JP2011222373A - Dye-sensitized type photoelectric conversion element - Google Patents

Dye-sensitized type photoelectric conversion element Download PDF

Info

Publication number
JP2011222373A
JP2011222373A JP2010091865A JP2010091865A JP2011222373A JP 2011222373 A JP2011222373 A JP 2011222373A JP 2010091865 A JP2010091865 A JP 2010091865A JP 2010091865 A JP2010091865 A JP 2010091865A JP 2011222373 A JP2011222373 A JP 2011222373A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
formula
conversion element
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010091865A
Other languages
Japanese (ja)
Other versions
JP5590552B2 (en
Inventor
Kazuo Takimiya
和男 瀧宮
Eigo Miyazaki
栄吾 宮碕
Teruhisa Inoue
照久 井上
Koichiro Shigaki
晃一郎 紫垣
Masaaki Ikeda
征明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Nippon Kayaku Co Ltd
Original Assignee
Hiroshima University NUC
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Nippon Kayaku Co Ltd filed Critical Hiroshima University NUC
Priority to JP2010091865A priority Critical patent/JP5590552B2/en
Publication of JP2011222373A publication Critical patent/JP2011222373A/en
Application granted granted Critical
Publication of JP5590552B2 publication Critical patent/JP5590552B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element which is inexpensive and superior in conversion efficiency, and to provide a solar cell.SOLUTION: A dye represented by formula (1), or a salt thereof is carried by a thin film of oxide semiconductor particulates. (where Xto Xeach represents oxygen, sulfur or selenium, and Rto Rrepresent hydrogen, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, halogen, an amino group, an alkoxyl group or a specified structural formula.)

Description

本発明は色素又はその塩で増感された半導体微粒子の薄膜を有する光電変換素子及びそれを用いた太陽電池に関し、詳しくは酸化物半導体微粒子の薄膜に特定の構造を有する色素を担持させた光電変換素子及びそれを利用した太陽電池に関する。   The present invention relates to a photoelectric conversion element having a thin film of semiconductor fine particles sensitized with a dye or a salt thereof and a solar cell using the same, and more particularly, to a photoelectric conversion element in which a dye having a specific structure is supported on a thin film of oxide semiconductor fine particles. The present invention relates to a conversion element and a solar cell using the same.

石油、石炭等の化石燃料に代わるエネルギー資源として太陽光を利用する太陽電池が注目されている。現在、結晶又はアモルファスのシリコンを用いたシリコン太陽電池、あるいはガリウム、ヒ素等を用いた化合物半導体太陽電池等について、盛んに開発検討がなされている。しかし、それらは製造に要するエネルギー及びコストが高いため、汎用的に使用するのが困難であるという問題点がある。また色素で増感した半導体微粒子を用いた光電変換素子、あるいはこれを用いた太陽電池も知られており、これを作成する材料、製造技術が開示されている(特許文献1、非特許文献1、非特許文献2を参照)。この光電変換素子は酸化チタン等の比較的安価な酸化物半導体を用いて製造されるため、従来のシリコン等を用いた太陽電池に比べコストの安い光電変換素子が得られる可能性があり、またカラフルな太陽電池が得られることなどにより注目を集めている。しかし、シリコン太陽電池と比較し、変換効率が低いという問題が残っており、更なる変換効率の向上が望まれている(特許文献1を参照)。   Solar cells that use sunlight as an energy resource to replace fossil fuels such as oil and coal are drawing attention. Currently, active studies are being made on silicon solar cells using crystalline or amorphous silicon, or compound semiconductor solar cells using gallium, arsenic, or the like. However, since they require high energy and cost for production, they are difficult to use for general purposes. A photoelectric conversion element using semiconductor fine particles sensitized with a dye or a solar cell using the same is also known, and materials and manufacturing techniques for producing the photoelectric conversion element are disclosed (Patent Document 1, Non-Patent Document 1). Non-patent document 2). Since this photoelectric conversion element is manufactured using a relatively inexpensive oxide semiconductor such as titanium oxide, there is a possibility that a photoelectric conversion element having a lower cost than a conventional solar cell using silicon or the like may be obtained. It has attracted attention due to the fact that colorful solar cells can be obtained. However, the problem that conversion efficiency is low compared with a silicon solar cell remains, and the further improvement of conversion efficiency is desired (refer patent document 1).

日本特許第2664194号公報Japanese Patent No. 2664194

B.O’Reganら、Nature、第353巻、737頁(1991年)B. O'Regan et al., Nature, 353, 737 (1991) M.K.Nazeeruddinら、J.Am.Chem.Soc.,第115巻、6382頁(1993年)M.M. K. Nazeeruddin et al., J. MoI. Am. Chem. Soc. 115, 6382 (1993) W.Kuboら、Chem.Lett.,1241頁(1998年)W. Kubo et al., Chem. Lett. , 1241 (1998)

色素で増感された酸化物半導体微粒子を用いた光電変換素子において、安定で、変換効率が高く、かつ実用性の高い光電変換素子の開発が求められている。   In photoelectric conversion elements using oxide semiconductor fine particles sensitized with a dye, development of stable, high conversion efficiency, and high practicality is required.

本発明者等は上記の課題を解決すべく鋭意努力した結果、特定の構造を有する色素を用いて半導体微粒子の薄膜を増感し、光電変換素子を作成する事により前記課題が解決されることを見出し、本発明を完成させるに至った。   As a result of diligent efforts to solve the above-mentioned problems, the present inventors can sensitize a thin film of semiconductor fine particles using a dye having a specific structure, and the above-mentioned problems can be solved by creating a photoelectric conversion element. As a result, the present invention has been completed.

すなわち本発明は、
(1)基板上に設けられた酸化物半導体微粒子の薄膜に、下記式(1)で表される色素又はその塩を担持させてなる光電変換素子、
That is, the present invention
(1) A photoelectric conversion element in which a dye represented by the following formula (1) or a salt thereof is supported on a thin film of oxide semiconductor fine particles provided on a substrate,

(式(1)中、X乃至Xはそれぞれ酸素原子、硫黄原子又はセレン原子を表す。R乃至Rはそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子、アミノ基、アルコキシル基又は下記式(2)を表し、R乃至Rの少なくとも1つ以上は下記式(2)である。) (In formula (1), X 1 to X 3 each represents an oxygen atom, a sulfur atom or a selenium atom. R 1 to R 6 each independently represents a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom. An atom, an amino group, an alkoxyl group or the following formula (2) is represented, and at least one of R 1 to R 6 is the following formula (2).

(式(2)中、Y及びZはそれぞれ独立に水素原子、カルボキシル基、シアノ基又はリン酸基を表す。Qは酸素原子、硫黄原子又はセレン原子を表す。A乃至Aはそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表す。m1は0乃至16のいずれかの整数を表す。式(2)中、*は式(1)のR乃至Rの結合位置を表す。)
(2)Rが式(2)で表され、R乃至Rがそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子、アミノ基又はアルコキシル基である前項(1)に記載の光電変換素子、
(3)Qが硫黄原子である前項(2)に記載の光電変換素子、
(4)Rが下記式(3)で表される前項(3)に記載の光電変換素子、
(In Formula (2), Y 1 and Z 1 each independently represent a hydrogen atom, a carboxyl group, a cyano group, or a phosphoric acid group. Q 1 represents an oxygen atom, a sulfur atom, or a selenium atom. A 1 to A 3 Each independently represents a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom or an alkoxyl group, m1 represents an integer of 0 to 16. In formula (2), * represents a formula ( 1) represents the bonding position of R 1 to R 6 .
(2) R 1 is represented by the formula (2), and R 2 to R 6 are each independently a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom, an amino group, or an alkoxyl group ( 1) The photoelectric conversion element according to
(3) The photoelectric conversion element according to the above item (2), wherein Q 1 is a sulfur atom,
(4) The photoelectric conversion device according to (3), wherein R 1 is represented by the following formula (3):

(式(3)中、A、Y及びZは前項(1)に記載の式(2)におけるのと同じ意味を表す。A乃至A11はそれぞれ水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表す。n1は0乃至4のいずれかの整数を表す。*は式(1)のRの結合位置を表す。)
(5)A及びA10が脂肪族炭化水素基である前項(4)に記載の光電変換素子、
(6)A及びA10がn−ヘキシル基である前項(5)に記載の光電変換素子、
(7)A、A乃至A及びA11がいずれも水素原子である前項(4)乃至(6)のいずれか一項に記載の光電変換素子、
(8)n1が0乃至2のいずれかの整数である前項(4)乃至(7)のいずれか一項に記載の光電変換素子、
(9)R、R及びRがいずれも水素原子であり、R及びRがそれぞれ独立に水素原子又は芳香族炭化水素基である前項(2)乃至(8)のいずれか一項に記載の光電変換素子、
(10)R及びRがいずれも下記式(4)で表される前項(9)に記載の光電変換素子、
(In the formula (3), A 1 , Y 1 and Z 1 represent the same meaning as in the formula (2) described in the preceding item (1). A 4 to A 11 are a hydrogen atom and an aliphatic hydrocarbon group, respectively. Represents an aromatic hydrocarbon group, a halogen atom or an alkoxyl group, n1 represents an integer of 0 to 4. * represents the bonding position of R 1 in formula (1).
(5) The photoelectric conversion device according to the above item (4), wherein A 5 and A 10 are aliphatic hydrocarbon groups,
(6) The photoelectric conversion device according to (5), wherein A 5 and A 10 are n-hexyl groups,
(7) The photoelectric conversion element according to any one of (4) to (6), wherein A 4 , A 6 to A 9 and A 11 are all hydrogen atoms.
(8) The photoelectric conversion element according to any one of (4) to (7), wherein n1 is an integer of 0 to 2.
(9) Any one of (2) to (8), wherein R 2 , R 4 and R 6 are all hydrogen atoms, and R 3 and R 5 are each independently a hydrogen atom or an aromatic hydrocarbon group. The photoelectric conversion element according to item,
(10) The photoelectric conversion element according to the above item (9), wherein both R 3 and R 5 are represented by the following formula (4):

(式(4)中、*は式(1)のR及びRとの結合位置を表す。)
(11)X乃至Xがいずれも硫黄原子である前項(1)乃至(10)のいずれか一項に記載の光電変換素子、
(12)Y及びZの少なくとも1つがカルボキシル基である前項(1)乃至(11)のいずれか一項に記載の光電変換素子、
(13)Y及びZのいずれか1つがカルボキシル基であり、他方がシアノ基である前項(12)に記載の光電変換素子、
(14)Yがカルボキシル基でありZがシアノ基である前項(13)に記載の光電変換素子、
(15)Aが水素原子である前項(1)乃至(14)のいずれか一項に記載の光電変換素子、
(16)式(1)で表される色素またはその塩が、下記式(7)乃至(10)のいずれかである前項(1)に記載の光電変換素子、
(In formula (4), * represents the bonding position with R 3 and R 5 in formula (1).)
(11) The photoelectric conversion element according to any one of (1) to (10), wherein X 1 to X 3 are all sulfur atoms,
(12) The photoelectric conversion element according to any one of (1) to (11), wherein at least one of Y 1 and Z 1 is a carboxyl group,
(13) The photoelectric conversion element according to (12), wherein any one of Y 1 and Z 1 is a carboxyl group and the other is a cyano group,
(14) The photoelectric conversion device according to the above item (13), wherein Y 1 is a carboxyl group and Z 1 is a cyano group,
(15) The photoelectric conversion element according to any one of (1) to (14), wherein A 1 is a hydrogen atom,
(16) The photoelectric conversion element according to the above item (1), wherein the dye represented by the formula (1) or a salt thereof is any one of the following formulas (7) to (10):

(17)前項(1)乃至(16)のいずれか一項に記載の光電変換素子を用いてなる太陽電池、
(18)前項(1)に記載の式(1)で表される色素又はその塩、
(19)前項(16)に記載の式(7)乃至(10)で表される色素又はその塩
に関する。
(17) A solar cell using the photoelectric conversion element according to any one of (1) to (16),
(18) A dye or a salt thereof represented by the formula (1) described in (1) above,
(19) The present invention relates to a dye represented by the formulas (7) to (10) or a salt thereof described in (16) above.

特定の構造を有する本発明の色素又はその塩を用いることにより、変換効率が高く安定性の高い光電変換素子及び太陽電池を提供する事が出来る。   By using the dye of the present invention having a specific structure or a salt thereof, a photoelectric conversion element and a solar cell having high conversion efficiency and high stability can be provided.

色素増感光電変換素子のセルの模式図である。It is a schematic diagram of the cell of a dye-sensitized photoelectric conversion element.

以下に本発明を詳細に説明する。
本発明の光電変換素子は、基板上に設けられた酸化物半導体微粒子の薄膜に、下記式(1)で表される色素(その塩を含む。以下同様)を担持させたものである。なお本願明細書において、「化合物」とは、特に断りの無い場合には化合物又はその塩を表すものとする。
The present invention is described in detail below.
The photoelectric conversion element of the present invention is obtained by supporting a dye (including a salt thereof) represented by the following formula (1) on a thin film of oxide semiconductor fine particles provided on a substrate. In the present specification, the “compound” represents a compound or a salt thereof unless otherwise specified.

式(1)中、X乃至Xはそれぞれ独立に酸素原子、硫黄原子又はセレン原子を表し、いずれも硫黄原子であることが好ましい。 In the formula (1), X 1 to X 3 each independently represent an oxygen atom, a sulfur atom or a selenium atom, and all are preferably sulfur atoms.

式(1)中、R乃至Rはそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子、アミノ基、アルコキシル基又は後述の式(2)を表し、R乃至Rの少なくとも1つ以上は後述の式(2)である。 In the formula (1), R 1 to R 6 each independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom, an amino group, an alkoxyl group, or a formula (2) described later, and R 1 At least one of R 6 to R 6 is the following formula (2).

式(1)のR乃至Rにおける脂肪族炭化水素基としては、置換基を有していてもよい飽和又は不飽和の直鎖、分岐鎖もしくは環状のアルキル基が挙げられ、置換基を有していてもよい炭素数1〜36の飽和又は不飽和の直鎖もしくは分岐鎖のアルキル基が好ましく、置換基を有していてもよい炭素数1〜18の飽和又は不飽和の直鎖もしくは分岐鎖のアルキル基がさらに好ましい。また、置換基を有していてもよい環状のアルキル基としては、例えば炭素数3〜8のシクロアルキル等が挙げられる。脂肪族炭化水素基の具体的な例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、t−ブチル基、オクチル基、オクタデシル基、シクロヘキシル基、ビニル基、プロペニル基、ペンチニル基、ブテニル基、ヘキセニル基、ヘキサジエニル基、イソプロペニル基、イソへキセニル基、シクロへキセニル基、シクロペンタジエニル基、エチニル基、プロピニル基、ペンチニル基、へキシニル基、イソへキシニル基、シクロへキシニル基等が挙げられる。これらは前記のように置換基を有していてもよい。脂肪族炭化水素基が有していてもよい置換基としては、例えば、置換基を有していてもよい芳香族炭化水素基、置換基を有していてもよい脂肪族炭化水素基、ヒドロキシル基、リン酸基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基、カルボンアミド基、アルコキシカルボニル基、アリールカルボニル基、アルコキシル基、アリールオキシ基、置換アミド基、アシル基及び置換されていてもよいアミノ基等が挙げられる。 Examples of the aliphatic hydrocarbon group for R 1 to R 6 in the formula (1) include a saturated or unsaturated linear, branched or cyclic alkyl group which may have a substituent. A saturated or unsaturated linear or branched alkyl group having 1 to 36 carbon atoms that may have is preferable, and a saturated or unsaturated linear chain having 1 to 18 carbon atoms that may have a substituent. Alternatively, a branched alkyl group is more preferable. Examples of the cyclic alkyl group which may have a substituent include cycloalkyl having 3 to 8 carbon atoms. Specific examples of the aliphatic hydrocarbon group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, t-butyl group, octyl group, octadecyl group, Cyclohexyl group, vinyl group, propenyl group, pentynyl group, butenyl group, hexenyl group, hexadienyl group, isopropenyl group, isohexenyl group, cyclohexenyl group, cyclopentadienyl group, ethynyl group, propynyl group, pentynyl group, A hexynyl group, an isohexynyl group, a cyclohexynyl group, etc. are mentioned. These may have a substituent as described above. Examples of the substituent that the aliphatic hydrocarbon group may have include, for example, an aromatic hydrocarbon group that may have a substituent, an aliphatic hydrocarbon group that may have a substituent, hydroxyl Group, phosphate group, cyano group, nitro group, halogen atom, carboxyl group, carbonamido group, alkoxycarbonyl group, arylcarbonyl group, alkoxyl group, aryloxy group, substituted amide group, acyl group and optionally substituted An amino group etc. are mentioned.

なお、脂肪族炭化水素基が有していてもよい置換基として挙げられた芳香族炭化水素基としては、後述するR乃至Rにおける芳香族炭化水素基と同様のものが、また、脂肪族炭化水素基が有していてもよい置換基として挙げられた脂肪族炭化水素基としては、前記R乃至Rの説明で挙げられた脂肪族炭化水素基と同様の脂肪族炭化水素基が挙げられる。脂肪族炭化水素基が有していてもよい置換基として挙げられたアルコキシカルボニル基としては、例えば炭素数1乃至10のアルコキシカルボニル基等が挙げられ、その具体例としては、メトキシカルボニル、エトキシカルボニル、n−プロポキシカルボニル、イソプロポキシカルボニル、n−ブトキシカルボニル、イソブトキシカルボニル、sec−ブトキシカルボニル、t−ブトキシカルボニル、n−ペントキシカルボニル、n−ヘキシルオキシカルボニル、n−ヘプチルオキシカルボニル、n−ノニルオキシカルボニル、n−デシルオキシカルボニル等が挙げられる。脂肪族炭化水素基が有していてもよい置換基として挙げられたアリールカルボニル基としては、例えば上記の芳香族炭化水素基とカルボニル基とを結合させたアリールカルボニル基等が挙げられ、その具体例としてはフェニルカルボニル、ナフトカルボニル等が挙げられる。脂肪族炭化水素基が有していてもよい置換基として挙げられたアリールオキシ基としては、例えば後述するR乃至Rにおける芳香族炭化水素基と酸化原子とを結合させたアリールオキシ基等が挙げられ、その具体例としてはフェノキシ基、ナフトキシ基等が挙げられる。 The aromatic hydrocarbon group mentioned as the substituent that the aliphatic hydrocarbon group may have is the same as the aromatic hydrocarbon group in R 1 to R 6 described later, As the aliphatic hydrocarbon group mentioned as the substituent that the aromatic hydrocarbon group may have, the same aliphatic hydrocarbon group as the aliphatic hydrocarbon group mentioned in the description of R 1 to R 6 above Is mentioned. Examples of the alkoxycarbonyl group exemplified as the substituent that the aliphatic hydrocarbon group may have include an alkoxycarbonyl group having 1 to 10 carbon atoms, and specific examples thereof include methoxycarbonyl and ethoxycarbonyl. , N-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, t-butoxycarbonyl, n-pentoxycarbonyl, n-hexyloxycarbonyl, n-heptyloxycarbonyl, n-nonyl Examples include oxycarbonyl and n-decyloxycarbonyl. Examples of the arylcarbonyl group exemplified as the substituent that the aliphatic hydrocarbon group may have include an arylcarbonyl group in which the above aromatic hydrocarbon group and carbonyl group are bonded, and the like. Examples include phenylcarbonyl, naphthocarbonyl and the like. Examples of the aryloxy group exemplified as the substituent that the aliphatic hydrocarbon group may have include, for example, an aryloxy group in which an aromatic hydrocarbon group and an oxidation atom in R 1 to R 6 described later are bonded to each other. Specific examples thereof include a phenoxy group and a naphthoxy group.

脂肪族炭化水素基が有していてもよい置換基として挙げられた置換アミド基としては、例えばアミド、アセトアミド、アルキルアミド、アリールアミド基が挙げられ、具体的に好ましいものはアミド、アセトアミド、N−メチルアミド、N−エチルアミド、N−(n−プロピル)アミド、N−(n−ブチル)アミド、N−イソブチルアミド、N−(sec−ブチルアミド)、N−(t−ブチル)アミド、N,N−ジメチルアミド、N,N−ジエチルアミド、N,N−ジ(n−プロピル)アミド、N,N−ジ(n−ブチル)アミド、N,N−ジイソブチルアミド、N−メチルアセトアミド、N−エチルアセトアミド、N−(n−プロピル)アセトアミド、N−(n−ブチル)アセトアミド、N−イソブチルアセトアミド、N−(sec−ブチル)アセトアミド、N−(t−ブチル)アセトアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジ(n−プロピル)アセトアミド、N,N−ジ(n−ブチル)アセトアミド、N,N−ジイソブチルアセトアミド、フェニルアミド、ナフチルアミド、フェニルアセトアミド、ナフチルアセトアミド等が挙げられる。脂肪族炭化水素基が有していてもよい置換基として挙げられたアシル基としては、例えば炭素数1乃至10のアルキルカルボニル基、アリールカルボニル基等が挙げられ、好ましくは炭素数1乃至4のアルキルカルボニル基であり、具体的にはアセチル、プロピオニル、トリフルオロメチルカルボニル、ペンタフルオロエチルカルボニル、ベンゾイル、ナフトイル等が挙げられる。   Examples of the substituted amide group exemplified as the substituent that the aliphatic hydrocarbon group may have include an amide, an acetamide, an alkylamide, and an arylamide group, and specifically preferred are amide, acetamide, N -Methylamide, N-ethylamide, N- (n-propyl) amide, N- (n-butyl) amide, N-isobutyramide, N- (sec-butylamide), N- (t-butyl) amide, N, N -Dimethylamide, N, N-diethylamide, N, N-di (n-propyl) amide, N, N-di (n-butyl) amide, N, N-diisobutyramide, N-methylacetamide, N-ethylacetamide N- (n-propyl) acetamide, N- (n-butyl) acetamide, N-isobutylacetamide, N- (sec-butyl) Acetamide, N- (t-butyl) acetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-di (n-propyl) acetamide, N, N-di (n-butyl) acetamide, N , N-diisobutylacetamide, phenylamide, naphthylamide, phenylacetamide, naphthylacetamide and the like. Examples of the acyl group exemplified as the substituent that the aliphatic hydrocarbon group may have include an alkylcarbonyl group having 1 to 10 carbon atoms, an arylcarbonyl group, and the like, and preferably 1 to 4 carbon atoms. Examples of the alkylcarbonyl group include acetyl, propionyl, trifluoromethylcarbonyl, pentafluoroethylcarbonyl, benzoyl, naphthoyl and the like.

式(1)のR乃至Rにおける芳香族炭化水素基とは、芳香環から水素原子1個を除いた基を意味し、芳香環の具体例としては、ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、ペリレン、テリレン、フルオレン、ビフェニル、ターフェニル等の芳香族炭化水素環、チオフェン、ビチオフェン、ターチオフェン、テトラチオフェン等のポリチオフェン、インデン、アズレン、ピリジン、ピラジン、ピリミジン、ピラゾール、ピラゾリジン、チアゾリジン、オキサゾリジン、ピラン、クロメン、ピロール、ピロリジン、ベンゾイミダゾール、イミダゾリン、イミダゾリジン、イミダゾール、ピラゾール、トリアゾール、トリアジン、ジアゾール、インドリン、チエノチオフェン、フラン、オキサゾール、オキサジアゾール、チアジン、チアゾール、インドール、ベンゾチアゾール、ベンゾチアジアゾール、ナフトチアゾール、ベンゾオキサゾール、ナフトオキサゾール、インドレニン、ベンゾインドレニン、ピラジン、キノリン、キナゾリン等の複素芳香環、フルオレン、カルバゾール等の縮合型芳香環等が挙げられ、チオフェン、ビチオフェン、ターチオフェン、テトラチオフェン等のポリチオフェンであることが好ましく、テトラチオフェンであることが更に好ましい。これらの芳香族炭化水素基は置換基を有していてもよい。 The aromatic hydrocarbon group in R 1 to R 6 in the formula (1) means a group obtained by removing one hydrogen atom from an aromatic ring. Specific examples of the aromatic ring include benzene, naphthalene, anthracene, phenanthrene, Aromatic hydrocarbon rings such as pyrene, perylene, terylene, fluorene, biphenyl, terphenyl, polythiophenes such as thiophene, bithiophene, terthiophene, tetrathiophene, indene, azulene, pyridine, pyrazine, pyrimidine, pyrazole, pyrazolidine, thiazolidine, oxazolidine , Pyran, chromene, pyrrole, pyrrolidine, benzimidazole, imidazoline, imidazolidine, imidazole, pyrazole, triazole, triazine, diazole, indoline, thienothiophene, furan, oxazole, oxadiazole Heteroaromatic rings such as thiazine, thiazole, indole, benzothiazole, benzothiadiazole, naphthothiazole, benzoxazole, naphthoxazole, indolenine, benzoindolenine, pyrazine, quinoline, quinazoline, condensed aromatic rings such as fluorene, carbazole, etc. Polythiophene such as thiophene, bithiophene, terthiophene, and tetrathiophene is preferable, and tetrathiophene is more preferable. These aromatic hydrocarbon groups may have a substituent.

前記芳香族炭化水素基が有していてもよい置換基としては、前述の脂肪族炭化水素基やハロゲン原子等が挙げられ、溶媒への溶解性、分子構造制御、電池性能等目的に応じて適宜選択可能である。特に炭素数1〜36の飽和アルキル基であることが好ましい。飽和アルキル基とは、前述の脂肪族炭化水素基で挙げられたものと同様でよい。   Examples of the substituent that the aromatic hydrocarbon group may have include the above-described aliphatic hydrocarbon group and halogen atom, and the like, depending on the purpose such as solubility in a solvent, molecular structure control, battery performance and the like. It can be selected as appropriate. A saturated alkyl group having 1 to 36 carbon atoms is particularly preferable. The saturated alkyl group may be the same as that mentioned for the above-mentioned aliphatic hydrocarbon group.

式(1)のR乃至Rにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素、ヨウ素原子等が挙げられる。 Examples of the halogen atom in R 1 to R 6 in Formula (1) include a fluorine atom, a chlorine atom, a bromine, and an iodine atom.

式(1)のR乃至Rにおけるアミノ基としては、例えばアミノ基、モノ又はジメチルアミノ基、モノ又はジエチルアミノ基、モノ又はジ(n−プロピル)アミノ基、モノ又はジ(n−ブチル)アミノ基、モノ又はジ(n−ヘキシル)アミノ基等のアルキル置換アミノ基、モノ又はジフェニルアミノ基、モノ又はジナフチルアミノ基等の芳香族置換アミノ基、モノアルキルモノフェニルアミノ基等のアルキル基と芳香族炭化水素残基が一つずつ置換したアミノ基又はベンジルアミノ基、またアセチルアミノ基、フェニルアセチルアミノ基等が挙げられる。 Examples of the amino group in R 1 to R 6 of the formula (1) include an amino group, a mono- or dimethylamino group, a mono- or diethylamino group, a mono- or di (n-propyl) amino group, and a mono- or di (n-butyl). Alkyl-substituted amino groups such as amino groups, mono- or di (n-hexyl) amino groups, aromatic-substituted amino groups such as mono- or diphenylamino groups, mono- or dinaphthylamino groups, and alkyl groups such as monoalkylmonophenylamino groups And an amino group or a benzylamino group substituted by one aromatic hydrocarbon residue, an acetylamino group, a phenylacetylamino group, and the like.

式(1)のR乃至Rにおけるアルコキシル基としては、例えば、前述の脂肪族炭化水素基に酸素原子を結合させた基を表し、具体的にはメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等が挙げられる。これらアルコキシル基はR乃至Rにおける脂肪族炭化水素基が有していてもよい置換基として挙げられたものと同様の置換基を有していてもよい。 The alkoxyl group in R 1 to R 6 in the formula (1) represents, for example, a group in which an oxygen atom is bonded to the above-described aliphatic hydrocarbon group, and specifically includes a methoxy group, an ethoxy group, and an n-propoxy group. , Isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group and the like. These alkoxyl groups may have the same substituent as those exemplified as the substituent that the aliphatic hydrocarbon group in R 1 to R 6 may have.

式(1)中、R乃至Rのいずれか少なくとも1つ以上は下記式(2)を表す。そして、Rが式(2)であり、R乃至Rがそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子、アミノ基又はアルコキシル基であることが好ましく、R、R及びRがいずれも水素原子であり、R及びRがそれぞれ独立に水素原子又は芳香族炭化水素基であることがより好ましく、R、R及びRがいずれも水素原子であり、R及びRがいずれも下記式(4)であることが更に好ましい。 In formula (1), at least one of R 1 to R 6 represents the following formula (2). R 1 is the formula (2), and R 2 to R 6 are preferably each independently a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom, an amino group, or an alkoxyl group, More preferably, R 2 , R 4 and R 6 are all hydrogen atoms, and R 3 and R 5 are each independently a hydrogen atom or an aromatic hydrocarbon group, and R 2 , R 4 and R 6 are any Is more preferably a hydrogen atom, and R 3 and R 5 are each more preferably the following formula (4).

式(4)中、*は式(1)のR及びRが結合している位置を表す。 In formula (4), * represents the position where R 3 and R 5 in formula (1) are bonded.

式(2)中、Qは酸素原子、硫黄原子又はセレン原子を表し、硫黄原子であることが好ましい。 In formula (2), Q 1 represents an oxygen atom, a sulfur atom or a selenium atom, and is preferably a sulfur atom.

式(2)中、A及びAはそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表す。A及びAにおける脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子及びアルコキシル基としては、それぞれ、前記R乃至Rにおけるのと同様のものが挙げられる。 In formula (2), A 2 and A 3 each independently represent a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom or an alkoxyl group. Examples of the aliphatic hydrocarbon group, aromatic hydrocarbon group, halogen atom and alkoxyl group in A 2 and A 3 are the same as those in R 1 to R 6 .

式(2)中、m1は0乃至16のいずれかの整数を表し、0乃至4の整数であることが好ましい。   In the formula (2), m1 represents an integer of 0 to 16, and is preferably an integer of 0 to 4.

なお、式(2)中、*は上記式(1)のR乃至Rが結合している位置を表す。 In formula (2), * represents the position at which R 1 to R 6 in formula (1) are bonded.

式(1)におけるRが下記式(3)であることが更に好ましい。 More preferably, R 1 in the formula (1) is the following formula (3).

式(2)及び式(3)中、Aは水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表し、水素原子であることが好ましい。Aにおける脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基としては、それぞれ前記R乃至Rにおけるのと同様のものが挙げられる。 In Formula (2) and Formula (3), A 1 represents a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom or an alkoxyl group, and is preferably a hydrogen atom. As the aliphatic hydrocarbon group, aromatic hydrocarbon group, halogen atom or alkoxyl group for A 1, the same groups as those described above for R 1 to R 6 can be mentioned.

式(2)及び式(3)中、Y及びZはそれぞれ水素原子、カルボキシル基、シアノ基又はリン酸基を表し、カルボキシル基又はシアノ基であることが好ましく、Y及びZのいずれか少なくとも1つ以上がカルボキシル基であることがより好ましく、Y及びZのいずれか1つがカルボキシル基でかつ他方がシアノ基であることが更に好ましく、Yがカルボキシル基でありZがシアノ基であることが最も好ましい。 In Formula (2) and Formula (3), Y 1 and Z 1 each represent a hydrogen atom, a carboxyl group, a cyano group, or a phosphate group, and are preferably a carboxyl group or a cyano group, and Y 1 and Z 1 It is more preferred that at least one of them is a carboxyl group, and it is more preferred that any one of Y 1 and Z 1 is a carboxyl group and the other is a cyano group, Y 1 is a carboxyl group, and Z 1 Is most preferably a cyano group.

式(3)中、A乃至A11はそれぞれ水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表し、A、A乃至A、A11がいずれも水素原子であることが好ましい。また、A及びA10は脂肪族炭化水素基であることが好ましく、n−ヘキシル基であることがより好ましく、A、A乃至A、A11がいずれも水素原子であり、かつA及びA10がいずれも脂肪族炭化水素基であることが更に好ましく、A、A乃至A、A11が水素原子であり、かつA及びA10がn−ヘキシル基であること最も好ましい。
乃至A11における脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基としては、それぞれ前記R乃至Rにおけるのと同様のものが挙げられる。
In formula (3), A 4 to A 11 each represents a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom or an alkoxyl group, and A 4 , A 6 to A 9 and A 11 are all A hydrogen atom is preferred. A 5 and A 10 are preferably aliphatic hydrocarbon groups, more preferably n-hexyl groups, A 4 , A 6 to A 9 and A 11 are all hydrogen atoms, and More preferably, A 5 and A 10 are both aliphatic hydrocarbon groups, A 4 , A 6 to A 9 and A 11 are hydrogen atoms, and A 5 and A 10 are n-hexyl groups. Most preferred.
Examples of the aliphatic hydrocarbon group, aromatic hydrocarbon group, halogen atom or alkoxyl group in A 4 to A 11 are the same as those in R 1 to R 6 .

式(3)中、n1は0乃至4のいずれかの整数を表し、0乃至2の整数であることが好ましい。   In formula (3), n1 represents an integer of 0 to 4, and is preferably an integer of 0 to 2.

式(1)で表される色素がカルボキシル基、リン酸基、ヒドロキシル基、スルホン酸基等の酸性基を置換基として有する場合、色素は塩を形成していてもよく、塩の例としては例えばリチウム、ナトリウム、カリウム、マグネシウム、カルシウム等のアルカリ金属又はアルカリ土類金属等の塩、又は有機塩基、例えばテトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウム、ピペラジニウム、ピペリジニウムなどの4級アンモニウム等の塩が挙げられる。好ましいものはテトラブチルアンモニウム塩およびピペリジニウム塩である。塩を形成する目的としては、主に、光電変換効率の向上、溶媒への溶解性制御、化合物の安定性又は合成及び精製の容易さ等が挙げられる。   When the dye represented by the formula (1) has an acidic group such as a carboxyl group, a phosphate group, a hydroxyl group, or a sulfonic acid group as a substituent, the dye may form a salt. For example, salts of alkali metals or alkaline earth metals such as lithium, sodium, potassium, magnesium and calcium, or organic bases such as quaternary ammonium such as tetramethylammonium, tetrabutylammonium, pyridinium, imidazolium, piperazinium and piperidinium Of the salt. Preference is given to tetrabutylammonium salts and piperidinium salts. The purpose of forming the salt mainly includes improvement of photoelectric conversion efficiency, control of solubility in a solvent, stability of a compound or easiness of synthesis and purification.

式(1)で表される色素又はその塩はシス体、トランス体及びその混合物、光学活性体、ラセミ体等の構造異性体をとり得るが、いずれの異性体も特に限定されず本発明における光増感用色素として良好に使用でき、それぞれの異性体を単独で用いてもよいし、複数からなる混合物として用いてもよい。   The dye represented by the formula (1) or a salt thereof can take a structural isomer such as a cis isomer, a trans isomer and a mixture thereof, an optically active isomer, and a racemate, but any isomer is not particularly limited in the present invention. It can be used satisfactorily as a photosensitizing dye, and each isomer may be used alone or as a mixture comprising a plurality.

式(1)で表される色素又はその塩としては、上記式(1)のX乃至X及びR乃至R、式(2)のY、Z、Q、A乃至A及びm1、式(3)のA、Y、Z、A乃至A11及びn1のそれぞれにおける好ましいものを組み合わせた色素又はその塩が特に好ましく、具体的には下記式(7)乃至(10)で表される色素又はその塩が挙げられる。 Examples of the dye represented by the formula (1) or a salt thereof include X 1 to X 3 and R 1 to R 6 of the above formula (1), Y 1 , Z 1 , Q 1 , A 1 to of the formula (2). A dye or a salt thereof in which A 3 and m 1 , A 1 , Y 1 , Z 1 , A 4 to A 11 and n 1 in Formula (3) are preferably combined, or a salt thereof is particularly preferable. ) To (10) or a salt thereof.

式(7)乃至(10)で表される色素は、例えば、以下に示す反応経路によって製造することができるが、式(7)乃至(10)以外の式(1)に包含される色素もこれらの反応経路に準じて製造することができる。   The dyes represented by the formulas (7) to (10) can be produced, for example, by the following reaction pathway, but the dyes included in the formula (1) other than the formulas (7) to (10) are also included. It can manufacture according to these reaction pathways.

以下に式(1)で表される色素の具体例を、下記一般式(1000)を用いて表し、表1に示す。表中、TPAはトリフェニルアミンを示す。   Specific examples of the dye represented by the formula (1) are shown using the following general formula (1000) and shown in Table 1. In the table, TPA represents triphenylamine.

本発明の色素増感光電変換素子は、例えば、基板上に酸化物半導体微粒子の薄膜を設け、次いでこの薄膜に式(1)の色素を担持させたものである。   In the dye-sensitized photoelectric conversion element of the present invention, for example, a thin film of oxide semiconductor fine particles is provided on a substrate, and then the dye of formula (1) is supported on the thin film.

酸化物半導体微粒子の薄膜を設ける基板としては、その表面が導電性であるものが好ましいが、そのような基板は市場にて容易に入手可能である。具体的には、例えば、ガラスの表面若しくはポリエチレンテレフタレート又はポリエーテルスルフォン等の透明性のある高分子材料の表面に、インジウム、フッ素、アンチモンをドープした酸化スズなどの導電性金属酸化物や銅、銀、金等の金属の薄膜を設けたものを用いることが出来る。その導電性としては通常1000Ω以下であればよく、特に100Ω以下のものが好ましい。
また、酸化物半導体の微粒子としては金属酸化物が好ましく、その具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウムなどの酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ、インジウム等の酸化物が好ましく、酸化チタン、酸化亜鉛、酸化スズがより好ましい。これらの酸化物半導体は単一で使用することもできるが、混合したり、半導体の表面にコーティングして使用することもできる。酸化物半導体微粒子の粒径は、平均粒径として通常1〜500nmであり、好ましくは1〜100nmである。またこの酸化物半導体の微粒子は大きな粒径のものと小さな粒径のものを混合したり、多層にして用いることも出来る。
As a substrate on which a thin film of oxide semiconductor fine particles is provided, a substrate having a conductive surface is preferable, but such a substrate is easily available in the market. Specifically, for example, conductive metal oxide such as tin oxide doped with indium, fluorine, antimony or copper on the surface of glass or the surface of a transparent polymer material such as polyethylene terephthalate or polyether sulfone, copper, What provided the thin film of metals, such as silver and gold | metal | money, can be used. The conductivity is usually 1000Ω or less, and particularly preferably 100Ω or less.
The oxide semiconductor fine particles are preferably metal oxides, and specific examples thereof include oxides of titanium, tin, zinc, tungsten, zirconium, gallium, indium, yttrium, niobium, tantalum, vanadium, and the like. Of these, oxides such as titanium, tin, zinc, niobium, and indium are preferable, and titanium oxide, zinc oxide, and tin oxide are more preferable. These oxide semiconductors can be used alone, but can also be mixed or used by coating the surface of the semiconductor. The average particle diameter of the oxide semiconductor fine particles is usually 1 to 500 nm, preferably 1 to 100 nm. The oxide semiconductor fine particles may be mixed with a large particle size and a small particle size, or may be used in multiple layers.

酸化物半導体微粒子の薄膜は、酸化物半導体微粒子をスプレイ噴霧などで直接基板上に塗布する方法、基板を電極として電気的に半導体微粒子を薄膜状に析出させる方法、半導体微粒子のスラリー又は半導体アルコキサイド等の半導体微粒子の前駆体を加水分解することにより得られた微粒子を含有するペーストを基板上に塗布した後、乾燥、硬化もしくは焼成する方法等によって基板上に形成することができる。酸化物半導体を用いる電極の性能上、スラリーを用いる方法が好ましい。この方法の場合、スラリーは2次凝集している酸化物半導体微粒子を常法により分散媒中に平均1次粒子径が1〜200nmになるように分散させることにより得られる。   The thin film of oxide semiconductor fine particles is a method of directly applying oxide semiconductor fine particles on a substrate by spray spraying, a method of electrically depositing semiconductor fine particles in a thin film form using the substrate as an electrode, a slurry of semiconductor fine particles or a semiconductor alkoxide, etc. After the paste containing the fine particles obtained by hydrolyzing the precursor of the semiconductor fine particles is applied on the substrate, it can be formed on the substrate by a method such as drying, curing or baking. In view of the performance of the electrode using an oxide semiconductor, a method using a slurry is preferable. In the case of this method, the slurry is obtained by dispersing the secondary agglomerated oxide semiconductor fine particles in a dispersion medium by an ordinary method so that the average primary particle diameter is 1 to 200 nm.

スラリーを分散させる分散媒としては、半導体微粒子を分散させ得るものであれば特に限定されず、水、エタノール等のアルコール、アセトン、アセチルアセトン等のケトン、ヘキサン等の炭化水素等が用いられ、これらは混合して用いてもよく、また水を用いることはスラリーの粘度変化を少なくするという点で好ましい。また酸化物半導体微粒子の分散状態を安定化させる目的で分散安定剤を用いることができる。用いうる分散安定剤としては、例えば酢酸、塩酸、硝酸等の酸、又はアセチルアセトン、アクリル酸、ポリエチレングリコール、ポリビニルアルコール等の有機溶媒等が挙げられる。   The dispersion medium for dispersing the slurry is not particularly limited as long as the semiconductor fine particles can be dispersed. Water, alcohols such as ethanol, ketones such as acetone and acetylacetone, hydrocarbons such as hexane, and the like are used. A mixture may be used, and the use of water is preferable in that the viscosity change of the slurry is reduced. A dispersion stabilizer can be used for the purpose of stabilizing the dispersion state of the oxide semiconductor fine particles. Examples of the dispersion stabilizer that can be used include acids such as acetic acid, hydrochloric acid, and nitric acid, and organic solvents such as acetylacetone, acrylic acid, polyethylene glycol, and polyvinyl alcohol.

スラリーを塗布した基板は焼成してもよく、その焼成温度は通常100℃以上、好ましくは200℃以上で、かつ上限はおおむね基板の融点(軟化点)以下であり、通常上限は900℃であり、好ましくは600℃以下である。また焼成時間には特に限定はないが、おおむね4時間以内が好ましい。基板上の酸化物半導体微粒子の薄膜の厚さは通常1〜200μm、好ましくは1〜50μmである。   The substrate coated with the slurry may be fired, and the firing temperature is usually 100 ° C. or higher, preferably 200 ° C. or higher, and the upper limit is generally lower than the melting point (softening point) of the substrate, and the upper limit is usually 900 ° C. The temperature is preferably 600 ° C. or lower. The firing time is not particularly limited, but is preferably within 4 hours. The thickness of the thin film of oxide semiconductor fine particles on the substrate is usually 1 to 200 μm, preferably 1 to 50 μm.

酸化物半導体微粒子の薄膜に2次処理を施してもよい。例えば半導体と同一の金属のアルコキサイド、金属アシロキシド、塩化物、硝化物、硫化物等の溶液に直接、酸化物半導体微粒子の薄膜の設けられた基板ごと浸漬させて乾燥もしくは再焼成することにより半導体微粒子の薄膜の性能を向上させることもできる。金属アルコキサイドとしてはチタンエトキサイド、チタンイソプロポキサイド、チタンt−ブトキサイドなど、また金属アシロキシドとしてはn−ジブチル−ジアセチルスズ等が挙げられ、それらのアルコール溶液が用いられる。塩化物としては例えば四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられ、その水溶液が用いられる。
このようにして得られた酸化物半導体薄膜は酸化物半導体の微粒子から成っている。
A secondary treatment may be applied to the thin film of oxide semiconductor fine particles. For example, semiconductor fine particles are immersed in the same metal alkoxide, metal acyloxide, chloride, nitride, sulfide, etc. as the semiconductor directly by dipping the whole substrate provided with a thin film of oxide semiconductor fine particles and drying or refiring. The performance of the thin film can also be improved. Examples of the metal alkoxide include titanium ethoxide, titanium isopropoxide, and titanium t-butoxide, and examples of the metal acyloxide include n-dibutyl-diacetyltin, and alcohol solutions thereof are used. Examples of the chloride include titanium tetrachloride, tin tetrachloride, zinc chloride and the like, and an aqueous solution thereof is used.
The oxide semiconductor thin film thus obtained is composed of fine particles of an oxide semiconductor.

次に酸化物半導体微粒子の薄膜に本発明の式(1)で表される色素を担持させる方法について説明する。
式(1)の色素を担持させる方法としては、該色素を溶解しうる溶媒にて色素を溶解して得た溶液、又は溶解性の低い色素にあっては色素を分散せしめて得た分散液に上記酸化物半導体微粒子の薄膜の設けられた基板を浸漬する方法が挙げられる。溶液又は分散液中の濃度は色素によって適宜決める。その溶液又は分散液中に、基板上に作成した半導体微粒子の薄膜を浸す。浸漬温度は概ね常温から溶媒の沸点迄であり、また浸漬時間は1分間から48時間程度である。色素を溶解させるのに使用しうる溶媒の具体例として、例えば、メタノール、エタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、アセトン、t−ブタノール、クロロホルム、ジクロロメタン、n−ヘキサン、テトラヒドロフラン、水等が挙げられる。これらの溶媒は2種以上を任意の割合で混合して用いてもよい。また、式(1)の色素がこれらの溶媒に対して十分な溶解度を示さない場合は、テトラブチルアンモニウムヨーダイド等のアンモニウム塩を添加し、色素の溶解を促進させることもできる。溶液中の色素濃度は通常1×10−6M〜1M、好ましくは1×10−5M〜1×10−1Mである。このようにして式(1)の色素で増感された酸化物半導体微粒子の薄膜を有した本発明の光電変換素子が得られる。
Next, a method for supporting the dye represented by the formula (1) of the present invention on a thin film of oxide semiconductor fine particles will be described.
As a method for supporting the dye of the formula (1), a solution obtained by dissolving the dye in a solvent capable of dissolving the dye, or a dispersion obtained by dispersing the dye in the case of a dye having low solubility And a method of immersing a substrate provided with a thin film of the oxide semiconductor fine particles. The concentration in the solution or dispersion is appropriately determined depending on the dye. A thin film of semiconductor fine particles formed on the substrate is immersed in the solution or dispersion. The immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time is about 1 minute to 48 hours. Specific examples of the solvent that can be used for dissolving the dye include methanol, ethanol, acetonitrile, dimethyl sulfoxide, dimethylformamide, acetone, t-butanol, chloroform, dichloromethane, n-hexane, tetrahydrofuran, water and the like. . These solvents may be used as a mixture of two or more in any ratio. Moreover, when the pigment | dye of Formula (1) does not show sufficient solubility with respect to these solvents, ammonium salts, such as tetrabutylammonium iodide, can be added and the dissolution of a pigment | dye can also be accelerated | stimulated. The dye density | concentration in a solution is 1 * 10 < -6 > M-1M normally, Preferably it is 1 * 10 < -5 > M-1 * 10 < -1 > M. Thus, the photoelectric conversion element of the present invention having a thin film of oxide semiconductor fine particles sensitized with the dye of formula (1) is obtained.

担持する式(1)の色素は1種類でもよいし、複数種類を混合してもよい。また、混合する場合は本発明の式(1)の色素同士でもよいし、他の色素や金属錯体色素を混合してもよい。特に吸収波長の異なる色素同士を混合することにより、幅広い吸収波長を利用することが出来るため変換効率の高い太陽電池が得られる。色素を2種以上用いる場合は色素を半導体微粒子の薄膜に順次吸着させても、混合溶解して吸着させてもよい。   The dye of the formula (1) to be carried may be one kind or a plurality of kinds may be mixed. Moreover, when mixing, the pigment | dye of Formula (1) of this invention may be sufficient, and another pigment | dye and a metal complex pigment | dye may be mixed. In particular, by mixing dyes having different absorption wavelengths, a wide absorption wavelength can be used, so that a solar cell with high conversion efficiency can be obtained. When two or more dyes are used, the dyes may be adsorbed sequentially on the thin film of semiconductor fine particles, or may be admixed and dissolved.

混合する色素の比率に特に限定は無く、それぞれの色素より最適化条件が適宜選択されるが、一般的に等モルずつの混合から、1つの色素につき少なくとも10%モル程度以上使用するのが好ましい。2種以上の色素を溶解又は分散した溶液を用いて、酸化物半導体微粒子の薄膜に色素を吸着する場合、溶液中の色素合計の濃度は1種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。   There are no particular limitations on the ratio of the dyes to be mixed, and optimization conditions are appropriately selected from the respective dyes. Generally, it is preferable to use at least about 10% mol or more per dye from mixing in equimolar amounts. . When a dye is adsorbed to a thin film of oxide semiconductor fine particles using a solution in which two or more kinds of dyes are dissolved or dispersed, the total concentration of the dye in the solution may be the same as when only one kind is supported. As the solvent in the case of using a mixture of dyes, the above-mentioned solvents can be used, and the solvents for the respective dyes to be used may be the same or different.

酸化物半導体微粒子の薄膜に色素を担持する際、色素同士の会合を防ぐために、包摂化合物の共存下で色素を担持することが効果的である。ここで包摂化合物としてはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましいものとしてはデオキシコール酸、デヒドロデオキシコール酸、ケノデオキシコール酸、ウルソデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコール酸類、ポリエチレンオキサイド等が挙げられる。また、色素を担持させた後、4−t−ブチルピリジン(TBP)等のアミン化合物で半導体微粒子の薄膜を処理してもよい。処理の方法は例えばアミンのエタノール溶液に色素を担持した半導体微粒子の薄膜の設けられた基板を浸す方法等が採られる。   When the dye is supported on the thin film of oxide semiconductor fine particles, it is effective to support the dye in the coexistence of the inclusion compound in order to prevent the association between the dyes. Examples of the inclusion compound include steroidal compounds such as cholic acid, crown ether, cyclodextrin, calixarene, polyethylene oxide, and the like. Deoxycholic acid, dehydrodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic are preferable. Examples include acids, cholic acid methyl esters, cholic acids such as sodium cholate, and polyethylene oxide. Alternatively, after the dye is supported, the thin film of semiconductor fine particles may be treated with an amine compound such as 4-t-butylpyridine (TBP). As a treatment method, for example, a method of immersing a substrate provided with a thin film of semiconductor fine particles carrying a dye in an ethanol solution of amine is employed.

本発明の太陽電池は、上記酸化物半導体微粒子の薄膜に色素を担持させた光電変換素子電極、対極、及びレドックス電解質又は正孔輸送材料又はp型半導体等から構成される。レドックス電解質、正孔輸送材料、p型半導体等の形態としては、液体、凝固体(ゲル及びゲル状)、固体などが挙げられる。液状のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等をそれぞれ溶媒に溶解させたものや常温溶融塩などが、凝固体(ゲル及びゲル状)の場合は、これらをポリマーマトリックスや低分子ゲル化剤等に含ませたもの等がそれぞれ挙げられる。固体のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等を用いることができる。正孔輸送材料としてはアミン誘導体やポリアセチレン、ポリアニリン、ポリチオフェンなどの導電性高分子、トリフェニレン系化合物などのディスコティック液晶相に用いる物などが挙げられる。また、p型半導体としてはCuI、CuSCN等が挙げられる。   The solar cell of the present invention is composed of a photoelectric conversion element electrode in which a dye is supported on the oxide semiconductor fine particle thin film, a counter electrode, a redox electrolyte, a hole transport material, a p-type semiconductor, or the like. Examples of the redox electrolyte, hole transport material, and p-type semiconductor include liquids, solidified bodies (gel and gel), and solids. Liquids such as redox electrolytes, molten salts, hole transport materials, p-type semiconductors, etc., dissolved in solvents and room temperature molten salts are solidified (gels and gels). Examples include a matrix and a low molecular gelling agent. As a solid material, a redox electrolyte, a molten salt, a hole transport material, a p-type semiconductor, or the like can be used. Examples of the hole transport material include amine derivatives, conductive polymers such as polyacetylene, polyaniline, and polythiophene, and materials used for discotic liquid crystal phases such as triphenylene compounds. Examples of the p-type semiconductor include CuI and CuSCN.

対極としては導電性を有しており、レドックス電解質の還元反応に触媒的に作用するものが好ましい。例えばガラス又は高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したものや、導電性微粒子を塗り付けたものが使用できる。   The counter electrode is preferably conductive and has a catalytic action on the reduction reaction of the redox electrolyte. For example, a glass or polymer film deposited with platinum, carbon, rhodium, ruthenium or the like, or a film coated with conductive fine particles can be used.

本発明の太陽電池に用いるレドックス電解質としては、ハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシニウムイオン、コバルト錯体などの金属錯体等の金属酸化還元系電解質、アルキルチオール−アルキルジスルフィド、ビオロゲン色素、ヒドロキノン−キノン等の有機酸化還元系電解質等を挙げることができるが、ハロゲン酸化還元系電解質が好ましい。ハロゲン化合物−ハロゲン分子からなるハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子等があげられ、ヨウ素分子が好ましい。また、ハロゲンイオンを対イオンとするハロゲン化合物としては、例えばLiBr、NaBr、KBr、LiI、NaI、KI、CsI、CaI、MgI、CuI等のハロゲン化金属塩あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、ピリジニウムヨーダイドなどのハロゲンの有機4級アンモニウム塩等が挙げられるが、ヨウ素イオンを対イオンとする塩類が好ましい。また、上記ヨウ素イオンの他にビス(トリフルオロメタンスルホニル)イミドイオン、ジシアノイミドイオン等のイミドイオンを対イオンとする電解質を用いることも好ましい。 The redox electrolyte used in the solar cell of the present invention includes a halogen redox electrolyte composed of a halogen compound and a halogen molecule having a halogen ion as a counter ion, ferrocyanate-ferricyanate, ferrocene-ferricinium ion, cobalt complex Examples thereof include metal redox electrolytes such as metal complexes, and organic redox electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, hydroquinone-quinones, and the like, but halogen redox electrolytes are preferred. Examples of the halogen molecule in the halogen redox electrolyte comprising a halogen compound-halogen molecule include iodine molecule and bromine molecule, and iodine molecule is preferable. As the halogen compound having a halogen ion as a counter ion, for example LiBr, NaBr, KBr, LiI, NaI, KI, CsI, CaI 2, MgI 2, CuI and halogenated metal salt or tetraalkylammonium iodide, and imidazolium Examples include halogen organic quaternary ammonium salts such as rhodium iodide and pyridinium iodide, and salts having iodine ions as counter ions are preferred. Moreover, it is also preferable to use the electrolyte which uses imide ions, such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion, as a counter ion other than the said iodine ion.

レドックス電解質はそれを含む溶液の形で構成されている場合、その溶媒には電気化学的に不活性なものが用いられる。例えばアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、γ−ブチロラクトン、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキシド、1,3−ジオキソラン、メチルフォルメート、2−メチルテトラヒドロフラン、3−メチル−オキサゾリジン−2−オン、スルホラン、テトラヒドロフラン、水等が挙げられ、これらの中でも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3−メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3−メチル−オキサゾリジン−2−オン、γ−ブチロラクトン等が好ましい。これらは単独もしくは2種以上組み合わせて用いてもよい。ゲル状電解質の場合は、オリゴマー及びポリマー等のマトリックスに電解質あるいは電解質溶液を含有させたものや、非特許文献3に記載の低分子ゲル化剤等に同じく電解質あるいは電解質溶液を含有させたもの等が挙げられる。レドックス電解質の濃度は通常0.01〜99質量%で、好ましくは0.1〜90質量%程度である。   When the redox electrolyte is constituted in the form of a solution containing the redox electrolyte, an electrochemically inert solvent is used as the solvent. For example, acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, methoxyacetonitrile, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, γ-butyrolactone, dimethoxyethane, diethyl carbonate, diethyl ether, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, dimethylformamide, dimethyl sulfoxide, 1,3-dioxolane, methyl formate, 2-methyltetrahydrofuran, 3-methyl-oxazolidin-2-one, sulfolane, tetrahydrofuran, water and the like. Among them, in particular, acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropioni Lil, methoxy acetonitrile, ethylene glycol, 3-methyl - oxazolidin-2-one, .gamma.-butyrolactone and the like are preferable. You may use these individually or in combination of 2 or more types. In the case of a gel electrolyte, an electrolyte or an electrolyte solution contained in a matrix such as an oligomer or a polymer, or a low-molecular gelling agent described in Non-Patent Document 3 that also contains an electrolyte or an electrolyte solution, etc. Is mentioned. The density | concentration of a redox electrolyte is 0.01-99 mass% normally, Preferably it is about 0.1-90 mass%.

本発明の太陽電池は、基板上の酸化物半導体微粒子の薄膜に本発明の式(1)の色素を担持した光電変換素子の電極に、それを挟むように対極を配置し、その間にレドックス電解質等を含んだ溶液を充填することにより得られる。   In the solar cell of the present invention, a counter electrode is disposed between electrodes of a photoelectric conversion element in which a dye of the formula (1) of the present invention is supported on a thin film of oxide semiconductor fine particles on a substrate, and a redox electrolyte is interposed therebetween. It is obtained by filling a solution containing the like.

以下に実施例に基づき、本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
吸収スペクトルは島津磁気分光光度計UV−3100型(P/N206−13500島津製作所製)により、核磁気共鳴分析はLAMBER−NMR(400MHz、270MHz)(日本電子社製)により、質量分析は島津GCMS−QP5050A型質量分析装置(島津製作所製)及びMALDI−MS KRATOS ANALYTICAL KOMPACT(島津製作所製)により、元素分析はParkin Elmer2400型元素分析計によりそれぞれ測定した。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
The absorption spectrum is Shimadzu Magnetospectrophotometer UV-3100 (P / N206-13500, manufactured by Shimadzu Corporation), the nuclear magnetic resonance analysis is LAMBER-NMR (400 MHz, 270 MHz) (manufactured by JEOL Ltd.), and the mass analysis is Shimadzu GCMS. Elemental analysis was performed with a Parkin Elmer 2400 type elemental analyzer using a QP5050A type mass spectrometer (manufactured by Shimadzu Corporation) and MALDI-MS KRATOS ANALYTICAL KOMACT (manufactured by Shimadzu Corporation).

合成例1
1,3,5−トリクロロベンゼン10.0gと、ヨウ素80.6gとを濃硫酸150ml中で125〜135℃で48時間攪拌し、反応終了後、反応液を氷に加えた。生成した固体結晶をろ取及びナトリウムビスルフィド水溶液400ml、水400ml、エタノール100mlで洗浄し、その後、テトラヒドロフラン(THF)で再結晶して、化合物(2001)22.1gを白色針状結晶として得た。
得られた化合物(2001)のマススペクトルは、以下の通りであった。
MS(EI) m/z; 558(M+)
Synthesis example 1
10.0 g of 1,3,5-trichlorobenzene and 80.6 g of iodine were stirred in 125 ml of concentrated sulfuric acid at 125 to 135 ° C. for 48 hours, and after completion of the reaction, the reaction solution was added to ice. The produced solid crystals were collected by filtration and washed with 400 ml of an aqueous sodium bisulfide solution, 400 ml of water and 100 ml of ethanol, and then recrystallized with tetrahydrofuran (THF) to obtain 22.1 g of the compound (2001) as white needle crystals. .
The mass spectrum of the obtained compound (2001) was as follows.
MS (EI) m / z; 558 (M +)

合成例2
窒素雰囲気下、3−メチル−1−ブチン−3−オール2.94g、Pd(PPhCl 560mg、ジイソプロピルアミン4.2ml、CuI 307mgを、トルエン45mlに溶解した化合物(2001)5.0g溶液に添加し、反応させた。反応液を22時間還流した後、反応液に水を加え、クロロホルム(100ml×3)で抽出した。クロロホルム相を飽和食塩水(100ml×3)で洗浄し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムを除去し、次いで溶媒を留去して粗生成物を得た。得られた粗生成物をベンゼン及び冷トルエンで洗浄し、化合物(2002)2.4gを白色粉末として得た。
得られた化合物(2002)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS) : δ1.37(s,18H),2.14(s,3H)
MS(EI) m/z; 426(M+)
Synthesis example 2
Compound (2001) obtained by dissolving 2.94 g of 3-methyl-1-butyn-3-ol, 560 mg of Pd (PPh 3 ) 2 Cl 2 , 4.2 ml of diisopropylamine, and 307 mg of CuI in 45 ml of toluene under a nitrogen atmosphere. 0 g solution was added and allowed to react. After the reaction solution was refluxed for 22 hours, water was added to the reaction solution and extracted with chloroform (100 ml × 3). The chloroform phase was washed with saturated brine (100 ml × 3), dried over magnesium sulfate, magnesium sulfate was removed, and then the solvent was distilled off to obtain a crude product. The obtained crude product was washed with benzene and cold toluene to obtain 2.4 g of Compound (2002) as a white powder.
1 H-NMR and mass spectrum of the obtained compound (2002) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS): δ1.37 (s, 18H), 2.14 (s, 3H)
MS (EI) m / z; 426 (M +)

合成例3
硫化ナトリウム・9水和物6.98gをN−メチルピロリドン85mlに添加した溶液に、化合物(2002)1.5gを加え、185〜195℃で36時間攪拌した。反応終了後、反応液を飽和塩化アンモニウム水溶液300mlに注加し、トルエン(200ml×3)で抽出した。有機相を飽和塩化ナトリウム水溶液(300ml×3)で洗浄し、有機相を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを除去し、次いで溶媒を留去した。得られた生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、化合物(2005)593mgを白色固体として得た。
得られた化合物(2005)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS) : δ7.64(d, J=5.4Hz, 3H), 7.54(d, J=5.4Hz, 3H)
MS(EI) m/z; 246(M+)
Synthesis example 3
To a solution obtained by adding 6.98 g of sodium sulfide nonahydrate to 85 ml of N-methylpyrrolidone, 1.5 g of compound (2002) was added, and the mixture was stirred at 185 to 195 ° C. for 36 hours. After completion of the reaction, the reaction solution was poured into 300 ml of saturated aqueous ammonium chloride solution and extracted with toluene (200 ml × 3). The organic phase was washed with a saturated aqueous sodium chloride solution (300 ml × 3), the organic phase was dried over magnesium sulfate, the magnesium sulfate was removed, and then the solvent was distilled off. The obtained product was purified by silica gel column chromatography (hexane) to obtain 593 mg of the compound (2005) as a white solid.
1 H-NMR and mass spectrum of the obtained compound (2005) were as follows.
1 H-NMR (270MHz, CDCl 3 , TMS): δ7.64 (d, J = 5.4Hz, 3H), 7.54 (d, J = 5.4Hz, 3H)
MS (EI) m / z; 246 (M +)

合成例4
窒素雰囲気下、化合物(2005)1.0gを1,2−ジクロロエタン20mlに溶解させた溶液に、N,N−ジエチルホルムアミド(DMF)1.03mlを添加した。氷冷下、オキシ塩化リン1.24mlをゆっくりと添加した。反応液を攪拌しながら24時間加熱還流、さらに1N塩化ナトリウム水溶液30mlを添加し、室温で30分間攪拌し、クロロホルムで抽出した。クロロホルム相を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した後、硫酸マグネシウムを除去し、次いでクロロホルムを留去した。得られた生成物をカラムクロマトグラフィー(シリカゲル、クロロホルム、Rf=0.5)で精製し、化合物(2006)525mgをペール黄色粉末として得た。
得られた化合物(2006)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS) : δ7.51-7,56(m, 4H), 8.12(s,1H),10.07(s, 1H)
MS(EI) m/z; 274(M+)
Synthesis example 4
Under a nitrogen atmosphere, 1.03 ml of N, N-diethylformamide (DMF) was added to a solution of 1.0 g of compound (2005) in 20 ml of 1,2-dichloroethane. Under ice-cooling, 1.24 ml of phosphorus oxychloride was slowly added. The reaction solution was heated under reflux for 24 hours while stirring, and further 30 ml of 1N sodium chloride aqueous solution was added, stirred at room temperature for 30 minutes, and extracted with chloroform. The chloroform phase was washed with saturated brine, dried over magnesium sulfate, magnesium sulfate was removed, and then chloroform was distilled off. The obtained product was purified by column chromatography (silica gel, chloroform, Rf = 0.5) to obtain 525 mg of compound (2006) as a pale yellow powder.
1 H-NMR and mass spectrum of the obtained compound (2006) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS): δ7.51-7,56 (m, 4H), 8.12 (s, 1H), 10.07 (s, 1H)
MS (EI) m / z; 274 (M +)

合成例5
化合物(2006)424mgをジクロロメタン20mlに溶解し、N−ブロモスクシンイミド(NBS)550mgを加えた酢酸5ml溶液を0℃以上を保ちながら滴下した。反応液を室温で24時間攪拌した。析出物をろ取し、水とエタノールで洗浄した。得られた結晶をクロロベンゼンで再結晶し、化合物(2007)340mgを白色粉末として得た。
得られた化合物(2007)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS) : δ7.94(s, 2H), 8.15(s,1H),10.03(s, 1H)
MS(EI) m/z; 430(M+)
Synthesis example 5
424 mg of the compound (2006) was dissolved in 20 ml of dichloromethane, and a 5 ml solution of acetic acid to which 550 mg of N-bromosuccinimide (NBS) was added was added dropwise while maintaining at 0 ° C. or higher. The reaction was stirred at room temperature for 24 hours. The precipitate was collected by filtration and washed with water and ethanol. The obtained crystals were recrystallized from chlorobenzene to obtain 340 mg of the compound (2007) as a white powder.
1 H-NMR and mass spectrum of the obtained compound (2007) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS): δ7.94 (s, 2H), 8.15 (s, 1H), 10.03 (s, 1H)
MS (EI) m / z; 430 (M +)

合成例6
氷冷下、NBS(12.5g)のDMF溶液40mlを3−ヘキシルチオフェン11.8gのDMF溶液20mlに1時間かけて滴下した。室温で12時間攪拌した後、飽和炭酸水素ナトリウム水溶液50mlを加え、スクシンイミドを析出させた。この析出物をセライト濾過で除去し、ヘキサンで洗浄した。濾液をヘキサン(30ml×3)で抽出し、この有機相を水(30ml×3)で洗浄し、硫酸マグネシウムで乾燥させ溶媒を除去した。得られた生成物を減圧蒸留で精製し目的物である、2−ブロモ−3−ヘキシルチオフェン 13.0gを無色オイルとして得た。
得られた2−ブロモ−3−ヘキシルチオフェンのH−NMRは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS) : δ0.88(t,J=6.8Hz,3H),1.26-1.36(m,6H),1.56(quint, J=6.4Hz,2H),2.56(t, J=8.0Hz,2H),6.79(d,J=5.6Hz,1H),7.18(d,J=5.6Hz,1H)
Synthesis Example 6
Under ice cooling, 40 ml of a DMF solution of NBS (12.5 g) was added dropwise to 20 ml of a DMF solution of 11.8 g of 3-hexylthiophene over 1 hour. After stirring at room temperature for 12 hours, 50 ml of a saturated aqueous sodium hydrogen carbonate solution was added to precipitate succinimide. The precipitate was removed by celite filtration and washed with hexane. The filtrate was extracted with hexane (30 ml × 3), the organic phase was washed with water (30 ml × 3), dried over magnesium sulfate and the solvent removed. The obtained product was purified by distillation under reduced pressure to obtain 13.0 g of 2-bromo-3-hexylthiophene as a colorless oil as a target product.
1 H-NMR of the obtained 2-bromo-3-hexylthiophene was as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.88 (t, J = 6.8 Hz, 3 H), 1.26-1.36 (m, 6 H), 1.56 (quint, J = 6.4 Hz, 2 H), 2.56 ( t, J = 8.0Hz, 2H), 6.79 (d, J = 5.6Hz, 1H), 7.18 (d, J = 5.6Hz, 1H)

合成例7
NBS(8.0g)のDMF溶液25mlを2,2’−ビチオフェン(3.7g)に氷冷下で30分間かけて滴下した。室温で12時間攪拌後、析出してきた黄色固体を水100ml、エタノール300mlを加え濾過した。得られた生成物をヘキサンで再結晶し、目的である、4,4’−ジブロモ−2,2’−ビチオフェン 5.2gを淡黄色板状結晶として得た。
得られた4,4’−ジブロモ−2,2’−ビチオフェンのH−NMRは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS) : δ6.85(dd,J=4.0Hz,2H),6.96(dd,J=4.0Hz,2H)
Synthesis example 7
25 ml of a DMF solution of NBS (8.0 g) was added dropwise to 2,2′-bithiophene (3.7 g) over 30 minutes under ice cooling. After stirring at room temperature for 12 hours, the precipitated yellow solid was added with 100 ml of water and 300 ml of ethanol and filtered. The obtained product was recrystallized from hexane to obtain 5.2 g of the objective 4,4′-dibromo-2,2′-bithiophene as pale yellow plate crystals.
1 H-NMR of the obtained 4,4′-dibromo-2,2′-bithiophene was as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 6.85 (dd, J = 4.0 Hz, 2H), 6.96 (dd, J = 4.0 Hz, 2H)

合成例8
窒素置換した100ml三口フラスコ中に、マグネシウム(1.25g)とジエチルエーテル1mlを入れ、これに2−ブロモ−3−ヘキシルチオフェン11.9gを20分間かけて滴下し、反応が開始したら還流が持続するようにジエチルエーテル10mlを追加した。2時間還流させ、生成したグリニャール試薬300mlを三口フラスコ中の4,4’−ジブロモ−2,2’−ビチオフェン(5.6g)、Ni(dppp)Clのジエチルエーテル40ml/ベンゼン30mlの混合溶液に30分間かけて滴下した。12時間還流後、氷冷下で飽和塩化アンモニウム水溶液100mlを加えて反応を停止した。析出した塩はセライト濾過で除去し、クロロホルムで洗浄した。濾液をクロロホルム50mlで2回抽出し、有機相を水100mlで2回、飽和塩化ナトリウム水溶液100mlで2回洗浄した。クロロホルム相を硫酸マグネシウムで乾燥し、硫酸マグネシウムを除去後、溶媒を留去した。得られた混合物をカラムクロマトグラフィー(シリカゲル、ヘキサン、Rf=0.3成分)で分離生成することで、化合物(2008)6.8gを黄色オイルとして得た。
得られた化合物(2008)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS) : δ0.89(t, J=7.2Hz,6H), 1.26-1.40(m, 12H), 1.65(quint, J=8.0Hz,4H),2.78(t, J=8.0Hz, 4H), 6.94(d, J=5.2Hz, 2H),7.02(d,J=4.0Hz,2H), 7.13(d,J=3.6Hz, 2H),7.18(d, J=5.2Hz, 2H)
MS(GC)m/z;498
Synthesis Example 8
In a 100 ml three-necked flask purged with nitrogen, magnesium (1.25 g) and 1 ml of diethyl ether are added, and 11.9 g of 2-bromo-3-hexylthiophene is added dropwise over 20 minutes. When the reaction starts, reflux continues. Then, 10 ml of diethyl ether was added. The resulting Grignard reagent (300 ml) was refluxed for 2 hours, and a mixed solution of 4,4′-dibromo-2,2′-bithiophene (5.6 g) and Ni (dppp) Cl 2 in diethyl ether 40 ml / benzene 30 ml in a three-necked flask. Over 30 minutes. After refluxing for 12 hours, the reaction was stopped by adding 100 ml of a saturated aqueous ammonium chloride solution under ice cooling. The precipitated salt was removed by Celite filtration and washed with chloroform. The filtrate was extracted twice with 50 ml chloroform and the organic phase was washed twice with 100 ml water and twice with 100 ml saturated aqueous sodium chloride solution. The chloroform phase was dried over magnesium sulfate, and after removing the magnesium sulfate, the solvent was distilled off. The resulting mixture was separated and produced by column chromatography (silica gel, hexane, Rf = 0.3 component) to obtain 6.8 g of compound (2008) as a yellow oil.
1 H-NMR and mass spectrum of the obtained compound (2008) were as follows.
1 H-NMR (400MHz, CDCl 3 , TMS): δ0.89 (t, J = 7.2Hz, 6H), 1.26-1.40 (m, 12H), 1.65 (quint, J = 8.0Hz, 4H), 2.78 ( t, J = 8.0Hz, 4H), 6.94 (d, J = 5.2Hz, 2H), 7.02 (d, J = 4.0Hz, 2H), 7.13 (d, J = 3.6Hz, 2H), 7.18 (d, (J = 5.2Hz, 2H)
MS (GC) m / z; 498

合成例9
窒素雰囲気下、化合物(2008)2.1gをTHF45mlに溶解し、−78℃に冷却し、n−ブチルリチウム2.7mlを滴下した。反応液を30分間かけ−30℃まで温め、塩化トリブチルスズ1.4mlを添加した。反応液を室温で4時間攪拌した後、水に注加しクロロホルムで抽出した有機相を硫酸マグネシウムで乾燥した後、硫酸マグネシウムを除去し、溶媒を留去した。得られた生成物をHPLC(JAIGEL−1H,2H,CHCl3,Rv=240ml)で精製し、化合物(2009)1.7gを黄色オイルとして得た。
得られた化合物(2009)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS):δ0.89-0.93(m,15H),1.09-1.13(m,6H),1.31-1.38(m,18H),1.54-1.66(m,10H),2.78(t,J=8.3Hz,2H),2.80(t,J=8.3Hz,2H),6.94(d,J=5.4Hz,1H),6.96(s,1H),7.01(d,J=3.9Hz,1H),7.02(d,J=4.0Hz,1H),7.12(d,J=3.9Hz,1H),7.18(d,J=5.4Hz,1H)
MS(MALDI-TOF)calcd for 787.88(M+); found 788.11
Synthesis Example 9
Under a nitrogen atmosphere, 2.1 g of compound (2008) was dissolved in 45 ml of THF, cooled to −78 ° C., and 2.7 ml of n-butyllithium was added dropwise. The reaction was warmed to −30 ° C. over 30 minutes and 1.4 ml of tributyltin chloride was added. The reaction solution was stirred at room temperature for 4 hours, then poured into water and the organic phase extracted with chloroform was dried over magnesium sulfate, magnesium sulfate was removed, and the solvent was distilled off. The obtained product was purified by HPLC (JAIGEL-1H, 2H, CHCl3, Rv = 240 ml) to obtain 1.7 g of Compound (2009) as a yellow oil.
1 H-NMR and mass spectrum of the obtained compound (2009) were as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.89-0.93 (m, 15H), 1.09-1.13 (m, 6H), 1.31-1.38 (m, 18H), 1.54-1.66 (m, 10H) , 2.78 (t, J = 8.3Hz, 2H), 2.80 (t, J = 8.3Hz, 2H), 6.94 (d, J = 5.4Hz, 1H), 6.96 (s, 1H), 7.01 (d, J = 3.9Hz, 1H), 7.02 (d, J = 4.0Hz, 1H), 7.12 (d, J = 3.9Hz, 1H), 7.18 (d, J = 5.4Hz, 1H)
MS (MALDI-TOF) calcd for 787.88 (M +); found 788.11

合成例10
窒素雰囲気下、化合物(2007)132mgと化合物(2009)504mgをトルエン10mlに加え、更にPd(PPhを110mg加え、18時間加熱還流した。冷却後、反応液をセライトでろ過及びトルエンで洗浄し、ろ液をエバポレーターで減圧乾燥した。得られた生成物を中圧シリカゲルカラム(ヘキサン:ジクロロメタン=1:1)で精製し、化合物(2010)194mgを橙色個体として得た。
得られた化合物(2010)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS) : δ0.89-0.94(m, 12H), 1.32-1.45(m, 24H), 1.61-1.66(m, 8H),2.62(t, J=8.1Hz, 4H), 2.77(t, J=8.1Hz, 4H), 6.93-7.05(m, 16H), 7.11(s, 2H), 7.18(d, J=3.8Hz, 2H), 7.19(d, J=3.8Hz, 2H), 7.80(s, 1H), 9.92(s, 1H)
MS(MALDI-TOF)calcd for 1266.24(M+); found 1266.89
Synthesis Example 10
Under a nitrogen atmosphere, 132 mg of compound (2007) and 504 mg of compound (2009) were added to 10 ml of toluene, and 110 mg of Pd (PPh 3 ) 4 was further added, followed by heating under reflux for 18 hours. After cooling, the reaction solution was filtered with celite and washed with toluene, and the filtrate was dried under reduced pressure with an evaporator. The obtained product was purified by a medium pressure silica gel column (hexane: dichloromethane = 1: 1) to obtain 194 mg of compound (2010) as an orange solid.
1 H-NMR and mass spectrum of the obtained compound (2010) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS): δ0.89-0.94 (m, 12H), 1.32-1.45 (m, 24H), 1.61-1.66 (m, 8H), 2.62 (t, J = 8.1Hz , 4H), 2.77 (t, J = 8.1Hz, 4H), 6.93-7.05 (m, 16H), 7.11 (s, 2H), 7.18 (d, J = 3.8Hz, 2H), 7.19 (d, J = 3.8Hz, 2H), 7.80 (s, 1H), 9.92 (s, 1H)
MS (MALDI-TOF) calcd for 1266.24 (M +); found 1266.89

合成例11
窒素雰囲気下、50ml三口フラスコに化合物(2008)1.0g、1,2−ジクロロエタン25mlを入れ、氷冷下でオキシ塩化リン0.56ml、DMF0.16mlを加えて、17時間還流した。室温に戻した後、1N水酸化ナトリウム水溶液100ml、水(100ml×3)、飽和塩化ナトリウム水溶液で順次洗浄し、硫酸マグネシウムで乾燥し、硫酸マグネシウム除去後、溶媒を留去した。得られた生成物をカラムクロマトグラフィー(シリカゲル、ジクロロメタン:ヘキサン=1:1、Rf=0.36成分)で分離精製することにより、化合物(2011)840mgを赤色固体として得た。
得られた化合物(2011)のH−NMRは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS):δ0.89(m,6H),1.29-1.41(m,12H),1.61(quint, J=6.8Hz,2H),1.70(quint,J=6.8Hz,2H),2.78(t,J=7.6Hz,2H),2.83(t,J=8.0Hz,2H),6.95(d,J=5.2Hz,1H),7.04(d,J=3.2Hz,1H),7.17(d,J=4.0Hz,1H),7.18(d,J=3.2Hz,1H),7.20(d,J=5.6Hz,1H),7.22(d,J=4.0Hz,1H),7.60(s,1H),9.83(s,1H)
Synthesis Example 11
Under a nitrogen atmosphere, 1.0 g of compound (2008) and 25 ml of 1,2-dichloroethane were placed in a 50 ml three-necked flask, and 0.56 ml of phosphorus oxychloride and 0.16 ml of DMF were added under ice cooling, followed by refluxing for 17 hours. After returning to room temperature, the mixture was washed successively with 1N aqueous sodium hydroxide solution (100 ml), water (100 ml × 3) and saturated aqueous sodium chloride solution, dried over magnesium sulfate, and after removing magnesium sulfate, the solvent was distilled off. The obtained product was separated and purified by column chromatography (silica gel, dichloromethane: hexane = 1: 1, Rf = 0.36 component) to obtain 840 mg of compound (2011) as a red solid.
1 H-NMR of the obtained compound (2011) was as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.89 (m, 6H), 1.29-1.41 (m, 12H), 1.61 (quint, J = 6.8Hz, 2H), 1.70 (quint, J = 6.8 Hz, 2H), 2.78 (t, J = 7.6Hz, 2H), 2.83 (t, J = 8.0Hz, 2H), 6.95 (d, J = 5.2Hz, 1H), 7.04 (d, J = 3.2Hz, 1H), 7.17 (d, J = 4.0Hz, 1H), 7.18 (d, J = 3.2Hz, 1H), 7.20 (d, J = 5.6Hz, 1H), 7.22 (d, J = 4.0Hz, 1H) , 7.60 (s, 1H), 9.83 (s, 1H)

合成例12
氷冷下、NBS460mgをDMF15mlに溶解させた溶液を、化合物(2011)1.38gのDMF−CS(1:1/v:v)混合溶液50mlに20分間かけて滴下した。室温で12時間攪拌した後、溶液に飽和炭酸水素ナトリウム水溶液50mlを加え、スクシンイミドを析出させた。析出物をセライト濾過で除去し、クロロホルムで洗浄した。濾液をクロロホルム(100ml×3)で抽出し、この有機相を水(100ml×3)で洗浄し、硫酸マグネシウムで乾燥させ、硫酸マグネシウムを除去後、溶媒を留去し、化合物(2012)1.47gを赤橙色固体として得た。
得られた化合物(2012)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS):δ0.89(m,6H),1.29-1.41(m,12H),1.61-1.70(m, 4H),2.70(t,J=7.6Hz,2H),2.81(t,J=8.0Hz,2H),6.91(s,1H),6.99(d,J=3.2Hz,1H),7.17(d,J=4.0Hz,1H),7.18(d,J=3.2Hz,1H),7.22(d,J=4.0Hz,1H),7.60(s,1H),9.83(s,1H)
MS(GC) m/z;606
Synthesis Example 12
Under ice cooling, a solution prepared by dissolving 460 mg of NBS in 15 ml of DMF was added dropwise to 50 ml of a mixed solution of 1.38 g of compound (2011) in DMF-CS 2 (1: 1 / v: v) over 20 minutes. After stirring at room temperature for 12 hours, 50 ml of a saturated aqueous sodium hydrogen carbonate solution was added to the solution to precipitate succinimide. The precipitate was removed by Celite filtration and washed with chloroform. The filtrate was extracted with chloroform (100 ml × 3), this organic phase was washed with water (100 ml × 3), dried over magnesium sulfate, magnesium sulfate was removed, the solvent was distilled off, and compound (2012) 1. 47 g was obtained as a red-orange solid.
1 H-NMR and mass spectrum of the obtained compound (2012) were as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.89 (m, 6H), 1.29-1.41 (m, 12H), 1.61-1.70 (m, 4H), 2.70 (t, J = 7.6Hz, 2H ), 2.81 (t, J = 8.0Hz, 2H), 6.91 (s, 1H), 6.99 (d, J = 3.2Hz, 1H), 7.17 (d, J = 4.0Hz, 1H), 7.18 (d, J = 3.2Hz, 1H), 7.22 (d, J = 4.0Hz, 1H), 7.60 (s, 1H), 9.83 (s, 1H)
MS (GC) m / z; 606

合成例13
化合物(2008)の代わりに化合物(2005)を用いた以外は、合成例9と同様の処理を行い、化合物(2005)300mgから化合物(2013)471mgを収率72%で得た。
得られた化合物(2013)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS):δ0.92(t,J=7.3Hz,9H),1.21(t,J=8.6Hz,6H),1.30-1.42(m,6H),1.61(quint,J=4.6Hz,6H),7.48(d,J=5.1Hz,2H),7.59(d,J=4.9Hz,1H),7.64(d,J=5.1Hz,2H)
MS(EI) m/z;533(M+)
Synthesis Example 13
The same treatment as in Synthesis Example 9 was performed except that the compound (2005) was used instead of the compound (2008) to obtain 471 mg of the compound (2013) in a yield of 72% from 300 mg of the compound (2005).
1 H-NMR and mass spectrum of the obtained compound (2013) were as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.92 (t, J = 7.3 Hz, 9H), 1.21 (t, J = 8.6 Hz, 6H), 1.30-1.42 (m, 6H), 1.61 ( quint, J = 4.6Hz, 6H), 7.48 (d, J = 5.1Hz, 2H), 7.59 (d, J = 4.9Hz, 1H), 7.64 (d, J = 5.1Hz, 2H)
MS (EI) m / z; 533 (M +)

合成例14
化合物(2012)511mgと化合物(2013)452mgをトルエン20ml中、Pd(PPH48mg存在下、16時間還流した。反応終了後、反応液を室温まで冷却し、セライト濾過し、トルエンで洗浄した。濾液を留去及び乾燥し、生成物を得た。この生成物を中圧シリカゲルクロマトグラフィー(ジクロロメタン)で精製し、ヘキサン−クロロホルム混合溶媒で再結晶し、化合物(2014)560mgを赤色粉末として得た。
得られた化合物(2014)のMSスペクトル及び元素分析結果は、以下の通りであった。
MS(DI) m/z;770(M+)
Anal.Calcd(%)for C41H38OS7: C63.85,H4.97; Found C63.61,H4.94
Synthesis Example 14
511 mg of the compound (2012) and 452 mg of the compound (2013) were refluxed in the presence of 48 mg of Pd (PPH 3 ) 4 in 20 ml of toluene for 16 hours. After completion of the reaction, the reaction solution was cooled to room temperature, filtered through celite, and washed with toluene. The filtrate was distilled off and dried to obtain the product. This product was purified by medium pressure silica gel chromatography (dichloromethane) and recrystallized with a mixed solvent of hexane-chloroform to obtain 560 mg of compound (2014) as a red powder.
The MS spectrum and elemental analysis results of the obtained compound (2014) were as follows.
MS (DI) m / z; 770 (M +)
Anal.Calcd (%) for C 41 H 38 OS 7 : C63.85, H4.97; Found C63.61, H4.94

合成例15
窒素雰囲気下、化合物(2012)700mgと化合物(2009)960mgを無水トルエン55mlに溶解し、15分間アルゴンガスを吹き込み脱気した。Pd(PPhを50mg加え、20時間還流した。反応終了後、反応液をセライト濾過し、溶媒を留去した。得られた生成物をシリカゲルカラムクロマトグラフィー(塩化メチレン:ヘキサン=1:1/v:v、Rf=0.44成分)で精製し、化合物(2015)1.1gを赤色固体として得た。
得られた化合物(2015)のH−NMRは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS):δ0.87-0.92(m,12H),1.31-1.41(m,24H),1.66-1.70(m,8H),2.75-2.78(m,8H),6.95(d,J=5.3Hz,2H),7.01(s,2H),7.03(d,J=3.8Hz,2H),7.04(d,J=3.6Hz,2H),7.06(d,J=3.6Hz,2H),7.14(d,J=3.9Hz,2H),7.17-7.22(m,6H),7.60(s,1H),9.83(s,1H)
Synthesis Example 15
Under a nitrogen atmosphere, 700 mg of the compound (2012) and 960 mg of the compound (2009) were dissolved in 55 ml of anhydrous toluene, and degassed by blowing argon gas for 15 minutes. 50 mg of Pd (PPh 3 ) 4 was added and refluxed for 20 hours. After completion of the reaction, the reaction solution was filtered through Celite, and the solvent was distilled off. The obtained product was purified by silica gel column chromatography (methylene chloride: hexane = 1: 1 / v: v, Rf = 0.44 component) to obtain 1.1 g of compound (2015) as a red solid.
1 H-NMR of the obtained compound (2015) was as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.87-0.92 (m, 12H), 1.31-1.41 (m, 24H), 1.66-1.70 (m, 8H), 2.75-2.78 (m, 8H) 6.95 (d, J = 5.3Hz, 2H), 7.01 (s, 2H), 7.03 (d, J = 3.8Hz, 2H), 7.04 (d, J = 3.6Hz, 2H), 7.06 (d, J = 3.6Hz, 2H), 7.14 (d, J = 3.9Hz, 2H), 7.17-7.22 (m, 6H), 7.60 (s, 1H), 9.83 (s, 1H)

合成例16
化合物(2015)332mgをDMF30mlとCS10mlの混合溶液に添加し、0℃に冷却し、NBS67mgを徐々に添加し、室温で15時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加え、スクシンイミドを析出させた。固体をセライト濾過により除去し、濾液をジクロロメタンで抽出して得られた有機相を水洗し、硫酸マグネシウムで乾燥し、硫酸マグネシウム除去した後、溶媒を留去した。得られた生成物をジクロロメタン−ヘキサン混合溶媒で再結晶し、化合物(2016)322mgを赤色固体として得た。
得られた化合物(2016)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(400MHz,CDCl3,TMS):δ0.87-0.92(m,12H),1.29-1.41(m,24H),1.60-1.70(m,8H),2.75-2.78(m,8H),6.91(s,1H),6.97(s,1H),7.01(s,2H),7.03(d,J=3.8Hz,1H),7.06(d,J=3.6Hz,1H),7.08(d,J=3.6Hz,1H),7.14(d,J=3.9Hz,2H),7.17-7.22(m,2H),7.60(s,1H),9.86(s,1H)
MS(MALDI-TOF)calcd for 1102.56(M+) ; found 1103.00
Synthesis Example 16
332 mg of compound (2015) was added to a mixed solution of 30 ml of DMF and 10 ml of CS 2 , cooled to 0 ° C., 67 mg of NBS was gradually added, and the mixture was stirred at room temperature for 15 hours. A saturated aqueous sodium hydrogen carbonate solution was added to the reaction solution to precipitate succinimide. The solid was removed by celite filtration, and the organic phase obtained by extracting the filtrate with dichloromethane was washed with water, dried over magnesium sulfate, magnesium sulfate was removed, and then the solvent was distilled off. The obtained product was recrystallized from a dichloromethane-hexane mixed solvent to obtain 322 mg of the compound (2016) as a red solid.
1 H-NMR and mass spectrum of the obtained compound (2016) were as follows.
1 H-NMR (400 MHz, CDCl 3 , TMS): δ 0.87-0.92 (m, 12H), 1.29-1.41 (m, 24H), 1.60-1.70 (m, 8H), 2.75-2.78 (m, 8H) , 6.91 (s, 1H), 6.97 (s, 1H), 7.01 (s, 2H), 7.03 (d, J = 3.8Hz, 1H), 7.06 (d, J = 3.6Hz, 1H), 7.08 (d, J = 3.6Hz, 1H), 7.14 (d, J = 3.9Hz, 2H), 7.17-7.22 (m, 2H), 7.60 (s, 1H), 9.86 (s, 1H)
MS (MALDI-TOF) calcd for 1102.56 (M +); found 1103.00

合成例17
化合物(2012)の代わりに化合物(2016)を用いた以外は、合成例14と同様の処理を行い、化合物(2016)146mgから化合物(2017)160mgを収率96%で得た。
得られた化合物(2017)のMSスペクトルは、以下の通りであった。
MS(MALDI-TOF)calcd foe 1268.02(M+) ; found 1267.87
Synthesis Example 17
The same treatment as in Synthesis Example 14 was performed, except that compound (2016) was used instead of compound (2012), and 160 mg of compound (2017) was obtained from 146 mg of compound (2016) with a yield of 96%.
The MS spectrum of the obtained compound (2017) was as follows.
MS (MALDI-TOF) calcd foe 1268.02 (M +); found 1267.87

合成例18
化合物(2005)500mgをジクロロメタン40mlに溶解し、NBS1.08gを加えた酢酸10ml溶液を0℃条件下添加し、その後、室温で24時間攪拌した。析出した結晶をろ取し、水及びエタノールで洗浄して得られた固体をクロロベンゼンで再結晶し、化合物(2018)1.27gを白色粉末として得た。
得られた化合物(2018)のH−NMR及びマススペクトルは、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS) : δ7.61(s, 3H)
MS(EI) m/z; 426(M+)
Synthesis Example 18
Compound (2005) (500 mg) was dissolved in dichloromethane (40 ml), and a solution of NBS (1.08 g) in acetic acid (10 ml) was added at 0 ° C., and the mixture was stirred at room temperature for 24 hours. The precipitated crystals were collected by filtration and washed with water and ethanol to recrystallize the resulting solid with chlorobenzene to obtain 1.27 g of compound (2018) as a white powder.
1 H-NMR and mass spectrum of the obtained compound (2018) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS): δ7.61 (s, 3H)
MS (EI) m / z; 426 (M +)

合成例19
窒素雰囲気下、トルエン40mlに化合物(2018)2.12gと化合物(2009)412mgを加え、更にPd(PPhを147mg加え16時間加熱還流した。反応後冷却し、反応液をセライト上でろ過し、トルエンで洗浄した後、溶媒を留去した。生成物を中圧シリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製し、化合物(2019)545mgを橙色固体として得た。
得られた化合物(2019)のH−NMR及びマススペクトル及び元素分析は、以下の通りであった。
1H-NMR(270MHz,CDCl3,TMS):δ0.88-0.96(m,18H),1.25-1.55(m,36H),1.61-1.72(m,12H),2.67(t,J=8.1Hz,6H),2.78(t,J=8.1Hz,6H),6.94(d,J=5.4Hz,3H),6.97(s,3H),6.98(d,J=3.8Hz,3H),7.02(s,3H),7.06(d,J=3.8Hz,3H),7.07(d,J=3.8Hz,3H),7.17(d,J=5.4Hz,3H)
MS(MALDI-TOF)calcd for 1734.38(M+) ; found 1734.68
Anal.calcd(%) C=66.39,H=5.92, Found C=65.77, H=5.81
Synthesis Example 19
Under a nitrogen atmosphere, 2.12 g of compound (2018) and 412 mg of compound (2009) were added to 40 ml of toluene, and 147 mg of Pd (PPh 3 ) 4 was further added, followed by heating under reflux for 16 hours. After the reaction, the reaction solution was cooled, the reaction solution was filtered on celite, washed with toluene, and then the solvent was distilled off. The product was purified by medium pressure silica gel column chromatography (hexane: dichloromethane = 1: 1) to obtain 545 mg of compound (2019) as an orange solid.
1 H-NMR and mass spectrum and elemental analysis of the obtained compound (2019) were as follows.
1 H-NMR (270 MHz, CDCl 3 , TMS): δ 0.88-0.96 (m, 18H), 1.25-1.55 (m, 36H), 1.61-1.72 (m, 12H), 2.67 (t, J = 8.1Hz , 6H), 2.78 (t, J = 8.1Hz, 6H), 6.94 (d, J = 5.4Hz, 3H), 6.97 (s, 3H), 6.98 (d, J = 3.8Hz, 3H), 7.02 (s , 3H), 7.06 (d, J = 3.8Hz, 3H), 7.07 (d, J = 3.8Hz, 3H), 7.17 (d, J = 5.4Hz, 3H)
MS (MALDI-TOF) calcd for 1734.38 (M +); found 1734.68
Anal.calcd (%) C = 66.39, H = 5.92, Found C = 65.77, H = 5.81

合成例20
前述の化合物(2011)合成時のホルミル化手法を用い、化合物(2019)688mgのホルミル化を実施し、化合物(2020)465mg(収率66%)を赤色固体として得た。
得られた化合物(2020)のマススペクトルは、以下の通りであった。
MS(MALDI-TOF)calcd for 1762.37(M+) ; found 1762.17
Synthesis Example 20
Using the formylation method used in the synthesis of compound (2011) described above, 688 mg of compound (2019) was formylated to give 465 mg (yield 66%) of compound (2020) as a red solid.
The mass spectrum of the obtained compound (2020) was as follows.
MS (MALDI-TOF) calcd for 1762.37 (M +); found 1762.17

実施例1
窒素雰囲気下、0.78mlのピペリジンと化合物(2010)262mgとシアノ酢酸35mgを乾燥クロロホルム4.7mlとアセトニトリル4.7mlの混合溶液中15時間攪拌反応させた。反応終了後、10%酢酸水溶液47mlを添加し、この液をクロロホルム−水で抽出して得られた有機相を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した後、硫酸マグネシウムを除去し、溶媒を留去した。得られた固形物をシリカゲルクロマトグラフィー(クロロホルム)で精製し、化合物(9)113mgを暗赤色固体として得た。
得られた化合物(9)のマススペクトルは、以下の通りであった。
MS(MALDI-TOF)calcd for 1335.07(M+); found 1335.24
Example 1
Under a nitrogen atmosphere, 0.78 ml of piperidine, 262 mg of the compound (2010) and 35 mg of cyanoacetic acid were stirred and reacted in a mixed solution of 4.7 ml of dry chloroform and 4.7 ml of acetonitrile for 15 hours. After completion of the reaction, 47 ml of 10% aqueous acetic acid solution was added, and the resulting organic phase was extracted with chloroform-water. The organic phase obtained was washed with saturated brine, dried over magnesium sulfate, magnesium sulfate was removed, and the solvent was removed. Was distilled off. The obtained solid was purified by silica gel chromatography (chloroform) to obtain 113 mg of compound (9) as a dark red solid.
The mass spectrum of the obtained compound (9) was as follows.
MS (MALDI-TOF) calcd for 1335.07 (M +); found 1335.24

実施例2
化合物(2010)の代わりに化合物(2014)を使用した以外は、実施例1と同様の処理を行い、化合物(2014)300mgから化合物(7)280mgを暗赤色固体として得た。
得られた化合物(7)のMSスペクトル及び元素分析結果は、以下の通りであった。
MS(MALDI-TOF)calcd for 838.25(M+) ; Found 838.07
Anal.Calcd(%) for C44H38NO2S7 : C63.04, H4.69, N1.67 ; found C63.04, H4.69, N1.67
Example 2
The same treatment as in Example 1 was carried out except that the compound (2014) was used instead of the compound (2010) to obtain 280 mg of the compound (7) as a dark red solid from 300 mg of the compound (2014).
The MS spectrum and elemental analysis results of the obtained compound (7) were as follows.
MS (MALDI-TOF) calcd for 838.25 (M +); Found 838.07
Anal.Calcd (%) for C 44 H 38 NO 2 S 7 : C63.04, H4.69, N1.67; found C63.04, H4.69, N1.67

実施例3
化合物(2010)の代わりに化合物(2017)を使用した以外は、実施例1と同様の処理を行い、化合物(2017)167mgから化合物(8)150mgを暗赤色固体として得た。
得られた化合物(8)のMSスペクトル及び元素分析結果は、以下の通りであった。
MS(MALDI-TOF)calcd for 1335.07(M+) ; Found 1335.06
Anal.Calcd(%) for C44H38NO2S7 : C63.04, H4.69, N1.67 ; found C63.04, H4.69, N1.67
Example 3
The same treatment as in Example 1 was performed, except that the compound (2017) was used instead of the compound (2010), and 150 mg of the compound (8) was obtained as a dark red solid from 167 mg of the compound (2017).
The MS spectrum and elemental analysis results of the resulting compound (8) were as follows.
MS (MALDI-TOF) calcd for 1335.07 (M +); Found 1335.06
Anal.Calcd (%) for C 44 H 38 NO 2 S 7 : C63.04, H4.69, N1.67; found C63.04, H4.69, N1.67

実施例4
化合物(2010)の代わりに化合物(2020)を使用した以外は、実施例1と同様の処理を行い、化合物(2020)330mgから化合物(10)120mgを暗赤色固体として得た。
得られた化合物(10)のマススペクトルは、以下の通りであった。
MS(MALDI-TOF)calcd for 1829.38(M+) ; found 1830.10
Example 4
The same treatment as in Example 1 was carried out except that the compound (2020) was used instead of the compound (2010) to obtain 120 mg of the compound (10) as a dark red solid from 330 mg of the compound (2020).
The mass spectrum of the obtained compound (10) was as follows.
MS (MALDI-TOF) calcd for 1829.38 (M +); found 1830.10

色素(7)乃至(10)の諸物性データを表2に示した。酸化電位(E1/2ox/V)は、Hokuto Denko HA−301 potentiostat及びHokuto Denko HB−104 function generatorを用いて測定した。   Various physical property data of the dyes (7) to (10) are shown in Table 2. The oxidation potential (E1 / 2ox / V) was measured using Hokuto Denko HA-301 potentiostat and Hokuto Denko HB-104 function generator.

実施例5〜10
実施例1乃至4で得られた色素(7)乃至(10)を用いて、下記の作成方法により色素増感太陽電池素子を作製した。
FTOガラス(1.5cm×2.5cm)を蒸留水、アセトン、2−プロパノールでそれぞれ10分間超音波洗浄した。その後、20分間UV−O照射した。導電面に、二酸化チタンペースト(触媒化成工業社製PST−18NR:平均粒子径20nm)をドクターブレード(高さ50μm)で塗布し、500℃で50分間焼結させ、酸化チタン薄膜電極を得た。この酸化チタン薄膜電極を濃度0.3mMの色素化合物のクロロホルム溶液中に12時間浸すことで色素を吸着させ、色素吸着酸化チタン薄膜電極を得た。この色素吸着酸化チタン薄膜電極と、FTOにPtを蒸着させたPt対極とを、図1に示すように、レドックス電解質溶液(0.05M LiI,0.05M I,0.6M 1−プロピル−2,3−ジメチルイミダゾリウムアイオダイド,0.5M t−ブチルピリジンのアセトニトリル溶液)を挟むように配置し、レドックス電解質溶液の周囲をパラフィルムを用いてパッキングすることで、素子を得た。
Examples 5-10
Using the dyes (7) to (10) obtained in Examples 1 to 4, dye-sensitized solar cell elements were produced by the following production method.
FTO glass (1.5 cm × 2.5 cm) was ultrasonically cleaned with distilled water, acetone, and 2-propanol for 10 minutes each. Thereafter, UV-O 3 irradiation was performed for 20 minutes. Titanium dioxide paste (PST-18NR manufactured by Catalyst Kasei Kogyo Co., Ltd .: average particle size 20 nm) was applied to the conductive surface with a doctor blade (height 50 μm) and sintered at 500 ° C. for 50 minutes to obtain a titanium oxide thin film electrode. . The titanium oxide thin film electrode was immersed in a chloroform solution of a dye compound having a concentration of 0.3 mM for 12 hours to adsorb the dye to obtain a dye-adsorbed titanium oxide thin film electrode. And the dye-adsorbed titanium oxide film electrode and a Pt counter electrode obtained by depositing Pt on the FTO, as shown in FIG. 1, a redox electrolyte solution (0.05M LiI, 0.05M I 2, 0.6M 1- propyl - 2,3-dimethylimidazolium iodide, acetonitrile solution of 0.5M t-butylpyridine) was placed, and the periphery of the redox electrolyte solution was packed using parafilm to obtain a device.

測定する電池の発電面積は0.25cmとして、光源はNewport Model 67005 50−500Wを用い、AM(大気圏通過空気量)1.5フィルターを通して100mW/cmとし、KEITHKEY 2400 Source Meterを用いて測定を行った。 The power generation area of the battery to be measured is 0.25 cm 2 , the light source is Newport Model 67005 50-500 W, it is 100 mW / cm 2 through an AM (atmosphere passing air amount) 1.5 filter, and the measurement is performed using a KEITKEYKEY 2400 Source Meter. Went.

化合物(7)乃至(10)を用いた色素増感太陽電池の電池性能評価結果を表3に示す。   Table 3 shows the battery performance evaluation results of the dye-sensitized solar cells using the compounds (7) to (10).

表3の結果より、本願化合物(7)乃至(10)の化合物において、いずれも優れた光電変換効率が得られた。特に化合物(9)を用いた場合、Voc(開放電圧)が0.835Vと極めて高く高電圧用途に適した素子であることがわかった。   From the results in Table 3, in the compounds of the present compounds (7) to (10), excellent photoelectric conversion efficiency was obtained in all cases. In particular, when compound (9) was used, it was found that Voc (open circuit voltage) was as extremely high as 0.835 V, which was suitable for high voltage applications.

特定の構造を有する本発明の色素又はその塩を増感色素に用いることにより、変換効率が高く安定性の高い光電変換素子及び太陽電池が得られる。   By using the dye of the present invention having a specific structure or a salt thereof as a sensitizing dye, a photoelectric conversion element and a solar cell with high conversion efficiency and high stability can be obtained.

Claims (19)

基板上に設けられた酸化物半導体微粒子の薄膜に、下記式(1)で表される色素又はその塩を担持させてなる光電変換素子。

(式(1)中、X乃至Xはそれぞれ酸素原子、硫黄原子又はセレン原子を表す。R乃至Rはそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子、アミノ基、アルコキシル基又は下記式(2)を表し、R乃至Rの少なくとも1つ以上は下記式(2)である。)

(式(2)中、Y及びZはそれぞれ独立に水素原子、カルボキシル基、シアノ基又はリン酸基を表す。Qは酸素原子、硫黄原子又はセレン原子を表す。A乃至Aはそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表す。m1は0乃至16のいずれかの整数を表す。式(2)中、*は式(1)のR乃至Rの結合位置を表す。)
A photoelectric conversion element obtained by supporting a dye represented by the following formula (1) or a salt thereof on a thin film of oxide semiconductor fine particles provided on a substrate.

(In formula (1), X 1 to X 3 each represents an oxygen atom, a sulfur atom or a selenium atom. R 1 to R 6 each independently represents a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom. An atom, an amino group, an alkoxyl group or the following formula (2) is represented, and at least one of R 1 to R 6 is the following formula (2).

(In Formula (2), Y 1 and Z 1 each independently represent a hydrogen atom, a carboxyl group, a cyano group, or a phosphoric acid group. Q 1 represents an oxygen atom, a sulfur atom, or a selenium atom. A 1 to A 3 Each independently represents a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom or an alkoxyl group, m1 represents an integer of 0 to 16. In formula (2), * represents a formula ( 1) represents the bonding position of R 1 to R 6 .
が式(2)で表され、R乃至Rがそれぞれ独立に水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子、アミノ基又はアルコキシル基である請求項1に記載の光電変換素子。 The R 1 is represented by the formula (2), and R 2 to R 6 are each independently a hydrogen atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a halogen atom, an amino group, or an alkoxyl group. Photoelectric conversion element. が硫黄原子である請求項2に記載の光電変換素子。 The photoelectric conversion element according to claim 2, wherein Q 1 is a sulfur atom. が下記式(3)で表される請求項3に記載の光電変換素子。

(式(3)中、A、Y及びZは請求項1に記載の式(2)におけるのと同じ意味を表す。A乃至A11はそれぞれ水素原子、脂肪族炭化水素基、芳香族炭化水素基、ハロゲン原子又はアルコキシル基を表す。n1は0乃至4のいずれかの整数を表す。*は式(1)のRの結合位置を表す。)
The photoelectric conversion element according to claim 3, wherein R 1 is represented by the following formula (3).

(In the formula (3), A 1 , Y 1 and Z 1 represent the same meaning as in the formula (2) according to claim 1. A 4 to A 11 are a hydrogen atom, an aliphatic hydrocarbon group, Represents an aromatic hydrocarbon group, a halogen atom or an alkoxyl group, n1 represents an integer of 0 to 4. * represents the bonding position of R 1 in formula (1).
及びA10が脂肪族炭化水素基である請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein A 5 and A 10 are aliphatic hydrocarbon groups. 及びA10がn−ヘキシル基である請求項5に記載の光電変換素子。 The photoelectric conversion element according to claim 5, wherein A 5 and A 10 are n-hexyl groups. 、A乃至A及びA11がいずれも水素原子である請求項4乃至6のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 4 to 6, wherein A 4 , A 6 to A 9 and A 11 are all hydrogen atoms. n1が0乃至2のいずれかの整数である請求項4乃至7のいずれか一項に記載の光電変換素子。   The photoelectric conversion element according to any one of claims 4 to 7, wherein n1 is an integer of 0 to 2. 、R及びRがいずれも水素原子であり、R及びRがそれぞれ独立に水素原子又は芳香族炭化水素基である請求項2乃至8のいずれか一項に記載の光電変換素子。 The photoelectric conversion according to any one of claims 2 to 8, wherein R 2 , R 4 and R 6 are all hydrogen atoms, and R 3 and R 5 are each independently a hydrogen atom or an aromatic hydrocarbon group. element. 及びRがいずれも下記式(4)で表される請求項9に記載の光電変換素子。
The photoelectric conversion element according to claim 9, wherein R 3 and R 5 are both represented by the following formula (4).
乃至Xがいずれも硫黄原子である請求項1乃至10のいずれか一項に記載の光電変換素子。 The photoelectric conversion device as claimed in any one of claims 1 to 10 X 1 to X 3 are each a sulfur atom. 及びZの少なくとも1つがカルボキシル基である請求項1乃至11のいずれか一項に記載の光電変換素子。 The photoelectric conversion element according to claim 1 , wherein at least one of Y 1 and Z 1 is a carboxyl group. 及びZのいずれか1つがカルボキシル基であり、他方がシアノ基である請求項12に記載の光電変換素子。 The photoelectric conversion element according to claim 12, wherein any one of Y 1 and Z 1 is a carboxyl group, and the other is a cyano group. がカルボキシル基でありZがシアノ基である請求項13に記載の光電変換素子。 The photoelectric conversion device according to claim 13, wherein Y 1 is a carboxyl group and Z 1 is a cyano group. が水素原子である請求項1乃至14のいずれか一項に記載の光電変換素子。 The photoelectric conversion device as claimed in any one of claims 1 to 14 A 1 is a hydrogen atom. 式(1)で表される色素またはその塩が、下記式(7)乃至(10)のいずれかである請求項1に記載の光電変換素子。
The photoelectric conversion element according to claim 1, wherein the dye represented by the formula (1) or a salt thereof is any one of the following formulas (7) to (10).
請求項1乃至16のいずれか一項に記載の光電変換素子を用いてなる太陽電池。   The solar cell which uses the photoelectric conversion element as described in any one of Claims 1 thru | or 16. 請求項1に記載の式(1)で表される色素又はその塩。   The pigment | dye represented by Formula (1) of Claim 1, or its salt. 請求項16に記載の式(7)乃至(10)で表される色素又はその塩。   The pigment | dye represented by Formula (7) thru | or (10) of Claim 16, or its salt.
JP2010091865A 2010-04-13 2010-04-13 Dye-sensitized photoelectric conversion element Expired - Fee Related JP5590552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091865A JP5590552B2 (en) 2010-04-13 2010-04-13 Dye-sensitized photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091865A JP5590552B2 (en) 2010-04-13 2010-04-13 Dye-sensitized photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2011222373A true JP2011222373A (en) 2011-11-04
JP5590552B2 JP5590552B2 (en) 2014-09-17

Family

ID=45039090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091865A Expired - Fee Related JP5590552B2 (en) 2010-04-13 2010-04-13 Dye-sensitized photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5590552B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041559A (en) * 2015-08-20 2017-02-23 日本化薬株式会社 Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
JP2017041560A (en) * 2015-08-20 2017-02-23 日本化薬株式会社 Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
JPWO2015129581A1 (en) * 2014-02-25 2017-03-30 日本化薬株式会社 Novel organic polycyclic aromatic compounds and uses thereof
US10093680B2 (en) 2017-02-20 2018-10-09 National Chiao Tung University Asymmetric benzotrichalcogenophene compound, synthesis method thereof and polymer
CN108912139A (en) * 2018-06-15 2018-11-30 南京邮电大学 A kind of organic solar batteries electron acceptor material and the preparation method and application thereof
CN108997374A (en) * 2018-08-27 2018-12-14 青岛农业大学 A kind of three thiophene of benzo-front three aldehyde compound and its synthetic method
CN109369670A (en) * 2018-11-24 2019-02-22 青岛农业大学 A kind of synthetic method of three thiophene front three aldehyde compound of benzo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119525A1 (en) * 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology Organic compound, semiconductor thin film electrode using the same, photoelectric transducer, and photoelectrochemical solar cell
WO2009053108A1 (en) * 2007-10-25 2009-04-30 Sony Corporation A dye including an anchoring group in its molecular structure
WO2009107100A2 (en) * 2008-02-27 2009-09-03 Ecole Polytechnique Federale De Lausanne (Epfl) High molecular extinction coefficient metal dyes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119525A1 (en) * 2006-03-31 2007-10-25 National Institute Of Advanced Industrial Science And Technology Organic compound, semiconductor thin film electrode using the same, photoelectric transducer, and photoelectrochemical solar cell
WO2009053108A1 (en) * 2007-10-25 2009-04-30 Sony Corporation A dye including an anchoring group in its molecular structure
WO2009107100A2 (en) * 2008-02-27 2009-09-03 Ecole Polytechnique Federale De Lausanne (Epfl) High molecular extinction coefficient metal dyes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014029708; Yohann Nicolas et al.: 'Planarized Star-Shaped Oligothiophenes with Enhanced pi-Electron Delocalization' ORGANIC LETTERS Vol. 6, No. 2, 20031219, 273-276, American Chemical Society *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015129581A1 (en) * 2014-02-25 2017-03-30 日本化薬株式会社 Novel organic polycyclic aromatic compounds and uses thereof
JP2017041559A (en) * 2015-08-20 2017-02-23 日本化薬株式会社 Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
JP2017041560A (en) * 2015-08-20 2017-02-23 日本化薬株式会社 Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
US10093680B2 (en) 2017-02-20 2018-10-09 National Chiao Tung University Asymmetric benzotrichalcogenophene compound, synthesis method thereof and polymer
US10428085B2 (en) 2017-02-20 2019-10-01 National Chiao Tung University Asymmetric benzotrichalcogenophene compound and polymer
CN108912139A (en) * 2018-06-15 2018-11-30 南京邮电大学 A kind of organic solar batteries electron acceptor material and the preparation method and application thereof
CN108997374A (en) * 2018-08-27 2018-12-14 青岛农业大学 A kind of three thiophene of benzo-front three aldehyde compound and its synthetic method
CN108997374B (en) * 2018-08-27 2021-09-17 青岛农业大学 Benzotrithiophene-trimethyl aldehyde compound and synthesis method thereof
CN109369670A (en) * 2018-11-24 2019-02-22 青岛农业大学 A kind of synthetic method of three thiophene front three aldehyde compound of benzo

Also Published As

Publication number Publication date
JP5590552B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5106381B2 (en) Dye-sensitized photoelectric conversion element
JP5466943B2 (en) Sensitizing dye for dye-sensitized solar cell with expanded pi-electron conjugate system
JP4963343B2 (en) Dye-sensitized photoelectric conversion element
JP5306354B2 (en) Dye-sensitized photoelectric conversion element
JP5138371B2 (en) Dye-sensitized photoelectric conversion element
JP5145037B2 (en) Dye-sensitized photoelectric conversion element
JP6278504B2 (en) Novel compound and photoelectric conversion element using the same
JP2008021496A (en) Dye-sensitized photoelectric conversion element
JP5590552B2 (en) Dye-sensitized photoelectric conversion element
JP2009048925A (en) Dye-sensitized photoelectric conversion element
JP5300454B2 (en) Dye-sensitized photoelectric conversion element
JP2006294360A (en) Dye-sensitized photoelectric transducer
JP5957072B2 (en) Dye-sensitized photoelectric conversion element
JP6440296B2 (en) Triphenylamine-linked dibenzopyromethene dyes as sensitizers for dye-sensitized solar cells
WO2015037676A1 (en) Methine dye and dye-sensitized photoelectric conversion element
JP2017149694A (en) Novel compound and photoelectric conversion element prepared therewith
WO2015137382A1 (en) Methine-based dye and dye-sensitized photoelectric conversion element using same
JP2016196422A (en) Novel compound and dye-sensitized photoelectric conversion element using the same
JP2016185911A (en) New compound and photoelectric conversion element including the same
JP2016196558A (en) Novel compound and dye-sensitized photoelectric conversion element using the same
WO2015118963A1 (en) Novel compound and photoelectric conversion element containing same
JP2016196423A (en) Novel compound and dye-sensitized photoelectric conversion element using the same
JP2016138175A (en) Novel compound, and dye-sensitized photoelectric conversion element using the same
JP2016196424A (en) Novel compound and dye-sensitized photoelectric conversion element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5590552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees