JP2011223254A - Signal transmitter and current setting method thereof - Google Patents

Signal transmitter and current setting method thereof Download PDF

Info

Publication number
JP2011223254A
JP2011223254A JP2010089500A JP2010089500A JP2011223254A JP 2011223254 A JP2011223254 A JP 2011223254A JP 2010089500 A JP2010089500 A JP 2010089500A JP 2010089500 A JP2010089500 A JP 2010089500A JP 2011223254 A JP2011223254 A JP 2011223254A
Authority
JP
Japan
Prior art keywords
differential pair
current
transmission
output terminals
signal transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010089500A
Other languages
Japanese (ja)
Inventor
Hiroshi Inose
浩 猪瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2010089500A priority Critical patent/JP2011223254A/en
Publication of JP2011223254A publication Critical patent/JP2011223254A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the reliability of an element from declining.SOLUTION: A signal transmitter comprises a differential pair (3 and 4) which outputs a transmission signal, transmission side load resistors (6 and 7) which can be connected, respectively, between two output ends of the differential pair and a transmission side power supply 10, two variable current sources (13, 14, 15, and 16) connected, respectively, to two output ends of the differential pair and can change the potentials at two output ends of the differential pair in the direction of the ground potential, a comparator 11 which compares the voltages at two output ends of the differential pair, and a controller 12 which sets the current values of two variable current sources. Two output ends of the differential pair are connected to a power supply terminal 23 having a potential higher than that of the transmission side power supply through reception side load resistors 21 and 22, respectively. The controller 12 sets the current values of two variable current sources during signal transmission based on the current value of the variable current source (15 and 16) when the current of the variable current source (15 and 16) is increased in advance of signal transmission so that comparison result of the comparator 11 changes.

Description

本発明は、信号伝送装置およびその電流設定方法に係り、特に、送信器と受信器間にDC結合のインタフェースを有する信号伝送装置およびその電流設定方法に係る。   The present invention relates to a signal transmission device and a current setting method thereof, and more particularly to a signal transmission device having a DC coupling interface between a transmitter and a receiver and a current setting method thereof.

デジタルAV機器において、近年、アナログ映像音声インタフェースに代わりデジタル映像音声インタフェースが用いられるようになってきている。2002年に登場したHDMI規格はその代表例である。Blu−rayディスクの登場や、薄型デジタルテレビにおける映像処理技術の目覚ましい進歩などの背景により、デジタル映像音声インタフェースもまた伝送速度が上昇してきている。例えば、2006年にはHDMI規格も伝送速度の向上が図られ、従来の伝送路一組あたり1.65Gbpsから3.4Gbpsへと高速化されている。   In recent years, in digital AV equipment, a digital video / audio interface has been used instead of an analog video / audio interface. The HDMI standard that appeared in 2002 is a typical example. With the advent of Blu-ray discs and the remarkable progress of video processing technology in thin digital televisions, the transmission speed of digital video / audio interfaces is also increasing. For example, the transmission speed of the HDMI standard has been improved in 2006, and the speed has been increased from 1.65 Gbps to 3.4 Gbps per conventional transmission line set.

このようなインタフェースの高速化に伴い、コネクタなど伝送路途中でのインピーダンス不整合に伴う再反射により発生する波形ひずみ等で、伝送信号品質が劣化するシグナルインテグリティ問題が顕在化している。上記背景を鑑み、インピーダンス不整合により生じた送信端への反射波を吸収するために、受信端のみならず送信端においてもインピーダンス整合を取る終端抵抗を接続する送信終端(Back termination)技術が知られている。また、HDMI規格は、DC結合のインタフェースとして規定されており、従来技術では、差動伝送路と電源端子間に送信終端抵抗を接続する構成の回路が開示されている(非特許文献1参照)。   Along with such high-speed interfaces, a signal integrity problem in which transmission signal quality deteriorates due to waveform distortion caused by re-reflection caused by impedance mismatching in the middle of a transmission line such as a connector has become apparent. In view of the above background, in order to absorb a reflected wave to the transmission end caused by impedance mismatch, a transmission termination (Back termination) technology is known that connects a termination resistor that takes impedance matching not only at the reception end but also at the transmission end. It has been. The HDMI standard is defined as a DC-coupled interface, and the prior art discloses a circuit configured to connect a transmission termination resistor between a differential transmission path and a power supply terminal (see Non-Patent Document 1). .

図3を参照して従来技術を説明する。送信装置は、電源端子10と、差動入力端子1、2と、差動出力端子17、18と、NchMOSトランジスタ3、4から成る差動対と、差動対用の定電流源5と、送信終端抵抗6、7を備える。差動対のそれぞれの出力端は、それぞれ差動出力端子17、18と接続されると共に、それぞれ送信終端抵抗6、7を介して電源端子10に接続される。   The prior art will be described with reference to FIG. The transmission device includes a power supply terminal 10, differential input terminals 1 and 2, differential output terminals 17 and 18, a differential pair including NchMOS transistors 3 and 4, a constant current source 5 for the differential pair, Transmission termination resistors 6 and 7 are provided. The output terminals of the differential pair are connected to the differential output terminals 17 and 18, respectively, and are connected to the power supply terminal 10 via the transmission termination resistors 6 and 7, respectively.

また、差動出力端子17、18は、差動入力端子19、20を有する受信装置に接続される。受信装置は、電源端子23と差動入力端子19、20の間に各々負荷抵抗21、22が接続され、差動信号を受け取る差動受信器24を備える。   Further, the differential output terminals 17 and 18 are connected to a receiving device having differential input terminals 19 and 20. The receiving device includes a differential receiver 24 having load resistors 21 and 22 connected between a power supply terminal 23 and differential input terminals 19 and 20, respectively, for receiving a differential signal.

Chi−Cheng Ju,et al.、“A Multi−Format Blu−ray Player SoC in 90nm CMOS”、ISSCC 2009/SESSION 8/MULTIMEDIA PROCESSORS/8.4、p152−154Chi-Cheng Ju, et al. "A Multi-Format Blu-ray Player SoC in 90nm CMOS", ISSCC 2009 / SESSION 8 / MULTITIMEDIA PROCESSORS / 8.4, p152-154

以下の分析は本発明において与えられる。   The following analysis is given in the present invention.

図3において、電源端子10に印加する送信装置の電源電圧をVDD1、送信装置の送信終端抵抗6、7の抵抗値をRL、定電流源5の電流値をI0、電源端子23に印加する受信装置の電源電圧をVDD2、受信装置の負荷抵抗21、22の抵抗値を送信終端抵抗6、7の抵抗値と同じRLとする。この場合、差動出力端子17、18の各々のシングルエンドの出力電圧のハイレベルVH及びローレベルVLは、以下のように表される。
VH=VDD1−0.5×(VDD1−VDD2)
=0.5×(VDD1+VDD2) ・・・式(1)
VL=VDD1−0.5×(VDD1−VDD2)−0.5×RL×I0
=0.5×(VDD1+VDD2−RL×I0) ・・・式(2)
In FIG. 3, the power supply voltage of the transmission device applied to the power supply terminal 10 is VDD1, the resistance values of the transmission termination resistors 6 and 7 of the transmission device are RL, the current value of the constant current source 5 is I0, and the reception is applied to the power supply terminal 23. The power supply voltage of the device is VDD2, and the resistance values of the load resistors 21 and 22 of the receiving device are the same RL as the resistance values of the transmission termination resistors 6 and 7. In this case, the high level VH and the low level VL of the single-ended output voltage of each of the differential output terminals 17 and 18 are expressed as follows.
VH = VDD1-0.5 × (VDD1-VDD2)
= 0.5 × (VDD1 + VDD2) (1)
VL = VDD1-0.5 * (VDD1-VDD2) -0.5 * RL * I0
= 0.5 × (VDD1 + VDD2−RL × I0) (2)

ここで、VDD2>VDD1の場合、VHに関し、VH>VDD1となり、送信側におけるハイレベルの電圧が送信装置の電源電圧VDD1を超えてしまうことになる。したがって、送信装置内の素子などの信頼性が低下する虞がある。   Here, when VDD2> VDD1, VH> VDD1 with respect to VH, and the high-level voltage on the transmission side exceeds the power supply voltage VDD1 of the transmission device. Therefore, there is a possibility that the reliability of the elements in the transmission device is lowered.

本発明の1つのアスペクト(側面)に係る信号伝送装置は、送信信号を出力する差動対と、差動対の第1および第2の出力端と送信側電源との間にそれぞれ接続可能とされる第1および第2の送信側負荷抵抗と、差動対の第1および第2の出力端にそれぞれ接続され、差動対の第1および第2の出力端の電位をそれぞれ接地電位方向に変化させうる第1および第2の可変電流源と、差動対の第1および第2の出力端の電圧を比較する比較部と、第1および第2の可変電流源の電流値を設定する制御部と、を備え、差動対の第1および第2の出力端は、それぞれ第1および第2の受信側負荷抵抗を介して送信側電源より高電位の受信側電源に接続され、制御部は、信号伝送に先立って第2の可変電流源の電流を増加させていった場合に比較部の比較結果が変化した際の第2の可変電流源の電流値に基づいて、信号伝送時における第1および第2の可変電流源の電流値を設定する。   The signal transmission device according to one aspect (side surface) of the present invention is connectable between a differential pair that outputs a transmission signal, and first and second output terminals of the differential pair and a transmission-side power source. Connected to the first and second transmission side load resistors and the first and second output terminals of the differential pair, respectively, and the potentials of the first and second output terminals of the differential pair are respectively set to the ground potential direction. The first and second variable current sources that can be changed to the above, the comparison unit that compares the voltages at the first and second output terminals of the differential pair, and the current values of the first and second variable current sources are set. The first and second output terminals of the differential pair are connected to a receiving-side power source having a higher potential than the transmitting-side power source via first and second receiving-side load resistors, respectively. When the control unit increases the current of the second variable current source prior to signal transmission, the control unit Compare results based on the current value of the second variable current source when changes, to set the first and the current value of the second variable current source at the time of signal transmission.

本発明の他のアスペクト(側面)に係る電流設定方法は、送信信号を出力する差動対と、差動対の第1および第2の出力端と送信側電源との間にそれぞれ接続可能とされる第1および第2の送信側負荷抵抗と、差動対の第1および第2の出力端にそれぞれ接続され、差動対の第1および第2の出力端の電位をそれぞれ接地電位方向に変化させうる第1および第2の可変電流源と、を備え、差動対の第1および第2の出力端は、それぞれ第1および第2の受信側負荷抵抗を介して送信側電源より高電位の受信側電源に接続される信号伝送装置の電流設定方法であって、信号伝送に先立って第2の可変電流源の電流を増加させていった場合における差動対の第1および第2の出力端の電圧を比較するステップと、比較結果が変化した際の第2の可変電流源の電流値に基づいて、信号伝送時における第1および第2の可変電流源の電流値を設定するステップと、を含む。   The current setting method according to another aspect (side surface) of the present invention is connectable between a differential pair that outputs a transmission signal, and first and second output terminals of the differential pair and a transmission-side power source. Connected to the first and second transmission side load resistors and the first and second output terminals of the differential pair, respectively, and the potentials of the first and second output terminals of the differential pair are respectively set to the ground potential direction. First and second variable current sources that can be changed to each other, and the first and second output terminals of the differential pair are respectively transmitted from the transmission-side power supply via the first and second reception-side load resistors. A method for setting a current of a signal transmission device connected to a high-potential receiving-side power supply, wherein the current of a second variable current source is increased prior to signal transmission. The step of comparing the voltage at the output terminal of the 2 and the second possibility when the comparison result changes. Based on the current value of the current source, comprising the steps of: setting the first and the current value of the second variable current source at the time of signal transmission, the.

本発明によれば、送信側において、出力振幅が電源電圧を超えることが無く、素子などの信頼性が低下することを防ぐことができる。   According to the present invention, on the transmission side, the output amplitude does not exceed the power supply voltage, and it is possible to prevent the reliability of elements and the like from being lowered.

本発明の一実施例に係る信号伝送装置の回路図である。1 is a circuit diagram of a signal transmission device according to an embodiment of the present invention. 本発明の一実施例に係る制御部の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the control part which concerns on one Example of this invention. 従来の信号伝送装置の回路図である。It is a circuit diagram of the conventional signal transmission apparatus.

本発明の実施形態に係る信号伝送装置は、送信信号を出力する差動対(図1の3、4)と、差動対の第1および第2の出力端と送信側電源(図1の10に対応)との間にそれぞれ接続可能とされる第1および第2の送信側負荷抵抗(図1の6、7に相当)と、差動対の第1および第2の出力端にそれぞれ接続され、差動対の第1および第2の出力端の電位を接地電位方向に変化させうる第1および第2の可変電流源(図1の13、14、15、16)と、差動対の第1および第2の出力端の電圧を比較する比較部(図1の11)と、第1および第2の可変電流源の電流値を設定する制御部(図1の12)と、を備え、差動対の第1および第2の出力端は、それぞれ第1および第2の受信側負荷抵抗(図1の21、22)を介して送信側電源より高電位の受信側電源(図1の23)に接続され、制御部は、信号伝送に先立って第2の可変電流源の電流を増加させていった場合に比較部の比較結果が変化した際の第2の可変電流源の電流値に基づいて、信号伝送時における第1および第2の可変電流源の電流値を設定する。   The signal transmission device according to the embodiment of the present invention includes a differential pair (3 and 4 in FIG. 1) that outputs a transmission signal, first and second output terminals of the differential pair, and a transmission-side power source (in FIG. 1). 1 and the second transmission-side load resistance (corresponding to 6 and 7 in FIG. 1) and the first and second output terminals of the differential pair, respectively. First and second variable current sources (13, 14, 15, 16 in FIG. 1) that are connected and can change the potential of the first and second output terminals of the differential pair in the direction of the ground potential, and differential A comparison unit (11 in FIG. 1) that compares the voltages of the first and second output terminals of the pair; a control unit (12 in FIG. 1) that sets the current values of the first and second variable current sources; The first and second output terminals of the differential pair are respectively connected to the transmission side power supply via the first and second reception side load resistors (21 and 22 in FIG. 1), respectively. When the control unit is connected to a high-potential receiving-side power source (23 in FIG. 1) and the control unit increases the current of the second variable current source prior to signal transmission, the comparison result of the comparison unit changes. Based on the current value of the second variable current source, the current values of the first and second variable current sources during signal transmission are set.

信号伝送装置において、差動対の駆動電流値と第1および第2の可変電流源の最大電流値とを同一とし、第1および第2の送信側負荷抵抗と第1および第2の受信側負荷抵抗との抵抗値を同一とし、制御部は、信号伝送時における第1および第2の可変電流源の電流値を設定するに際し、差動対の第1および第2の出力端の信号レベルをそれぞれローレベル、ハイレベルとなるように差動対を設定し、第1および第2の送信側負荷抵抗をそれぞれ接続および非接続とし、第1および第2の可変電流源の電流をそれぞれ0および最大電流値の半分となるように制御し、第2の可変電流源の電流を増加させていった場合に、第1の出力端の電圧が第2の出力端の電圧以上となったことを比較部の比較結果が示す時点における第2の可変電流源の電流増加分を、信号伝送時における第1および第2の可変電流源の電流値として設定し、信号伝送時において、第1および第2の送信側負荷抵抗をそれぞれ接続するようにしてもよい。   In the signal transmission device, the driving current value of the differential pair is the same as the maximum current value of the first and second variable current sources, and the first and second transmitting load resistors and the first and second receiving sides The resistance value is the same as that of the load resistance, and the control unit sets the signal levels of the first and second output terminals of the differential pair when setting the current values of the first and second variable current sources during signal transmission. Are set to low level and high level, respectively, the first and second transmission side load resistors are connected and disconnected, respectively, and the currents of the first and second variable current sources are set to 0 respectively. When the current of the second variable current source is increased by controlling to be half of the maximum current value, the voltage at the first output terminal is equal to or higher than the voltage at the second output terminal. Of the second variable current source at the time indicated by the comparison result of the comparison unit The increment signal is set as the first and the current value of the second variable current source at the time of transmission, at the time of signal transmission, the first and second transmission-side load resistor may be connected, respectively.

信号伝送装置において、第1および第2の可変電流源は、それぞれN個(Nは2以上の整数)の電流源から構成され、制御部は、N個の電流源を個々に活性化させることで可変電流源の電流値を設定するようにしてもよい。   In the signal transmission device, each of the first and second variable current sources includes N (N is an integer of 2 or more) current sources, and the control unit individually activates the N current sources. In this case, the current value of the variable current source may be set.

半導体装置が上記の信号伝送装置を備えるようにしてもよい。   A semiconductor device may include the signal transmission device described above.

以上のような信号伝送装置によれば、第1および第2の出力端の電圧が送信側電源の電圧を超えることが無い。したがって、素子などの信頼性が低下することを防ぐことができる。   According to the signal transmission apparatus as described above, the voltage at the first and second output ends does not exceed the voltage of the transmission-side power supply. Therefore, it is possible to prevent the reliability of the elements and the like from being lowered.

以下、実施例に即し、図面を参照して詳しく説明する。   Hereinafter, it will be described in detail with reference to the drawings in accordance with embodiments.

図1は、本発明の一実施例に係る信号伝送装置の回路図である。図1において、図3と同一の符号は、同一物を表し、その説明を省略する。送信装置は、送信終端抵抗6、7と電源端子10の間に接続されたスイッチ8、9と、N個の電流源から成り各々の電流値がI0/Nである電流源群14、16と、電流源群14の個々の電流源と差動出力端子18との間に接続されたN個のスイッチ13と、電流源群16の個々の電流源と差動出力端子17との間に接続されたN個のスイッチ15と、差動出力端子17、18を比較入力に接続する比較器11と、比較器11の比較結果を入力としスイッチ13、15の開閉を制御する制御部12をさらに備える。   FIG. 1 is a circuit diagram of a signal transmission apparatus according to an embodiment of the present invention. 1, the same reference numerals as those in FIG. 3 represent the same items, and the description thereof is omitted. The transmission apparatus includes switches 8 and 9 connected between the transmission termination resistors 6 and 7 and the power supply terminal 10, and current source groups 14 and 16 each including N current sources and each having a current value of I0 / N. N switches 13 connected between the individual current sources of the current source group 14 and the differential output terminal 18, and connected between the individual current sources of the current source group 16 and the differential output terminal 17. And a controller 11 for connecting the differential output terminals 17 and 18 to the comparison input, and a control unit 12 for controlling the opening and closing of the switches 13 and 15 using the comparison result of the comparator 11 as an input. Prepare.

次に、信号伝送装置の動作について説明する。図2は、信号伝送時におけるスイッチ13、15の開閉の設定のための制御部12の制御手順を示すフローチャートである。なお、ここではNを偶数とする。制御部12は、信号伝送に先立って以下の手順を実行する。   Next, the operation of the signal transmission device will be described. FIG. 2 is a flowchart showing a control procedure of the control unit 12 for setting the opening and closing of the switches 13 and 15 during signal transmission. Here, N is an even number. The control unit 12 executes the following procedure prior to signal transmission.

ステップS1において、差動入力端子1をハイレベル、差動入力端子2をローレベルに設定する。NchMOSトランジスタ3、4は、それぞれオン、オフ状態となる。   In step S1, the differential input terminal 1 is set to a high level and the differential input terminal 2 is set to a low level. NchMOS transistors 3 and 4 are turned on and off, respectively.

ステップS2において、スイッチ8を閉じ(オンし)、スイッチ群15を全て開き(オフし)、スイッチ9を開き(オフし)、スイッチ群13をN/2個だけ閉じる(オンする)。電源端子10から送信終端抵抗6を介して流れる電流と、電源端子23から負荷抵抗21を介して流れる電流と和が、NchMOSトランジスタ3を介して定電流源5に流れる。また、電源端子23から負荷抵抗22を介して流れる電流が、N/2個だけ閉じられたスイッチ群13と電流源群14を介して流れる。さらに、m=0とする。   In step S2, the switch 8 is closed (turned on), the switch group 15 is all opened (turned off), the switch 9 is opened (turned off), and the switch group 13 is closed (turned on) by N / 2. A current flowing from the power supply terminal 10 via the transmission terminating resistor 6 and a current flowing from the power supply terminal 23 via the load resistor 21 flow to the constant current source 5 via the NchMOS transistor 3. Further, a current flowing from the power supply terminal 23 through the load resistor 22 flows through the switch group 13 and the current source group 14 that are closed by N / 2. Further, m = 0.

ステップS3において、比較器11の出力がハイレベルであるか否かを判定する。ハイレベルである場合(ステップS3のYes)には、送信装置の電源電圧VDD1は受信装置の電源電圧VDD2よりも高いことを示している。そこで、電流源群14、16を動作させて差動出力端子17、18の電位を下げる必要がないので、ステップS4において、スイッチ9を閉じ、スイッチ群13及びスイッチ群15を全て開く。   In step S3, it is determined whether or not the output of the comparator 11 is at a high level. If it is at the high level (Yes in step S3), it indicates that the power supply voltage VDD1 of the transmission device is higher than the power supply voltage VDD2 of the reception device. Therefore, since it is not necessary to operate the current source groups 14 and 16 to lower the potentials of the differential output terminals 17 and 18, the switch 9 is closed and the switch group 13 and the switch group 15 are all opened in step S4.

一方、比較器11の出力がローレベルである場合(ステップS3のNo)には、送信装置の電源電圧VDD1は、受信装置の電源電圧VDD2よりも低いことを示している。そこで、ステップS5において、制御部12は、比較器11の出力がハイレベルになるまで(ステップS6のYes)、スイッチ群13のスイッチを一つずつ閉じていく。   On the other hand, when the output of the comparator 11 is at a low level (No in step S3), it indicates that the power supply voltage VDD1 of the transmission device is lower than the power supply voltage VDD2 of the reception device. Therefore, in step S5, the control unit 12 closes the switches of the switch group 13 one by one until the output of the comparator 11 becomes high level (Yes in step S6).

ステップS7において、比較器11の出力がローレベルからハイレベルに変わったときの追加で閉じたスイッチの個数mの値を保持する。そして、スイッチ8、9を閉じ、スイッチ群13、15を各々保持したm個のスイッチだけを閉じる。   In step S7, the value of the number m of additionally closed switches when the output of the comparator 11 changes from the low level to the high level is held. Then, the switches 8 and 9 are closed, and only the m switches holding the switch groups 13 and 15 are closed.

以上の一連の制御手順を完了したのち、差動入力端子1、2から通常動作時の信号を入力する。   After completing the series of control procedures described above, signals during normal operation are input from the differential input terminals 1 and 2.

次に、以上の一連の制御手順によって差動出力端子17、18の電圧がどのようになるかについて説明する。ここで、電源端子10に印加する送信装置の電源電圧をVDD1、送信装置の負荷抵抗6、7の抵抗値をRL、定電流源5の電流値をI0、電源端子23に印加する受信装置の電源電圧をVDD2、受信装置の負荷抵抗21、22の抵抗値を送信終端抵抗6、7と同じ抵抗値RLとする。   Next, how the voltages of the differential output terminals 17 and 18 become by the above series of control procedures will be described. Here, the power supply voltage of the transmission device to be applied to the power supply terminal 10 is VDD1, the resistance values of the load resistors 6 and 7 of the transmission device are RL, the current value of the constant current source 5 is I0, and The power supply voltage is VDD2, and the resistance values of the load resistors 21 and 22 of the receiving device are the same resistance values RL as the transmission termination resistors 6 and 7.

まず、差動入力端子1をハイレベル、差動入力端子2をローレベルに設定し、スイッチ8を閉じ、スイッチ群15を全て開き、スイッチ9を開き、スイッチ群13をN/2個だけ閉じる。このときの差動出力端子17、18のそれぞれの電圧VA、VBは、以下の式(3)、(4)のように表される。
VA=0.5×(VDD1+VDD2−RL×I0) ・・・式(3)
VB=VDD2−0.5×RL×I0 ・・・式(4)
First, the differential input terminal 1 is set to the high level and the differential input terminal 2 is set to the low level, the switch 8 is closed, the switch group 15 is opened, the switch 9 is opened, and the switch group 13 is closed by N / 2. . The voltages VA and VB of the differential output terminals 17 and 18 at this time are expressed as the following equations (3) and (4).
VA = 0.5 × (VDD1 + VDD2−RL × I0) (3)
VB = VDD2-0.5 × RL × I0 Formula (4)

したがって、比較器11における比較電圧VA−VBは、式(3)、(4)から式(5)のようになる。
VA−VB=0.5×(VDD1−VDD2) ・・・式(5)
Therefore, the comparison voltage VA-VB in the comparator 11 is expressed by the equations (3), (4) to (5).
VA−VB = 0.5 × (VDD1−VDD2) (5)

VA−VB<0、即ち比較器11の出力がローレベルである場合に、スイッチ群13のスイッチを順次閉じて行き、m個閉じた時点で比較器11の出力がローレベルからハイレベルに変わったとする。このとき、差動出力端子18の電圧VB2は、以下の式(6)のように表される。
VB2=VDD2−(0.5+m/N)×RL×I0 ・・・式(6)
When VA-VB <0, that is, when the output of the comparator 11 is at a low level, the switches of the switch group 13 are sequentially closed, and when the m switches are closed, the output of the comparator 11 changes from a low level to a high level. Suppose. At this time, the voltage VB2 of the differential output terminal 18 is expressed by the following equation (6).
VB2 = VDD2- (0.5 + m / N) × RL × I0 Formula (6)

また、このとき、比較器11の比較電圧は、VA−VB2>0であるので、以下の式(7)が成り立つ。
VA−VB2=0.5×(VDD1−VDD2)+m/N×RL×I0>0 ・・・式(7)
At this time, since the comparison voltage of the comparator 11 is VA−VB2> 0, the following expression (7) is established.
VA−VB2 = 0.5 × (VDD1−VDD2) + m / N × RL × I0> 0 (7)

スイッチ8、9を閉じてスイッチ群13、15を各々m個のスイッチだけ閉じた場合の差動出力端子17、18における各々のシングルエンドの出力電圧のハイレベルVH及びローレベルVLは、以下の式(8)、(9)のように表される。
VH=VDD1−{0.5×(VDD1−VDD2)+m/N×RL×I0} ・・・式(8)
VL=VDD1−{0.5×(VDD1−VDD2)+m/N×RL×I0}−0.5×RL×I0 ・・・式(9)
The high level VH and the low level VL of each single-ended output voltage at the differential output terminals 17 and 18 when the switches 8 and 9 are closed and the switch groups 13 and 15 are each closed by m switches are as follows: It is expressed as equations (8) and (9).
VH = VDD1- {0.5.times. (VDD1-VDD2) + m / N.times.RL.times.I0} (8)
VL = VDD1- {0.5 * (VDD1-VDD2) + m / N * RL * I0} -0.5 * RL * I0 (9)

ここで、式(7)から、0.5×(VDD1−VDD2)+m/N×RL×I0>0である。したがって、式(8)において、VH<VDD1となり、ハイレベルの電圧VHが電源電圧VDD1を超えることは無い。すなわち、電圧VHが電源電圧VDD1を常に下回っており、送信側における素子などの信頼性が低下することを防ぐことができる。   Here, from Expression (7), 0.5 × (VDD1−VDD2) + m / N × RL × I0> 0. Therefore, in Expression (8), VH <VDD1 and the high level voltage VH does not exceed the power supply voltage VDD1. That is, the voltage VH is always lower than the power supply voltage VDD1, and it is possible to prevent the reliability of elements on the transmission side from being lowered.

なお、前述の特許文献等の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。   It should be noted that the disclosures of the aforementioned patent documents and the like are incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various combinations and selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.

1、2、19、20 差動入力端子
3、4 NchMOSトランジスタ
5 定電流源
6、7 送信終端抵抗
8、9、13、15 スイッチ
10、23 電源端子
11 比較器
12 制御部
14、16 電流源群
17、18 差動出力端子
21、22 負荷抵抗
24 差動受信器
1, 2, 19, 20 Differential input terminal 3, 4 Nch MOS transistor 5 Constant current source 6, 7 Transmission termination resistor 8, 9, 13, 15 Switch 10, 23 Power supply terminal 11 Comparator 12 Control unit 14, 16 Current source Groups 17 and 18 Differential output terminals 21 and 22 Load resistance 24 Differential receiver

Claims (5)

送信信号を出力する差動対と、
前記差動対の第1および第2の出力端と送信側電源との間にそれぞれ接続可能とされる第1および第2の送信側負荷抵抗と、
前記差動対の第1および第2の出力端にそれぞれ接続され、前記差動対の第1および第2の出力端の電位をそれぞれ接地電位方向に変化させうる第1および第2の可変電流源と、
前記差動対の第1および第2の出力端の電圧を比較する比較部と、
前記第1および第2の可変電流源の電流値を設定する制御部と、
を備え、
前記差動対の第1および第2の出力端は、それぞれ第1および第2の受信側負荷抵抗を介して前記送信側電源より高電位の受信側電源に接続され、
前記制御部は、信号伝送に先立って前記第2の可変電流源の電流を増加させていった場合に前記比較部の比較結果が変化した際の前記第2の可変電流源の電流値に基づいて、信号伝送時における前記第1および第2の可変電流源の電流値を設定することを特徴とする信号伝送装置。
A differential pair for outputting a transmission signal;
First and second transmission-side load resistors that are connectable between first and second output terminals of the differential pair and a transmission-side power source, respectively;
First and second variable currents respectively connected to the first and second output terminals of the differential pair and capable of changing the potentials of the first and second output terminals of the differential pair in the direction of the ground potential, respectively. The source,
A comparator for comparing the voltages of the first and second output terminals of the differential pair;
A control unit for setting current values of the first and second variable current sources;
With
The first and second output terminals of the differential pair are connected to a receiving power source having a higher potential than the transmitting power source via first and second receiving load resistors, respectively.
The control unit is based on the current value of the second variable current source when the comparison result of the comparison unit changes when the current of the second variable current source is increased prior to signal transmission. A signal transmission device configured to set current values of the first and second variable current sources during signal transmission.
前記差動対の駆動電流値と前記第1および第2の可変電流源の最大電流値とを同一とし、前記第1および第2の送信側負荷抵抗と前記第1および第2の受信側負荷抵抗との抵抗値を同一とし、
前記制御部は、信号伝送時における前記第1および第2の可変電流源の電流値を設定するに際し、
前記差動対の第1および第2の出力端の信号レベルをそれぞれローレベル、ハイレベルとなるように前記差動対を設定し、
前記第1および第2の送信側負荷抵抗をそれぞれ接続および非接続とし、
前記第1および第2の可変電流源の電流をそれぞれ0および最大電流値の半分となるように制御し、
前記第2の可変電流源の電流を増加させていった場合に、前記第1の出力端の電圧が前記第2の出力端の電圧以上となったことを前記比較部の比較結果が示す時点における前記第2の可変電流源の電流増加分を、信号伝送時における前記第1および第2の可変電流源の電流値として設定し、
信号伝送時において、前記第1および第2の送信側負荷抵抗をそれぞれ接続することを特徴とする請求項1記載の信号伝送装置。
The drive current value of the differential pair is the same as the maximum current value of the first and second variable current sources, and the first and second transmission load resistors and the first and second reception loads The resistance value is the same as the resistance,
When the control unit sets the current values of the first and second variable current sources during signal transmission,
Setting the differential pair so that the signal levels of the first and second output terminals of the differential pair are low level and high level, respectively;
The first and second transmitting load resistors are connected and disconnected,
Controlling the currents of the first and second variable current sources to be 0 and half of the maximum current value, respectively;
When the comparison result of the comparison unit indicates that the voltage of the first output terminal is equal to or higher than the voltage of the second output terminal when the current of the second variable current source is increased. Is set as the current value of the first and second variable current sources at the time of signal transmission,
2. The signal transmission device according to claim 1, wherein the first and second transmission-side load resistors are respectively connected during signal transmission.
前記第1および第2の可変電流源は、それぞれN個(Nは2以上の整数)の電流源から構成され、前記制御部は、前記N個の電流源を個々に活性化させることで前記可変電流源の電流値を設定することを特徴とする請求項1または2記載の信号伝送装置。   Each of the first and second variable current sources includes N (N is an integer of 2 or more) current sources, and the control unit individually activates the N current sources to activate the N current sources. 3. The signal transmission device according to claim 1, wherein a current value of the variable current source is set. 請求項1乃至3のいずれか一に記載の信号伝送装置を備える半導体装置。   A semiconductor device comprising the signal transmission device according to claim 1. 送信信号を出力する差動対と、
前記差動対の第1および第2の出力端と送信側電源との間にそれぞれ接続可能とされる第1および第2の送信側負荷抵抗と、
前記差動対の第1および第2の出力端にそれぞれ接続され、前記差動対の第1および第2の出力端の電位をそれぞれ接地電位方向に変化させうる第1および第2の可変電流源と、
を備え、前記差動対の第1および第2の出力端は、それぞれ第1および第2の受信側負荷抵抗を介して送信側電源より高電位の受信側電源に接続される信号伝送装置の電流設定方法であって、
信号伝送に先立って前記第2の可変電流源の電流を増加させていった場合における前記差動対の第1および第2の出力端の電圧を比較するステップと、
前記比較結果が変化した際の前記第2の可変電流源の電流値に基づいて、信号伝送時における前記第1および第2の可変電流源の電流値を設定するステップと、
を含むことを特徴とする電流設定方法。
A differential pair for outputting a transmission signal;
First and second transmission-side load resistors that are connectable between first and second output terminals of the differential pair and a transmission-side power source, respectively;
First and second variable currents respectively connected to the first and second output terminals of the differential pair and capable of changing the potentials of the first and second output terminals of the differential pair in the direction of the ground potential, respectively. The source,
And the first and second output terminals of the differential pair are connected to a receiving-side power source having a higher potential than the transmitting-side power source via first and second receiving-side load resistors, respectively. A current setting method,
Comparing the voltages at the first and second output terminals of the differential pair when the current of the second variable current source is increased prior to signal transmission;
Setting the current values of the first and second variable current sources during signal transmission based on the current value of the second variable current source when the comparison result changes;
The current setting method characterized by including.
JP2010089500A 2010-04-08 2010-04-08 Signal transmitter and current setting method thereof Withdrawn JP2011223254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089500A JP2011223254A (en) 2010-04-08 2010-04-08 Signal transmitter and current setting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089500A JP2011223254A (en) 2010-04-08 2010-04-08 Signal transmitter and current setting method thereof

Publications (1)

Publication Number Publication Date
JP2011223254A true JP2011223254A (en) 2011-11-04

Family

ID=45039668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089500A Withdrawn JP2011223254A (en) 2010-04-08 2010-04-08 Signal transmitter and current setting method thereof

Country Status (1)

Country Link
JP (1) JP2011223254A (en)

Similar Documents

Publication Publication Date Title
US8520348B2 (en) High-swing differential driver using low-voltage transistors
US7873980B2 (en) High-speed cable with embedded signal format conversion and power control
US7729874B2 (en) System and method for calibrating a high-speed cable
US7830167B2 (en) Pre-emphasis circuit
JP5897038B2 (en) Voltage mode driver with pre-emphasis
US20130014199A1 (en) Startup circuit and high speed cable using the same
US20070124518A1 (en) Transmitter driver circuit in high-speed serial communications system
US20050088431A1 (en) Combined output driver
KR102112199B1 (en) System for equalizing data transmission channel and display device including the same
WO2003079623A1 (en) System and method for compensating line losses over a digital visual interface (dvi) link
US10191526B2 (en) Apparatus and method for transmitting data signal based on different supply voltages
US20150304134A1 (en) Serdes voltage-mode driver with skew correction
US20140256276A1 (en) Unified front-end receiver interface for accommodating incoming signals via ac-coupling or dc-coupling
US8823421B2 (en) Pre-emphasis circuit
US8542039B2 (en) High-speed pre-driver and voltage level converter with built-in de-emphasis for HDMI transmit applications
WO2017101788A1 (en) On-chip test interface for voltage-mode mach-zehnder modulator driver
US9442875B2 (en) Multi-protocol combined receiver for receiving and processing data of multiple protocols
US11019392B2 (en) Methods and apparatus for an output buffer
CN106817119A (en) Drive circuit
JP2011223254A (en) Signal transmitter and current setting method thereof
WO2018070261A1 (en) Driver circuit, method for controlling same, and transmission/reception system
TWI544747B (en) Dual mode serial transmission apparatus with dual mode and method for switching mode thereof
KR101621844B1 (en) Low voltage differentail signal transmitter
US10756769B2 (en) Transmitter and transmission/reception system including the same
US9705499B1 (en) System and method for interchangeable transmission driver output stage and low-power margining mode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702