JP2011222792A - Method of manufacturing laminated piezoelectric actuator - Google Patents

Method of manufacturing laminated piezoelectric actuator Download PDF

Info

Publication number
JP2011222792A
JP2011222792A JP2010091135A JP2010091135A JP2011222792A JP 2011222792 A JP2011222792 A JP 2011222792A JP 2010091135 A JP2010091135 A JP 2010091135A JP 2010091135 A JP2010091135 A JP 2010091135A JP 2011222792 A JP2011222792 A JP 2011222792A
Authority
JP
Japan
Prior art keywords
laminated
polarization
piezoelectric actuator
manufacturing
laminated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010091135A
Other languages
Japanese (ja)
Inventor
Takashi Katsuno
超史 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010091135A priority Critical patent/JP2011222792A/en
Publication of JP2011222792A publication Critical patent/JP2011222792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a compact laminated piezoelectric actuator capable of obtaining a larger amount of displacement compared with a conventional one.SOLUTION: Slurry manufactured by mixing ceramic powder and organic solvent is formed into a film having a predetermined thickness to manufacture a green sheet. An internal electrode layer is printed on the green sheet and the desired number of the green sheet is laminated and then pressure-bonded by a heat press or the like to manufacture a plate laminated body in which piezoelectric ceramic layers and the internal electrode layers are alternately laminated. The laminated body is sintered after a debinder process and the sintered flat laminated body is then cut in one direction so as to form a plurality of rectangular and rod-shaped laminated bodies, each having a cut surface perpendicular to its laminating direction. A side electrode is then formed on a side having the cut surface. A voltage is then applied between both side electrodes to perform first polarization processing. Thereafter, the rectangular and rod-shaped laminated body is cut perpendicularly to the length direction thereof to obtain a discrete laminated body having a rectangular shape. Finally, a lead wire is soldered thereon and a voltage is applied to the lead wire to perform second polarization processing.

Description

本発明は圧電セラミックス層と内部電極層とを交互に積層して作製する積層圧電アクチュエータの製造方法に関し、特に小型の積層圧電アクチュエータの製造に適した積層圧電アクチュエータの製造方法に関する。   The present invention relates to a method for manufacturing a laminated piezoelectric actuator produced by alternately laminating piezoelectric ceramic layers and internal electrode layers, and more particularly to a method for producing a laminated piezoelectric actuator suitable for manufacturing a small-sized laminated piezoelectric actuator.

圧電アクチュエータは位置決め精度が高く、発生力が大きいという特徴があり、特に圧電セラミックス層と内部電極層とを交互に積層して一体として焼成して作製された積層圧電アクチュエータは、半導体製造装置の微細位置決め機構を始めとして、多くの分野で使用されている。近年ではデジタルスティルカメラ(DSC)の手振れ防止機構や携帯電話のカメラユニットのオートフォーカス(AF)にも用途が展開されており、それに伴い形状の小型化が顕著に進展している。例えば、半導体製造装置の精密位置決め用途では10mm×10mm×40mm程度であった形状が、DSC用途では2mm×2mm×5mm程度となり、携帯電話のAF用途では1mm×1mm×1.5mm程度へと小型化が進んでいる。   Piezoelectric actuators are characterized by high positioning accuracy and large generated force. In particular, laminated piezoelectric actuators produced by alternately laminating piezoelectric ceramic layers and internal electrode layers and firing them integrally are the fine features of semiconductor manufacturing equipment. It is used in many fields, including positioning mechanisms. In recent years, applications have also been developed for a camera-shake prevention mechanism of a digital still camera (DSC) and an autofocus (AF) of a camera unit of a mobile phone, and accordingly, downsizing of the shape has been remarkably advanced. For example, the shape that was about 10 mm x 10 mm x 40 mm for precision positioning applications of semiconductor manufacturing equipment becomes about 2 mm x 2 mm x 5 mm for DSC applications, and small to about 1 mm x 1 mm x 1.5 mm for AF applications for mobile phones. Is progressing.

積層圧電アクチュエータの構成は特許文献1などに記載されており、その代表的な構成を図4に示す。図4に示すように、圧電セラミックス層1と内部電極層2とを交互に積層して一体として焼成して作製された積層方向の高さT、幅W1、W2を有する直方体形状の積層圧電アクチュエータ10において、内部電極層2は1層おきに、互いに対向する幅W2を有する2つの側面の表面まで露出させ、その側面に側面電極3を設置し、その側面電極3の一部において半田5によりリード線4を接続固定している。対向する側面電極間にリード線4により外部駆動信号を印加することにより内部電極層2に挟まれた各圧電セラミックス層1に電圧が印加される構成である。内部電極層2が幅W1の全幅方向に存在せず、内部電極層2に挟まれた部分が内部に留まることから部分電極構造と称される。   The configuration of the laminated piezoelectric actuator is described in Patent Document 1 and the like, and a typical configuration is shown in FIG. As shown in FIG. 4, a rectangular parallelepiped laminated piezoelectric actuator having a height T, width W1, and W2 in the laminating direction, which is produced by alternately laminating piezoelectric ceramic layers 1 and internal electrode layers 2 and firing them integrally. 10, every other internal electrode layer 2 is exposed to the surface of two side surfaces having a width W2 facing each other, side electrode 3 is installed on the side surface, and a part of side electrode 3 is soldered by solder 5. The lead wire 4 is connected and fixed. A voltage is applied to each piezoelectric ceramic layer 1 sandwiched between the internal electrode layers 2 by applying an external drive signal between the opposing side electrodes through a lead wire 4. Since the internal electrode layer 2 does not exist in the entire width direction of the width W1 and the portion sandwiched between the internal electrode layers 2 remains inside, it is called a partial electrode structure.

図5は積層圧電アクチュエータの従来の一般的な製造プロセスの一例を示す図である。先ずセラミックス粉末11と有機溶剤が混合されたスラリー12を所定厚みに成膜しグリーンシート13を作製した後、内部電極層を印刷し、必要枚数を積層後に熱プレス等で圧着させることにより圧電セラミックス層と内部電極層が交互に積層された平板状の積層体14を作製する。不要な有機成分を除去するための脱バインダ工程を経て、平板状の積層体14は1000℃前後で焼結される。この後、焼結された平板状の積層体を積層方向に垂直な切断面を有する複数の矩形棒状の積層体15となるように一方向に切断し、その切断面である側面に側面電極を設ける。ここで、矩形棒状の積層体15の互いに対向する2つの切断面の側面電極は前記内部電極層と一層おきに導通し、かつ互いに絶縁されている。さらに、後に半田固定される部分の半田の広がりを防ぐためレジストを側面電極面に塗布した後に、矩形棒状の積層体15を長さ方向に垂直に再度切断し、製品寸法となる直方体形状の積層体16を得る。最後にリード線と半田付けをなされた後にリード線に電圧を印加することにより分極処理され、積層圧電アクチュエータとして完成する。   FIG. 5 is a diagram showing an example of a conventional general manufacturing process of a laminated piezoelectric actuator. First, a slurry 12 in which a ceramic powder 11 and an organic solvent are mixed is formed to a predetermined thickness to produce a green sheet 13, and then an internal electrode layer is printed, and the required number of layers is laminated and then subjected to pressure bonding with a hot press or the like to thereby produce piezoelectric ceramic A flat laminate 14 in which layers and internal electrode layers are alternately laminated is produced. Through a binder removal process for removing unnecessary organic components, the flat laminate 14 is sintered at around 1000 ° C. Thereafter, the sintered plate-like laminate is cut in one direction so as to form a plurality of rectangular rod-like laminates 15 having cut surfaces perpendicular to the stacking direction, and side electrodes are formed on the side surfaces that are the cut surfaces. Provide. Here, the side electrodes of the two cut surfaces facing each other of the rectangular bar-shaped laminate 15 are electrically connected to the internal electrode layer every other layer and are insulated from each other. Further, after applying a resist to the side electrode surface in order to prevent the spread of solder in a portion to be soldered later, the rectangular bar-shaped laminated body 15 is cut again perpendicularly in the length direction to form a rectangular parallelepiped laminated product having a product size. A body 16 is obtained. Finally, after being soldered to the lead wire, a polarization treatment is performed by applying a voltage to the lead wire to complete a laminated piezoelectric actuator.

特開2004−296585号公報JP 2004-296585 A

従来、高さ2mmを下回る小型の積層圧電アクチュエータを製造する場合の課題の1つに、リード線等の外部端子を半田接続する際の特性低下があげられる。図6に圧電セラミックスを分極するときの内部の様子を模式図に示す。図6に示す通り、分極は直流電界を圧電セラミックスに印加することにより結晶格子に歪みを生じさせ、結晶格子中の正負の電荷中心を分離して圧電性を発現させる現象であるが、圧電セラミックスと同等の高い剛性を持った半田が予め積層体の表面に広範囲に存在すると分極による歪みの発生が半田直下の部分においては抑制され、その結果、その部分の圧電特性が低下することになる。図7は半田による拘束によって積層圧電アクチュエータの変位量が減少する様子を模式的に示す図である。半田が側面に存在しない場合と比較して、半田5が側面に存在する場合は半田による拘束が存在し、その部分での歪み、変形の様子が異なるため、最終的に得られる特性が異なり、特に変位量が減少することとなる。   Conventionally, one of the problems in manufacturing a small laminated piezoelectric actuator having a height of less than 2 mm is a deterioration in characteristics when an external terminal such as a lead wire is connected by soldering. FIG. 6 is a schematic diagram showing the internal state when the piezoelectric ceramic is polarized. As shown in FIG. 6, the polarization is a phenomenon in which a direct current electric field is applied to the piezoelectric ceramic to cause distortion in the crystal lattice, and positive and negative charge centers in the crystal lattice are separated to develop piezoelectricity. If a solder having a high rigidity equivalent to that of the layer is preliminarily present on the surface of the laminated body, generation of distortion due to polarization is suppressed in the portion directly under the solder, and as a result, the piezoelectric characteristics of the portion are deteriorated. FIG. 7 is a diagram schematically showing a state in which the displacement amount of the laminated piezoelectric actuator is reduced by restraint by solder. Compared to the case where the solder is not present on the side surface, when the solder 5 is present on the side surface, there is a restraint due to the solder, and because the distortion and deformation in that part are different, the finally obtained characteristics are different, In particular, the amount of displacement is reduced.

また、従来、小型化に伴って圧電セラミックス層の一層当りの厚み(以下層間と呼ぶ)が低下し、薄膜化することによって、圧電特性を決定する主要素である比誘電率の低下が顕著に現れることも知られており、その原因は積層体の内部応力の影響と推定されている。図8は一層当りの層間を38μmおよび20μmとして50層の積層体を構成した場合の比誘電率を焼成温度を変化させた場合について比較した結果を示す図である。焼成温度の影響もあるが、層間が異なると比誘電率が大きく変化することが示されている。また、図9は層間をさらに大きく変化させて積層体を構成した場合の比誘電率を測定した結果を示す図である。但し、層間が1000μmの場合は、積層体ではなく、バルクの圧電セラミックスの比誘電率を示している。図9より、層間によって比誘電率が大きく影響され、薄膜化に伴って比誘電率が大きく低下する傾向が示されている。   In addition, the thickness per layer of the piezoelectric ceramic layer (hereinafter referred to as the interlayer) has been reduced with downsizing, and the reduction in relative permittivity, which is the main factor that determines the piezoelectric characteristics, has become significant due to the reduction in thickness. It is also known to appear, and the cause is presumed to be the effect of the internal stress of the laminate. FIG. 8 is a diagram showing the result of comparing the relative permittivity when the firing temperature is changed in the case of forming a 50-layer laminate with 38 μm and 20 μm per layer. Although it is influenced by the firing temperature, it is shown that the relative permittivity changes greatly when the layers are different. FIG. 9 is a diagram showing the result of measuring the relative permittivity when the laminate is configured by further changing the interlayer. However, when the interlayer is 1000 μm, it indicates the relative dielectric constant of the bulk piezoelectric ceramic, not the laminate. FIG. 9 shows that the relative permittivity is greatly affected by the interlayer, and the relative permittivity tends to decrease greatly as the film thickness is reduced.

そこで、本発明の課題は、小型形状において従来よりも大きな変位量が得られる積層圧電アクチュエータの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method of manufacturing a laminated piezoelectric actuator that can obtain a larger displacement than a conventional one in a small shape.

上記課題を解消するため、本発明の積層圧電アクチュエータの製造方法は、圧電セラミックス層と内部電極層とを交互に積層して平板状の積層体を作製する工程と、前記積層体を焼結する工程と、焼結された前記平板状の積層体を切断して前記積層方向に垂直な切断面を有する複数の矩形棒状の積層体を作製する工程と、前記矩形棒状の積層体の互いに対向する2つの切断面に前記内部電極層と一層おきに導通し、かつ互いに絶縁された側面電極を形成する工程と、前記矩形棒状の積層体を長さ方向に垂直に切断して複数の直方体形状を有する積層体を作製する工程と、前記直方体形状を有する積層体の前記側面電極の一部に半田固定によりリード端子を接続する工程とを含む積層圧電アクチュエータの製造方法において、前記矩形棒状の積層体の側面電極に電圧を印加して分極を行う第1の分極処理工程と、前記直方体形状を有する積層体の前記リード端子に電圧を印加して分極を行う第2の分極処理工程とを有することを特徴とする。   In order to solve the above-mentioned problems, a method for manufacturing a laminated piezoelectric actuator of the present invention includes a step of alternately laminating piezoelectric ceramic layers and internal electrode layers to produce a flat laminate, and sintering the laminate. A step of cutting the sintered plate-like laminate to produce a plurality of rectangular rod-like laminates having a cut surface perpendicular to the lamination direction, and the rectangular rod-like laminates facing each other. A step of forming side electrodes that are electrically connected to the internal electrode layer every other layer on two cut surfaces and insulated from each other; and a plurality of rectangular parallelepiped shapes by cutting the rectangular bar-shaped laminated body perpendicularly in the length direction. In the method of manufacturing a laminated piezoelectric actuator, including a step of manufacturing a laminated body having a step, and a step of connecting a lead terminal to a part of the side electrode of the laminated body having the rectangular parallelepiped shape by soldering. A first polarization treatment step of applying a voltage to a side electrode of the body to perform polarization, and a second polarization treatment step of applying a voltage to the lead terminal of the laminate having the rectangular parallelepiped shape to perform polarization. It is characterized by that.

さらに、前記第1の分極処理工程において、前記積層方向に圧縮応力を付与した状態で分極を行ってもよく、この場合、前記圧縮応力が200MPa以上であることが望ましい。   Furthermore, in the first polarization treatment step, polarization may be performed in a state where compressive stress is applied in the stacking direction. In this case, it is desirable that the compressive stress is 200 MPa or more.

また、前記第1の分極処理工程において前記圧電セラミックス層に印加される電界が前記第2の分極処理工程において前記圧電セラミックス層に印加される電界よりも大きいことが望ましく、この場合、前記第1の分極処理工程において前記圧電セラミックス層に印加される電界を2000V/mm以上とし、前記第2の分極処理工程において前記圧電セラミックス層に印加される電界を1000〜1500V/mmとしてもよい。   In addition, it is desirable that an electric field applied to the piezoelectric ceramic layer in the first polarization treatment step is larger than an electric field applied to the piezoelectric ceramic layer in the second polarization treatment step. The electric field applied to the piezoelectric ceramic layer in the polarization treatment step may be 2000 V / mm or more, and the electric field applied to the piezoelectric ceramic layer in the second polarization treatment step may be 1000 to 1500 V / mm.

本発明では直方体形状の小型積層圧電アクチュエータが半田によって外部端子と接続される際、半田を付加する前の状態でも分極を実施する。この分極を複数のアクチュエータ個体が接続された細長い矩形棒状の形態において一括して実施することで工程を簡略化し、その後、個片の直方体形状に切断された上で半田付けを行った後、再度分極を実施する。これにより、従来のような側面電極への半田付けによる圧電特性の劣化が改善でき、従来よりも大きな変位量が得られる。   In the present invention, when a rectangular parallelepiped small stacked piezoelectric actuator is connected to an external terminal by soldering, polarization is performed even before the solder is added. This process is simplified by collectively performing this polarization in the shape of an elongated rectangular bar to which a plurality of actuators are connected, and after being soldered after being cut into a rectangular parallelepiped shape, Perform polarization. Thereby, the deterioration of the piezoelectric characteristics due to the soldering to the side electrode as in the conventional case can be improved, and a larger displacement than in the conventional case can be obtained.

また、本発明においては、層間の薄膜化による積層体の内部歪みを緩和するため、矩形棒状態で積層方向に圧縮応力を付与した状態で分極を実施することにより、圧電特性をさらに改善することができる。   In the present invention, in order to alleviate the internal strain of the laminate due to the thinning of the layers, the piezoelectric characteristics are further improved by performing polarization in a rectangular rod state with a compressive stress applied in the lamination direction. Can do.

さらに、部分電極構造では、側面電極の近傍部分において、一層おきの内部電極層に挟まれた不活性部分は分極されないので歪みが少ない状態であり、その内側の両側の内部電極層に挟まれて分極される活性部分は歪が大きい状態であることにより両部分間の内部応力の差が大きいことを考慮し、第1の分極処理時と個片に切断後の第2の分極処理時の電界を異なるものとすることにより、内部クラック等の欠陥の発生を防止することができる。   Furthermore, in the partial electrode structure, the inactive portion sandwiched between every other internal electrode layer is not polarized in the vicinity of the side electrode, so there is little distortion, and it is sandwiched between the internal electrode layers on both sides inside it. In consideration of the fact that the active portion to be polarized is in a state of large strain and the difference in internal stress between the two portions is large, the electric field during the first polarization treatment and during the second polarization treatment after being cut into pieces. By making these different, the occurrence of defects such as internal cracks can be prevented.

以上のように、本発明により、小型形状において従来よりも大きな変位量が得られる積層圧電アクチュエータの製造方法が得られる。   As described above, according to the present invention, it is possible to obtain a method of manufacturing a laminated piezoelectric actuator that can obtain a larger displacement than a conventional one in a small shape.

本発明による積層圧電アクチュエータの製造方法の第1の実施の形態の製造工程のフローチャートを示す図。The figure which shows the flowchart of the manufacturing process of 1st Embodiment of the manufacturing method of the laminated piezoelectric actuator by this invention. 矩形棒状の積層体の第1の分極処理時の圧縮応力の方向を示す斜視図。The perspective view which shows the direction of the compressive stress at the time of the 1st polarization process of a rectangular-bar-shaped laminated body. 圧縮応力の大きさと得られた積層圧電アクチュエータの比誘電率の測定結果を示す図。The figure which shows the measurement result of the relative dielectric constant of the magnitude | size of a compressive stress, and the obtained laminated piezoelectric actuator. 積層圧電アクチュエータの代表的な構成を示す図。The figure which shows the typical structure of a laminated piezoelectric actuator. 積層圧電アクチュエータの従来の一般的な製造プロセスの一例を示す図。The figure which shows an example of the conventional general manufacturing process of a laminated piezoelectric actuator. 圧電セラミックスを分極するときの内部の様子の模式図。The schematic diagram of the inside state when polarizing a piezoelectric ceramic. 半田による拘束によって積層圧電アクチュエータの変位量が減少する様子を模式的に示す図。The figure which shows typically a mode that the displacement amount of a laminated piezoelectric actuator reduces by restraint by solder. 層間を38μmおよび20μmとして50層の積層体を構成した場合の比誘電率を比較した結果を示す図。The figure which shows the result of having compared the dielectric constant at the time of comprising the laminated body of 50 layers by making interlayer 38 micrometers and 20 micrometers. 層間をさらに大きく変化させて積層体を構成した場合の比誘電率を測定した結果を示す図。The figure which shows the result of having measured the dielectric constant when a laminated body is comprised by changing the interlayer further greatly.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明による積層圧電アクチュエータの製造方法の第1の実施の形態の製造工程のフローチャートを示す図である。本実施の形態の製造方法は、図5に示した従来の製造方法と同様に、セラミックス粉末と有機溶剤を混合して作製したスラリーを所定厚みに成膜してグリーンシートを作製した後、内部電極層を印刷し、必要枚数を積層後に熱プレス等で圧着させることにより圧電セラミックス層と内部電極層が交互に積層された平板状の積層体を作製する。脱バインダ工程後、積層体を焼結し、焼結された平板状の積層体を積層方向に垂直な切断面を有する複数の矩形棒状の積層体となるように一方向に切断し、その切断面である側面に側面電極を形成する。本実施の形態においては、この後、両側面電極間に電圧を印加して第1の分極処理を行うことが従来と異なる。その後は、従来と同様、矩形棒状の積層体を長さ方向に垂直に切断し直方体形状の個片の積層体を得、最後にリード線と半田付けを行った後にリード線に電圧を印加することにより第2の分極処理を行い、積層圧電アクチュエータとして完成する。   FIG. 1 is a view showing a flowchart of manufacturing steps of a first embodiment of a method for manufacturing a laminated piezoelectric actuator according to the present invention. The manufacturing method of this embodiment is similar to the conventional manufacturing method shown in FIG. 5, in which a slurry prepared by mixing ceramic powder and an organic solvent is formed into a predetermined thickness to form a green sheet, The electrode layer is printed, and the required number of sheets is laminated and then subjected to pressure bonding by hot pressing or the like, thereby producing a flat laminated body in which piezoelectric ceramic layers and internal electrode layers are alternately laminated. After the binder removal step, the laminated body is sintered, and the sintered flat plate-like laminated body is cut in one direction so as to form a plurality of rectangular bar-like laminated bodies having cut surfaces perpendicular to the lamination direction, and the cutting Side electrodes are formed on the side surfaces. In the present embodiment, after that, the first polarization treatment is performed by applying a voltage between both side electrodes. After that, as in the conventional case, a rectangular bar-shaped laminate is cut perpendicularly in the length direction to obtain a rectangular parallelepiped laminate, and finally a voltage is applied to the lead wire after soldering with the lead wire. Thus, the second polarization process is performed to complete the laminated piezoelectric actuator.

(実施例1)
本実施例の製造方法の具体的な例を以下に説明する。本実施例で作製する積層圧電アクチュエータの完成品の外形寸法は、図4において、W1=0.8mm、W2=0.8mm、T=1.5mmであり、内部電極層にAg−Pd合金を用い、層間20μmで層数は60層である。図5の従来の製造方法によって平板状の積層体の作製およびその焼成まで実施し、その焼成後に積層体をダイシングソーにて0.8mmピッチで平行に切断して矩形棒状の積層体を得る。次に両側の切断面にスパッタリングによってAg膜からなる側面電極を設けた後、その側面電極に電圧を印加して第1の分極処理を行う。次に切断面に直交する方向に再度0.8mmピッチで切断することによって前記の形状の直方体形状の積層体を得る。最後に側面電極の一部にリード線を半田付けし、そのリード線に電圧を印加して第2の分極処理を行い実施例1により作製された積層圧電アクチュエータが完成する。
Example 1
A specific example of the manufacturing method of this embodiment will be described below. The outer dimensions of the finished product of the laminated piezoelectric actuator manufactured in this example are W1 = 0.8 mm, W2 = 0.8 mm, and T = 1.5 mm in FIG. 4, and an Ag—Pd alloy is used for the internal electrode layer. Used, the layer number is 20 μm and the number of layers is 60 layers. Production of a flat laminate is carried out by the conventional manufacturing method of FIG. 5 and firing thereof. After firing, the laminate is cut in parallel with a dicing saw at a pitch of 0.8 mm to obtain a rectangular rod-like laminate. Next, after providing side electrodes made of an Ag film on the cut surfaces on both sides by sputtering, a voltage is applied to the side electrodes to perform a first polarization treatment. Next, a rectangular parallelepiped laminate having the above-described shape is obtained by cutting again at a pitch of 0.8 mm in a direction perpendicular to the cut surface. Finally, a lead wire is soldered to a part of the side electrode, a voltage is applied to the lead wire, and the second polarization treatment is performed to complete the multilayer piezoelectric actuator manufactured according to the first embodiment.

ここで、本実施例の効果を確認するため、本実施例での作製と同時に、従来の製造方法、すなわち、上記の第1の分極処理をしないで第2の分極処理のみを行って完成させる比較例の積層圧電アクチュエータも作製した。実施例1の第1の分極処理、および、実施例1および比較例の第2の分極処理の条件は、いずれも直流40Vを1分間印加することにより行い、分極処理時の温度は150℃で同一とした。   Here, in order to confirm the effect of the present embodiment, at the same time as the fabrication in the present embodiment, the conventional manufacturing method, that is, the first polarization process is not performed, but only the second polarization process is performed and completed. A laminated piezoelectric actuator of a comparative example was also produced. The conditions of the first polarization process of Example 1 and the second polarization process of Example 1 and the comparative example are both performed by applying DC 40 V for 1 minute, and the temperature during the polarization process is 150 ° C. Identical.

表1に実施例1および比較例の製造方法で作製された積層圧電アクチュエータの電気特性の一例を示す。実施例1は比較例に比べて静電容量が7%増大しており、これに伴い6V印加時の変位量が約8%増大していることがわかる。   Table 1 shows an example of electrical characteristics of the laminated piezoelectric actuator manufactured by the manufacturing methods of Example 1 and Comparative Example. In Example 1, the capacitance is increased by 7% compared to the comparative example, and accordingly, the displacement amount when 6 V is applied is increased by about 8%.

圧電セラミックスの分極特性は一般に知られている様に、抗電界を超えた電界を付加する場合ほぼ可逆であって、複数回の分極処理によっては最終的に得られる静電容量等の電気特性が変動することはない。実施例1の比較例との相違は、単に2回の分極処理を実施していることではなく、分極による歪みを抑制してしまう半田を設ける以前の矩形棒の状態で全体に均一な分極歪みを与えていたことによると考えられる。   As is generally known, the polarization characteristics of piezoelectric ceramics are almost reversible when an electric field exceeding the coercive electric field is applied, and the electrical characteristics such as capacitance finally obtained by multiple times of polarization treatments. It does not fluctuate. The difference between Example 1 and the comparative example is not that the polarization process is performed only twice, but the polarization distortion that is uniform in the state of the rectangular bar before the solder that suppresses the distortion due to polarization is provided. It is thought to be due to having given.

Figure 2011222792
Figure 2011222792

(実施例2)
次に本発明による積層圧電アクチュエータの製造方法の実施例2について説明する。本実施例の製造方法は、第1の分極処理工程において、矩形棒状の積層体の積層方向に圧縮応力を付与した状態で分極を行うこと以外は実施例1の製造方法と同様である。本実施例は、実施例1の効果に加えて、層間の薄膜化による積層体の内部歪みを緩和することを目的とする。図2は矩形棒状の積層体20の第1の分極処理時の圧縮応力の方向を示す斜視図である。本実施例においては積層方向の圧縮応力21を印加した。
(Example 2)
Next, a second embodiment of the method for manufacturing a laminated piezoelectric actuator according to the present invention will be described. The manufacturing method of this example is the same as the manufacturing method of Example 1 except that in the first polarization treatment step, polarization is performed in a state where compressive stress is applied in the stacking direction of the rectangular bar-shaped stacked body. In addition to the effects of the first embodiment, the present embodiment aims to alleviate the internal strain of the laminate due to the thinning of the layers. FIG. 2 is a perspective view showing the direction of compressive stress during the first polarization treatment of the rectangular bar-shaped laminate 20. In this embodiment, compressive stress 21 in the stacking direction was applied.

本実施例の製造方法の具体的な例および作用効果を以下に説明する。本実施例2で作製する積層圧電アクチュエータの完成品の外形寸法、内部電極層、層間、層数などは実施例1と同じである。また、第1の分極処理工程以外の工程も実施例1と同様である。なお、圧電セラミックス層の薄膜化時の圧電特性を低下させる要因として、焼成後にセラミックス内部に発生する歪みを仮定し、この方向を特定することで本実施の形態の製造方法を見出すことができたものであり、本実施例2では、比誘電率の低下が応力歪みによることを確認するため、矩形棒状の積層体での第1の分極処理を実施する際に、圧縮応力の方向および大きさを変えながら静電容量の変化、すなわち比誘電率の変化を測定した。   Specific examples and operational effects of the manufacturing method of this embodiment will be described below. The outer dimensions, the internal electrode layers, the layers, the number of layers, etc. of the finished product of the multilayered piezoelectric actuator manufactured in the second embodiment are the same as those in the first embodiment. The steps other than the first polarization treatment step are the same as in the first embodiment. As a factor for reducing the piezoelectric characteristics when the piezoelectric ceramic layer is thinned, it was possible to find the manufacturing method of the present embodiment by specifying the direction assuming the strain generated inside the ceramic after firing. Therefore, in Example 2, in order to confirm that the decrease in the dielectric constant is caused by stress strain, the direction and magnitude of the compressive stress is performed when the first polarization treatment is performed on the rectangular rod-shaped laminate. The change in capacitance, that is, the change in relative permittivity was measured while changing.

圧縮応力は積層圧電アクチュエータを予圧治具に挟むことにより加えた。完成後の積層圧電アクチュエータの静電容量をLCRメータにて測定し、比誘電率を求めた。予圧治具はネジの回転角度により圧力を可変することが出来るものである。図2に示すように、積層方向、すなわち圧電セラミックスのd33方向の圧縮応力21を加えた時と、積層方向に垂直な方向、すなわちd31方向の圧縮応力22を加えた時を比較測定した結果、圧縮応力21の場合は圧力が増加するにつれて比誘電率が大きくなったが、圧縮応力22の場合は比誘電率は若干減少した。このことは、焼結後の積層体の圧電セラミックス層の内部では、d31方向の圧縮応力、d33方向の引っ張り応力が働いており、それが比誘電率に影響を与えていることを示唆するものである。   The compressive stress was applied by sandwiching the laminated piezoelectric actuator between preload jigs. The capacitance of the completed multilayer piezoelectric actuator was measured with an LCR meter, and the relative dielectric constant was determined. The preload jig can change the pressure according to the rotation angle of the screw. As shown in FIG. 2, as a result of comparative measurement between the time of applying the compressive stress 21 in the stacking direction, that is, the d33 direction of the piezoelectric ceramic, and the time of applying the compressive stress 22 in the direction perpendicular to the stacking direction, that is, the d31 direction, In the case of the compressive stress 21, the relative permittivity increased as the pressure increased, but in the case of the compressive stress 22, the relative permittivity slightly decreased. This suggests that the compressive stress in the d31 direction and the tensile stress in the d33 direction are acting inside the piezoelectric ceramic layer of the laminated body after sintering, which influences the relative dielectric constant. It is.

本実施例では比誘電率を高めるため、圧縮応力21を加えながら第1の分極処理を行い、圧縮応力の大きさによる比誘電率の変化を測定した。実施例1と同様に、第1および第2の分極処理はいずれも直流40Vを1分間印加することにより行った。図3に圧縮応力の大きさと得られた積層圧電アクチュエータの比誘電率の測定結果を示す。圧力を高くしていくと比誘電率が大幅に回復することが分かる。加圧することにより分極時に歪みが解放され易くなる傾向があり、それによって比誘電率が回復したものと推定される。圧縮応力の大きさが200MPa以上では比誘電率は飽和する傾向にあることがわかる。   In this example, in order to increase the relative permittivity, the first polarization treatment was performed while applying the compressive stress 21, and the change in relative permittivity due to the magnitude of the compressive stress was measured. As in Example 1, both the first and second polarization treatments were performed by applying DC 40 V for 1 minute. FIG. 3 shows the measurement results of the magnitude of the compressive stress and the relative dielectric constant of the obtained multilayer piezoelectric actuator. It can be seen that the relative permittivity recovers greatly as the pressure is increased. It is presumed that by applying pressure, strain tends to be released during polarization, and the relative permittivity is thereby recovered. It can be seen that the relative dielectric constant tends to saturate when the magnitude of the compressive stress is 200 MPa or more.

(実施例3)
次に本発明による積層圧電アクチュエータの製造方法の実施例3について説明する。本実施例の製造方法は、第1の分極処理工程において前記圧電セラミックス層に印加される電界を2000V/mm以上とし、第2の分極処理工程において前記圧電セラミックス層に印加される電界を1000〜1500V/mmとすること以外は実施例2の製造方法と同様である。本実施例は、実施例2の効果に加えて、側面電極の近傍部分において、分極されない不活性部分と分極された活性部分との間の内部応力の差による内部クラック等の欠陥の発生を防止することを目的とする。
(Example 3)
Next, a third embodiment of the method for manufacturing a laminated piezoelectric actuator according to the present invention will be described. In the manufacturing method of this example, the electric field applied to the piezoelectric ceramic layer in the first polarization treatment step is 2000 V / mm or more, and the electric field applied to the piezoelectric ceramic layer in the second polarization treatment step is 1000 to It is the same as that of the manufacturing method of Example 2 except setting it to 1500V / mm. In addition to the effects of the second embodiment, this embodiment prevents the occurrence of defects such as internal cracks in the vicinity of the side electrode due to the difference in internal stress between the non-polarized inactive portion and the polarized active portion. The purpose is to do.

上述したように、従来の部分電極構造の積層圧電アクチュエータにおいては、内部電極層の一方が側面電極まで到達しない部分は一般に不活性部と称され、その内側の両極によって挟まれ分極される活性部との境界に分極歪みの差を生じ易く、場合によってはこの歪みの差による内部応力のために、微小クラック等が存在することで強度の低下をきたす場合がある。上記の実施例1、2により作製される積層圧電アクチュエータは従来の製造方法によるものよりもさらに圧電特性を増加させるものであり、変位量を大きくできるので、上記の境界部の内部応力には充分な注意が必要となる。   As described above, in a conventional laminated piezoelectric actuator having a partial electrode structure, a portion where one of the internal electrode layers does not reach the side electrode is generally referred to as an inactive portion, and is an active portion that is sandwiched and polarized by both inner poles. There is a tendency that a difference in polarization distortion easily occurs at the boundary between the two and, in some cases, due to internal stress due to the difference in distortion, the presence of minute cracks or the like causes a decrease in strength. The laminated piezoelectric actuator manufactured according to Examples 1 and 2 increases the piezoelectric characteristics further than the conventional manufacturing method and can increase the amount of displacement, so that it is sufficient for the internal stress at the boundary. Careful attention is required.

そこで本実施例では、矩形棒状の積層体での第1の分極処理と半田によりリード端子を接続された状態での第2の分極処理の条件を調整し、積層圧電アクチュエータの強度を最適に保持する条件を用いることができる。   Therefore, in this embodiment, the conditions of the first polarization process with the rectangular rod-shaped laminate and the second polarization process with the lead terminals connected by soldering are adjusted, and the strength of the multilayer piezoelectric actuator is maintained optimally. Conditions can be used.

本実施例の製造方法の具体的な例を以下に説明する。本実施例3で作製する積層圧電アクチュエータの完成品の外形寸法、内部電極層、層間、層数などは実施例2と同じである。また、第1および第2の分極処理工程以外の工程も実施例2と同様である。本実施例の第1の分極処理の条件は積層方向の圧縮応力の大きさを200MPaとして、第2の実施例と同様に直流40Vを1分間印加することにより行った。但し、第2の分極処理は印加する電圧を4つの条件で行った。   A specific example of the manufacturing method of this embodiment will be described below. The outer dimensions, the internal electrode layers, the layers, the number of layers, etc. of the finished product of the multilayered piezoelectric actuator produced in this Example 3 are the same as those in Example 2. The steps other than the first and second polarization treatment steps are the same as in the second embodiment. The conditions of the first polarization treatment in this example were performed by applying a direct current of 40 V for 1 minute as in the second example, with the magnitude of the compressive stress in the stacking direction being 200 MPa. However, the second polarization treatment was performed under four conditions of applied voltage.

すなわち、第2の分極処理は、分極時の温度と電圧印加時間を一定とし、本実施例に使用した圧電セラミックス材料の抗電界が500V/mmであることから、電界の大きさがそれぞれ750V/mmとなる条件(1)、1000V/mmとなる条件(2)、1500V/mmとなる条件(3)、2000V/mmとなる条件(4)の4つの電圧値を用いた。これらの4つの条件により作製し、完成した積層圧電アクチュエータについて電気特性とアクチュエータの抗折強度を測定した。   That is, in the second polarization treatment, the temperature and voltage application time during polarization are constant, and the coercive electric field of the piezoelectric ceramic material used in this example is 500 V / mm. Four voltage values were used: condition (1) for mm, condition (2) for 1000 V / mm, condition (3) for 1500 V / mm, and condition (4) for 2000 V / mm. The electrical characteristics and the bending strength of the actuator were measured for the completed laminated piezoelectric actuator produced under these four conditions.

表2に電気特性の代表例として比誘電率および静電容量、1kHz、6Vppの電圧印加時の変位量、および抗折強度の測定結果を示す。なお、表2には前述の比較例、実施例1および圧縮応力が200MPaの場合の実施例2により作製された積層圧電アクチュエータについても合わせて示している。本実施例3においては半田が付加されていない第1の分極処理は、この段階でできるだけ分極を飽和させるため、2000V/mmの電界となる電圧40Vを印加しているが、この後の個片の形態となった状態での第2の分極処理の電界の大きさによって、比誘電率および静電容量、変位量、抗折強度の値が異なっている。実施例2及びそれと等価である実施例3の条件(4)では、静電容量、変位量が最大であるが、抗折強度が低下している。一方、第2の分極処理での電界が最も低い実施例3の条件(1)は強度は大きいが、変位量が小さく、比較例との差が小さい。変位量の目標値を200nmとし、また抗折強度の目標値を100MPaとすると、実施例3の条件(2)と(3)が上記の両目標を満たしバランスが取れた特性となっている。   Table 2 shows measurement results of relative permittivity, capacitance, displacement amount when applying a voltage of 1 kHz, 6 Vpp, and bending strength as typical examples of electrical characteristics. Table 2 also shows the laminated piezoelectric actuator manufactured by the above-described comparative example, Example 1, and Example 2 when the compressive stress is 200 MPa. In the third embodiment, in the first polarization process to which no solder is added, a voltage of 40 V that is an electric field of 2000 V / mm is applied in order to saturate the polarization as much as possible at this stage. Depending on the magnitude of the electric field of the second polarization process in the state of the above, the values of the dielectric constant, capacitance, displacement, and bending strength are different. In Example 2 and condition (4) of Example 3 equivalent thereto, the electrostatic capacity and the displacement amount are maximum, but the bending strength is reduced. On the other hand, the condition (1) of Example 3 where the electric field in the second polarization treatment is the lowest is high in strength, but the displacement is small and the difference from the comparative example is small. When the target value of the displacement is 200 nm and the target value of the bending strength is 100 MPa, the conditions (2) and (3) of Example 3 satisfy both the above-mentioned targets and have a balanced characteristic.

Figure 2011222792
Figure 2011222792

以上述べたように、本発明の積層圧電アクチュエータの製造方法によれば、特に高さが2mm未満のような小型の積層圧電アクチュエータであっても従来よりも大きな変位量が得られる。   As described above, according to the method for manufacturing a laminated piezoelectric actuator of the present invention, even a small laminated piezoelectric actuator having a height of less than 2 mm can obtain a larger displacement than in the past.

なお、本発明は上記の実施の形態や実施例に限定されるものではないことはいうまでもなく、製造する積層圧電アクチュエータの構成によって設計変更可能である。例えば、積層圧電アクチュエータの形状、用いる圧電セラミックス材料、層間、層数、側面電極への半田付け条件などによって、第1および第2の分極処理時の圧縮応力の大きさ、電界の大きさなどを最適化することができる。   Needless to say, the present invention is not limited to the above-described embodiments and examples, and the design can be changed depending on the structure of the laminated piezoelectric actuator to be manufactured. For example, depending on the shape of the laminated piezoelectric actuator, the piezoelectric ceramic material used, the number of layers, the number of layers, the soldering conditions to the side electrodes, etc., the magnitude of the compressive stress and the magnitude of the electric field during the first and second polarization processes Can be optimized.

1 圧電セラミックス層
2 内部電極層
3 側面電極
4 リード線
5 半田
10 積層圧電アクチュエータ
11 セラミックス粉末
12 スラリー
13 グリーンシート
14 平板状の積層体
15、20 矩形棒状の積層体
16 直方体形状の積層体
21、22 圧縮応力
DESCRIPTION OF SYMBOLS 1 Piezoelectric ceramic layer 2 Internal electrode layer 3 Side electrode 4 Lead wire 5 Solder 10 Laminated piezoelectric actuator 11 Ceramic powder 12 Slurry 13 Green sheet 14 Flat laminated body 15, 20 Rectangular rod laminated body 16 Rectangular laminated body 21, 22 Compressive stress

Claims (5)

圧電セラミックス層と内部電極層とを交互に積層して平板状の積層体を作製する工程と、前記積層体を焼結する工程と、焼結された前記積層体を切断して前記積層方向に垂直な切断面を有する複数の矩形棒状の積層体を作製する工程と、前記矩形棒状の積層体の互いに対向する2つの切断面に前記内部電極層と一層おきに導通し、かつ互いに絶縁された側面電極を形成する工程と、前記矩形棒状の積層体を長さ方向に垂直に切断して複数の直方体形状を有する積層体を作製する工程と、前記直方体形状を有する積層体の前記側面電極の一部に半田固定によりリード端子を接続する工程とを含む積層圧電アクチュエータの製造方法において、
前記矩形棒状の積層体の側面電極に電圧を印加して分極を行う第1の分極処理工程と、前記直方体形状を有する積層体の前記リード端子に電圧を印加して分極を行う第2の分極処理工程とを有することを特徴とする積層圧電アクチュエータの製造方法。
A step of alternately laminating piezoelectric ceramic layers and internal electrode layers to produce a flat laminate, a step of sintering the laminate, and cutting the sintered laminate in the stacking direction A step of producing a plurality of rectangular bar-shaped laminates having a vertical cut surface, and two conductive surfaces of the rectangular bar-shaped laminate opposite to each other are electrically connected to the internal electrode layer and insulated from each other. A step of forming a side electrode; a step of cutting the rectangular bar-shaped laminated body perpendicularly to a length direction to produce a laminated body having a plurality of rectangular parallelepiped shapes; and the side electrode of the laminated body having the rectangular parallelepiped shape. In a method for manufacturing a laminated piezoelectric actuator including a step of connecting a lead terminal by soldering to a part,
A first polarization treatment step in which a voltage is applied to a side electrode of the rectangular bar-shaped laminate and polarization is performed; and a second polarization in which a voltage is applied to the lead terminal of the laminate having the rectangular parallelepiped shape to perform polarization. A method of manufacturing a laminated piezoelectric actuator, comprising: a processing step.
前記第1の分極処理工程において、前記積層方向に圧縮応力を付与した状態で分極を行うことを特徴とする請求項1に記載の積層圧電アクチュエータの製造方法。   2. The method for manufacturing a laminated piezoelectric actuator according to claim 1, wherein in the first polarization treatment step, polarization is performed in a state where compressive stress is applied in the lamination direction. 前記圧縮応力が200MPa以上であることを特徴とする請求項2に記載の積層圧電アクチュエータの製造方法。   The method for manufacturing a laminated piezoelectric actuator according to claim 2, wherein the compressive stress is 200 MPa or more. 前記第1の分極処理工程において前記圧電セラミックス層に印加される電界が前記第2の分極処理工程において前記圧電セラミックス層に印加される電界よりも大きいことを特徴とする請求項1〜3のいずれか1項に記載の積層圧電アクチュエータの製造方法。   The electric field applied to the piezoelectric ceramic layer in the first polarization treatment step is larger than the electric field applied to the piezoelectric ceramic layer in the second polarization treatment step. A manufacturing method of the multilayer piezoelectric actuator according to claim 1. 前記第1の分極処理工程において前記圧電セラミックス層に印加される電界を2000V/mm以上とし、前記第2の分極処理工程において前記圧電セラミックス層に印加される電界を1000〜1500V/mmとすることを特徴とする請求項4に記載の積層圧電アクチュエータの製造方法。   The electric field applied to the piezoelectric ceramic layer in the first polarization treatment step is set to 2000 V / mm or more, and the electric field applied to the piezoelectric ceramic layer in the second polarization treatment step is set to 1000 to 1500 V / mm. The method for manufacturing a laminated piezoelectric actuator according to claim 4.
JP2010091135A 2010-04-12 2010-04-12 Method of manufacturing laminated piezoelectric actuator Pending JP2011222792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091135A JP2011222792A (en) 2010-04-12 2010-04-12 Method of manufacturing laminated piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091135A JP2011222792A (en) 2010-04-12 2010-04-12 Method of manufacturing laminated piezoelectric actuator

Publications (1)

Publication Number Publication Date
JP2011222792A true JP2011222792A (en) 2011-11-04

Family

ID=45039369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091135A Pending JP2011222792A (en) 2010-04-12 2010-04-12 Method of manufacturing laminated piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP2011222792A (en)

Similar Documents

Publication Publication Date Title
US9627142B2 (en) Multilayer ceramic capacitor and board for mounting of the same
KR102029469B1 (en) Multilayered ceramic electronic component and fabricating method thereof
JP5386848B2 (en) Piezoelectric ceramic
US20140367152A1 (en) Multilayer ceramic capacitor and board having the same mounted thereon
JP5362033B2 (en) Multilayer ceramic capacitor
JP4441921B2 (en) Thin film capacitor manufacturing method
KR101565645B1 (en) Multi-layered capacitor
JP2011023707A (en) Ceramic electronic component
JP2014022713A (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2020123664A (en) Laminated piezoelectric element
US8879237B2 (en) Multilayer ceramic electronic component and method of manufacturing the same
JP2012069546A (en) Piezoelectric laminate ceramic actuator and manufacturing method thereof
US11380837B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
US11984264B2 (en) Multilayer electronic component
JP2010527143A5 (en)
JP2011222792A (en) Method of manufacturing laminated piezoelectric actuator
JP2004274029A (en) Piezoelectric actuator
JPH03101281A (en) Piezoelectric effect element large in displacement amount, and porcelain composition therefor
JP5409703B2 (en) Manufacturing method of multilayer piezoelectric actuator
CN112635648A (en) Laminated piezoelectric element
KR20150042953A (en) Piezoelectric device and method of fabricating the piezoelectric device
JP2005303029A (en) Method of manufacturing laminated ceramic electronic part
WO2023157523A1 (en) Laminate-type piezoelectric element and electronic device
JP5929511B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2907153B2 (en) Piezoelectric transformer and method of manufacturing the same