JP2011222323A - Metal substrate, carbon nanotube electrode and method for manufacturing the same - Google Patents

Metal substrate, carbon nanotube electrode and method for manufacturing the same Download PDF

Info

Publication number
JP2011222323A
JP2011222323A JP2010090797A JP2010090797A JP2011222323A JP 2011222323 A JP2011222323 A JP 2011222323A JP 2010090797 A JP2010090797 A JP 2010090797A JP 2010090797 A JP2010090797 A JP 2010090797A JP 2011222323 A JP2011222323 A JP 2011222323A
Authority
JP
Japan
Prior art keywords
metal substrate
substrate
carbon nanotube
hydrogen
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010090797A
Other languages
Japanese (ja)
Other versions
JP5746830B2 (en
Inventor
Masayasu Inaguma
正康 稲熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010090797A priority Critical patent/JP5746830B2/en
Publication of JP2011222323A publication Critical patent/JP2011222323A/en
Application granted granted Critical
Publication of JP5746830B2 publication Critical patent/JP5746830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a metal substrate that mitigates or prevents hydrogen embrittlement to be caused by hydrogen gas atmosphere in a CVD process, without decreasing conductivity.SOLUTION: A metal substrate 1A (1) according to the present invention comprises a base 2 formed of a metal and a coat 3 composed of metal material whose dissolution heat of hydrogen has a positive value and which is disposed at least on one surface side of the base.

Description

本発明は、カーボンナノチューブの形成に好適な金属基板、該金属基板を用いたカーボンナノチューブ電極及びその製造方法に関する。   The present invention relates to a metal substrate suitable for forming carbon nanotubes, a carbon nanotube electrode using the metal substrate, and a method for producing the same.

カーボンナノチューブの製造においてCVD法が通常用いられる。そしてこのCVDのプロセスでは、900〜600度の高温にした炭化水素ガスや水素ガスなどの雰囲気で、基板に担特させた触媒からカーボンナノチューブを成長させている。これまでにカーボンナノチューブを直接成長させた金属基板を電極として、電気二重層キャパシタ(例えば特許文献1参照)や色素増感太陽電池(例えば特許文献2参照)に応用されている。   A CVD method is usually used in the production of carbon nanotubes. In this CVD process, carbon nanotubes are grown from a catalyst dedicated to the substrate in an atmosphere such as hydrocarbon gas or hydrogen gas at a high temperature of 900 to 600 degrees. So far, it has been applied to electric double layer capacitors (for example, see Patent Document 1) and dye-sensitized solar cells (for example, see Patent Document 2) using a metal substrate on which carbon nanotubes are directly grown as an electrode.

このような用途においては、エネルギー密度や可撓性の必要性から一般的に基板を50μm以下に薄くする必要があるため、CVDの高温条件では、使用する水素ガスやプロセス中に炭化水素ガスが分解して発生した水素ガスによって金属基板が脆化する問題が顕著となる。特に、色素増感太陽電池では電解液にヨウ素を用いるため、耐食性の観点から使用される基板の材質はチタンに限定されるが、チタンは非常に安定な水素化物を作るため水素脆化によって薄いチタン基板は可撓性を失い、最悪の場合損壊してしまう。   In such applications, it is generally necessary to thin the substrate to 50 μm or less due to the need for energy density and flexibility. Therefore, under the high temperature conditions of CVD, hydrogen gas used or hydrocarbon gas is generated during the process. The problem that the metal substrate becomes brittle by the hydrogen gas generated by decomposition becomes significant. In particular, in dye-sensitized solar cells, since iodine is used as the electrolyte, the substrate material used from the viewpoint of corrosion resistance is limited to titanium, but titanium is extremely thin due to hydrogen embrittlement to form a very stable hydride. The titanium substrate loses flexibility and is damaged in the worst case.

ところが、特許文献1、および特許文献2を含め従来のカーボンナノチューブ電極の開発においては、基板の脆化を抑制するための技術は開示されていない。チタンの水素脆化を軽減するためには以下のような技術が開示されているが、チタン薄板を電極の基板として用いるには問題解決となっていない。   However, in the development of conventional carbon nanotube electrodes including Patent Document 1 and Patent Document 2, a technique for suppressing embrittlement of the substrate is not disclosed. In order to reduce hydrogen embrittlement of titanium, the following techniques are disclosed, but the problem is not solved when a titanium thin plate is used as an electrode substrate.

(1)まずチタンに酸化膜をつける方法では、室温における水素脆化を防ぐことができても、CVDプロセスの高温条件では水素能化を防ぐことはできなかった。さらに酸化膜をつけることは基板の導電性を損なうので電極としての用途に適していない。
(2)また、浸炭後に真空中の熱処理によって水素を放出させる方法では、浸炭によってカーボンナノチューブの触媒が失活する問題や、触媒からアモルファスカーボンが析出してしまう問題があるため適用できない。
(1) In the method of attaching an oxide film to titanium, even though hydrogen embrittlement at room temperature can be prevented, hydrogen activation cannot be prevented under the high temperature conditions of the CVD process. Further, the addition of an oxide film is not suitable for use as an electrode because it impairs the conductivity of the substrate.
(2) Moreover, the method of releasing hydrogen by heat treatment in a vacuum after carburizing is not applicable because there are problems that the carbon nanotube catalyst is deactivated by carburizing and amorphous carbon is precipitated from the catalyst.

(3)また、基板表面の傷や平坦性を向上させ、炭化物、窒化物、炭窒化物を減らして水素吸収を減らす方法では、炭化水素ガスを用いたCVDプロセスを用いるだめ、炭化物の発生は避けられず適用できない。
(4)また、チタンを合金化して水素吸収を軽減化する方法では、合金化はチタンの導電性を損なうので電極としての用途に適していない。
(5)表層にTiC、TiN、Si、SiC、SiN、B、BC、BN、AlNのような被膜を物理気相合成法により形成するする方法では、上記のような材料は導電性に乏しいので電極としての用途に適していない。
(3) Further, in the method of improving the scratches and flatness of the substrate surface and reducing the absorption of hydrogen by reducing carbides, nitrides, and carbonitrides, a CVD process using a hydrocarbon gas can be used. Inevitable and not applicable.
(4) In the method of alloying titanium to reduce hydrogen absorption, alloying is not suitable for use as an electrode because the conductivity of titanium is impaired.
(5) In the method of forming a film such as TiC, TiN, Si, SiC, SiN, B, BC, BN, and AlN on the surface layer by physical vapor synthesis, the above materials are poor in conductivity. Not suitable for use as an electrode.

特開2004−284921号公報Japanese Patent Laid-Open No. 2004-289421 特開2006−202721号公報JP 2006-202721 A

本発明は、このような従来の実情に鑑みて考案されたものであり、導電性を低下させることなく、CVDプロセスにおける水素ガス雰囲気によって引き起こされる水素脆化を軽減または防止した金属基板を提供することを第一の目的とする。
また、本発明は、導電性を低下させることなく、CVDプロセスにおける水素ガス雰囲気によって引き起こされる金属基板の水素脆化を軽減または防止し、基板の可撓性の低下や損壊のないカーボンナノチューブ電極を提供することを第二の目的とする。
また、本発明は、導電性を低下させることなく、CVDプロセスにおける水素ガス雰囲気によって引き起こされる金属基板の水素脆化を軽減または防止し、基板の可撓性の低下や損壊のないカーボンナノチューブ電極を製造することができるカーボンナノチューブ電極の製造方法を提供することを第三の目的とする。
The present invention has been devised in view of such a conventional situation, and provides a metal substrate that reduces or prevents hydrogen embrittlement caused by a hydrogen gas atmosphere in a CVD process without lowering conductivity. This is the primary purpose.
In addition, the present invention reduces or prevents hydrogen embrittlement of a metal substrate caused by a hydrogen gas atmosphere in a CVD process without lowering conductivity, and provides a carbon nanotube electrode that does not deteriorate or damage the flexibility of the substrate. The second purpose is to provide it.
In addition, the present invention reduces or prevents hydrogen embrittlement of a metal substrate caused by a hydrogen gas atmosphere in a CVD process without lowering conductivity, and provides a carbon nanotube electrode that does not deteriorate or damage the flexibility of the substrate. A third object is to provide a method for producing a carbon nanotube electrode that can be produced.

本発明の請求項1に記載の金属基板は、金属からなる基体と、前記基体の少なくとも一面側に配された、水素の溶解熱が正である金属材料からなる被膜と、を有することを特徴とする。
本発明の請求項2に記載の金属基板は、請求項1において、前記基体はチタンからなり、その厚さが1〜100μmであることを特徴とする。
本発明の請求項3に記載の金属基板は、請求項1において、前記基体の少なくとも前記一面側又は他面側に配され、鉄、コバルト、ニッケルのうち少なくとも一つを含む金属材料からなる触媒層を有することを特徴とする。
本発明の請求項4に記載のカーボンナノチューブ電極は、請求項1乃至3のいずれかに記載の金属基板上に、カーボンナノチューブを成長させてなることを特徴とする。
本発明の請求項5に記載のカーボンナノチューブの製造方法は、請求項1乃至3のいずれかに記載の金属基板を用い、該金属基板上に炭素を含むガスを作用させることにより前記金属基板上にカーボンナノチューブを成長させる工程を少なくとも備えたことを特徴とする。
The metal substrate according to claim 1 of the present invention has a base made of metal and a coating made of a metal material that is disposed on at least one side of the base and has a positive heat of dissolution of hydrogen. And
The metal substrate according to claim 2 of the present invention is characterized in that, in claim 1, the base is made of titanium and has a thickness of 1 to 100 μm.
A metal substrate according to a third aspect of the present invention is the catalyst according to the first aspect, wherein the catalyst is made of at least one of iron, cobalt, and nickel, and is disposed on at least one side or the other side of the substrate. It has a layer.
A carbon nanotube electrode according to a fourth aspect of the present invention is characterized in that carbon nanotubes are grown on the metal substrate according to any one of the first to third aspects.
According to a fifth aspect of the present invention, there is provided a method for producing a carbon nanotube, comprising: using the metal substrate according to any one of the first to third aspects; and causing a gas containing carbon to act on the metal substrate. And at least a step of growing carbon nanotubes.

本発明の金属基板は、少なくとも一面側に、水素の溶解熱が正である金属材料からなる被膜を有しているので、該金属基板をCVDプロセスに用いた場合に、導電性を低下させることなく、水素ガス雰囲気によって引き起こされる基体の水素脆化を軽減または防止することができる。
本発明のカーボンナノチューブ電極は、少なくとも一面側に、水素の溶解熱が正である金属材料からなる被膜を有する金属基板を用いているので、導電性を低下させることなく、CVDプロセスにおける水素ガス雰囲気によって引き起こされる金属基板の水素脆化を軽減または防止することができる。その結果、本発明では基板の可撓性の低下や損壊のないカーボンナノチューブ電極を提供することができる。
本発明のカーボンナノチューブ電極の製造方法では、少なくとも一面側に、水素の溶解熱が正である金属材料からなる被膜を有する金属基板を用いているので、CVDプロセスを用いてカーボンナノチューブを成長させる場合に、導電性を低下させることなく、水素ガス雰囲気によって引き起こされる金属基板の水素脆化を軽減または防止することができる。その結果、本発明では基板の可撓性の低下や損壊のないカーボンナノチューブ電極を製造することができる。
Since the metal substrate of the present invention has a coating made of a metal material having a positive hydrogen heat of dissolution on at least one side, the conductivity is lowered when the metal substrate is used in a CVD process. In addition, hydrogen embrittlement of the substrate caused by the hydrogen gas atmosphere can be reduced or prevented.
The carbon nanotube electrode of the present invention uses a metal substrate having a coating made of a metal material having a positive hydrogen heat of dissolution on at least one side, so that the hydrogen gas atmosphere in the CVD process can be obtained without reducing the conductivity. It is possible to reduce or prevent hydrogen embrittlement of the metal substrate caused by. As a result, the present invention can provide a carbon nanotube electrode that does not cause a decrease in flexibility or damage to the substrate.
In the method for producing a carbon nanotube electrode of the present invention, when a metal substrate having a coating made of a metal material having a positive heat of hydrogen dissolution is used on at least one side, carbon nanotubes are grown using a CVD process. In addition, hydrogen embrittlement of the metal substrate caused by the hydrogen gas atmosphere can be reduced or prevented without reducing the conductivity. As a result, in the present invention, it is possible to produce a carbon nanotube electrode that does not cause a decrease in flexibility or damage to the substrate.

本発明の金属基板の一構成例を示す模式的断面図。The typical sectional view showing the example of 1 composition of the metal substrate of the present invention. 本発明の金属基板の一構成例を示す模式的断面図。The typical sectional view showing the example of 1 composition of the metal substrate of the present invention. 本発明の金属基板の一構成例を示す模式的断面図。The typical sectional view showing the example of 1 composition of the metal substrate of the present invention. 本発明のカーボンナノチューブ電極の一構成例を示す模式的断面図。FIG. 3 is a schematic cross-sectional view showing a configuration example of a carbon nanotube electrode of the present invention. カーボンナノチューブの製造装置の一構成例を示す模式的断面図。The typical sectional view showing the example of 1 composition of the manufacture device of carbon nanotube.

以下、本発明の金属基板、カーボンナノチューブ電極及びその製造方法の好適な形態について説明する。   Hereinafter, preferred embodiments of the metal substrate, the carbon nanotube electrode, and the manufacturing method thereof according to the present invention will be described.

図1は、本発明の金属基板の一例を模式的に示す断面図である。
本発明の金属基板1A(1)は、金属からなる基体2と、前記基体2の少なくとも一面2a側に配された、水素の溶解熱が正である金属材料からなる被膜3と、を有することを特徴とする。
本発明の金属基板1A(1)は、少なくとも一面2a側に、水素の溶解熱が正である金属材料からなる被膜3を有しているので、該金属基板1をCVDプロセスに用いた場合に、導電性を低下させることなく、水素ガス雰囲気によって引き起こされる基体2の水素脆化を軽減または防止することができる。
FIG. 1 is a cross-sectional view schematically showing an example of a metal substrate of the present invention.
The metal substrate 1A (1) of the present invention has a base 2 made of metal, and a coating 3 made of a metal material that is disposed on at least one surface 2a side of the base 2 and has a positive heat of melting hydrogen. It is characterized by.
Since the metal substrate 1A (1) of the present invention has the coating 3 made of a metal material having a positive hydrogen heat of dissolution on at least one surface 2a side, the metal substrate 1 is used in the CVD process. The hydrogen embrittlement of the substrate 2 caused by the hydrogen gas atmosphere can be reduced or prevented without lowering the conductivity.

基体2としては、特に限定されるものではないが、は、例えばチタン、ジルコニウム、バナジウム、ニオブ等からなるが、チタンからなることが好ましい。また、基体2の厚さは、例えば1〜100μmである。   Although it does not specifically limit as the base | substrate 2, Although it consists of titanium, a zirconium, vanadium, niobium etc., for example, it is preferable to consist of titanium. Moreover, the thickness of the base | substrate 2 is 1-100 micrometers, for example.

被膜3は、水素の溶解熱が正で、水素化物を作りにくい金属材料からなる。
このような金属材料としては、例えばアルミニウム、鋼、金、銀、白金、イリジウム、ロジウム、ルテニウム、タングステン、モリブデンなどが挙げられる。これらの金属は、水素の溶解熱が正のため水素の浸入が遅く、基体2への水素への浸入が抑えられる。
なお、水素の溶解熱が正である金属材料としては、上述したものの他にマグネシウム、鉄、ニッケル、コバルトなども挙げられるが、マグネシウムは水素化物を作りやすいために、他の水素の溶解熱が正の金属被膜と比べ水素脆化の抑制効果が低い。また、鉄、ニッケル、コバルトは炭化物を作りやすく、アモルファスカーボンを析出しやすいために被膜3として適さない。
The coating 3 is made of a metal material that has a positive heat of dissolution of hydrogen and hardly forms a hydride.
Examples of such a metal material include aluminum, steel, gold, silver, platinum, iridium, rhodium, ruthenium, tungsten, and molybdenum. Since these metals have positive heat of dissolution of hydrogen, the penetration of hydrogen is slow and the penetration of hydrogen into the substrate 2 is suppressed.
In addition to the above-described metal materials, the metal material having positive heat of dissolution of hydrogen includes magnesium, iron, nickel, cobalt, etc. However, since magnesium easily forms hydride, the heat of dissolution of other hydrogen is also known. The effect of suppressing hydrogen embrittlement is lower than that of a positive metal film. Further, iron, nickel, and cobalt are not suitable as the coating 3 because they easily form carbides and easily precipitate amorphous carbon.

このように、水素脆化しやすい基体2上に、水素の溶解熱が正で、水素化物を作りにくい金属材料からなる被膜3をつけることによって、電極基板としての導電性を損なうことなく基体2の水素脆化を軽減、または防ぐことができる。また、本発明によれば、従来の被膜をつける水素脆化軽減の方法に比べて、被膜3が金属なので導電性が高く、電極基板としての特性を損なわない。
また、前記被膜3の厚さとしては、特に限定されるものではないが、例えば10〜1000[nm]であることが好ましい。
As described above, by applying the coating 3 made of a metal material that has a positive hydrogen heat of dissolution and is difficult to form a hydride on the substrate 2 that is likely to be hydrogen embrittled, the conductivity of the substrate 2 can be reduced without impairing the conductivity as an electrode substrate. Hydrogen embrittlement can be reduced or prevented. In addition, according to the present invention, compared with the conventional method for reducing hydrogen embrittlement by applying a coating, the coating 3 is metal, so that the conductivity is high and the characteristics as an electrode substrate are not impaired.
The thickness of the coating 3 is not particularly limited, but is preferably 10 to 1000 [nm], for example.

また、この金属基板1A(1)上にカーボンナノチューブ5を成長させる場合、金属基板1A(1)は、前記基体2の少なくとも前記一面2a側又は他面2b側に配された触媒層4を有する。触媒層4の材料としては、例えば鉄、コバルト、ニッケルをのうち少なくとも一つを含むものが用いられる。
なお、図1では、被膜3と触媒層4とが基体2の異なる面にそれぞれ配された場合を例として示しているが、これに限定されるものではなく、被膜3と触媒層4とが基体2の同じ面側に配されていてもよい。この場合、図2に示すように、基体2の一面2a上に被膜3が配され、該被膜3上に触媒層4が配されていてもよいし、図3に示すように、基体2の一面2a上に触媒層4が配され、該触媒層4上に被膜3が配されていてもよい。また、被膜3は基体2の両面に配されていてもよい。
When the carbon nanotubes 5 are grown on the metal substrate 1A (1), the metal substrate 1A (1) has the catalyst layer 4 disposed on at least the one surface 2a side or the other surface 2b side of the base 2. . As a material of the catalyst layer 4, for example, a material containing at least one of iron, cobalt, and nickel is used.
FIG. 1 shows an example in which the coating 3 and the catalyst layer 4 are disposed on different surfaces of the substrate 2, but the present invention is not limited to this, and the coating 3 and the catalyst layer 4 include It may be arranged on the same surface side of the substrate 2. In this case, as shown in FIG. 2, a coating 3 may be disposed on one surface 2a of the substrate 2, and a catalyst layer 4 may be disposed on the coating 3. Alternatively, as shown in FIG. The catalyst layer 4 may be disposed on the one surface 2a, and the coating film 3 may be disposed on the catalyst layer 4. The coating 3 may be disposed on both sides of the substrate 2.

次に、上述したような金属基板1を用いたカーボンナノチューブ電極について説明する。
図4は、本発明のカーボンナノチューブ電極10の一構成例を示す断面図である。
本発明のカーボンナノチューブ電極10は、前記金属基板1の触媒層4上に、カーボンナノチューブ5を成長させてなることを特徴とする。
Next, a carbon nanotube electrode using the metal substrate 1 as described above will be described.
FIG. 4 is a cross-sectional view showing a configuration example of the carbon nanotube electrode 10 of the present invention.
The carbon nanotube electrode 10 of the present invention is characterized in that carbon nanotubes 5 are grown on the catalyst layer 4 of the metal substrate 1.

本発明のカーボンナノチューブ電極10は、少なくとも一面側に、水素の溶解熱が正である金属材料からなる被膜3を有する金属基板1を用いているので、導電性を低下させることなく、CVDプロセスにおける水素ガス雰囲気によって引き起こされる基体2の水素脆化を軽減または防止することができる。その結果、本発明では基板の可撓性の低下や損壊のないカーボンナノチューブ電極10を提供することができる。
このようなカーボンナノチューブ電極10は、色素増感太陽電池、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタ、及び燃料電池などの電極として好適に用いることができる。
Since the carbon nanotube electrode 10 of the present invention uses the metal substrate 1 having the coating 3 made of a metal material having a positive hydrogen heat of dissolution on at least one surface side, in the CVD process without lowering the conductivity. Hydrogen embrittlement of the base 2 caused by the hydrogen gas atmosphere can be reduced or prevented. As a result, the present invention can provide a carbon nanotube electrode 10 that is free from deterioration or damage of the flexibility of the substrate.
Such a carbon nanotube electrode 10 can be suitably used as an electrode for a dye-sensitized solar cell, a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, and a fuel cell.

また、本発明のカーボンナノチューブの製造方法は、前記金属基板1を用い、該金属基板1上に炭素を含むガスを作用させることにより、金属基板1上にカーボンナノチューブ5を成長させる工程を少なくとも備えたことを特徴とする。
具体的には、後述するような製造装置20を用いて、真空処理室21の内部空間に炭素含有のプロセスガスを導入し、該プロセスガスにマイクロ波を照射して生起させたプラズマから、支持体23に載置された基板30(非処理体)の表面にカーボンナノチューブ5を気相成長させる。このとき本発明では、前記基板30(非処理体)として前記金属基板1を用いる。
Further, the carbon nanotube production method of the present invention includes at least a step of growing the carbon nanotube 5 on the metal substrate 1 by using the metal substrate 1 and causing a gas containing carbon to act on the metal substrate 1. It is characterized by that.
Specifically, using a manufacturing apparatus 20 as will be described later, a carbon-containing process gas is introduced into the internal space of the vacuum processing chamber 21, and the process gas is irradiated with microwaves to support the plasma. The carbon nanotubes 5 are vapor-phase grown on the surface of the substrate 30 (non-processed body) placed on the body 23. At this time, in the present invention, the metal substrate 1 is used as the substrate 30 (non-processed body).

本発明のカーボンナノチューブ電極の製造方法では、少なくとも一面側に、水素の溶解熱が正である金属材料からなる被膜3を有する金属基板1を用いているので、CVDプロセスを用いてカーボンナノチューブ5を成長させる場合に、導電性を低下させることなく、水素ガス雰囲気によって引き起こされる基体2の水素脆化を軽減または防止することができる。その結果、本発明では基板の可撓性の低下や損壊のないカーボンナノチューブ電極10を製造することができる。   In the method of manufacturing a carbon nanotube electrode according to the present invention, the metal substrate 1 having the coating 3 made of a metal material having a positive heat of dissolution of hydrogen is used on at least one surface side. When grown, hydrogen embrittlement of the substrate 2 caused by the hydrogen gas atmosphere can be reduced or prevented without lowering the conductivity. As a result, in the present invention, it is possible to manufacture the carbon nanotube electrode 10 which does not cause a decrease in flexibility or damage of the substrate.

図5は、カーボンナノチューブの製造装置の一構成例を示す模式的断面図である。
このカーボンナノチューブの製造装置20は、平板状のマイクロ波導入部22を備え、内部空間に炭素含有のプロセスガスを導入しながら所定の圧力状態を維持する真空処理室21と、前記内部空間にあって、前記マイクロ波導入部22に対向配置されるように、基板30(平板状の被処理体)を載置する支持体23と、前記支持体23に内蔵された温度制御手段24と、を少なくとも備える。
カーボンナノチューブの製造装置20は、マイクロ波プラズマを利用して、基板(非処理体)表面にカーボンナノチューブを気相成長させる装置である。
FIG. 5 is a schematic cross-sectional view showing a configuration example of a carbon nanotube production apparatus.
The carbon nanotube production apparatus 20 includes a flat plate-like microwave introduction section 22, and a vacuum processing chamber 21 that maintains a predetermined pressure state while introducing a carbon-containing process gas into the internal space. A support body 23 on which a substrate 30 (a plate-like object to be processed) is placed so as to be opposed to the microwave introduction section 22; and a temperature control means 24 built in the support body 23. At least.
The carbon nanotube manufacturing apparatus 20 is an apparatus for vapor-phase growing carbon nanotubes on the surface of a substrate (non-processed body) using microwave plasma.

真空処理室21は、平板状のマイクロ波導入部22を備え、内部空間に炭素含有のプロセスガスを導入しながら所定の圧力状態を維持する。
真空処理室21には、プロセスガスを導入するガス導入手段25と、このプロセスガスを導入しながら所定の圧力状態を維持するための真空排気手段26がそれぞれ接続されている。ガス導入手段25は、ガス管を介して図示しないガス源に連通している。
The vacuum processing chamber 21 includes a flat plate-like microwave introduction unit 22 and maintains a predetermined pressure state while introducing a carbon-containing process gas into the internal space.
Connected to the vacuum processing chamber 21 are a gas introduction means 25 for introducing a process gas and a vacuum exhaust means 26 for maintaining a predetermined pressure state while introducing the process gas. The gas introduction means 25 communicates with a gas source (not shown) through a gas pipe.

カーボンナノチューブを金属基板1の表面に気相成長させる際に導入する炭素含有のプロセスガスとしては、メタン、アセチレンなどの炭化水素ガス若しくは気化させたアルコール、または気相成長における希釈と触媒作用のために、これらのガスに水素、アンモニア、窒素若しくはアルゴンのうち少なくとも1つを混合したものが用いられる。好ましくは、メタンなど、加熱した基板温度で分解しないものを用いる。   The carbon-containing process gas introduced when the carbon nanotubes are vapor-grown on the surface of the metal substrate 1 is a hydrocarbon gas such as methane or acetylene or a vaporized alcohol, or for dilution and catalysis in the vapor-phase growth. In addition, a mixture of these gases with at least one of hydrogen, ammonia, nitrogen, or argon is used. Preferably, methane or the like that does not decompose at a heated substrate temperature is used.

この真空処理室21に、大口径のプラズマを生成するために、基本モードで伝播する小径導波管から、高次モードが複数存在し得る大口径の導波管へ拡大するテーパ型のマイクロ波導入部22が接続されている。このマイクロ波導入部22と真空処理室21とは、マイクロ波導入窓27により空間的に仕切られている。   In order to generate a large-diameter plasma in the vacuum processing chamber 21, a tapered microwave that expands from a small-diameter waveguide propagating in the fundamental mode to a large-diameter waveguide in which a plurality of higher-order modes can exist. The introduction part 22 is connected. The microwave introduction part 22 and the vacuum processing chamber 21 are spatially partitioned by a microwave introduction window 27.

支持体23は、前記真空処理室21の内部空間にあって、前記マイクロ波導入部22に対向配置されるように、平板状の被処理体を載置する。
特に、本発明では、基板30(非処理体)として前記金属基板1を用いる。上述したように水素の溶解熱が正で、水素化物を作りにくい金属材料からなる被膜を有する金属基板1を用いることによって、電極基板としての導電性を損なうことなく基体2の水素脆化を軽減、または防ぐことができる。また、本発明によれば、従来の被膜をつける水素脆化軽減の方法に比べて、被膜3が金属なので導電性が高く、電極基板としての特性を損なわない。
The support 23 is placed in the internal space of the vacuum processing chamber 21 and mounts a flat plate-like object to be disposed so as to face the microwave introduction portion 22.
In particular, in the present invention, the metal substrate 1 is used as the substrate 30 (non-processed body). As described above, by using the metal substrate 1 having a coating made of a metal material that has a positive heat of hydrogen dissolution and is difficult to form a hydride, hydrogen embrittlement of the substrate 2 is reduced without impairing the conductivity as an electrode substrate. Or can prevent. In addition, according to the present invention, compared with the conventional method for reducing hydrogen embrittlement by applying a coating, the coating 3 is metal, so that the conductivity is high and the characteristics as an electrode substrate are not impaired.

前記支持体23には、基板30を所定の温度範囲に保つ温度制御手段24(例えばヒーター)が内蔵されている。
温度制御手段24によって基板30を加熱することで、カーボンナノチューブを気相成長させる際に、基板温度の制御が容易になり、また、低温でカーボンナノチューブを気相成長させることが可能になる。前記基板30が500〜850[℃]の範囲内の所定温度に保持されるように、温度制御手段24の作動を制御することが好ましい。
The support 23 incorporates a temperature control means 24 (for example, a heater) for keeping the substrate 30 in a predetermined temperature range.
When the substrate 30 is heated by the temperature control means 24, when the carbon nanotubes are grown in a vapor phase, the substrate temperature can be easily controlled, and the carbon nanotubes can be grown in a vapor phase at a low temperature. It is preferable to control the operation of the temperature control means 24 so that the substrate 30 is maintained at a predetermined temperature within a range of 500 to 850 [° C.].

このような製造装置20を用いて、真空処理室21の内部空間に炭素含有のプロセスガスを導入し、該プロセスガスにマイクロ波を照射して生起させたプラズマから、支持体23に載置された基板30(非処理体)の表面にカーボンナノチューブを気相成長させる。
このようにして得られたカーボンナノチューブ電極10は、少なくとも一面側に、水素の溶解熱が正である金属材料からなる被膜3を有する金属基板1を用いているので、CVDプロセスにおける水素ガス雰囲気によって引き起こされる基体2の水素脆化を軽減または防止することができる。その結果、得られるカーボンナノチューブ電極10は、基板の可撓性の低下や損壊のないものとなる。
Using such a manufacturing apparatus 20, a carbon-containing process gas is introduced into the internal space of the vacuum processing chamber 21, and the process gas is irradiated with microwaves and placed on the support 23. Carbon nanotubes are vapor-phase grown on the surface of the substrate 30 (non-processed body).
Since the carbon nanotube electrode 10 thus obtained uses the metal substrate 1 having the coating 3 made of a metal material having a positive heat of hydrogen dissolution on at least one surface side, the carbon nanotube electrode 10 depends on the hydrogen gas atmosphere in the CVD process. The hydrogen embrittlement of the base body 2 caused can be reduced or prevented. As a result, the obtained carbon nanotube electrode 10 does not have a decrease in flexibility or damage to the substrate.

図5に示したような製造装置を用いて、金属基板上にカーボンナノチューブを成長させた。
(実施例1)
チタン基板(厚さ3、10、20、40、100μm)の一方の面に、触媒層としてニッケル薄膜を形成した。また、チタン基板の他方の面に厚さ50nmのアルミニウム被膜を形成し、金属基板を作製した。
このようにして得られた金属基板を、マイクロ波プラズマCVD装置のヒーターが内蔵されたステージ(支持体)上に置いた。出力300Wで基板の直上にプラズマを発生させ、CVDにより金属基板上にカーボンナノチューブを成長させた。
Carbon nanotubes were grown on a metal substrate using a manufacturing apparatus as shown in FIG.
Example 1
A nickel thin film was formed as a catalyst layer on one surface of a titanium substrate (thickness 3, 10, 20, 40, 100 μm). Further, an aluminum film having a thickness of 50 nm was formed on the other surface of the titanium substrate to produce a metal substrate.
The metal substrate thus obtained was placed on a stage (support) in which a heater of a microwave plasma CVD apparatus was incorporated. Plasma was generated immediately above the substrate at an output of 300 W, and carbon nanotubes were grown on the metal substrate by CVD.

(実施例2)
アルミニウム被膜の厚さを100nmとしたこと以外は、実施例1と同様にして金属基板を作製し、この金属基板上にカーボンナノチューブを成長させた。
(実施例3)
チタン基板の一方の面に、触媒層としてニッケル薄膜を形成した。また、触媒層上に厚さ5nmのアルミニウム被膜を形成して金属基板を作製し、この金属基板上にカーボンナノチューブを成長させた。
(Example 2)
A metal substrate was prepared in the same manner as in Example 1 except that the thickness of the aluminum coating was 100 nm, and carbon nanotubes were grown on this metal substrate.
(Example 3)
A nickel thin film was formed as a catalyst layer on one surface of the titanium substrate. In addition, a 5 nm thick aluminum film was formed on the catalyst layer to produce a metal substrate, and carbon nanotubes were grown on this metal substrate.

(実施例4)
アルミニウム被膜の厚さを10nmとしたこと以外は、実施例1と同様にして金属基板を作製し、この金属基板上にカーボンナノチューブを成長させた。
Example 4
A metal substrate was produced in the same manner as in Example 1 except that the thickness of the aluminum coating was 10 nm, and carbon nanotubes were grown on this metal substrate.

(比較例1)
アルミニウム被膜を形成しなったこと以外は、実施例1と同様にして金属基板を作製し、この金属基板上にカーボンナノチューブを成長させた。
(比較例2)
アルミニウム被膜の代わりに、チタンの酸化被膜を形成したこと以外は、実施例1と同様にして金属基板を作製し、この金属基板1上にカーボンナノチューブを成長させた。
(Comparative Example 1)
A metal substrate was produced in the same manner as in Example 1 except that the aluminum coating was not formed, and carbon nanotubes were grown on the metal substrate.
(Comparative Example 2)
A metal substrate was produced in the same manner as in Example 1 except that a titanium oxide film was formed instead of the aluminum film, and carbon nanotubes were grown on the metal substrate 1.

実施例1〜実施例4で得られたカーボンナノチューブ電極では、基板の水素脆化が少なく、基板の導電性も良好であった。
これに対し、比較例1、比較例2のカーボンナノチューブ電極では、板の水素脆化が大きく、割れてしまった。
また、実施例1で作製したカーボンナノチューブ電極を対極に用いて、色素増殖太陽電池を作製したところ、良好な特性を示した。
In the carbon nanotube electrodes obtained in Examples 1 to 4, there was little hydrogen embrittlement of the substrate, and the conductivity of the substrate was also good.
On the other hand, in the carbon nanotube electrodes of Comparative Example 1 and Comparative Example 2, the hydrogen embrittlement of the plate was large and cracked.
Moreover, when the carbon nanotube electrode produced in Example 1 was used for a counter electrode and the pigment | dye proliferation solar cell was produced, the favorable characteristic was shown.

以上、本発明の金属基板、カーボンナノチューブ電極及びその製造方法について説明してきたが、本発明は上述した例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although the metal substrate of this invention, the carbon nanotube electrode, and its manufacturing method were demonstrated, this invention is not limited to the example mentioned above, In the range which does not deviate from the meaning of invention, it can change suitably.

本発明は、金属基板、カーボンナノチューブ電極及びその製造方法に広く適用可能である。   The present invention is widely applicable to metal substrates, carbon nanotube electrodes, and methods for manufacturing the same.

1A、1B,1C(1) 金属基板、2 基体、3 被膜、4 触媒層、5 カーボンナノチューブ、10 カーボンナノチューブ電極。   1A, 1B, 1C (1) Metal substrate, 2 substrate, 3 coating, 4 catalyst layer, 5 carbon nanotube, 10 carbon nanotube electrode.

Claims (5)

金属からなる基体と、前記基体の少なくとも一面側に配された、水素の溶解熱が正である金属材料からなる被膜と、を有することを特徴とする金属基板。   A metal substrate comprising: a base made of metal; and a coating made of a metal material having a positive heat of dissolution of hydrogen disposed on at least one side of the base. 前記基体はチタンからなり、その厚さが1〜100μmであることを特徴とする請求項1に記載の金属基板。   The metal substrate according to claim 1, wherein the base is made of titanium and has a thickness of 1 to 100 μm. 前記基体の少なくとも前記一面側又は他面側に配され、鉄、コバルト、ニッケルのうち少なくとも一つを含む金属材料からなる触媒層を有することを特徴とする請求項1に記載の金属基板。   2. The metal substrate according to claim 1, further comprising a catalyst layer that is disposed on at least the one surface side or the other surface side of the base and is made of a metal material containing at least one of iron, cobalt, and nickel. 請求項1乃至3のいずれかに記載の金属基板上に、カーボンナノチューブを成長させてなることを特徴とするカーボンナノチューブ電極。   A carbon nanotube electrode obtained by growing carbon nanotubes on the metal substrate according to any one of claims 1 to 3. 請求項1乃至3のいずれかに記載の金属基板を用い、
前記金属基板上に炭素を含むガスを作用させることにより前記金属基板上にカーボンナノチューブを成長させる工程を少なくとも備えたことを特徴とするカーボンナノチューブ電極の製造方法。
Using the metal substrate according to any one of claims 1 to 3,
A method for producing a carbon nanotube electrode, comprising at least a step of growing carbon nanotubes on the metal substrate by causing a gas containing carbon to act on the metal substrate.
JP2010090797A 2010-04-09 2010-04-09 Metal substrate, carbon nanotube electrode and manufacturing method thereof Expired - Fee Related JP5746830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010090797A JP5746830B2 (en) 2010-04-09 2010-04-09 Metal substrate, carbon nanotube electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090797A JP5746830B2 (en) 2010-04-09 2010-04-09 Metal substrate, carbon nanotube electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011222323A true JP2011222323A (en) 2011-11-04
JP5746830B2 JP5746830B2 (en) 2015-07-08

Family

ID=45039054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090797A Expired - Fee Related JP5746830B2 (en) 2010-04-09 2010-04-09 Metal substrate, carbon nanotube electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5746830B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151052A (en) * 2011-01-20 2012-08-09 Fujikura Ltd Structure for carbon nanotube electrode, carbon nanotube electrode, and dye sensitized solar cell
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284919A (en) * 2003-03-25 2004-10-14 Mitsubishi Electric Corp Method of producing substrate for forming carbon nanotube, and method of producing carbon nanotube using the substrate
JP2005145743A (en) * 2003-11-13 2005-06-09 Kenjiro Oura Carbon nanotube, its manufacturing method, carbon nanotube device and electrical double layer capacitor
JP2006202721A (en) * 2004-12-22 2006-08-03 Fujikura Ltd Counter electrode for photoelectric conversion element and photoelectric conversion element
JP2007230832A (en) * 2006-03-02 2007-09-13 Sanyo Electric Co Ltd Carbon nanotube electrode and its production method
JP2007280849A (en) * 2006-04-10 2007-10-25 Fujikura Ltd Photoelectric conversion element
JP2009173476A (en) * 2008-01-22 2009-08-06 Panasonic Corp Carbon nanotube structure, method for manufacturing the same and energy device using the same
WO2009125540A1 (en) * 2008-04-11 2009-10-15 パナソニック株式会社 Energy storage device, method for manufacturing same, and apparatus equipped with same
WO2010092786A1 (en) * 2009-02-10 2010-08-19 日本ゼオン株式会社 Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate
JP2011219343A (en) * 2010-03-26 2011-11-04 Aisin Seiki Co Ltd Carbon nanotube composite and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284919A (en) * 2003-03-25 2004-10-14 Mitsubishi Electric Corp Method of producing substrate for forming carbon nanotube, and method of producing carbon nanotube using the substrate
JP2005145743A (en) * 2003-11-13 2005-06-09 Kenjiro Oura Carbon nanotube, its manufacturing method, carbon nanotube device and electrical double layer capacitor
JP2006202721A (en) * 2004-12-22 2006-08-03 Fujikura Ltd Counter electrode for photoelectric conversion element and photoelectric conversion element
JP2007230832A (en) * 2006-03-02 2007-09-13 Sanyo Electric Co Ltd Carbon nanotube electrode and its production method
JP2007280849A (en) * 2006-04-10 2007-10-25 Fujikura Ltd Photoelectric conversion element
JP2009173476A (en) * 2008-01-22 2009-08-06 Panasonic Corp Carbon nanotube structure, method for manufacturing the same and energy device using the same
WO2009125540A1 (en) * 2008-04-11 2009-10-15 パナソニック株式会社 Energy storage device, method for manufacturing same, and apparatus equipped with same
WO2010092786A1 (en) * 2009-02-10 2010-08-19 日本ゼオン株式会社 Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate
JP2011219343A (en) * 2010-03-26 2011-11-04 Aisin Seiki Co Ltd Carbon nanotube composite and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151052A (en) * 2011-01-20 2012-08-09 Fujikura Ltd Structure for carbon nanotube electrode, carbon nanotube electrode, and dye sensitized solar cell
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11717886B2 (en) 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Also Published As

Publication number Publication date
JP5746830B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5746830B2 (en) Metal substrate, carbon nanotube electrode and manufacturing method thereof
Nguyen et al. Efficient photocatalytic H2 evolution: controlled dewetting–dealloying to fabricate site‐selective high‐activity nanoporous Au particles on highly ordered TiO2 nanotube arrays
Wang et al. Low-temperature plasma synthesis of carbon nanotubes and graphene based materials and their fuel cell applications
JP3819382B2 (en) Carbon nanotube matrix and growth method thereof
AU2016309946B2 (en) Graphene synthesis
US20210253430A1 (en) Carbon nanostructured materials and methods for forming carbon nanostructured materials
Liu et al. Advances of microwave plasma-enhanced chemical vapor deposition in fabrication of carbon nanotubes: a review
JP2013166692A (en) Method for producing substrate with conductive diamond film formed thereon
Ji et al. Fast preparation of vertical graphene nanosheets by helicon wave plasma chemical vapor deposition and its electrochemical performance
Yarlagadda et al. High surface area carbon electrodes for bromine reactions in H2-Br2 fuel cells
JP3837451B2 (en) Method for producing carbon nanotube
EP2634138A1 (en) Process for production of carbon nanotubes
Yousefi et al. Possible high efficiency platform for biosensors based on optimum physical chemistry of carbon nanotubes
Wang et al. Structure and photoluminescence properties of carbon nanotip-vertical graphene nanohybrids
JP2005213700A (en) Diameter-different composite type fibrous carbon and method for producing the same
Kudinova et al. A magnetron sputtering method for the application of the Ni catalyst for the synthesis process of carbon nanotube arrays
JP2006306704A (en) Method of forming carbon film and carbon film
JP5653822B2 (en) Method for producing carbon nanotube
JP6210445B2 (en) Method for producing carbon nanotube
Shaik et al. Thermally stable electro catalytic nickel-phosphide film deposition on graphite for HER electrode application
JP7163645B2 (en) Carbon nanotube electrode, electricity storage device using the same, and method for producing carbon nanotube composite
Kishimoto et al. Growth of mm-long carbon nanotubes by grid-inserted plasma-enhanced chemical vapor deposition
KR101851314B1 (en) Multi-layer graghene composite sheet manufacturing method
JP5600129B2 (en) Graphene synthesis method and alloy catalyst for graphene synthesis
TWI408246B (en) Manufacturing method for branched carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R151 Written notification of patent or utility model registration

Ref document number: 5746830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees