの組合せを切り替える際の伝搬遅延の変化を補正して上り信号の衝突を回避できる光通信システム及び光通信方法を提供することができる。   The present invention can freely switch a wavelength, a route, or a combination thereof between an upstream signal and a downstream signal, and a propagation delay when switching a wavelength, a route, or a combination thereof in the upstream signal or the downstream signal. Thus, it is possible to provide an optical communication system and an optical communication method that can correct the change of the signal and avoid the collision of the uplink signals.

本発明に係る光通信システムを説明するブロック図である。1 is a block diagram illustrating an optical communication system according to the present invention. 本発明に係る光通信方法を説明する時間ダイヤグラムである。It is a time diagram explaining the optical communication method which concerns on this invention. 本発明に係る光通信方法を説明する時間ダイヤグラムである。It is a time diagram explaining the optical communication method which concerns on this invention. 本発明に係る光通信方法を説明する時間ダイヤグラムである。It is a time diagram explaining the optical communication method which concerns on this invention. 本発明に係る光通信方法を説明する時間ダイヤグラムである。It is a time diagram explaining the optical communication method which concerns on this invention. 本発明に係る光通信システムを説明するブロック図である。1 is a block diagram illustrating an optical communication system according to the present invention. (a)は、本発明に係る光通信システムが行う上り送信許可の下り遅延増加の例である。(b)は、本発明に係る光通信システムが行う上り送信許可の下り遅延減少の例である。(c)は、本発明に係る光通信システムが行う上り送信許可の上り遅延増加の例である。(d)は、本発明に係る光通信システムが行う上り送信許可の上り遅延減少の例である。(A) is an example of the increase in the downlink delay of the uplink transmission permission performed by the optical communication system according to the present invention. (B) is an example of the downlink delay reduction of the uplink transmission permission performed by the optical communication system according to the present invention. (C) is an example of an increase in uplink delay of uplink transmission permission performed by the optical communication system according to the present invention. (D) is an example of the uplink delay reduction of the uplink transmission permission performed by the optical communication system according to the present invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図1は、実施形態1の光通信システム301を説明する概念図である。光通信システム301は、異なる波長をそれぞれ送受する光送受信機(21、22)を有するOLT200と、光送受信機(21、22)に光伝送路である光分配網(ODN:Optical Distribution Network)ODN50を介して接続され、OLT200との間で複数の波長(例えば、OLTからONUへの下り方向がλ1、λ2、ONUからOLTへの上り方向がλ1’、λ2’)を用いて波長分割多重且つ時分割多重で光信号を送受する光送受信機を有する複数のONU(100A、100B、100C)と、を備える。光通信システム301は、例えば、PONであり、波長分割多重且つ時分割多重で光信号を伝達する。
(Embodiment 1)
FIG. 1 is a conceptual diagram illustrating an optical communication system 301 according to the first embodiment. An optical communication system 301 includes an OLT 200 having optical transceivers (21, 22) that transmit and receive different wavelengths, and an optical distribution network (ODN) ODN50 that is an optical transmission path to the optical transceivers (21, 22). And wavelength division multiplexing using a plurality of wavelengths with the OLT 200 (for example, the downstream direction from the OLT to the ONU is λ1, λ2, the upstream direction from the ONU to the OLT is λ1 ′, λ2 ′) and A plurality of ONUs (100A, 100B, 100C) having optical transceivers for transmitting and receiving optical signals by time division multiplexing. The optical communication system 301 is, for example, a PON, and transmits an optical signal by wavelength division multiplexing and time division multiplexing.

波長分割多重に用いる波長として、例えば、下り波長が1574.54nm、1576.20nm、1577.86nm、1579.52nm、上り波長が1270nm、1290nm、1310nm、1330nmである。   As wavelengths used for wavelength division multiplexing, for example, downstream wavelengths are 1574.54 nm, 1576.20 nm, 1577.86 nm, 1579.52 nm, and upstream wavelengths are 1270 nm, 1290 nm, 1310 nm, and 1330 nm.

ONU(100A、100B、100C)は各加入者宅に設置されており、送信する上り信号で使用するために各ONUの光送受信機は割当てられた波長の信号光を出力する。割当てられた波長は、選択可能な複数の波長のうちの1波長である。   The ONU (100A, 100B, 100C) is installed in each subscriber's house, and the optical transmitter / receiver of each ONU outputs signal light of the assigned wavelength for use in the uplink signal to be transmitted. The assigned wavelength is one of a plurality of selectable wavelengths.

ODN50は、各ONUの光送受信機からの信号光を合流してOLT200の光送受信機(21、22)へ結合し、OLT200の光送受信機(21、22)からの信号光を分岐して各ONUの光送受信機へ結合する。ここで、各ONUの光送受信機から出力された上り信号光が同一波長として受信される波長で同時にOLT200に到着すると受信できなくなるため、OLT200は、各ONUの光送受信機の当該波長における伝搬時間の差を考慮して同一波長を受信する信号光同士がOLT200の光送受信機(21、22)で重ならないように送信許可する。送信許可は、各ONU側の光送受信機で受信中の波長にてOLT200から通知される。受信中の波長は、ONUで受信する波長として選択可能な複数の波長のうちの1波長である。   The ODN 50 combines the signal light from the optical transceivers of each ONU and couples them to the optical transceivers (21, 22) of the OLT 200, and branches the signal light from the optical transceivers (21, 22) of the OLT 200 to each of them. Coupled to ONU optical transceiver. Here, when the upstream signal light output from the optical transceiver of each ONU arrives at the OLT 200 at the same wavelength that is received as the same wavelength, it cannot be received, so the OLT 200 transmits the propagation time at that wavelength of the optical transceiver of each ONU. In consideration of the difference, signal lights that receive the same wavelength are permitted to be transmitted by the optical transceivers (21, 22) of the OLT 200. The transmission permission is notified from the OLT 200 at the wavelength being received by the optical transceiver on each ONU side. The wavelength being received is one of a plurality of wavelengths that can be selected as a wavelength received by the ONU.

OLT200は、ODN50からの光を波長ごとに分波し、光送受信機(21,22)からの光を合波してODN50に受け渡す光合分波器25と、光合分波器25から分波された信号光をそれぞれ受光して電気信号として出力する複数の光送受信機(21、22)と、を有する。光合分波器25は、例えば、波長フィルタ等を適用することができる。光送受信機(21、22)の受光部は、例えば、フォトダイオードを使用することができる。   The OLT 200 demultiplexes the light from the ODN 50 for each wavelength, multiplexes the light from the optical transceivers (21, 22) and delivers it to the ODN 50, and demultiplexes from the optical multiplexer / demultiplexer 25. A plurality of optical transceivers (21, 22) for receiving the received signal light and outputting them as electrical signals. For example, a wavelength filter can be applied to the optical multiplexer / demultiplexer 25. For example, a photodiode can be used as the light receiving unit of the optical transceiver (21, 22).

ここで、話を簡略化するために適用する波長を上り下りそれぞれ2波長とすれば、光合分波器25は、ODN50を介したONUからの上り信号光を波長λ1’と波長λ2’に分波し、それぞれ光送受信機(21、22)に結合する。光送受信機(21、22)は、それぞれ受光した信号光を電気信号として出力する。このため、OLT200は、波長(λ1’、λ2’)ごとに信号光を受信することができる。光送受信機(21、22)は、それぞれ波長λ1と波長λ2の下り信号光を出力し、光合分波器25で合波しODN50を介してONUに結合する。   Here, if the wavelength applied to simplify the talk is assumed to be two wavelengths for the upstream and downstream, the optical multiplexer / demultiplexer 25 separates the upstream signal light from the ONU via the ODN 50 into the wavelength λ1 ′ and the wavelength λ2 ′. Waves are respectively coupled to the optical transceivers (21, 22). Each of the optical transceivers (21, 22) outputs the received signal light as an electrical signal. Therefore, the OLT 200 can receive signal light for each wavelength (λ1 ′, λ2 ′). The optical transceivers (21, 22) output downstream signal lights having wavelengths λ1 and λ2, respectively, are combined by the optical multiplexer / demultiplexer 25, and are coupled to the ONU via the ODN 50.

図7は、光通信システム301の行う上り送信許可の例である。   FIG. 7 is an example of uplink transmission permission performed by the optical communication system 301.

光通信システム301の特徴は、下り信号の波長を変更する際、その変更に伴う伝搬遅延増加分をゲートメッセージの送信時刻t1に加えた時刻をt1とし、あるいは伝搬遅延増加分を送信開始時間t2から減じた時刻をt2とする。また、上り信号の波長を変更する際、その変更に伴う伝搬遅延増加分をゲートメッセージの送信時刻t1に加えた時刻をt1とし、あるいは送信を許可する送信開始時刻t2から減じた時刻をt2とする。即ち、上り信号の伝搬遅延増加分と下り信号の伝搬遅延増加分は同様の処理を行う。   The characteristic of the optical communication system 301 is that, when changing the wavelength of the downlink signal, the time obtained by adding the propagation delay increase accompanying the change to the transmission time t1 of the gate message is t1, or the propagation delay increase is the transmission start time t2. The time subtracted from t is t2. Further, when changing the wavelength of the uplink signal, the time obtained by adding the propagation delay increase accompanying the change to the transmission time t1 of the gate message is set to t1, or the time subtracted from the transmission start time t2 that permits transmission is set to t2. To do. That is, the same processing is performed for the increase in the propagation delay of the uplink signal and the increase in the propagation delay of the downlink signal.

以下、2波長の場合で示すので上り信号あるいは下り信号の一方の伝搬遅延が変更する例で示すが、上り信号と下り信号の両方が変更した場合はその組合せとすればよい。   In the following, since the case of two wavelengths is shown, an example in which the propagation delay of one of the uplink signal and the downlink signal is changed is shown, but when both the uplink signal and the downlink signal are changed, a combination thereof may be used.

まず、下り遅延増加の例を図7(a)に示す。図の横矢印はONUでの時刻であり、t1=0,t2=100,伝搬遅延増加分Δ=10とする。図中の“K”は送信可能継続時間である。従来例では、伝搬遅延増加により、切替前と比べて伝搬遅延増加Δだけ遅い時刻を切替前のt1,t2と誤認する。このため、OLTの想定する本来の送信開始時刻t2(=100)よりも伝搬遅延増加分Δだけ遅い時刻110を100として扱う。このため送信開始時刻が10だけ遅くなる。   First, an example of an increase in downlink delay is shown in FIG. The horizontal arrow in the figure indicates the time at the ONU, where t1 = 0, t2 = 100, and propagation delay increase Δ = 10. “K” in the figure is a transmission continuation time. In the conventional example, due to an increase in propagation delay, a time later by the propagation delay increase Δ than before switching is mistaken as t1 and t2 before switching. For this reason, the time 110 later than the original transmission start time t2 (= 100) assumed by the OLT by the propagation delay increase Δ is treated as 100. For this reason, the transmission start time is delayed by 10.

一方、光通信システム301は、方法1として伝搬遅延増加分Δをゲートメッセージの送信時刻t1に加えた時刻をt1とする。即ちt1+Δ=0+10=10をt1として送信する。伝搬遅延増加に伴うゲートメッセージの遅延分だけ送信時刻t1の時刻を遅延させることで、切替前と同様の送信開始となる。   On the other hand, the optical communication system 301 sets the time when the propagation delay increase Δ is added to the transmission time t1 of the gate message as the method 1 as t1. That is, t1 + Δ = 0 + 10 = 10 is transmitted as t1. By delaying the time of the transmission time t1 by the delay of the gate message accompanying the increase in propagation delay, the transmission starts similarly to before the switching.

光通信システム301は、方法2として伝搬遅延増加分Δを送信開始時刻t2から減じた時刻をt2とする。即ちt2−Δ=100−10=90をt2として送信する。伝搬遅延増加に伴うゲートメッセージの遅延分だけ送信開始時刻t2を早めることで、切替前と同様の送信開始となる。   The optical communication system 301 sets the time when the propagation delay increase Δ is subtracted from the transmission start time t2 as method 2 as t2. That is, t2−Δ = 100−10 = 90 is transmitted as t2. By advancing the transmission start time t2 by the gate message delay accompanying the increase in propagation delay, the transmission starts similarly to before the switching.

次に、下り遅延減少の例を図7(b)に示す。減少であるので増加分を負の値とすれば増加の例と同様である。伝搬遅延増加分Δ=−10とする。それ以外は遅延増加の例と同様である。従来例では、伝搬遅延減少により、切替前と比べて伝搬遅延増加分Δだけ遅い時刻(伝搬遅延減少分−Δだけ早い時刻)を切替前のt1,t2と誤認する。このため、OLTの想定する本来の送信開始時刻t2よりも伝搬遅延増加分Δだけ遅い時刻90を100(伝搬遅延減少分−Δだけ早い時刻90を100)として扱う。このため送信開始時刻が−10だけ遅く(10だけ早く)なる。   Next, an example of downlink delay reduction is shown in FIG. Since it is a decrease, if the increase is set to a negative value, it is the same as the increase example. The propagation delay increase Δ = −10. Other than that, it is the same as the example of the delay increase. In the conventional example, due to a decrease in propagation delay, a time later by the propagation delay increase Δ than before the switching (a time earlier by the propagation delay decrease −Δ) is mistaken as t1 and t2 before the switching. For this reason, the time 90 later by the propagation delay increase Δ than the original transmission start time t2 assumed by the OLT is treated as 100 (the time 90 earlier by the propagation delay decrease −Δ is 100). For this reason, the transmission start time is delayed by −10 (by 10 earlier).

一方、光通信システム301は、方法1として伝搬遅延増加分Δをゲートメッセージの送信時刻t1に加えた時刻をt1とする。即ちt1+Δ=0+(−10)=−10をt1として送信する(伝搬遅延減少分−Δをゲートメッセージの送信時刻t1から減じた時刻をt1とする。即ちt1−(−Δ)=0−(10)=−10をt1として送信する)。伝搬遅延増加に伴うゲートメッセージの遅延分だけ送信時刻t1の時刻を遅延させる(伝搬遅延減少に伴うゲートメッセージの早まり分だけ送信時刻t1の時刻を早める)ことで、切替前と同様の送信開始となる。   On the other hand, the optical communication system 301 sets the time when the propagation delay increase Δ is added to the transmission time t1 of the gate message as the method 1 as t1. That is, t1 + Δ = 0 + (− 10) = − 10 is transmitted as t1 (the propagation delay decrease −Δ is subtracted from the gate message transmission time t1 as t1, that is, t1 − (− Δ) = 0− ( 10) =-10 is transmitted as t1). By delaying the time of transmission time t1 by the amount of delay of the gate message accompanying the increase in propagation delay (advancing the time of transmission time t1 by the amount of advance of the gate message accompanying reduction of propagation delay), Become.

光通信システム301は、方法2として伝搬遅延増加分Δを送信開始時刻t2から減じた時刻をt2とする。即ちt2−Δ=100−(−10)=110をt2として送信する(伝搬遅延減少分−Δを送信開始時刻t2に加えた時刻をt2とする。即ちt2+(−Δ)=100+(10)=110をt2として送信する)。伝搬遅延増加に伴うゲートメッセージの遅延分だけ送信開始時刻t2の時刻を早める(伝搬遅延減少に伴うゲートメッセージの早まり分だけ送信開始時刻t2の時刻を遅延させる)ことで、切替前と同様の送信開始となる。   The optical communication system 301 sets the time when the propagation delay increase Δ is subtracted from the transmission start time t2 as method 2 as t2. That is, t2−Δ = 100 − (− 10) = 110 is transmitted as t2 (the time obtained by adding the propagation delay decrease −Δ to the transmission start time t2 is t2. That is, t2 + (− Δ) = 100 + (10). = 110 is transmitted as t2.) Transmission similar to that before switching by advancing the time of transmission start time t2 by the amount of delay of the gate message accompanying the increase in propagation delay (delaying the time of transmission start time t2 by the amount of advance of the gate message accompanying reduction of propagation delay) It will start.

次に、上り遅延増加の例を図7(c)に示す。図の横矢印はOLTでの時刻であることが異なり、それ以外は下りの例と同様である。t1=0,t2=100,伝搬遅延増加分Δ=10とする。従来例では、伝搬遅延増加により、切替前と比べて伝搬遅延増加Δだけ到着が遅くなる。このため、OLTの想定する本来の到着時刻t2(=100)よりも伝搬遅延増加分Δだけ遅い時刻110に到着する。   Next, an example of an increase in uplink delay is shown in FIG. The horizontal arrow in the figure is the time at the OLT, and the other points are the same as in the downlink example. It is assumed that t1 = 0, t2 = 100, and propagation delay increase Δ = 10. In the conventional example, due to an increase in propagation delay, arrival is delayed by a propagation delay increase Δ compared to before switching. For this reason, it arrives at a time 110 later than the original arrival time t2 (= 100) assumed by the OLT by a propagation delay increase Δ.

一方、光通信システム301は、方法1として伝搬遅延増加分Δをゲートメッセージの送信時刻t1に加えた時刻をt1とする。即ちt1+Δ=0+10=10をt1として送信する。伝搬遅延増加に伴う上り信号の遅延分だけ送信時刻t1の時刻を遅延させ、送信時刻t1から送信開始時刻t2までの時間を短くして送信開始時刻を伝搬遅延増加分だけ早めることで、切替前と同様の到着時刻となる。   On the other hand, the optical communication system 301 sets the time when the propagation delay increase Δ is added to the transmission time t1 of the gate message as the method 1 as t1. That is, t1 + Δ = 0 + 10 = 10 is transmitted as t1. By delaying the time of transmission time t1 by the amount of delay of the uplink signal accompanying the increase in propagation delay, shortening the time from transmission time t1 to transmission start time t2, and increasing the transmission start time by the amount of increase in propagation delay, before switching It will be the same arrival time.

光通信システム301は、方法2として伝搬遅延増加分Δを送信開始時刻t2から減じた時刻をt2とする。即ちt2−Δ=100−10=90をt2として送信する。伝搬遅延増加に伴う上り信号の遅延分だけ送信開始時刻t2を早め、送信時刻t1から送信開始時刻t2までの時間を短くして送信開始時刻を伝搬遅延増加分だけ早めることで、切替前と同様の到着時刻となる。   The optical communication system 301 sets the time when the propagation delay increase Δ is subtracted from the transmission start time t2 as method 2 as t2. That is, t2−Δ = 100−10 = 90 is transmitted as t2. Same as before switching by advancing the transmission start time t2 by the amount of delay of the uplink signal due to the increase of the propagation delay, shortening the time from the transmission time t1 to the transmission start time t2 and advancing the transmission start time by the increase of the propagation delay It will be the arrival time.

次に、上り遅延減少の例を図7(d)に示す。減少であるので増加分を負の値とすれば増加の例と同様である。伝搬遅延増加分Δ=−10とする。それ以外は遅延増加の例と同様である。従来例では、伝搬遅延減少により、切替前と比べて伝搬遅延増加分Δだけ到着が遅くなる(伝搬遅延減少分−Δだけ到着が早くなる)。このため、OLTの想定する本来の到着時刻t2(=100)よりも伝搬遅延増加分Δだけ遅い時刻90に到着する(伝搬遅延減少分−Δだけ早い時刻90に到着する)。このため到着時刻が−10だけ遅く(10だけ早く)なる。   Next, an example of uplink delay reduction is shown in FIG. Since it is a decrease, if the increase is a negative value, it is the same as the increase example. The propagation delay increase Δ = −10. Other than that, it is the same as the example of the delay increase. In the conventional example, due to the decrease in the propagation delay, the arrival is delayed by the propagation delay increase Δ compared to before the switching (the arrival is advanced by the propagation delay decrease −Δ). For this reason, it arrives at time 90 later than the original arrival time t2 (= 100) assumed by the OLT by the propagation delay increase Δ (arrival at time 90 earlier by the propagation delay decrease −Δ). This delays the arrival time by -10 (by 10 earlier).

一方、光通信システム301は、方法1として伝搬遅延増加分Δをゲートメッセージの送信時刻t1に加えた時刻をt1とする。即ちt1+Δ=0+(−10)=−10をt1として送信する(伝搬遅延減少分−Δをゲートメッセージの送信時刻t1から減じた時刻をt1とする。即ちt1−(−Δ)=0−(10)=−10をt1として送信する)。伝搬遅延増加に伴う上り信号の遅延分だけ送信時刻t1の時刻を遅延させ(伝搬遅延減少に伴う上り信号の早まり分だけ送信時刻t1の時刻を早め)、送信時刻t1から送信開始時刻t2までの時間を短くして送信開始時刻を伝搬遅延増加分だけ早める(送信時刻t1から送信開始時刻t2までの時間を長くして送信開始時刻を伝搬遅延減少分だけ遅延する)ことで、切替前と同様の到着時刻となる。   On the other hand, the optical communication system 301 sets the time when the propagation delay increase Δ is added to the transmission time t1 of the gate message as the method 1 as t1. That is, t1 + Δ = 0 + (− 10) = − 10 is transmitted as t1 (the propagation delay decrease −Δ is subtracted from the gate message transmission time t1 as t1, that is, t1 − (− Δ) = 0− ( 10) =-10 is transmitted as t1). The time of transmission time t1 is delayed by the amount of delay of the upstream signal accompanying the increase in propagation delay (the time of transmission time t1 is advanced by the amount of early time of the upstream signal accompanying decrease of propagation delay), and from transmission time t1 to transmission start time t2. By shortening the time and accelerating the transmission start time by the propagation delay increase (by increasing the time from the transmission time t1 to the transmission start time t2 and delaying the transmission start time by the propagation delay decrease), the same as before switching It will be the arrival time.

光通信システム301は、方法2として伝搬遅延増加分Δを送信開始時刻t2から減じた時刻をt2とする。即ちt2−Δ=100−(−10)=110をt2として送信する(伝搬遅延減少分−Δを送信開始時刻t2に加えた時刻をt2とする。即ちt2+(−Δ)=100+(10)=110をt2として送信する。)。   The optical communication system 301 sets the time when the propagation delay increase Δ is subtracted from the transmission start time t2 as method 2 as t2. That is, t2−Δ = 100 − (− 10) = 110 is transmitted as t2 (the time obtained by adding the propagation delay decrease −Δ to the transmission start time t2 is t2. That is, t2 + (− Δ) = 100 + (10). = 110 is transmitted as t2.)

伝搬遅延増加に伴う上り信号の遅延分だけ送信開始時刻t2の時刻を早め(伝搬遅延減少に伴う上り信号の早まり分だけ送信開始時刻t2の時刻を遅延させ)、送信時刻t1から送信開始時刻t2までの時間を短くして送信開始時刻を伝搬遅延増加分だけ早める(送信時刻t1から送信開始時刻t2までの時間を長くして送信開始時刻を伝搬遅延減少分だけ遅延する)ことで、切替前と同様の到着時刻となる。   The transmission start time t2 is advanced by an amount corresponding to the delay of the uplink signal accompanying the increase in the propagation delay (the time of the transmission start time t2 is delayed by an amount corresponding to the advance of the uplink signal accompanying the decrease in the propagation delay), and the transmission start time t2 from the transmission time t1. By shortening the time until the transmission start time is advanced by an increase in the propagation delay (by increasing the time from the transmission time t1 to the transmission start time t2 to delay the transmission start time by the propagation delay decrease), before switching. It will be the same arrival time.

OLT200とONU100Aとが通信している場合を考える。OLT200は、上り信号又は下り信号の波長を切り替えるとき、光送受信機(21、22)が、自装置の時刻に、ONU100Aとそれぞれの光送受信機(21、22)との間で生ずる伝搬遅延差Δを加算した送信時刻のタイムスタンプt1、ONU100Aの上り信号を許可する送信開始時刻t2、及びONU100Aの上り信号の送信可能継続時間Kを含むゲートメッセージGMを送信する。この場合、ONU100Aは、OLT200からのゲートメッセージGMを受信したときに自装置の時刻をゲートメッセージGMのタイムスタンプに合わせ、ゲートメッセージGMに含まれる送信開始時刻t2からゲートメッセージGMに含まれる送信可能継続時間Kまでの間に上り信号を送信する。   Consider a case where the OLT 200 and the ONU 100A are communicating. When the OLT 200 switches the wavelength of the upstream signal or the downstream signal, the optical transceiver (21, 22) causes the propagation delay difference generated between the ONU 100A and each optical transceiver (21, 22) at the time of its own device. A gate message GM including a time stamp t1 of the transmission time obtained by adding Δ, a transmission start time t2 that permits the upstream signal of the ONU 100A, and a transmission possible duration K of the upstream signal of the ONU 100A is transmitted. In this case, when the ONU 100A receives the gate message GM from the OLT 200, the ONU 100A adjusts the time of its own device to the time stamp of the gate message GM, and can transmit from the transmission start time t2 included in the gate message GM. Uplink signals are transmitted up to the duration K.

また、OLT200は、上り信号又は下り信号の波長を切り替えるとき、光送受信機(21、22)が、自装置の時刻t1のタイムスタンプ、ONU100Aの上り信号を許可する送信開始時刻t2から、ONU100Aとそれぞれの光送受信機(21、22)との間で生ずる伝搬遅延差Δを減じた送信開始時刻t2’、及びONU100Aの上り信号の送信可能継続時間Kを含むゲートメッセージGMを送信してもよい。この場合、ONU100Aは、OLT200からのゲートメッセージGMを受信したときに自装置の時刻をゲートメッセージGMに含まれるタイムスタンプt1に合わせ、ゲートメッセージGMに含まれる送信開始時刻t2’からゲートメッセージGMに含まれる送信可能継続時間Kまでの間に上り信号を送信する。   Further, when the OLT 200 switches the wavelength of the upstream signal or downstream signal, the optical transceiver (21, 22) starts from the time stamp of the own device at time t1, the transmission start time t2 at which the upstream signal of the ONU 100A is permitted, and the ONU 100A. The gate message GM including the transmission start time t2 ′ obtained by reducing the propagation delay difference Δ generated between the optical transceivers (21, 22) and the ONU 100A upstream signal transmission possible duration K may be transmitted. . In this case, when the ONU 100A receives the gate message GM from the OLT 200, the ONU 100A matches the time of its own device with the time stamp t1 included in the gate message GM, and changes from the transmission start time t2 ′ included in the gate message GM to the gate message GM. Uplink signals are transmitted up to the included transmittable duration K.

図2〜5の時間ダイヤグラムに従って説明する。図2と図3は、光送受信機21からのゲートメッセージによる光送受信機21及び22に対する送信許可を通知する例である。図4と図5は、光送受信機21に対する送信許可を光送受信機21及び22からのゲートメッセージで通知する例である。ここで、上り下りともに光送受信機21で送受する伝搬遅延時間は光送受信機22で送受する伝搬遅延時間はよりも短いとした。   This will be described with reference to the time diagrams of FIGS. FIGS. 2 and 3 are examples of notifying transmission permission to the optical transceivers 21 and 22 by a gate message from the optical transceiver 21. 4 and 5 are examples in which transmission permission to the optical transceiver 21 is notified by a gate message from the optical transceivers 21 and 22. Here, it is assumed that the propagation delay time transmitted / received by the optical transceiver 21 in both uplink and downlink is shorter than the propagation delay time transmitted / received by the optical transceiver 22.

[第1の切替状態]
第1の切替状態を、図2の時間ダイヤグラムを用いて説明する。
(1)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1と通信を許可する送信開始時刻t2と送信許可を継続する時間Kを含む。
(2)ONUから光送受信機21への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2から継続時間Kが経過するまでの間に、上り信号を送信する。
(1’)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1に伝搬遅延増加分Δを加えた送信時刻t1’(=t1+Δ)と通信を許可する送信開始時刻t2’(=t2)と送信許可を継続する時間K’(=K)を含む。ここでΔはONU−光送受信機21とONU−光送受信機22との伝搬遅延差である。
(2’)ONUから光送受信機22への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1’に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2’から継続時間Kが経過するまでの間に、上り信号を送信する。
[First switching state]
A 1st switching state is demonstrated using the time diagram of FIG.
(1) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes the current time t1, the transmission start time t2 at which communication is permitted, and the time K at which transmission permission is continued.
(2) Upstream signal from ONU to optical transceiver 21 The ONU that received the gate message sets its clock at the transmission time t1 of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 indicated by the gate message until the continuation time K elapses.
(1 ′) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes a transmission time t1 ′ (= t1 + Δ) obtained by adding a propagation delay increase Δ to the current time t1, a transmission start time t2 ′ (= t2) for allowing communication, and a time K ′ for continuing transmission permission. (= K) is included. Here, Δ is a propagation delay difference between the ONU-optical transceiver 21 and the ONU-optical transceiver 22.
(2 ′) Upstream signal from ONU to optical transceiver 22 The ONU that has received the gate message sets its clock at the transmission time t1 ′ of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 ′ indicated by the gate message until the continuation time K elapses.

[第2の切替状態]
第2の切替状態を、図3の時間ダイヤグラムを用いて説明する。
(1)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1と通信を許可する送信開始時刻t2と送信許可を継続する時間Kを含む。
(2)ONUから光送受信機21への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2から継続時間Kが経過するまでの間に、上り信号を送信する。
(1’)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1’(=t1)と元の通信を許可する送信開始時刻t2から伝搬遅延増加分Δを減じた送信開始時刻t2’(=t2−Δ)と送信許可を継続する時間K’(=K)を含む。ここでΔはONU−光送受信機21とONU−光送受信機22との伝搬遅延差である。
(2’)ONUから光送受信機22への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1’に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2’から継続時間Kが経過するまでの間に、上り信号を送信する。
[Second switching state]
A 2nd switching state is demonstrated using the time diagram of FIG.
(1) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes the current time t1, the transmission start time t2 at which communication is permitted, and the time K at which transmission permission is continued.
(2) Upstream signal from ONU to optical transceiver 21 The ONU that received the gate message sets its clock at the transmission time t1 of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 indicated by the gate message until the continuation time K elapses.
(1 ′) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message has a transmission start time t2 ′ (= t2−Δ) obtained by subtracting the propagation delay increase Δ from the current own time t1 ′ (= t1) and the transmission start time t2 permitting the original communication, and transmission permission. Including the time K ′ (= K) to continue. Here, Δ is a propagation delay difference between the ONU-optical transceiver 21 and the ONU-optical transceiver 22.
(2 ′) Upstream signal from ONU to optical transceiver 22 The ONU that has received the gate message sets its clock at the transmission time t1 ′ of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 ′ indicated by the gate message until the continuation time K elapses.

[第3の切替状態]
第3の切替状態を、図4の時間ダイヤグラムを用いて説明する。
(1)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1と通信を許可する送信開始時刻t2と送信許可を継続する時間Kを含む。
(2)ONUから光送受信機21への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2から継続時間Kが経過するまでの間に、上り信号を送信する。
(1’)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1に伝搬遅延増加分Δを加えた送信時刻t1’(=t1+Δ)と通信を許可する送信開始時刻t2’(=t2)と送信許可を継続する時間K’(=K)を含む。ここでΔはONU−光送受信機21とONU−光送受信機22との伝搬遅延差である。
(2’)ONUから光送受信機22への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1’に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2’から継続時間Kが経過するまでの間に、上り信号を送信する。
[Third switching state]
A 3rd switching state is demonstrated using the time diagram of FIG.
(1) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes the current time t1, the transmission start time t2 at which communication is permitted, and the time K at which transmission permission is continued.
(2) Upstream signal from ONU to optical transceiver 21 The ONU that received the gate message sets its clock at the transmission time t1 of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 indicated by the gate message until the continuation time K elapses.
(1 ′) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes a transmission time t1 ′ (= t1 + Δ) obtained by adding a propagation delay increase Δ to the current time t1, a transmission start time t2 ′ (= t2) for allowing communication, and a time K ′ for continuing transmission permission. (= K) is included. Here, Δ is a propagation delay difference between the ONU-optical transceiver 21 and the ONU-optical transceiver 22.
(2 ′) Upstream signal from ONU to optical transceiver 22 The ONU that has received the gate message sets its clock at the transmission time t1 ′ of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 ′ indicated by the gate message until the continuation time K elapses.

[第4の切替状態]
第4の切替状態を、図5の時間ダイヤグラムを用いて説明する。
(1)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1と通信を許可する送信開始時刻t2と送信許可を継続する時間Kを含む。
(2)ONUから光送受信機21への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2から継続時間Kが経過するまでの間に、上り信号を送信する。
(1’)光送受信機21からONUへのゲートメッセージ
光送受信機21は、ONUをLLIDで指定したゲートメッセージを送信する。ゲートメッセージは、現在の自分の時刻t1’(=t1)と元の通信を許可する送信開始時刻t2から伝搬遅延増加分Δを現じた送信開始時刻t2’(=t2−Δ)と送信許可を継続する時間K’(=K)を含む。ここでΔはONU−光送受信機21とONU−光送受信機22との伝搬遅延差である。
(2’)ONUから光送受信機22への上り信号
ゲートメッセージを受け取ったONUは、このメッセージのタイムスタンプで示される当該メッセージの送信時刻t1’に自分の時計を合わせる。ONUはゲートメッセージで指示された送信開始時刻t2’から継続時間Kが経過するまでの間に、上り信号を送信する。
[Fourth switching state]
A 4th switching state is demonstrated using the time diagram of FIG.
(1) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes the current time t1, the transmission start time t2 at which communication is permitted, and the time K at which transmission permission is continued.
(2) Upstream signal from ONU to optical transceiver 21 The ONU that received the gate message sets its clock at the transmission time t1 of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 indicated by the gate message until the continuation time K elapses.
(1 ′) Gate message from the optical transceiver 21 to the ONU The optical transceiver 21 transmits a gate message in which the ONU is designated by LLID. The gate message includes a transmission start time t2 ′ (= t2−Δ) and a transmission permission in which the propagation delay increase Δ is expressed from the current own time t1 ′ (= t1) and the transmission start time t2 permitting the original communication. Including time K ′ (= K). Here, Δ is a propagation delay difference between the ONU-optical transceiver 21 and the ONU-optical transceiver 22.
(2 ′) Upstream signal from ONU to optical transceiver 22 The ONU that has received the gate message sets its clock at the transmission time t1 ′ of the message indicated by the time stamp of this message. The ONU transmits an uplink signal from the transmission start time t2 ′ indicated by the gate message until the continuation time K elapses.

図2〜図5に示されるように、光通信システム301は波長の切り換えに伴う上り方向又は下り方向の伝搬遅延差Δの増減に応じてゲートメッセージGMで伝える時刻を増減することでOLT200に着信する時刻を一定にすることができる。なお、本例では、送信許可をする側で伝搬遅延差に応じた処理を行ったが、送信許可を受ける側で同様の処理を行っても良い。   As shown in FIGS. 2 to 5, the optical communication system 301 arrives at the OLT 200 by increasing / decreasing the time transmitted by the gate message GM in accordance with the increase / decrease in the propagation delay difference Δ in the uplink direction or the downlink direction accompanying the switching of the wavelength. The time to do can be made constant. In this example, the process according to the propagation delay difference is performed on the transmission permission side, but the same process may be performed on the transmission permission side.

以上説明したように、光通信システム301は、任意の下り波長を受信するONU(100A、100B、100C)に対して、任意の上り波長で送信する送信許可を通知することが可能であるので、波長間における上下の組合せを自由に変更しながら上り信号の衝突を回避する1対Nの光アクセスシステムを提供することができる。   As described above, the optical communication system 301 can notify the ONU (100A, 100B, 100C) that receives an arbitrary downstream wavelength of transmission permission to transmit at an arbitrary upstream wavelength. It is possible to provide a 1 to N optical access system that avoids the collision of uplink signals while freely changing the upper and lower combinations between wavelengths.

なお、光通信システム301は、3つのONUと2波長で説明したが、ONUの数が増減してもよいし、波長分割多重する波長の数も2以上であってよい。また、ONU毎の送受する波長はそれぞれ1波長としたが、複数波長としてもよい。また、光通信システム301をPONとして説明したが、光スイッチを光スプリッタに代替した光アクセスネットワークでも同様にできる。これは以降の実施形態でも同様である。   Although the optical communication system 301 has been described with three ONUs and two wavelengths, the number of ONUs may be increased or decreased, and the number of wavelengths to be wavelength division multiplexed may be two or more. Moreover, although the wavelength transmitted / received for each ONU is set to one wavelength, a plurality of wavelengths may be used. Although the optical communication system 301 has been described as a PON, the same can be applied to an optical access network in which an optical switch is replaced with an optical splitter. The same applies to the following embodiments.

(実施形態2)
図6は、実施形態2の光通信システム302を説明する概念図である。光通信システム302は、方路(H1、H2)毎の光送受信機(21、22)を有するOLT200と、光送受信機(21、22)に光伝送路である光分配網ODNを構成する方路(50(H1)、50(H2))を介して接続され、OLT200との間で芯線多重且つ時分割多重で光信号を送受する複数のONU(100A、100B、100C)と、を備える。光通信システム302は、例えば、PONであり、芯線多重且つ時分割多重で光信号を伝達する。
(Embodiment 2)
FIG. 6 is a conceptual diagram illustrating the optical communication system 302 according to the second embodiment. The optical communication system 302 includes an OLT 200 having an optical transceiver (21, 22) for each path (H1, H2), and an optical distribution network ODN that is an optical transmission path in the optical transceiver (21, 22). And a plurality of ONUs (100A, 100B, 100C) that are connected via a path (50 (H1), 50 (H2)) and transmit / receive optical signals to / from the OLT 200 by core line multiplexing and time division multiplexing. The optical communication system 302 is, for example, a PON, and transmits an optical signal by core multiplexing and time division multiplexing.

光通信システム302は、図1の光通信システム301が各ONUを波長(λ1、λ2)に振り分けて収容することに対して、各ONUを複数の方路(H1、H2)に振り分けて収容する点において相違する。なお、実施形態2では、すでに実施形態1で説明した部分と同一あるいは略同一である部分の説明を省略する。   The optical communication system 302 distributes and stores each ONU in a plurality of paths (H1, H2), while the optical communication system 301 in FIG. 1 distributes and stores each ONU in wavelengths (λ1, λ2). The point is different. In the second embodiment, description of parts that are the same as or substantially the same as those already described in the first embodiment is omitted.

ONU(100A、100B、100C)及びOLT200は、実施形態1で説明したONU(100A、100B、100C)及びOLT200について波長を方路に置き換えたものである。   The ONUs (100A, 100B, 100C) and the OLT 200 are obtained by replacing the wavelengths of the ONUs (100A, 100B, 100C) and the OLT 200 described in the first embodiment with routes.

ONU(100A、100B、100C)は各加入者宅に設置されており、送信する上り信号で使用するために各ONUの光送受信機は割当てられた方路で信号光を出力する。割当てられた方路は、選択可能な複数の方路(H1、H2)のうちの1方路である。   The ONUs (100A, 100B, 100C) are installed in each subscriber's house, and the optical transceivers of each ONU output signal light in the assigned route for use in the uplink signal to be transmitted. The assigned route is one of a plurality of selectable routes (H1, H2).

ODN(50(H1)、50(H2))は、各ONUの光送受信機からの信号光を方路(H1、H2)ごとに合流してOLT200の光送受信機(21、22)へ結合し、OLT200の光送受信機(21、22)からの信号光を方路(H1、H2)ごとに分岐して各ONUの光送受信機へ結合する。ここで、各ONUの光送受信機から出力された上り信号光が同一方路で同時にOLT200に到着すると受信できなくなるので、OLT200は、各ONUの光送受信機の当該方路における伝搬時間の差を考慮してOLT200の光送受信機(21、22)で重ならないように送信許可する。送信許可は、各ONU側の光送受信機で受信中の方路にてOLT200から通知される。受信中の方路は、ONUで受信する方路として選択可能な複数の方路のうちの1方路である。   The ODN (50 (H1), 50 (H2)) combines the signal light from the optical transceiver of each ONU for each route (H1, H2) and couples it to the optical transceiver (21, 22) of the OLT 200. The signal light from the optical transceivers (21, 22) of the OLT 200 is branched for each route (H1, H2) and coupled to the optical transceiver of each ONU. Here, since the upstream signal light output from the optical transceiver of each ONU cannot be received if it simultaneously arrives at the OLT 200 in the same route, the OLT 200 determines the difference in propagation time in the corresponding route of the optical transceiver of each ONU. Considering this, transmission is permitted so that the optical transceivers (21, 22) of the OLT 200 do not overlap. The transmission permission is notified from the OLT 200 in the route being received by the optical transceiver on each ONU side. The route being received is one of a plurality of routes that can be selected as a route to be received by the ONU.

OLT200の光送受信機は、ODN(50(H1)、50(H2))からの光を方路ごとに受光する複数の受光器を有する。OLT200の光送受信機は、方路(H1、H2)ごとに信号光を受信する。   The optical transceiver of the OLT 200 includes a plurality of light receivers that receive light from ODN (50 (H1), 50 (H2)) for each route. The optical transceiver of the OLT 200 receives signal light for each path (H1, H2).

光通信システム302の上り信号の許可通知は、図1の光通信システム301の許可通知の説明において、波長λ1及び波長λ2をそれぞれ方路H1及び方路H2と置き変えることで説明できる。   The upstream signal permission notification of the optical communication system 302 can be described by replacing the wavelength λ1 and the wavelength λ2 with the route H1 and the route H2, respectively, in the description of the permission notification of the optical communication system 301 in FIG.

以上説明したように、光通信システム302は、任意の下り方路からの信号を受信するONU(100A、100B、100C)に対して、任意の上り方路で送信する送信許可を通知することが可能であるので、方路間における上下の組合せを自由に変更しながら上り信号の衝突を回避する1対Nの光アクセスシステムを提供することができる。   As described above, the optical communication system 302 can notify the ONU (100A, 100B, 100C) that receives a signal from an arbitrary downstream route of transmission permission to transmit on the arbitrary upstream route. Therefore, it is possible to provide a 1 to N optical access system that avoids the collision of uplink signals while freely changing the upper and lower combinations between routes.

なお、光通信システム302は、3つのONUと2つの方路で説明したが、ONUの数が増減してもよいし、方路の数も2以上であってよい。また、ONU毎の送受する方路はそれぞれ1方路としたが、複数方路としてもよい。また、方路(H1、H2)のそれぞれで波長分割多重を行い、図1の光通信システム301の処理と光通信システム302の処理とを組み合わせてもよい。   Although the optical communication system 302 has been described with three ONUs and two routes, the number of ONUs may be increased or decreased, and the number of routes may be two or more. In addition, although the transmission / reception route for each ONU is a single route, a plurality of routes may be used. Further, wavelength division multiplexing may be performed in each of the routes (H1, H2), and the processing of the optical communication system 301 and the processing of the optical communication system 302 in FIG. 1 may be combined.

(他の実施形態)
なお、以上説明した実施態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。本発明は前記各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形や改良は、本発明に含まれるものである。
(Other embodiments)
The embodiment described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and has the configuration of the present invention to achieve the object and effect. Needless to say, modifications and improvements within the scope of the present invention are included in the content of the present invention. Further, the specific structure, shape, and the like in carrying out the present invention are not problematic as other structures, shapes, and the like as long as the objects and effects of the present invention can be achieved. The present invention is not limited to the above-described embodiments, and modifications and improvements within the scope that can achieve the object of the present invention are included in the present invention.

例えば、情報伝達媒体は、光通信システム301では波長、光通信システム302では方路であったが、他の分割多重の技術、例えば、光符号、OFDMの一つのビン、偏波、位相であってもよい。   For example, the information transmission medium is a wavelength in the optical communication system 301 and a path in the optical communication system 302, but is another division multiplexing technique, for example, an optical code, one OFDM bin, polarization, and phase. May be.

本発明は、PONに適用される光通信システム関連の技術分野に利用することができる。   The present invention can be used in a technical field related to an optical communication system applied to a PON.

21、22:光送受信機
25:光合分波器
50、50(H1)、50(H2):ODN
55:光スプリッタ
H1、H2:方路
100A、100B、100C:ONU
200:OLT
301、302:光通信システム
GM:ゲートメッセージ
K:送信可能継続時間
21, 22: Optical transceiver 25: Optical multiplexer / demultiplexer 50, 50 (H1), 50 (H2): ODN
55: Optical splitters H1, H2: Paths 100A, 100B, 100C: ONU
200: OLT
301, 302: Optical communication system GM: Gate message K: Transmission possible duration

Claims (4)

波長、方路、又は波長と方路の組合せの異なる光送受信機を少なくとも2つ有する局側装置(OLT:Optical Line Terminal)と、
前記OLTに光伝送路を介して接続され、前記OLTとの間で波長分割多重且つ時分割多重、芯線多重且つ時分割多重、又は波長分割多重、芯線多重且つ時分割多重で光信号を送受する複数の加入者側装置(ONU:Optical Network Unit)と、
を備えており、
前記OLTは、
上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、
一の前記光送受信機から、前記ONUとの伝搬遅延が一の前記光送受信機と異なる他の前記光送受信機への送信許可を前記ONUに通知する際に、
前記送信許可が、
一の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、
あるいは、一の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、
前記ONUは、
前記OLTからの前記送信許可を受信したときに自装置の時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻に他の前記光送受信機へ上り信号を送信し、前記送信開始時刻に前記伝搬遅延差経過後、且つ前記送信許可に含まれる前記継続時間までの間に一の前記光送受信機へ上り信号を送信する
ことを特徴とする光通信システム。
A station side device (OLT: Optical Line Terminal) having at least two optical transceivers having different wavelengths, paths, or combinations of wavelengths and paths;
Connected to the OLT via an optical transmission line, and transmits / receives optical signals to / from the OLT by wavelength division multiplexing and time division multiplexing, core line multiplexing and time division multiplexing, or wavelength division multiplexing, core line multiplexing, and time division multiplexing. A plurality of subscriber side devices (ONU: Optical Network Unit);
With
The OLT is
When switching the wavelength, route, or combination of wavelength and route for upstream or downstream signals,
When notifying the ONU of transmission permission from one optical transceiver to another optical transceiver that has a propagation delay with the ONU different from the one optical transceiver,
The transmission permission is
A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and the one optical transceiver from a propagation delay between the ONU and the other optical transceiver to the current time of the one optical transceiver; Including a transmission start time at which transmission of the upstream signal of the ONU is permitted and a duration at which transmission of the upstream signal of the ONU is permitted,
Alternatively, from the current time of one optical transceiver, the transmission start time permitting transmission of the upstream signal of the ONU, and the propagation delay between the ONU and the other optical transceiver, the ONU and the one optical transceiver Including a time when the propagation delay difference is reduced and a duration time during which transmission of the upstream signal of the ONU is permitted,
The ONU is
When the transmission permission from the OLT is received, the time of the own device is adjusted to the current time included in the transmission permission, and an uplink signal is transmitted to the other optical transceiver at the transmission start time included in the transmission permission. An optical communication system, wherein an uplink signal is transmitted to one of the optical transceivers after the propagation delay difference has elapsed at the transmission start time and before the duration included in the transmission permission.
波長、方路、又は波長と方路の組合せの異なる光送受信機を少なくとも2つ有する局側装置(OLT:Optical Line Terminal)と、
前記OLTに光伝送路を介して接続され、前記OLTとの間で波長分割多重且つ時分割多重、芯線多重且つ時分割多重、又は波長分割多重、芯線多重且つ時分割多重で光信号を送受する複数の加入者側装置(ONU:Optical Network Unit)と、
を備えており、
前記OLTは、
上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、
複数の前記光送受信機から、前記ONUとの伝搬遅延が他の前記光送受信機と異なる一の前記光送受信機への送信許可を前記ONUに通知する際に、
他の前記光送受信機からの前記送信許可が、
他の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、
あるいは、他の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、
前記ONUは、
前記OLTからの前記送信許可を受信したときに自装置の時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻から前記送信許可に含まれる前記継続時間までの間に一の前記光送受信機へ上り信号を送信する
ことを特徴とする光通信システム。
A station side device (OLT: Optical Line Terminal) having at least two optical transceivers having different wavelengths, paths, or combinations of wavelengths and paths;
Connected to the OLT via an optical transmission line, and transmits / receives optical signals to / from the OLT by wavelength division multiplexing and time division multiplexing, core line multiplexing and time division multiplexing, or wavelength division multiplexing, core line multiplexing, and time division multiplexing. A plurality of subscriber side devices (ONU: Optical Network Unit);
With
The OLT is
When switching the wavelength, route, or combination of wavelength and route for upstream or downstream signals,
When notifying the ONU of transmission permission from the plurality of optical transceivers to one of the optical transceivers whose propagation delay with the ONU is different from that of the other optical transceivers,
The transmission permission from the other optical transceiver is
A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and one optical transceiver from a propagation delay between the ONU and another optical transceiver to the current time of the other optical transceiver; Including a transmission start time at which transmission of the upstream signal of the ONU is permitted and a duration at which transmission of the upstream signal of the ONU is permitted,
Alternatively, from the current time of the other optical transceiver, from the transmission start time permitting transmission of the upstream signal of the ONU, from the propagation delay between the ONU and the other optical transceiver, the ONU and the one optical transceiver Including a time when the propagation delay difference is reduced and a duration time during which transmission of the upstream signal of the ONU is permitted,
The ONU is
When receiving the transmission permission from the OLT, the time of its own device is adjusted to the current time included in the transmission permission, and from the transmission start time included in the transmission permission to the duration included in the transmission permission. An optical communication system, wherein an upstream signal is transmitted to the one optical transceiver in between.
波長、方路、又は波長と方路の組合せの異なる光送受信機を少なくとも2つ有する局側装置(OLT:Optical Line Terminal)と、
前記OLTに光伝送路を介して接続され、前記OLTとの間で波長分割多重且つ時分割多重、芯線多重且つ時分割多重、又は波長分割多重、芯線多重且つ時分割多重で光信号を送受する複数の加入者側装置(ONU:Optical Network Unit)と、
を備える光通信システムにおいて、
上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、
一の前記光送受信機から、前記ONUとの伝搬遅延が一の前記光送受信機と異なる他の前記光送受信機への送信許可を前記OLTから前記ONUに通知する際に、
前記送信許可が、
一の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、
あるいは、一の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、
前記OLTからの前記送信許可を受信したときに前記ONUの時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻に前記ONUから他の前記光送受信機へ上り信号を送信し、前記送信開始時刻に前記伝搬遅延差経過後、且つ前記送信許可に含まれる前記継続時間までの間に前記ONUから一の前記光送受信機へ前記ONUから上り信号を送信する
ことを特徴とする光通信方法。
A station side device (OLT: Optical Line Terminal) having at least two optical transceivers having different wavelengths, paths, or combinations of wavelengths and paths;
Connected to the OLT via an optical transmission line, and transmits / receives optical signals to / from the OLT by wavelength division multiplexing and time division multiplexing, core line multiplexing and time division multiplexing, or wavelength division multiplexing, core line multiplexing, and time division multiplexing. A plurality of subscriber side devices (ONU: Optical Network Unit);
In an optical communication system comprising:
When switching the wavelength, route, or combination of wavelength and route for upstream or downstream signals,
When notifying the ONU from the OLT of permission to transmit to the other optical transceiver having a propagation delay with the ONU different from that of the optical transceiver from the one optical transceiver.
The transmission permission is
A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and the one optical transceiver from a propagation delay between the ONU and the other optical transceiver to the current time of the one optical transceiver; Including a transmission start time at which transmission of the upstream signal of the ONU is permitted and a duration at which transmission of the upstream signal of the ONU is permitted,
Alternatively, from the current time of one optical transceiver, the transmission start time permitting transmission of the upstream signal of the ONU, and the propagation delay between the ONU and the other optical transceiver, the ONU and the one optical transceiver Including a time when the propagation delay difference is reduced and a duration time during which transmission of the upstream signal of the ONU is permitted,
When the transmission permission from the OLT is received, the ONU time is adjusted to the current time included in the transmission permission, and the ONU is transferred from the ONU to another optical transceiver at the transmission start time included in the transmission permission. Transmitting an upstream signal from the ONU to the one optical transceiver after the propagation delay difference has elapsed at the transmission start time and until the duration included in the transmission permission. An optical communication method characterized by the above.
波長、方路、又は波長と方路の組合せの異なる光送受信機を少なくとも2つ有する局側装置(OLT:Optical Line Terminal)と、
前記OLTに光伝送路を介して接続され、前記OLTとの間で波長分割多重且つ時分割多重、芯線多重且つ時分割多重、又は波長分割多重、芯線多重且つ時分割多重で光信号を送受する複数の加入者側装置(ONU:Optical Network Unit)と、
を備える光通信システムにおいて、
上り信号又は下り信号の波長、方路、又は波長と方路の組合せを切り替えるとき、
複数の前記光送受信機から、前記ONUとの伝搬遅延が他の前記光送受信機と異なる一の前記光送受信機への送信許可を前記OLTから前記ONUに通知する際に、
他の前記光送受信機からの前記送信許可が、
他の前記光送受信機の現時刻に前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を加えた時刻、前記ONUの上り信号の送信を許可する送信開始時刻、及び前記ONUの上り信号の送信を許可する継続時間を含む、
あるいは、他の前記光送受信機の現時刻、前記ONUの上り信号の送信を許可する送信開始時刻から前記ONUと他の前記光送受信機との伝搬遅延から前記ONUと一の前記光送受信機との伝搬遅延を減じた伝搬遅延差を減じた時刻、及び前記ONUの上り信号の送信を許可する継続時間を含み、
前記OLTからの前記送信許可を受信したときに前記ONUの時刻を前記送信許可に含まれる現時刻に合わせ、前記送信許可に含まれる前記送信開始時刻から前記送信許可に含まれる前記継続時間までの間に一の前記光送受信機へ前記ONUから上り信号を送信する
ことを特徴とする光通信方法。
A station side device (OLT: Optical Line Terminal) having at least two optical transceivers having different wavelengths, paths, or combinations of wavelengths and paths;
Connected to the OLT via an optical transmission line, and transmits / receives optical signals to / from the OLT by wavelength division multiplexing and time division multiplexing, core line multiplexing and time division multiplexing, or wavelength division multiplexing, core line multiplexing, and time division multiplexing. A plurality of subscriber side devices (ONU: Optical Network Unit);
In an optical communication system comprising:
When switching the wavelength, route, or combination of wavelength and route for upstream or downstream signals,
When notifying transmission permission from the OLT to the ONU from a plurality of the optical transceivers to the one optical transceiver whose propagation delay with the ONU is different from that of the other optical transceivers,
The transmission permission from the other optical transceiver is
A time obtained by adding a propagation delay difference obtained by subtracting a propagation delay between the ONU and one optical transceiver from a propagation delay between the ONU and another optical transceiver to the current time of the other optical transceiver; Including a transmission start time at which transmission of the upstream signal of the ONU is permitted and a duration at which transmission of the upstream signal of the ONU is permitted,
Alternatively, from the current time of the other optical transceiver, from the transmission start time permitting transmission of the upstream signal of the ONU, from the propagation delay between the ONU and the other optical transceiver, the ONU and the one optical transceiver Including a time when the propagation delay difference is reduced and a duration time during which transmission of the upstream signal of the ONU is permitted,
When receiving the transmission permission from the OLT, the time of the ONU is matched with the current time included in the transmission permission, and from the transmission start time included in the transmission permission to the duration included in the transmission permission. An optical communication method comprising transmitting an upstream signal from the ONU to the one optical transceiver in between.
JP2010091642A 2010-04-12 2010-04-12 Optical communication system and optical communication method Active JP5456547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091642A JP5456547B2 (en) 2010-04-12 2010-04-12 Optical communication system and optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091642A JP5456547B2 (en) 2010-04-12 2010-04-12 Optical communication system and optical communication method

Publications (2)

Publication Number Publication Date
JP2011223407A true JP2011223407A (en) 2011-11-04
JP5456547B2 JP5456547B2 (en) 2014-04-02

Family

ID=45039761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091642A Active JP5456547B2 (en) 2010-04-12 2010-04-12 Optical communication system and optical communication method

Country Status (1)

Country Link
JP (1) JP5456547B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229743A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Optical communication system
WO2014087994A1 (en) * 2012-12-05 2014-06-12 日本電信電話株式会社 Discovery method, optical communication method, and optical communication system
JP5588543B1 (en) * 2013-06-11 2014-09-10 日本電信電話株式会社 Discovery method and optical transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177551A (en) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp System and method for redundant optical multiple branch communication
WO2008126162A1 (en) * 2007-03-06 2008-10-23 Mitsubishi Electric Corporation Optical communication network system, parent station optical communication device, optical communication method, and communication program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177551A (en) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp System and method for redundant optical multiple branch communication
WO2008126162A1 (en) * 2007-03-06 2008-10-23 Mitsubishi Electric Corporation Optical communication network system, parent station optical communication device, optical communication method, and communication program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229743A (en) * 2012-04-25 2013-11-07 Mitsubishi Electric Corp Optical communication system
WO2014087994A1 (en) * 2012-12-05 2014-06-12 日本電信電話株式会社 Discovery method, optical communication method, and optical communication system
JP5894298B2 (en) * 2012-12-05 2016-03-23 日本電信電話株式会社 Discovery method, optical communication method, and optical communication system
US9479284B2 (en) 2012-12-05 2016-10-25 Nippon Telegraph And Telephone Corporation Discovery method, optical communication method, and optical communication system
JP5588543B1 (en) * 2013-06-11 2014-09-10 日本電信電話株式会社 Discovery method and optical transmission system

Also Published As

Publication number Publication date
JP5456547B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US8200088B2 (en) Optical communication system, and optical communication method and communication unit therefor
JP5334878B2 (en) Optical communication system, station side device, subscriber side device, and optical communication method
JP2009094962A (en) Passive optical network system and station-side optical line terminating apparatus
JP5556921B1 (en) Subscriber side apparatus registration method and optical network system
JP6152225B2 (en) WDM / TDM-PON system and its transmission start time correction method
JP2014143502A (en) Optical subscriber system and dynamic wavelength band allocation method of optical subscriber system
JP5504210B2 (en) Optical communication system and optical communication method
US20150063811A1 (en) Central-office termination apparatus of adaptively changing connection to subscriber-terminal terminator and path switching method
JP5456547B2 (en) Optical communication system and optical communication method
JP5456546B2 (en) Optical communication system and optical communication method
JP5639240B1 (en) Optical communication apparatus and dynamic wavelength band allocation method
Furukawa et al. First development of integrated optical packet and circuit switching node for new-generation networks
JP5846007B2 (en) Subscriber side apparatus registration method and optical network system
US20100124420A1 (en) Communication device and communication method
JP5563689B1 (en) Dynamic wavelength band allocation method and dynamic wavelength band allocation apparatus
JP5367596B2 (en) Station side device, subscriber side device, optical communication system, and optical communication method
JP2009189026A (en) Passive optical network system and station-side optical line terminal device
Sierra et al. Evaluation of two prevalent EPON networks using simulation methods
KR101046110B1 (en) Method and apparatus for determining cycle time of passive optical network
WO2024027346A1 (en) Apparatus for amplifying signal, and apparatus and method for receiving optical signal
JP5345561B2 (en) Communication system, transmitter, receiver, and communication method
JP5235181B2 (en) Optical communication system and optical communication method
Antonino et al. Toward feasible all-optical packet networks: recent results on the WONDER experimental testbed
JP6085244B2 (en) Optical communication system, signal transmission control method, and subscriber-side optical line terminator
KR100998582B1 (en) Systen of passive optical network for local customer networking and communication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350