JP2011222152A - Fuel cell and fuel cell stack or fuel cell unit - Google Patents

Fuel cell and fuel cell stack or fuel cell unit Download PDF

Info

Publication number
JP2011222152A
JP2011222152A JP2010086917A JP2010086917A JP2011222152A JP 2011222152 A JP2011222152 A JP 2011222152A JP 2010086917 A JP2010086917 A JP 2010086917A JP 2010086917 A JP2010086917 A JP 2010086917A JP 2011222152 A JP2011222152 A JP 2011222152A
Authority
JP
Japan
Prior art keywords
fuel
air
gas
chamber
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086917A
Other languages
Japanese (ja)
Other versions
JP5486743B2 (en
Inventor
Daisuke Komatsu
大祐 小松
Hideki Uematsu
秀樹 上松
Yasuo Okuyama
康生 奥山
Yusuke Todo
佑介 藤堂
Hiroya Ishikawa
浩也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010086917A priority Critical patent/JP5486743B2/en
Publication of JP2011222152A publication Critical patent/JP2011222152A/en
Application granted granted Critical
Publication of JP5486743B2 publication Critical patent/JP5486743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell and a fuel cell stack or a fuel cell unit in which connection failure between an air electrode and an air electrode collector hardly occurs even after prolonged use.SOLUTION: A fuel cell 3 includes: a pair of interconnectors (hereinafter referred to as "connectors") 12 and 13; an electrolyte 2 having an air electrode 14 formed on one surface opposing to the connector 12 and a fuel electrode 15 formed on the other surface; an air chamber 16 formed between the connector 12 and the air electrode 14; a fuel chamber 17 formed between the connector 13 and the fuel electrode 15; an air electrode collector 18 which electrically connects the air electrode 14 and the connector 12; a fuel electrode collector 19 which electrically connects the fuel electrode 15 and the connector 13; an air supply part 25 which supplies gas to the air chamber 16; an air exhaust part 26 which exhaust gas from the air chamber 16; a fuel supply part 27 which supplies gas to the fuel chamber 17; and a fuel exhaust part 28 which exhausts gas from the fuel chamber 17. A gas pressure in the fuel chamber 17 is set to be equal to or greater than that of the air chamber 16.

Description

本発明は、板状の電解質の上下面に二つの極を設け、一方の極(以下燃料極という。)に燃料ガスを供給すると共にもう一方の極(以下空気極という。)に酸化剤ガスを供給して発電する燃料電池セルと、その燃料電池セルを複数個積層して固定した燃料電池スタックと、その燃料電池スタックを使用して発電する燃料電池装置に関する。   In the present invention, two electrodes are provided on the upper and lower surfaces of a plate-like electrolyte, fuel gas is supplied to one electrode (hereinafter referred to as a fuel electrode), and an oxidant gas is supplied to the other electrode (hereinafter referred to as an air electrode). The present invention relates to a fuel cell that generates electricity by supplying a fuel cell, a fuel cell stack in which a plurality of the fuel cells are stacked and fixed, and a fuel cell device that generates power using the fuel cell stack.

板状の電解質の上下面に燃料極と空気極を設け、燃料極側に燃料ガス(例えば水素含有ガス)を供給すると共に空気極側に酸化剤ガス(例えば空気)を供給して発電するようにした燃料電池セルが、例えば特許文献1に記載されている。
燃料電池は、この燃料電池セルを複数個積層して燃料電池スタックを形成し、該燃料電池スタックを耐熱性の容器に収めたものである。
さらに前記燃料電池セルは、上下両面に位置する一対のインターコネクタと、該インターコネクタと電解質の空気極との間に形成される空気室と、インターコネクタと電解質の燃料極との間に形成される燃料室と、空気室の内部に空気を供給する空気供給部と、空気室から使用済みの空気を排出する空気排気部と、燃料室に燃料ガスを供給する燃料供給部と、燃料室から使用済みの燃料ガスを排出する燃料排気部と、を備えており、空気室の空気と、燃料室の燃料ガスが電解質を介して反応することによって電気エネルギを発生する。
A fuel electrode and an air electrode are provided on the upper and lower surfaces of the plate-like electrolyte, and a fuel gas (for example, hydrogen-containing gas) is supplied to the fuel electrode side, and an oxidant gas (for example, air) is supplied to the air electrode side to generate power. For example, Patent Document 1 discloses such a fuel battery cell.
The fuel cell is formed by stacking a plurality of the fuel cells to form a fuel cell stack, and placing the fuel cell stack in a heat resistant container.
Further, the fuel cell is formed between a pair of interconnectors located on both upper and lower surfaces, an air chamber formed between the interconnector and an electrolyte air electrode, and between the interconnector and the electrolyte fuel electrode. A fuel chamber, an air supply unit for supplying air into the air chamber, an air exhaust unit for discharging used air from the air chamber, a fuel supply unit for supplying fuel gas to the fuel chamber, and a fuel chamber A fuel exhaust unit that discharges used fuel gas, and generates electric energy by the reaction of the air in the air chamber and the fuel gas in the fuel chamber through the electrolyte.

特開2008−52942号公報JP 2008-52942 A

燃料電池セルの空気極とインターコネクタは空気室内に設けた空気極集電体で電気的に接続されている。しかし、燃料電池を長時間稼働させたとき、空気極と空気極集電体の間で電気的な接続不良が発生し、内部抵抗が上昇して特性が劣化してしまうという問題があった。かかる問題の原因について発明者が探求した結果、次のような結論に達した。
まず、燃料電池セルの空気室には、燃料室に供給される燃料ガスの約3倍の流量の空気が供給されている。
一方、燃料電池セルの空気室に空気を供給する空気供給部と、空気室から空気を排出する空気排気部と、燃料室に燃料ガスを供給する燃料供給部と、燃料室から燃料ガスを排出する燃料排気部の構造は全て同じになっている。
したがって、流量が多い空気室の方が燃料室に比べてガスの流速が大きくなる。圧力損失は、Fanningの式で示されているようにガス流速の2乗に比例するため、空気室内のガス圧の方が燃料室内のガス圧より大きくなる。そうするとその圧力差で電解質が燃料室側に押されるため、空気極と電気極集電体の接続が不良になる場合があった。
The air electrode of the fuel cell and the interconnector are electrically connected by an air electrode current collector provided in the air chamber. However, when the fuel cell is operated for a long time, there is a problem that an electrical connection failure occurs between the air electrode and the air electrode current collector, the internal resistance increases, and the characteristics deteriorate. As a result of the inventors' investigation of the cause of such problems, the following conclusions were reached.
First, air having a flow rate of about three times the fuel gas supplied to the fuel chamber is supplied to the air chamber of the fuel cell.
On the other hand, an air supply unit that supplies air to the air chamber of the fuel cell, an air exhaust unit that discharges air from the air chamber, a fuel supply unit that supplies fuel gas to the fuel chamber, and exhausts the fuel gas from the fuel chamber The structure of the fuel exhaust part is the same.
Therefore, the air flow rate in the air chamber having a larger flow rate is higher than that in the fuel chamber. Since the pressure loss is proportional to the square of the gas flow velocity as shown by the Fanning equation, the gas pressure in the air chamber is larger than the gas pressure in the fuel chamber. Then, the electrolyte is pushed to the fuel chamber side by the pressure difference, and the connection between the air electrode and the electric electrode current collector may be poor.

本発明は、上記に鑑みなされたもので、その目的は、長時間使用しても空気極と空気極集電体との接続不良が発生しにくい燃料電池セル及び燃料電池スタック若しくは燃料電池装置を提供する。   The present invention has been made in view of the above, and an object of the present invention is to provide a fuel cell and a fuel cell stack or a fuel cell device in which poor connection between the air electrode and the air electrode current collector is less likely to occur even after long-term use. provide.

上記の目的を達成するため本発明は、請求項1に記載したように、上下両面に位置する一対のインターコネクタと、
前記インターコネクタ間に位置し、一方のインターコネクタの内面に対向する面に空気極が形成され、他方のインターコネクタの内面に対向する面に燃料極が形成された電解質と、
前記インターコネクタと前記空気極の間に形成された空気室と、
前記インターコネクタと前記燃料極の間に形成された燃料室と、
前記空気室の内部に配置され、前記空気極と前記インターコネクタとを電気的に接続する空気極集電体と、
前記燃料室の内部に配置され、前記燃料極と前記インターコネクタとを電気的に接続する燃料極集電体と、
前記空気室の内部に供給されるガスが通過する流路を含む空気供給部と、
前記空気室から排出されるガスが通過する流路を含む空気排気部と、
前記燃料室の内部に供給される燃料ガスが通過する流路を含む燃料供給部と、
前記燃料室から排出される燃料ガスが通過する流路を含む燃料排気部と、を備えた燃料電池セルにおいて、
前記燃料室内のガスの圧力を前記空気室内のガスの圧力と同等か又はそれより大きく設定した燃料電池セルを提供する。
In order to achieve the above object, the present invention provides a pair of interconnectors positioned on the upper and lower surfaces, as described in claim 1,
An electrolyte located between the interconnectors and having an air electrode formed on a surface facing the inner surface of one interconnector and a fuel electrode formed on a surface facing the inner surface of the other interconnector;
An air chamber formed between the interconnector and the air electrode;
A fuel chamber formed between the interconnector and the fuel electrode;
An air electrode current collector that is disposed inside the air chamber and electrically connects the air electrode and the interconnector;
A fuel electrode current collector disposed inside the fuel chamber and electrically connecting the fuel electrode and the interconnector;
An air supply unit including a flow path through which gas supplied to the inside of the air chamber passes;
An air exhaust part including a flow path through which gas exhausted from the air chamber passes;
A fuel supply unit including a flow path through which fuel gas supplied to the inside of the fuel chamber passes;
A fuel exhaust cell including a flow path through which fuel gas discharged from the fuel chamber passes,
Provided is a fuel cell in which the pressure of the gas in the fuel chamber is set equal to or greater than the pressure of the gas in the air chamber.

また、請求項2に記載したように、前記空気室のガスの圧力を、前記空気室に直接接続された空気供給部の流路の断面積が、前記空気室に直接接続された空気排気部の流路の断面積よりも小さくなるように設定して前記燃料室内のガスの圧力と同等か又はそれよ小さくした請求項1記載の燃料電池セルを提供する。   In addition, as described in claim 2, an air exhaust section in which a cross-sectional area of a flow path of an air supply unit directly connected to the air chamber is directly connected to the air chamber is set to a gas pressure in the air chamber. The fuel cell according to claim 1, wherein the fuel cell is set to be smaller than a cross-sectional area of the flow path, and is equal to or smaller than a gas pressure in the fuel chamber.

また、請求項3に記載したように、前記燃料室のガスの圧力を、前記燃料室に直接接続された燃料供給部の流路の断面積が、前記燃料室に直接接続された燃料排気部の流路の断面積よりも大きくなるように設定して前記空気室内のガスの圧力と同等か又はそれより大きくした請求項1又は2に記載の燃料電池セルを提供する。   According to a third aspect of the present invention, the pressure of the gas in the fuel chamber is set so that the cross-sectional area of the flow path of the fuel supply section directly connected to the fuel chamber is equal to the fuel exhaust section directly connected to the fuel chamber. 3. The fuel cell according to claim 1, wherein the fuel cell is set to be larger than a cross-sectional area of the flow path and is equal to or greater than a pressure of the gas in the air chamber.

また、請求項4に記載したように、前記空気極集電体は前記空気室の内部に間隔をおいて複数配置され、前記空気室のガスの圧力を、前記空気極集電体間に形成されるガス流路に流れるガスの流れ方向と直交する方向の前記ガス流路の断面積を調整することにより設定した請求項1〜3のいずれか1項に記載の燃料電池セルを提供する。   According to a fourth aspect of the present invention, a plurality of the air electrode current collectors are disposed inside the air chamber at intervals, and a gas pressure in the air chamber is formed between the air electrode current collectors. The fuel cell according to any one of claims 1 to 3, which is set by adjusting a cross-sectional area of the gas flow path in a direction orthogonal to a flow direction of the gas flowing in the gas flow path.

また、請求項5に記載したように、空気の流れ方向と直交する方向の前記空気室の幅Aと、平行に並べた前記空気極集電体間に形成されるガス流路の幅Bを、0.015<B/A≦0.1に設定した請求項4記載の燃料電池セルを提供する。   In addition, as described in claim 5, the width A of the air chamber in a direction orthogonal to the air flow direction and the width B of the gas flow path formed between the air electrode current collectors arranged in parallel 5. The fuel cell according to claim 4, wherein 0.015 <B / A ≦ 0.1.

また、請求項6に記載したように、前記空気極集電体の高さCを、0.6mm<C≦5mmに設定した請求項4記載の燃料電池セルを提供する。   According to a sixth aspect of the present invention, there is provided the fuel cell according to the fourth aspect, wherein a height C of the air electrode current collector is set to 0.6 mm <C ≦ 5 mm.

また、請求項7に記載したように、前記燃料室のガスの圧力を、前記燃料排気部を構成する燃料排気流路に圧力損失を生じさせる圧損手段を設けて調整するように設定した請求項1記載の燃料電池セルを提供する。   Further, as described in claim 7, the pressure of the gas in the fuel chamber is set so as to be adjusted by providing a pressure loss means for generating a pressure loss in a fuel exhaust flow path constituting the fuel exhaust section. A fuel cell according to 1, is provided.

また、請求項8に記載したように、前記圧損手段は、前記燃料供給部の燃料供給流路の断面積より小さい断面積の前記燃料排気部の燃料排気流路である請求項7記載の燃料電池セルを提供する。   Further, as described in claim 8, the pressure loss means is a fuel exhaust passage of the fuel exhaust portion having a cross-sectional area smaller than a cross-sectional area of the fuel supply passage of the fuel supply portion. A battery cell is provided.

また、請求項9に記載したように、請求項8に記載の燃料排気部の燃料排気流路は管状であり、管径Dが、3mm≦D<16mmである燃料電池セルを提供する。   According to a ninth aspect of the present invention, there is provided a fuel battery cell in which the fuel exhaust passage of the fuel exhaust section according to the eighth aspect is tubular and the tube diameter D is 3 mm ≦ D <16 mm.

また、請求項10に記載したように前記圧損手段は、前記燃料排気部の燃料排気流路の途中に設けた流量調節弁である請求項7記載の燃料電池セルを提供する。   The fuel cell according to claim 7, wherein the pressure loss means is a flow rate adjusting valve provided in the middle of the fuel exhaust passage of the fuel exhaust section.

また、請求項11に記載したように、請求項1〜請求項10のいずれか1項に記載の燃料電池セルを複数個積層して固定部材で固定してなる燃料電池スタックを提供する。   In addition, as described in claim 11, a fuel cell stack is provided in which a plurality of fuel cells according to any one of claims 1 to 10 are stacked and fixed by a fixing member.

また、請求項12に記載したように、請求項10に記載の燃料電池セルを複数個積層して固定部材で固定した燃料電池スタックと、
前記燃料排気部の燃料排気流路の途中に設けた前記流量調節弁を調節する流量調節手段と、
前記燃料供給部に燃料ガスを供給する燃料供給流路のガス圧を検出する圧力センサ(Pa_in)と、
前記燃料排気部から燃料ガスを排出する燃料排気流路のガス圧を検出する圧力センサ(Pa_out)と、
前記空気供給部に空気を供給する空気供給流路のガス圧を検出する圧力センサ(Pc_in)と、
前記空気排気部から空気を排出する空気排気流路のガス圧を検出する圧力センサ(Pc_out)と、
前記燃料供給流路と前記燃料排気流路の燃料側圧力差と、前記空気供給流路と前記空気排気流路の空気側圧力差を比較する比較手段を備え、
前記流量調節手段で流量調節弁を調節して前記燃料側圧力差が前記空気側圧力差と同等か又はそれより大きくなるように制御するものである燃料電池装置を提供する。
Further, as described in claim 12, a fuel cell stack in which a plurality of the fuel cells according to claim 10 are stacked and fixed by a fixing member;
Flow rate adjusting means for adjusting the flow rate adjusting valve provided in the middle of the fuel exhaust flow path of the fuel exhaust part;
A pressure sensor (Pa_in) for detecting a gas pressure in a fuel supply passage for supplying fuel gas to the fuel supply unit;
A pressure sensor (Pa_out) for detecting a gas pressure in a fuel exhaust passage for discharging fuel gas from the fuel exhaust section;
A pressure sensor (Pc_in) for detecting a gas pressure of an air supply channel for supplying air to the air supply unit;
A pressure sensor (Pc_out) for detecting a gas pressure of an air exhaust passage for discharging air from the air exhaust part;
Comparing means for comparing the fuel side pressure difference between the fuel supply channel and the fuel exhaust channel, and the air side pressure difference between the air supply channel and the air exhaust channel,
Provided is a fuel cell device that controls a flow rate adjustment valve by the flow rate adjusting means so that the fuel side pressure difference is equal to or greater than the air side pressure difference.

本発明の燃料電池セルは、燃料室内のガスの圧力を空気室内のガスの圧力と同等か又はそれより大きく設定したことにより、電解質に空気極集電体から離れる方向の力が作用しない。したがって、空気極と空気極集電体の接続不良が起きにくくなり、耐久性が向上する。なお、斯かる効果は、請求項2〜10で特定した燃料電池セルにより、或はそれらの燃料電池セルを複数個積層して固定した請求項11に記載の燃料電池スタックにより確実に達成し得る。また、請求項12に記載の燃料電池装置は、長時間の安定した発電が可能になる効果がある。   In the fuel cell of the present invention, the pressure in the direction away from the air electrode current collector does not act on the electrolyte because the pressure of the gas in the fuel chamber is set to be equal to or greater than the pressure of the gas in the air chamber. Therefore, poor connection between the air electrode and the air electrode current collector is less likely to occur, and durability is improved. Such an effect can be reliably achieved by the fuel cell specified in claims 2 to 10 or by the fuel cell stack according to claim 11 in which a plurality of the fuel cells are stacked and fixed. . In addition, the fuel cell device according to claim 12 has an effect of enabling stable power generation for a long time.

燃料電池の斜視図である。It is a perspective view of a fuel cell. 燃料電池セルの斜視図である。It is a perspective view of a fuel cell. 燃料電池セルの分解斜視図である。It is a disassembled perspective view of a fuel cell. 分解パーツを絞った燃料電池セルの分解斜視図である。It is a disassembled perspective view of the fuel battery cell which narrowed down decomposition parts. 燃料電池セルの縦断面図である。It is a longitudinal cross-sectional view of a fuel cell. 図5を分解して示す縦断面図である。It is a longitudinal cross-sectional view which decomposes | disassembles and shows FIG. 図5のE−E線断面図である。It is the EE sectional view taken on the line of FIG. 図5のF−F線断面図である。It is the FF sectional view taken on the line of FIG. 実施形態2の燃料電池セルを示す図5のE−E線相当断面図である。FIG. 6 is a cross-sectional view corresponding to the line EE in FIG. 5 illustrating the fuel battery cell of Embodiment 2. 実施形態2の燃料電池セルを示す図5のF−F線相当断面図である。FIG. 6 is a cross-sectional view corresponding to the line FF in FIG. 5 illustrating the fuel battery cell according to Embodiment 2. 実施形態3の燃料電池セルを示す図5のF−F線相当断面図である。FIG. 6 is a cross-sectional view corresponding to the line FF in FIG. 5 illustrating the fuel battery cell according to Embodiment 3. 実施形態4の一つの燃料電池セルを示す図5のE−E線相当断面図である。FIG. 6 is a cross-sectional view corresponding to the line EE in FIG. 5 showing one fuel battery cell of Embodiment 4. 実施形態4の一つの燃料電池セルの分解パーツを絞った分解縦断面図である。FIG. 6 is an exploded longitudinal sectional view showing a disassembled part of one fuel battery cell according to a fourth embodiment. 実施形態4の他の燃料電池セルを示す縦断面図である。FIG. 10 is a longitudinal sectional view showing another fuel battery cell according to Embodiment 4. 実施形態4の他の燃料電池セルを示す分解縦断面図である。FIG. 6 is an exploded longitudinal sectional view showing another fuel battery cell of Embodiment 4. 実施形態5の燃料電池装置を説明するフローチャートである。10 is a flowchart illustrating a fuel cell device according to a fifth embodiment. 試作セル1〜3についての実験結果を示すグラフである。It is a graph which shows the experimental result about prototype cells 1-3. 試作セル1〜3についての実験結果を示すグラフである。It is a graph which shows the experimental result about prototype cells 1-3.

現在、燃料電池には電解質の材質により大別して、高分子電解質膜を電解質とする固体高分子形燃料電池(PEFC)と、リン酸を電解質とするリン酸形燃料電池(PAFC)と、Li−Na/K系炭酸塩を電解質とする溶融炭酸塩形燃料電池(MCFC)と、例えばZrO系セラミックを電解質とする固体酸化物形燃料電池(SOFC)の4タイプがある。各タイプは、作動温度(イオンが電解質中を移動できる温度)が異なるのであって、現時点において、PEFCは常温〜約90℃、PAFCは約150℃〜200℃、MCFCは約650℃〜700℃、SOFCは約750℃〜1000℃である。 Currently, fuel cells are roughly classified according to the material of the electrolyte. The polymer electrolyte membrane is used as a polymer electrolyte fuel cell (PEFC), the phosphoric acid fuel cell (PAFC) using phosphoric acid as an electrolyte, and Li- There are four types: a molten carbonate fuel cell (MCFC) using Na / K carbonate as an electrolyte and a solid oxide fuel cell (SOFC) using ZrO 2 ceramic as an electrolyte, for example. Each type has a different operating temperature (the temperature at which ions can move through the electrolyte). At present, PEFC is at room temperature to about 90 ° C, PAFC is about 150 ° C to 200 ° C, and MCFC is about 650 ° C to 700 ° C. , SOFC is about 750 ° C to 1000 ° C.

[実施形態1]
図1〜図8に示した実施形態1の燃料電池1は、例えばZrO系セラミックを電解質2とするSOFCである。この燃料電池1は、発電の最小単位である燃料電池セル3と、該燃料電池セル3に空気を供給する空気供給流路4と、その空気を外部に排出する空気排気流路5と、同じく燃料電池セル3に燃料ガスを供給する燃料供給流路6と、その燃料ガスを外部に排出する燃料排気流路7と、該燃料電池セル3を複数セット積層してセル群となし該セル群を固定して燃料電池スタック8となす固定部材9と、燃料電池スタック8を納める容器10と、燃料電池スタック8で発電した電気を出力する出力部材11と、から概略構成される。
[Embodiment 1]
The fuel cell 1 of Embodiment 1 shown in FIGS. 1 to 8 is an SOFC using, for example, a ZrO 2 -based ceramic as the electrolyte 2. The fuel cell 1 includes a fuel cell 3 that is a minimum unit of power generation, an air supply channel 4 that supplies air to the fuel cell 3, and an air exhaust channel 5 that discharges the air to the outside. A fuel supply channel 6 for supplying fuel gas to the fuel cell 3, a fuel exhaust channel 7 for discharging the fuel gas to the outside, and a plurality of sets of the fuel cells 3 are stacked to form a cell group. Is fixed to a fuel cell stack 8, a container 10 for storing the fuel cell stack 8, and an output member 11 for outputting electricity generated by the fuel cell stack 8.

[燃料電池セル]
燃料電池セル3は平面視正方形であり、図3に示したように上下両面に位置する一対のインターコネクタ12,13と、上下のインターコネクタ12,13のほぼ中間に位置すると共に上のインターコネクタ12の内面(下面)に対向する面に空気極14を形成し下のインターコネクタ13の内面(上面)に対向する面に燃料極15を形成した電解質2と、上のインターコネクタ12と空気極14との間に形成された空気室16と、下のインターコネクタ13と燃料極15との間に形成された燃料室17と、空気室16の内部に配置され空気極14と上のインターコネクタ12とを電気的に接続する空気極集電体18と、前記燃料室17の内部に配置され燃料極15と下のインターコネクタ13とを電気的に接続する燃料極集電体19と、を有し、正方形のコーナー部分に前記固定部材9の後述する締付ボルト46a〜46dを通すコーナー通孔20,20…を貫通状態に形成したものである。
[Fuel battery cell]
The fuel battery cell 3 has a square shape in plan view, and as shown in FIG. 3, the upper interconnector is positioned between the pair of interconnectors 12 and 13 positioned on both the upper and lower interconnectors and the upper and lower interconnectors 12 and 13. An electrolyte 2 in which an air electrode 14 is formed on the surface facing the inner surface (lower surface) of 12 and a fuel electrode 15 is formed on the surface facing the inner surface (upper surface) of the lower interconnector 13, and the upper interconnector 12 and air electrode 14, an air chamber 16 formed between the air connector 14, a fuel chamber 17 formed between the lower interconnector 13 and the fuel electrode 15, and an interconnector disposed inside the air chamber 16 and above the air electrode 14. An anode current collector 18 electrically connecting the anode 12 and an anode current collector 19 disposed in the fuel chamber 17 and electrically connecting the anode 15 and the lower interconnector 13; And it is obtained by forming the corner holes 20, 20 ... through a fastening bolt 46a~46d of the later of the fixing member 9 to the corner portion of the square through-state.

この燃料電池セル3をさらに詳しく図3,図4により説明すると、燃料電池セル3は、四角い板形態で導電性を有する上のインターコネクタ12と、同じく四角い板形態で導電性を有する下のインターコネクタ13と、該下のインターコネクタ13の上面中央に複数本を間隔をおいて平行に並べて配置した燃料極集電体19と、下のインターコネクタ13の上面に設置され前記燃料極集電体19の周りを四角く囲って燃料室17を形成する四角い額縁形態の燃料極ガス流路形成用絶縁フレーム(以下、「燃料極絶縁フレーム」ともいう。)21と、四角い額縁形態で前記燃料極絶縁フレーム21の上面に設置される燃料極フレーム22と、四角い板形態で前記燃料極フレーム22の内部にあって前記燃料極集電体19の上面に燃料極15を介して接する電解質2と、四角い額縁形態であって導電性を有し下面に前記電解質2を取着した薄い金属製のセパレータ23と、前記電解質2の上面の空気極14と前記上のインターコネクタ12の下面(内面)に当接する状態にして複数本を間隔をおいて平行に並べて配置した空気極集電体18と、前記セパレータ23と上のインターコネクタ12の間に設置され前記空気極集電体18の周りを四角く囲って空気室16を形成する四角い額縁形態の空気極ガス流路形成用絶縁フレーム(以下、「空気極絶縁フレーム」ともいう。)24と、から構成される。   The fuel cell 3 will be described in more detail with reference to FIGS. 3 and 4. The fuel cell 3 includes an upper interconnector 12 having conductivity in the form of a square plate and a lower interconnect having conductivity in the form of a square plate. A connector 13, a fuel electrode current collector 19 in which a plurality of electrodes are arranged in parallel in the center of the upper surface of the lower interconnector 13, and the fuel electrode current collector installed on the upper surface of the lower interconnector 13. A rectangular frame-shaped fuel electrode gas flow path forming insulating frame (hereinafter also referred to as “fuel electrode insulating frame”) 21 that surrounds a square around 19 and forms a fuel chamber 17, and the fuel electrode insulation in a square frame shape. A fuel electrode frame 22 installed on the upper surface of the frame 21 and a rectangular plate form inside the fuel electrode frame 22 with the fuel electrode 15 interposed on the upper surface of the fuel electrode current collector 19. The electrolyte 2 in contact with each other, a thin metal separator 23 having a rectangular frame shape and having conductivity and having the electrolyte 2 attached to the lower surface, the air electrode 14 on the upper surface of the electrolyte 2, and the interconnector 12 on the upper surface. The air electrode current collector 18 is disposed between the separator 23 and the upper interconnector 12 and a plurality of air electrode current collectors 18 arranged in parallel and spaced apart in contact with the lower surface (inner surface) of the air electrode. A rectangular frame-shaped air electrode gas flow path forming insulating frame (hereinafter also referred to as “air electrode insulating frame”) 24 that surrounds the body 18 in a square shape to form the air chamber 16.

なお、前記電解質2は、ZrO系セラミックの他、LaGaO系セラミック、BaCeO系セラミック、SrCeO系セラミック、SrZrO系セラミック、CaZrO系セラミック等で形成される。 The electrolyte 2 is made of LaGaO 3 ceramic, BaCeO 3 ceramic, SrCeO 3 ceramic, SrZrO 3 ceramic, CaZrO 3 ceramic, etc. in addition to ZrO 2 ceramic.

また、前記燃料極15の材質は、Ni及びFe等の金属と、Sc、Y等の希土類元素のうちの少なくとも1種により安定化されたジルコニア等のZrO系セラミック、CeO系セラミック等のセラミックのうちの少なくとも1種との混合物が挙げられる。また、Pt、Au、Ag、Pb、Ir、Ru、Rh、Ni及びFe等の金属でもよく、これらの金属は1種のみでもよいし、2種以上の合金にしてもよい。さらに、これらの金属及び/又は合金と、上記セラミックの各々の少なくとも1種との混合物(サーメットを含む。)が挙げられる。また、Ni及びFe等の金属の酸化物と、上記セラミックの各々の少なくとも1種との混合物等が挙げられる。 The fuel electrode 15 is made of ZrO 2 ceramic such as zirconia stabilized by at least one of metals such as Ni and Fe and rare earth elements such as Sc and Y, CeO 2 ceramic, etc. A mixture with at least one of ceramics can be mentioned. Moreover, metals, such as Pt, Au, Ag, Pb, Ir, Ru, Rh, Ni, and Fe, may be sufficient and these metals may be only 1 type and may be made into 2 or more types of alloys. Furthermore, a mixture (including cermet) of these metals and / or alloys and at least one of each of the above ceramics may be mentioned. Moreover, the mixture etc. of metal oxides, such as Ni and Fe, and at least 1 type of each of the said ceramic are mentioned.

また、前記空気極14の材質は、例えば各種の金属、金属の酸化物、金属の複酸化物等を用いることができる。金属としてはPt、Au、Ag、Pb、Ir、Ru及びRh等の金属又は2種以上の金属を含有する合金が挙げられる。さらに、金属の酸化物としては、La、Sr、Ce、Co、Mn及びFe等の酸化物(La、SrO、Ce、Co、MnO及びFeO等)が挙げられる。また、複酸化物としては、少なくともLa、Pr、Sm、Sr、Ba、Co、Fe及びMn等を含有する複酸化物(La1−XSrCoO系複酸化物、La1−XSrFeO系複酸化物、La1−XSrCo1−yFeO系複酸化物、La1−XSrMnO系複酸化物、Pr1−XBaCoO系複酸化物及びSm1−XSrCoO系複酸化物等)が挙げられる。 As the material of the air electrode 14, for example, various metals, metal oxides, metal double oxides, and the like can be used. Examples of the metal include metals such as Pt, Au, Ag, Pb, Ir, Ru and Rh, or alloys containing two or more metals. Further, examples of the metal oxide include oxides such as La, Sr, Ce, Co, Mn and Fe (La 2 O 3 , SrO, Ce 2 O 3 , Co 2 O 3 , MnO 2 and FeO). It is done. In addition, as the double oxide, a double oxide containing at least La, Pr, Sm, Sr, Ba, Co, Fe, Mn, etc. (La 1-X Sr X CoO 3 -based double oxide, La 1-X Sr X FeO 3 -based double oxide, La 1-X Sr X Co 1-y FeO 3 -based double oxide, La 1-X Sr X MnO 3 -based double oxide, Pr 1-X Ba X CoO 3 -based double oxide And Sm 1-X Sr X CoO 3 -based double oxide).

また、前記空気極集電体18は、緻密な導電部材である例えばステンレス材で形成され、一方、前記燃料極集電体19は、発泡構造で変形可能な多孔質金属材で形成される。   The air electrode current collector 18 is formed of a dense conductive member such as stainless steel, while the fuel electrode current collector 19 is formed of a porous metal material that is deformable in a foam structure.

以上のように燃料電池セル3は、下のインターコネクタ13と、燃料極絶縁フレーム21と、燃料極フレーム22と、セパレータ23と、空気極絶縁フレーム24と、上のインターコネクタ12との組合せによって燃料室17と空気室16を形成し、その燃料室17と空気室16を電解質2で仕切って相互に独立させ、さらに、燃料極絶縁フレーム21と空気極絶縁フレーム24で燃料極15側と空気極14側を電気的に絶縁している。   As described above, the fuel cell 3 has a combination of the lower interconnector 13, the fuel electrode insulating frame 21, the fuel electrode frame 22, the separator 23, the air electrode insulating frame 24, and the upper interconnector 12. A fuel chamber 17 and an air chamber 16 are formed, and the fuel chamber 17 and the air chamber 16 are separated from each other by the electrolyte 2, and the fuel electrode 15 side and the air electrode 16 are separated from each other by the fuel electrode insulating frame 21 and the air electrode insulating frame 24. The pole 14 side is electrically insulated.

また、燃料電池セル3は、前記空気室16の内部に空気を供給する前記空気供給流路4を含む空気供給部25と、空気室16から空気を外部に排出する空気排気流路5を含む空気排気部26と、燃料室17の内部に燃料ガスを供給する燃料供給流路6を含む燃料供給部27と、燃料室17から排出される燃料排気流路7を含む燃料排気部28と、を備えている。   The fuel cell 3 includes an air supply unit 25 including the air supply channel 4 for supplying air into the air chamber 16 and an air exhaust channel 5 for discharging air from the air chamber 16 to the outside. An air exhaust unit 26, a fuel supply unit 27 including a fuel supply channel 6 for supplying fuel gas to the inside of the fuel chamber 17, a fuel exhaust unit 28 including a fuel exhaust channel 7 discharged from the fuel chamber 17, It has.

[空気供給部]
空気供給部25は、四角い燃料電池セル3の一辺側中央に上下方向に開設した空気供給通孔29と、該空気供給通孔29に連通するように空気極絶縁フレーム24に開設した長孔状の空気供給連絡室30と、該空気供給連絡室30と空気室16の間を仕切る隔壁31の上面を複数個等間隔に窪ませて形成した空気供給連絡部32と、前記空気供給通孔29に挿通して外部から前記空気供給連絡室30に空気を供給する前記空気供給流路4と、を備えている。
[Air supply section]
The air supply unit 25 has an air supply through hole 29 opened in the vertical direction at the center of one side of the square fuel cell 3 and a long hole formed in the air electrode insulating frame 24 so as to communicate with the air supply through hole 29. The air supply communication chamber 30, the air supply communication portion 32 formed by recessing a plurality of upper surfaces of the partition wall 31 partitioning the air supply communication chamber 30 and the air chamber 16 at equal intervals, and the air supply through hole 29. And the air supply flow path 4 for supplying air to the air supply communication chamber 30 from the outside.

[空気排気部]
空気排気部26は、燃料電池セル3の空気供給部25の反対側の一辺側中央に上下方向に開設した空気排気通孔33と、該空気排気通孔33に連通するように空気極絶縁フレーム24に開設した長孔状の空気排気連絡室34と、該空気排気連絡室34と空気室16の間を仕切る隔壁35の上面を複数個等間隔に窪ませて形成した空気排気連絡部36と、前記空気排気通孔33に挿通して空気排気連絡室34から外部に空気を排出する管状の前記空気排気流路5と、を備えている。
[Air exhaust part]
The air exhaust unit 26 includes an air exhaust passage 33 opened in the vertical direction at the center of one side opposite to the air supply unit 25 of the fuel cell 3, and an air electrode insulating frame so as to communicate with the air exhaust passage 33. 24, an air exhaust communication chamber 34 having a long hole shape, and an air exhaust communication portion 36 formed by recessing a plurality of upper surfaces of partition walls 35 partitioning the air exhaust communication chamber 34 and the air chamber 16 at equal intervals. And the tubular air exhaust passage 5 which is inserted into the air exhaust hole 33 and exhausts air from the air exhaust communication chamber 34 to the outside.

[燃料供給部]
燃料供給部27は、四角い燃料電池セル3の残り二辺のうちの一辺側中央に上下方向に開設した燃料供給通孔37と、該燃料供給通孔37に連通するように燃料極絶縁フレーム21に開設した長孔状の燃料供給連絡室38と、該燃料供給連絡室38と燃料室17の間を仕切る隔壁39の上面を複数個等間隔に窪ませて形成した燃料供給連絡部40と、前記燃料供給通孔37に挿通して外部から前記燃料供給連絡室38に燃料ガスを供給する管状の前記燃料供給流路6と、を備えている。
[Fuel supply section]
The fuel supply unit 27 includes a fuel supply through hole 37 opened in the vertical direction at the center of one side of the remaining two sides of the square fuel cell 3, and the fuel electrode insulating frame 21 so as to communicate with the fuel supply through hole 37. A fuel supply communication chamber 40 formed in the shape of a long hole, and a plurality of upper surfaces of partition walls 39 partitioning between the fuel supply communication chamber 38 and the fuel chamber 17 are formed at equal intervals. And a tubular fuel supply passage 6 which is inserted into the fuel supply passage 37 and supplies fuel gas to the fuel supply communication chamber 38 from the outside.

[燃料排気部]
燃料排気部28は、燃料電池セル3の燃料供給部27の反対側の一辺側中央に上下方向に開設した燃料排気通孔41と、該燃料排気通孔41に連通するように燃料極絶縁フレーム21に開設した長孔状の燃料排気連絡室42と、該空気排気連絡室34と燃料室17の間を仕切る隔壁43の上面を複数個等間隔に窪ませて形成した燃料排気連絡部44と、前記燃料排気通孔41に挿通して燃料排気連絡室42から外部に燃料ガスを排出する管状の前記燃料排気流路7と、を備えている。
[Fuel exhaust part]
The fuel exhaust unit 28 includes a fuel exhaust passage 41 opened in the vertical direction at the center of one side opposite to the fuel supply unit 27 of the fuel cell 3, and a fuel electrode insulating frame so as to communicate with the fuel exhaust passage 41. And a fuel exhaust communication portion 44 formed by recessing a plurality of upper surfaces of partition walls 43 partitioning between the air exhaust communication chamber 34 and the fuel chamber 17 at equal intervals. And the tubular fuel exhaust passage 7 that is inserted into the fuel exhaust passage 41 and discharges fuel gas from the fuel exhaust communication chamber 42 to the outside.

[燃料電池スタック]
燃料電池スタック8は、前記燃料電池セル3を複数セット積層してセル群となし、該セル群を固定部材9で固定して構成される。この固定部材9は、セル群の上下を挟む一対のエンドプレート45a,45bと、該エンドプレート45a,45bとセル群をエンドプレート45a,45bのコーナー孔(図示せず)とセル群の前記コーナー通孔20に挿通して締め付ける四組の締付ねじ46a〜46dとナット47a〜47dと、を組み合わせたものである。
[Fuel cell stack]
The fuel cell stack 8 is configured by stacking a plurality of sets of the fuel cells 3 to form a cell group, and fixing the cell group with a fixing member 9. The fixing member 9 includes a pair of end plates 45a and 45b sandwiching the upper and lower sides of the cell group, the end plates 45a and 45b and the cell group at a corner hole (not shown) of the end plate 45a and 45b, and the corner of the cell group. Four sets of tightening screws 46a to 46d and nuts 47a to 47d, which are inserted through the through holes 20 and tightened, are combined.

この燃料電池スタック8に対し前記空気供給流路4は、エンドプレート45a,45bの通孔(図示せず)とセル群の前記空気供給通孔29を上下に貫く状態にして取り付けられており、管状流路の端部を閉じ前記空気供給連絡室30毎に対応させて図7に示したように横孔48を設けることにより、該横孔48を介して空気供給連絡室30に空気が供給されるようになっている。
同様に空気排気流路5は空気排気連絡室34毎に対応させた横孔49から空気を取り込んで外部に排出し、燃料供給流路6は図8に示したように燃料供給連絡室38毎に対応させた横孔50から燃料ガスを供給し、燃料排気流路7は燃料排気連絡室42毎に対応させた横孔51から燃料ガスを取り込んで外部に排出する。
The air supply flow path 4 is attached to the fuel cell stack 8 so as to penetrate the through holes (not shown) of the end plates 45a and 45b and the air supply through holes 29 of the cell group vertically, Air is supplied to the air supply communication chamber 30 through the horizontal hole 48 by closing the end of the tubular flow path and providing the horizontal hole 48 as shown in FIG. It has come to be.
Similarly, the air exhaust passage 5 takes in air from a lateral hole 49 corresponding to each air exhaust communication chamber 34 and discharges it to the outside, and the fuel supply passage 6 is provided for each fuel supply communication chamber 38 as shown in FIG. The fuel gas is supplied from the lateral hole 50 corresponding to the fuel exhaust, and the fuel exhaust passage 7 takes in the fuel gas from the lateral hole 51 corresponding to each fuel exhaust communication chamber 42 and discharges it to the outside.

[容器]
燃料電池スタック8を収める容器10は、耐熱且つ密閉構造であって、開口部にフランジ52a,52bを有する二個の半割体53a,53bを向かい合わせにして接合したものである。この容器10の頂部から前記固定部材9の締付ねじ46a〜46dが外部に突出しており、この締付ねじ46a〜46dの突出部分にナット54を螺合させて燃料電池スタック8を容器10内に固定する。また、容器10の頂部から前記空気供給流路4、空気排気流路5、燃料供給流路6、燃料排気流路7も外部に突出しており、その突出部分に空気や燃料ガスの供給源等が接続されている。
[container]
The container 10 for storing the fuel cell stack 8 has a heat-resistant and hermetically sealed structure, and is formed by joining two halves 53a and 53b having flanges 52a and 52b facing each other. Clamping screws 46 a to 46 d of the fixing member 9 project outside from the top of the container 10, and a nut 54 is screwed into the projecting portion of the clamping screws 46 a to 46 d to place the fuel cell stack 8 in the container 10. To fix. Further, the air supply flow path 4, the air exhaust flow path 5, the fuel supply flow path 6 and the fuel exhaust flow path 7 also protrude outside from the top of the container 10, and a supply source of air or fuel gas, etc. Is connected.

[出力部材]
燃料電池スタック8で発電した電気を出力する出力部材11は、燃料電池スタック8のコーナー部分に位置する前記固定部材9の締付ねじ46a〜46dと前記エンドプレート45a,45bであって、対角線上で向かい合う一対の締付ねじ46a,46cを正極である上のエンドプレート45aに電気的に接続し、また、他の一対の締付ねじ46b,46dを負極である下のエンドプレート45bに電気的に接続する。もちろん正極に接続した締付ねじ46a,46dや負極に接続した締付ねじ46b,46cは、他極のエンドプレート45a(45b)に対しては絶縁座金55(図1参照)を介在させ、また、燃料電池スタック8に対してはコーナー通孔20との間に隙間を設けるなどして絶縁されている。よって、固定部材9の締付ねじ46a,46cは、上のエンドプレート45aにつながった正極の出力端子としても機能し、また、他の締付ねじ46b,46dは、下のエンドプレート45bにつながった負極の出力端子としても機能する。
[Output member]
The output member 11 that outputs electricity generated by the fuel cell stack 8 includes the fastening screws 46a to 46d of the fixing member 9 and the end plates 45a and 45b that are positioned at the corners of the fuel cell stack 8, and are diagonally arranged. The pair of clamping screws 46a and 46c facing each other are electrically connected to the upper end plate 45a which is a positive electrode, and the other pair of clamping screws 46b and 46d are electrically connected to the lower end plate 45b which is a negative electrode. Connect to. Of course, the fastening screws 46a and 46d connected to the positive electrode and the fastening screws 46b and 46c connected to the negative electrode interpose an insulating washer 55 (see FIG. 1) to the end plate 45a (45b) of the other electrode, The fuel cell stack 8 is insulated by providing a gap with the corner through hole 20. Therefore, the fastening screws 46a and 46c of the fixing member 9 also function as positive output terminals connected to the upper end plate 45a, and the other fastening screws 46b and 46d are connected to the lower end plate 45b. It also functions as a negative output terminal.

[発電]
上記燃料電池1の空気供給流路4に空気を供給すると、その空気は、図7の右側から左側に流れて、右側の空気供給流路4と、空気供給連絡室30と、空気供給連絡部32とからなる空気供給部25を通って空気室16に供給され、この空気室16の空気極集電体18同士の間のガス流路56を通り抜け、さらに空気排気連絡部36と、空気排気連絡室34と、空気排気流路5とからなる空気排気部26を通って外部に排出される。
[Power generation]
When air is supplied to the air supply channel 4 of the fuel cell 1, the air flows from the right side to the left side in FIG. 7, and the right air supply channel 4, the air supply communication chamber 30, and the air supply communication unit 32 is supplied to the air chamber 16 through the air supply unit 25, and passes through the gas flow path 56 between the air electrode current collectors 18 in the air chamber 16. Further, the air exhaust communication unit 36 and the air exhaust The air is discharged to the outside through the air exhaust portion 26 including the communication chamber 34 and the air exhaust passage 5.

同時に燃料電池1の燃料供給流路6に燃料ガスとして例えば水素を供給すると、その燃料ガスは、図8の上側から下側に流れて、上側の燃料供給流路6と、燃料供給連絡室38と、燃料供給連絡部40とからなる燃料供給部27を通って燃料室17に供給され、この燃料室17の燃料極集電体19同士の間のガス流路57を通り抜け、さらに燃料排気連絡部44と、燃料排気連絡室42と、燃料排気流路7とからなる燃料排気部28を通って外部に排気される。   At the same time, when hydrogen, for example, is supplied to the fuel supply passage 6 of the fuel cell 1 as fuel gas, the fuel gas flows from the upper side to the lower side in FIG. 8, and the upper fuel supply passage 6 and the fuel supply communication chamber 38. And the fuel supply communication unit 40, the fuel supply unit 27 is supplied to the fuel chamber 17, passes through the gas flow path 57 between the anode current collectors 19 in the fuel chamber 17, and further communicates with the fuel exhaust. The air is exhausted to the outside through the fuel exhaust part 28 including the part 44, the fuel exhaust communication chamber 42, and the fuel exhaust passage 7.

以上のような空気と燃料ガスの供給・排気を、前記容器10内を作動温度に高めた状態で行うと、それらが空気極14と電解質2と燃料極15を介して反応を起こすため、空気極14を正極、燃料極15を負極とする直流の電気エネルギが発生する。前記のように燃料電池スタック8は複数の燃料電池セル3を積層して直列に接続した状態であるから、上のエンドプレート45aが正極で、下のエンドプレート45bが負極になる。なお、燃料電池セル3内で電気エネルギが発生する原理は周知であるため説明を省略する。   When the supply and exhaust of air and fuel gas as described above are performed in a state where the inside of the container 10 is raised to the operating temperature, the reaction occurs via the air electrode 14, the electrolyte 2, and the fuel electrode 15. DC electric energy is generated with the electrode 14 as the positive electrode and the fuel electrode 15 as the negative electrode. As described above, since the fuel cell stack 8 is in a state in which a plurality of fuel cells 3 are stacked and connected in series, the upper end plate 45a is a positive electrode and the lower end plate 45b is a negative electrode. In addition, since the principle which an electrical energy generate | occur | produces in the fuel cell 3 is known, description is abbreviate | omitted.

さて、本発明の燃料電池セル3は、前記燃料室17内のガスの圧力を前記空気室16内のガスの圧力と同等か又はそれより大きく設定したものである。
そのため実施形態1の燃料電池セル3は、図7に示したように、空気供給部25の流路中、空気室16に直接接続された空気供給連絡部32の断面積(窪んだ通路部分。以下同じ。)が、空気排気部26の流路中、空気室16に直接接続された空気排気連絡部36の断面積よりも小さくなるように設定されている。これにより空気室16内における空気の流速が減少し、Fanningの式により知られているようにガスの流速の2乗に比例して圧力損失が減少するため、空気室16内のガスの圧力が減少する。
一方、図8に示したように、燃料電池セル3の燃料供給連絡部40の断面積と燃料排気連絡部44の断面積は従来型から変更なく同一であるため、燃料室17のガスの圧力も従来と同程度である。
したがって、空気室16に直接接続された空気供給連絡部32と空気排気連絡部36の断面積の差を調整して空気室16内のガスの圧力を下げることにより、相対的に燃料室17内のガスの圧力を空気室16内のガスの圧力と同等か又はそれより大きくすることができる。
In the fuel cell 3 of the present invention, the pressure of the gas in the fuel chamber 17 is set equal to or greater than the pressure of the gas in the air chamber 16.
Therefore, as shown in FIG. 7, the fuel battery cell 3 according to the first embodiment has a cross-sectional area (a depressed passage portion) of the air supply communication unit 32 directly connected to the air chamber 16 in the flow path of the air supply unit 25. The same applies hereinafter) is set to be smaller than the cross-sectional area of the air exhaust communication portion 36 directly connected to the air chamber 16 in the flow path of the air exhaust portion 26. As a result, the flow velocity of air in the air chamber 16 is reduced, and the pressure loss is reduced in proportion to the square of the flow velocity of the gas as known from the Fanning equation. Decrease.
On the other hand, as shown in FIG. 8, the cross-sectional area of the fuel supply communication unit 40 and the cross-sectional area of the fuel exhaust communication unit 44 of the fuel cell 3 are the same without changing from the conventional type. Is the same level as before.
Therefore, by adjusting the difference in cross-sectional area between the air supply communication part 32 and the air exhaust communication part 36 directly connected to the air chamber 16 to reduce the pressure of the gas in the air chamber 16, the fuel chamber 17 relatively The pressure of the gas can be equal to or greater than the pressure of the gas in the air chamber 16.

以上のようにして燃料室17内のガスの圧力を空気室16内のガスの圧力と同等に設定することにより、電解質2が空気極集電体18と燃料極集電体19のいずれの側にも変位しないため、電解質2と両集電体18,19の電気接点が良好に保たれる。
また、燃料室17内のガスの圧力を空気室16内のガスの圧力より大きく設定した場合、その圧力差で電解質2が空気極集電体18側に押されるが、空気極集電体18は、例えばステンレス材のような緻密で変形しにくい導電材でできているため、電解質2は変位しない。よって電解質2と両集電体18,19の電気接点が良好に保たれる。
As described above, the pressure of the gas in the fuel chamber 17 is set to be equal to the pressure of the gas in the air chamber 16, so that the electrolyte 2 is on either side of the air electrode current collector 18 and the fuel electrode current collector 19. Therefore, the electrical contact between the electrolyte 2 and the current collectors 18 and 19 is kept good.
Further, when the pressure of the gas in the fuel chamber 17 is set to be larger than the pressure of the gas in the air chamber 16, the electrolyte 2 is pushed toward the air electrode current collector 18 by the pressure difference. Is made of a dense and hard-to-deform conductive material such as stainless steel, so that the electrolyte 2 is not displaced. Therefore, the electrical contact between the electrolyte 2 and the current collectors 18 and 19 is kept good.

[実施形態2]
実施形態1の燃料電池セル3は、空気室16内のガスの圧力を調整したものであるのに対し、実施形態2の燃料電池セル3は、燃料室17内のガスの圧力を調整するものである。
[Embodiment 2]
The fuel cell 3 according to the first embodiment adjusts the gas pressure in the air chamber 16, whereas the fuel cell 3 according to the second embodiment adjusts the gas pressure in the fuel chamber 17. It is.

そのため実施形態2の燃料電池セル3は、図10に示したように、燃料供給部27の流路中、燃料室17に直接接続された燃料供給連絡部40の断面積が、燃料排気部28の流路中、燃料室17に直接接続された燃料排気連絡部44の断面積よりも大きくなるように設定されている。これにより燃料排気連絡部44を通る燃料ガスの流速が増加し、Fanningの式により知られているようにガスの流速の2乗に比例して圧力損失が増加するため、燃料室17内のガスの圧力が増加する。
一方、図9に示したように、燃料電池セル3の空気供給連絡部32の断面積と空気排気連絡部36の断面積は同一で従来と変わらないため、空気室16のガスの圧力も従来と同じである。
したがって、燃料室17に直接接続された燃料供給連絡部40と燃料排気連絡部44の断面積の差を調整して燃料室17内のガスの圧力を上げることにより、燃料室17内のガスの圧力を空気室16内のガスの圧力と同等か又はそれより大きくすることができ、これにより実施形態1と同様の作用・効果を得ることができる。
Therefore, as shown in FIG. 10, in the fuel cell 3 of Embodiment 2, the cross-sectional area of the fuel supply communication unit 40 directly connected to the fuel chamber 17 in the flow path of the fuel supply unit 27 is the fuel exhaust unit 28. Is set to be larger than the cross-sectional area of the fuel exhaust communication portion 44 directly connected to the fuel chamber 17. As a result, the flow rate of the fuel gas passing through the fuel exhaust communication portion 44 increases, and the pressure loss increases in proportion to the square of the flow velocity of the gas as known from the Fanning equation. The pressure increases.
On the other hand, as shown in FIG. 9, the cross-sectional area of the air supply communication part 32 and the cross-sectional area of the air exhaust communication part 36 of the fuel battery cell 3 are the same and are not different from the conventional one. Is the same.
Therefore, the gas pressure in the fuel chamber 17 is increased by adjusting the difference in cross-sectional area between the fuel supply communication portion 40 and the fuel exhaust communication portion 44 that are directly connected to the fuel chamber 17, thereby increasing the gas pressure in the fuel chamber 17. The pressure can be made equal to or greater than the pressure of the gas in the air chamber 16, whereby the same actions and effects as in the first embodiment can be obtained.

[実施形態3]
実施形態3は、図11の拡大図に示したように、燃料供給部27の流路中、燃料供給連絡部40に接続された燃料供給流路6の断面積(管径D1)が、燃料排気部28の流路中、燃料排気連絡部44に接続された燃料排気流路7の断面積(管径D)よりも大きくなるように設定したものである。具体的には、燃料供給流路6の管径D1を標準的な16mmに設定し、燃料排気流路7の管径Dを前記管径D1より小さい3mm≦D<16mmに設定することが挙げられる。この場合、燃料排気流路7が圧損手段になって圧力損失を生じさせるから確実に燃料室17のガスの圧力を高めることができる。よって、実施形態3の燃料電池セル3も実施形態2と同様の作用・効果を得ることができる。
なお、本実施形態3において燃料供給連絡部40の断面積と燃料排気連絡部44の断面積は図11に示したように同一であり、また、空気供給連絡部32の断面積と空気排気連絡部36の断面積も燃料供給連絡部40の断面積と同一である。
[Embodiment 3]
In the third embodiment, as shown in the enlarged view of FIG. 11, the cross-sectional area (tube diameter D1) of the fuel supply flow path 6 connected to the fuel supply communication section 40 in the flow path of the fuel supply section 27 is the fuel. In the flow path of the exhaust part 28, it is set to be larger than the cross-sectional area (tube diameter D) of the fuel exhaust flow path 7 connected to the fuel exhaust communication part 44. Specifically, the pipe diameter D1 of the fuel supply passage 6 is set to a standard 16 mm, and the pipe diameter D of the fuel exhaust passage 7 is set to 3 mm ≦ D <16 mm, which is smaller than the pipe diameter D1. It is done. In this case, the pressure of the gas in the fuel chamber 17 can be reliably increased because the fuel exhaust passage 7 serves as a pressure loss means to cause a pressure loss. Therefore, the fuel cell 3 of the third embodiment can also obtain the same operations and effects as those of the second embodiment.
In the third embodiment, the cross-sectional area of the fuel supply communication unit 40 and the cross-sectional area of the fuel exhaust communication unit 44 are the same as shown in FIG. 11, and the cross-sectional area of the air supply communication unit 32 and the air exhaust communication The cross-sectional area of the portion 36 is also the same as the cross-sectional area of the fuel supply communication unit 40.

この実施形態3の前記圧損手段は、燃料排気流路7の管径Dを細くすることなく、該燃料排気流路7の途中に後述する流量調節弁58(図16参照。)を設けて該流量調節弁58で実質的に管径Dを絞ったのと同等の効果が得られるようにしてもよい。なお、この点については実施形態5で詳述する。   The pressure loss means of the third embodiment is provided with a flow rate adjusting valve 58 (see FIG. 16) described later in the middle of the fuel exhaust passage 7 without reducing the pipe diameter D of the fuel exhaust passage 7. An effect equivalent to substantially reducing the pipe diameter D by the flow rate adjusting valve 58 may be obtained. This point will be described in detail in Embodiment 5.

[実施形態4]
実施形態4の燃料電池セル3は、図12〜図15に示したように、空気室16の内部に配置された複数の空気極集電体18に対し、空気極集電体18同士の間に形成されるガス流路56のガスの流れ方向と直交する方向の断面積を大きくして空気の流速を減少させ、そうして実施形態1と同じく空気室16内のガスの圧力を下げ、実施形態1と同じ効果が得られるようにしたものである。
[Embodiment 4]
As shown in FIGS. 12 to 15, the fuel battery cell 3 of Embodiment 4 is provided between the air electrode current collectors 18 with respect to the plurality of air electrode current collectors 18 arranged inside the air chamber 16. The cross-sectional area in the direction orthogonal to the gas flow direction of the gas flow path 56 formed in the above is increased to reduce the flow velocity of the air, thus reducing the pressure of the gas in the air chamber 16 as in the first embodiment, The same effect as in the first embodiment is obtained.

図12,図13の燃料電池セル3は、空気極集電体18の本数を減らして間隔Bを広くし、そうしてガス流路56の断面積を大きくしたものであり、具体的には、空気室16の幅Aとガス流路56の幅Bの比が、従来B/A=0.015であるものを0.015<B/A≦0.1に設定することが挙げられる。そうすることで空気室16内のガスの圧力は従来との比較において確実に低下させることができる。なお、前記B/Aの値を0.1より大きくすると、空気極14及びインターコネクタ12との接触面積が減少して集電率が低下するおそれがあるため好ましくない。   The fuel battery cell 3 of FIGS. 12 and 13 is obtained by reducing the number of the air electrode current collectors 18 to widen the interval B, and thus increasing the cross-sectional area of the gas flow path 56. For example, the ratio of the width A of the air chamber 16 to the width B of the gas flow path 56 is set to 0.015 <B / A ≦ 0.1, where B / A = 0.015. By doing so, the pressure of the gas in the air chamber 16 can be reliably reduced in comparison with the prior art. If the value of B / A is larger than 0.1, the contact area between the air electrode 14 and the interconnector 12 may be reduced, and the current collection rate may be reduced.

一方、図14,図15の燃料電池セル3は、空気極14の本数を従来のまま維持すると共に(これにより高い集電率が維持できる。)、空気極集電体18の高さCを高くすることによってガス流路56の断面積を大きくしたものであり、具体的には空気極集電体18の高さCを0.6mm<C≦5mmに設定するとよい。従来の燃料電池セル3は、図6に符合C1で示した空気極集電体18の高さが0.6mmであるから、それより高くすることで空気室16内のガスの圧力を従来との比較において確実に低下させることができる。なお、空気極集電体18の高さCを5mmより大きくすると、燃料電池セル3の高さが増して燃料電池スタック8の高さが大きくなりすぎるため好ましくない。   On the other hand, the fuel battery cell 3 of FIGS. 14 and 15 maintains the number of the air electrodes 14 as it is (which can maintain a high current collection rate), and the height C of the air electrode current collector 18. The cross-sectional area of the gas flow path 56 is increased by increasing the height, and specifically, the height C of the air electrode current collector 18 may be set to 0.6 mm <C ≦ 5 mm. In the conventional fuel cell 3, the height of the air electrode current collector 18 indicated by the symbol C <b> 1 in FIG. 6 is 0.6 mm. Can be reliably reduced in the comparison. If the height C of the air electrode current collector 18 is larger than 5 mm, the height of the fuel cell 3 increases and the height of the fuel cell stack 8 becomes too large.

[実施形態1〜4の組み合わせ]
実施形態1〜4は、それぞれ単独で実施可能であるが、これらを適宜組み合わせるようにしてもよい。例えば、空気供給部25と空気排気部26に係る実施形態1及び/又は4と、燃料供給部27と燃料排気部28に係る実施形態2及び/又は燃料供給流路6と燃料排気流路7に係る実施形態3の組合せが考えられる。そうすることにより空気室16のガスの圧力の低下と、燃料室17のガスの圧力の上昇が相乗的に作用して広い範囲での圧力調整が可能になる。
[Combination of Embodiments 1 to 4]
Embodiments 1 to 4 can be implemented independently, but may be combined as appropriate. For example, Embodiment 1 and / or 4 related to the air supply section 25 and the air exhaust section 26, Embodiment 2 related to the fuel supply section 27 and the fuel exhaust section 28, and / or the fuel supply flow path 6 and the fuel exhaust flow path 7 The combination of Embodiment 3 which concerns on can be considered. By doing so, a decrease in the pressure of the gas in the air chamber 16 and a rise in the pressure of the gas in the fuel chamber 17 act synergistically to enable pressure adjustment in a wide range.

[実施形態5]
図16は、長時間の安定的な発電を可能にした燃料電池装置を示したものである。この燃料電池装置は、燃料電池セル3を複数個積層して固定部材9で固定した燃料電池スタック8を使用し、前記実施形態3で説明したように圧損手段として燃料排気流路7の途中に流量調節弁58(図16参照。)を設けてなる。そしてさらにこの燃料電池装置は、前記流量調節弁58の流量を調節する流量調節手段と、前記燃料供給流路6のガス圧を検出する圧力センサ(Pa_in)と、前記燃料排気流路7のガス圧を検出する圧力センサ(Pa_out)と、前記空気供給流路4のガス圧を検出する圧力センサ(Pc_in)と、前記空気排気流路5のガス圧を検出する圧力センサ(Pc_out)と、燃料供給流路6と燃料排気流路7の燃料側圧力差と、空気供給流路4と空気排気流路5の空気側圧力差を算出して比較する比較手段を備えている。
[Embodiment 5]
FIG. 16 shows a fuel cell device that enables stable power generation for a long time. This fuel cell device uses a fuel cell stack 8 in which a plurality of fuel cells 3 are stacked and fixed by a fixing member 9, and as described in the third embodiment, in the middle of the fuel exhaust passage 7 as a pressure loss means. A flow control valve 58 (see FIG. 16) is provided. The fuel cell device further includes a flow rate adjusting means for adjusting the flow rate of the flow rate adjusting valve 58, a pressure sensor (Pa_in) for detecting a gas pressure in the fuel supply flow path 6, and a gas in the fuel exhaust flow path 7. A pressure sensor (Pa_out) for detecting the pressure, a pressure sensor (Pc_in) for detecting the gas pressure in the air supply passage 4, a pressure sensor (Pc_out) for detecting the gas pressure in the air exhaust passage 5, and fuel Comparing means for calculating and comparing the fuel side pressure difference between the supply passage 6 and the fuel exhaust passage 7 and the air side pressure difference between the air supply passage 4 and the air exhaust passage 5 is provided.

以上のように構成される燃料電池装置は、図16に示したフローチャートのように、発電時に前記圧力センサ(Pa_in),(Pa_out)で燃料供給流路6のガス圧と燃料排気流路7のガス圧を計測し(ステップS1)、また、圧力センサ(Pc_in),(Pc_out)で空気供給流路4のガス圧と空気排気流路5のガス圧を計測し(ステップS2)、そうして燃料側圧力差((Pa_in)−(Pa_out))と空気側圧力差((Pc_in)−(Pc_out))を算出して比較手段で比較し(ステップS3)、ここで燃料側圧力差が前記空気側圧力差と同等か又はそれより大きければ正常と判断してステップS1に戻る。一方、ステップS3で燃料側圧力差が空気側圧力差より小さければ異常と判断し、流量調節弁58を絞って燃料室17の圧力を上昇させ(ステップS4)、燃料側圧力差が空気側圧力差と同等か又はそれより大きくなるように制御してステップS1に戻る。
なお、実施形態5で使用する燃料電池セル3は、実施形態1〜4で説明した燃料電池セル3か或は実施形態1〜4の燃料電池セルを適宜組み合わせたものでよい。
In the fuel cell device configured as described above, the pressure sensor (Pa_in), (Pa_out) is used to generate the gas pressure in the fuel supply passage 6 and the fuel exhaust passage 7 during power generation, as shown in the flowchart in FIG. The gas pressure is measured (step S1), and the pressure sensor (Pc_in), (Pc_out) is used to measure the gas pressure in the air supply channel 4 and the gas pressure in the air exhaust channel 5 (step S2). The fuel side pressure difference ((Pa_in) − (Pa_out)) and the air side pressure difference ((Pc_in) − (Pc_out)) are calculated and compared by the comparison means (step S3), where the fuel side pressure difference is the air pressure If it is equal to or larger than the side pressure difference, it is determined as normal and the process returns to step S1. On the other hand, if the fuel side pressure difference is smaller than the air side pressure difference in step S3, it is determined that there is an abnormality, the flow rate control valve 58 is throttled to increase the pressure in the fuel chamber 17 (step S4), and the fuel side pressure difference is the air side pressure. Control is made to be equal to or greater than the difference, and the process returns to step S1.
In addition, the fuel cell 3 used in Embodiment 5 may be a combination of the fuel cells 3 described in Embodiments 1 to 4 or the fuel cells of Embodiments 1 to 4 as appropriate.

本発明の効果を確認するため、空気室16と燃料室17の図13中寸法Aに相当する幅100mm、図13中寸法Bに相当する空気極集電体18同士の間のガス流路56の幅1.5mm、空気供給連絡部32、空気排気連絡部36、燃料供給連絡部40、燃料排気連絡部44の窪みの1つ分の幅1.7mm、燃料供給流路6と燃料排気流路7の管径が16mmである従来型の燃料電池セル(以下、従来セルともいう。)をベースにして、以下の燃料電池セル(以下、試作セルともいう。)1〜3を製造した。
[試作セル1]
空気排気連絡部36の幅を大きくする実施形態1と、燃料排気連絡部44の幅Bを小さくする実施形態2を組み合わせたもので、空気供給連絡部32の幅=1.7mm、空気排気連絡部36の幅=3.5mm、燃料供給連絡部40の幅=1.7mm、燃料排気連絡部44の幅=0.3mmに設定した。それ以外は従来セルと同じである。
[試作セル2]
実施形態4(前者)に対応するもので、空気室16の幅Aと、空気極集電体18同士の間のガス流路56の幅Bとの比を、B/A=0.065に設定した。それ以外は従来セルと同じである。
[試作セル3]
実施形態3に対応するもので、燃料排気流路7の管径5mmに設定した。それ以外は従来セルと同じである。
以上の試作セル1〜3と従来セルを温度700℃、0.75A/cm2の条件で3000時間連続作動させ、500時間ごとにセル電圧と内部抵抗を測定した。
その結果を図17と図18のグラフに示す。この耐久試験により試作セル1〜3の十分な耐久性が確認できた。
In order to confirm the effect of the present invention, the gas flow path 56 between the air electrode current collectors 18 corresponding to the width 100 mm corresponding to the dimension A in FIG. 13 and the dimension B in FIG. 1.5 mm in width, 1.7 mm in width corresponding to one of the depressions in the air supply communication unit 32, the air exhaust communication unit 36, the fuel supply communication unit 40, and the fuel exhaust communication unit 44, the fuel supply flow path 6 and the fuel exhaust flow Based on conventional fuel cells (hereinafter also referred to as conventional cells) having a tube diameter of 16 mm, the following fuel cells (hereinafter also referred to as prototype cells) 1 to 3 were manufactured.
[Prototype cell 1]
A combination of the first embodiment in which the width of the air exhaust communication portion 36 is increased and the second embodiment in which the width B of the fuel exhaust communication portion 44 is reduced. The width of the air supply communication portion 32 is 1.7 mm. The width of the part 36 is set to 3.5 mm, the width of the fuel supply communication unit 40 is set to 1.7 mm, and the width of the fuel exhaust communication unit 44 is set to 0.3 mm. The rest is the same as the conventional cell.
[Prototype cell 2]
Corresponding to the fourth embodiment (the former), the ratio of the width A of the air chamber 16 and the width B of the gas flow path 56 between the air electrode current collectors 18 is set to B / A = 0.065. Set. The rest is the same as the conventional cell.
[Prototype cell 3]
This corresponds to the third embodiment, and the tube diameter of the fuel exhaust passage 7 is set to 5 mm. The rest is the same as the conventional cell.
The prototype cells 1 to 3 and the conventional cell were continuously operated for 3000 hours under the conditions of a temperature of 700 ° C. and 0.75 A / cm 2, and the cell voltage and the internal resistance were measured every 500 hours.
The results are shown in the graphs of FIGS. This durability test confirmed the sufficient durability of the prototype cells 1 to 3.

1 …燃料電池
2 …電解質
3 …燃料電池セル
4 …空気供給流路
5 …空気排気流路
6 …燃料供給流路
7 …燃料排気流路
9 …固定部材
12,13…インターコネクタ
14…空気極
15…燃料極
16…空気室
17…燃料室
18…空気極集電体
19…燃料極集電体
25…空気供給部
26…空気排気部
27…燃料供給部
28…燃料排気部
56…ガス流路
58…流量調節弁(圧損手段)
A …空気室16の幅
B …ガス流路56の幅
C …空気極集電体18の高さ
D …燃料排気流路7の管径
Pa_in …圧力センサ
Pa_out …圧力センサ
Pc_in …圧力センサ
Pc_out …圧力センサ
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 2 ... Electrolyte 3 ... Fuel cell 4 ... Air supply flow path 5 ... Air exhaust flow path 6 ... Fuel supply flow path 7 ... Fuel exhaust flow path 9 ... Fixed member 12, 13 ... Interconnector 14 ... Air electrode DESCRIPTION OF SYMBOLS 15 ... Fuel electrode 16 ... Air chamber 17 ... Fuel chamber 18 ... Air electrode current collector 19 ... Fuel electrode current collector 25 ... Air supply part 26 ... Air exhaust part 27 ... Fuel supply part 28 ... Fuel exhaust part 56 ... Gas flow Path 58 ... Flow control valve (pressure loss means)
A: Width of air chamber 16 B: Width of gas flow path 56 C: Height of air current collector 18 D: Diameter of fuel exhaust flow path 7
Pa_in… Pressure sensor
Pa_out… Pressure sensor
Pc_in Pressure sensor
Pc_out… Pressure sensor

Claims (12)

上下両面に位置する一対のインターコネクタと、
前記インターコネクタ間に位置し、一方のインターコネクタの内面に対向する面に空気極が形成され、他方のインターコネクタの内面に対向する面に燃料極が形成された電解質と、
前記インターコネクタと前記空気極の間に形成された空気室と、
前記インターコネクタと前記燃料極の間に形成された燃料室と、
前記空気室の内部に配置され、前記空気極と前記インターコネクタとを電気的に接続する空気極集電体と、
前記燃料室の内部に配置され、前記燃料極と前記インターコネクタとを電気的に接続する燃料極集電体と、
前記空気室の内部に供給されるガスが通過する空気供給流路を含む空気供給部と、
前記空気室から排出されるガスが通過する空気排気流路を含む空気排気部と、
前記燃料室の内部に供給される燃料ガスが通過する燃料供給流路を含む燃料供給部と、
前記燃料室から排出される燃料ガスが通過する燃料排気流路を含む燃料排気部と、を備えた燃料電池セルにおいて、
前記燃料室内のガスの圧力を前記空気室内のガスの圧力と同等か又はそれより大きく設定したことを特徴とする燃料電池セル。
A pair of interconnectors located on both upper and lower sides;
An electrolyte located between the interconnectors and having an air electrode formed on a surface facing the inner surface of one interconnector and a fuel electrode formed on a surface facing the inner surface of the other interconnector;
An air chamber formed between the interconnector and the air electrode;
A fuel chamber formed between the interconnector and the fuel electrode;
An air electrode current collector that is disposed inside the air chamber and electrically connects the air electrode and the interconnector;
A fuel electrode current collector disposed inside the fuel chamber and electrically connecting the fuel electrode and the interconnector;
An air supply unit including an air supply passage through which gas supplied into the air chamber passes;
An air exhaust part including an air exhaust passage through which gas exhausted from the air chamber passes;
A fuel supply section including a fuel supply passage through which fuel gas supplied into the fuel chamber passes;
A fuel exhaust cell including a fuel exhaust passage including a fuel exhaust passage through which fuel gas discharged from the fuel chamber passes,
A fuel battery cell, wherein the pressure of the gas in the fuel chamber is set equal to or greater than the pressure of the gas in the air chamber.
前記空気室のガスの圧力を、前記空気室に直接接続された空気供給部の流路の断面積が、前記空気室に直接接続された空気排気部の流路の断面積よりも小さくなるように設定して前記燃料室内のガスの圧力と同等か又はそれよ小さくしたことを特徴とする請求項1記載の燃料電池セル。   The pressure of the gas in the air chamber is set so that the cross-sectional area of the flow path of the air supply section directly connected to the air chamber is smaller than the cross-sectional area of the flow path of the air exhaust section directly connected to the air chamber. The fuel cell according to claim 1, wherein the fuel cell is set to be equal to or smaller than the pressure of the gas in the fuel chamber. 前記燃料室のガスの圧力を、前記燃料室に直接接続された燃料供給部の流路の断面積が、前記燃料室に直接接続された燃料排気部の流路の断面積よりも大きくなるように設定して前記空気室内のガスの圧力と同等か又はそれより大きくしたことを特徴とする請求項1又は2に記載の燃料電池セル。   The pressure of the gas in the fuel chamber is set so that the cross-sectional area of the flow path of the fuel supply section directly connected to the fuel chamber is larger than the cross-sectional area of the flow path of the fuel exhaust section directly connected to the fuel chamber. The fuel cell according to claim 1, wherein the fuel cell is set to be equal to or greater than a pressure of the gas in the air chamber. 前記空気極集電体は前記空気室の内部に間隔をおいて複数配置され、
前記空気室のガスの圧力を、前記空気極集電体間に形成されるガス流路に流れるガスの流れ方向と直交する方向の前記ガス流路の断面積を調整することにより設定したことを特徴とする請求項1〜3のいずれか1項に記載の燃料電池セル。
A plurality of the air electrode current collectors are arranged at intervals inside the air chamber,
The pressure of the gas in the air chamber is set by adjusting the cross-sectional area of the gas flow path in the direction orthogonal to the flow direction of the gas flowing in the gas flow path formed between the air electrode current collectors. The fuel battery cell according to any one of claims 1 to 3, wherein
空気の流れ方向と直交する方向の前記空気室の幅Aと、平行に並べた前記空気極集電体間に形成されるガス流路の幅Bを、0.015<B/A≦0.1に設定したことを特徴とする請求項4記載の燃料電池セル。   The width A of the air chamber in the direction perpendicular to the air flow direction and the width B of the gas flow path formed between the air electrode current collectors arranged in parallel are set to 0.015 <B / A ≦ 0.0. The fuel cell according to claim 4, wherein the fuel cell is set to 1. 前記空気極集電体の高さCを、0.6mm<C≦5mmに設定したことを特徴とする請求項4記載の燃料電池セル。   The fuel cell according to claim 4, wherein a height C of the air electrode current collector is set to 0.6 mm <C ≦ 5 mm. 前記燃料室のガスの圧力を、前記燃料排気部を構成する燃料排気流路に圧力損失を生じさせる圧損手段を設けて調整するように設定したことを特徴とする請求項1記載の燃料電池セル。   2. The fuel battery cell according to claim 1, wherein the pressure of the gas in the fuel chamber is set so as to be adjusted by providing a pressure loss means for generating a pressure loss in a fuel exhaust flow path constituting the fuel exhaust section. . 前記圧損手段は、前記燃料供給部の燃料供給流路の断面積より小さい断面積の前記燃料排気部の燃料排気流路であることを特徴とする請求項7記載の燃料電池セル。   The fuel cell according to claim 7, wherein the pressure loss means is a fuel exhaust passage of the fuel exhaust portion having a cross-sectional area smaller than a cross-sectional area of the fuel supply passage of the fuel supply portion. 請求項8に記載の燃料排気部の燃料排気流路は管状であり、管径Dが、3mm≦D<16mmであることを特徴とする燃料電池セル。   9. The fuel cell according to claim 8, wherein the fuel exhaust passage of the fuel exhaust section is tubular, and the tube diameter D is 3 mm ≦ D <16 mm. 前記圧損手段は、前記燃料排気部の燃料排気流路の途中に設けた流量調節弁であることを特徴とする請求項7記載の燃料電池セル。   The fuel cell according to claim 7, wherein the pressure loss means is a flow rate adjusting valve provided in the middle of the fuel exhaust passage of the fuel exhaust section. 請求項1〜請求項10のいずれか1項に記載の燃料電池セルを複数個積層して固定部材で固定してなることを特徴とする燃料電池スタック。   A fuel cell stack comprising a plurality of fuel cells according to any one of claims 1 to 10 stacked and fixed by a fixing member. 請求項10に記載の燃料電池セルを複数個積層して固定部材で固定した燃料電池スタックと、
前記燃料排気部の燃料排気流路の途中に設けた前記流量調節弁を調節する流量調節手段と、
前記燃料供給部に燃料ガスを供給する燃料供給流路のガス圧を検出する圧力センサ(Pa_in)と、
前記燃料排気部から燃料ガスを排出する燃料排気流路のガス圧を検出する圧力センサ(Pa_out)と、
前記空気供給部に空気を供給する空気供給流路のガス圧を検出する圧力センサ(Pc_in)と、
前記空気排気部から空気を排出する空気排気流路のガス圧を検出する圧力センサ(Pc_out)と、
前記燃料供給流路と前記燃料排気流路の燃料側圧力差と、前記空気供給流路と前記空気排気流路の空気側圧力差を比較する比較手段を備え、
前記流量調節手段で流量調節弁を調節して前記燃料側圧力差が前記空気側圧力差と同等か又はそれより大きくなるように制御するものであることを特徴とする燃料電池装置。
A fuel cell stack in which a plurality of the fuel cells according to claim 10 are stacked and fixed by a fixing member;
Flow rate adjusting means for adjusting the flow rate adjusting valve provided in the middle of the fuel exhaust flow path of the fuel exhaust part;
A pressure sensor (Pa_in) for detecting a gas pressure in a fuel supply passage for supplying fuel gas to the fuel supply unit;
A pressure sensor (Pa_out) for detecting a gas pressure in a fuel exhaust passage for discharging fuel gas from the fuel exhaust section;
A pressure sensor (Pc_in) for detecting a gas pressure of an air supply channel for supplying air to the air supply unit;
A pressure sensor (Pc_out) for detecting a gas pressure of an air exhaust passage for discharging air from the air exhaust part;
Comparing means for comparing the fuel side pressure difference between the fuel supply channel and the fuel exhaust channel, and the air side pressure difference between the air supply channel and the air exhaust channel,
A fuel cell device characterized in that the flow rate adjusting valve is adjusted by the flow rate adjusting means so that the fuel side pressure difference is equal to or greater than the air side pressure difference.
JP2010086917A 2010-04-05 2010-04-05 Fuel cell and fuel cell stack or fuel cell device Active JP5486743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086917A JP5486743B2 (en) 2010-04-05 2010-04-05 Fuel cell and fuel cell stack or fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086917A JP5486743B2 (en) 2010-04-05 2010-04-05 Fuel cell and fuel cell stack or fuel cell device

Publications (2)

Publication Number Publication Date
JP2011222152A true JP2011222152A (en) 2011-11-04
JP5486743B2 JP5486743B2 (en) 2014-05-07

Family

ID=45038933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086917A Active JP5486743B2 (en) 2010-04-05 2010-04-05 Fuel cell and fuel cell stack or fuel cell device

Country Status (1)

Country Link
JP (1) JP5486743B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157179A (en) * 2012-01-30 2013-08-15 Ngk Spark Plug Co Ltd Fuel cell
KR20160008214A (en) * 2013-05-02 2016-01-21 할도르 토프쉐 에이/에스 Gas inlet for soec unit
JP2016170939A (en) * 2015-03-12 2016-09-23 日本特殊陶業株式会社 Fuel battery stack
US9761888B2 (en) 2012-01-30 2017-09-12 Ngk Spark Plug Co., Ltd. Fuel cell
JP2017228481A (en) * 2016-06-24 2017-12-28 日本特殊陶業株式会社 Electrochemical reaction cell stack

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275304A (en) * 1993-03-22 1994-09-30 Toshiba Corp Fuel cell
JPH09320619A (en) * 1996-05-29 1997-12-12 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell
JP2000164227A (en) * 1998-11-24 2000-06-16 Aisin Seiki Co Ltd Gas manifold integrated separator and fuel cell
JP2001250569A (en) * 2000-03-06 2001-09-14 Toyota Motor Corp Fuel cell and collector panel thereof
JP2003331892A (en) * 2002-05-13 2003-11-21 Mitsubishi Heavy Ind Ltd Fuel cell system, and starting method of fuel cell system
WO2004084333A1 (en) * 2003-03-18 2004-09-30 Toyota Jidosha Kabushiki Kaisha Fuel cell and method for producing electrolyte membrane for fuel cell
JP2007287585A (en) * 2006-04-19 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Gas sealing structure and gas sealing method for solid-oxide fuel cell
JP2009004353A (en) * 2007-05-22 2009-01-08 Ngk Insulators Ltd Solid oxide fuel cell
JP2009129726A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Fuel cell, fuel cell stack, and fuel cell system
WO2010038869A1 (en) * 2008-10-02 2010-04-08 日本特殊陶業株式会社 Solid oxide fuel battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275304A (en) * 1993-03-22 1994-09-30 Toshiba Corp Fuel cell
JPH09320619A (en) * 1996-05-29 1997-12-12 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell
JP2000164227A (en) * 1998-11-24 2000-06-16 Aisin Seiki Co Ltd Gas manifold integrated separator and fuel cell
JP2001250569A (en) * 2000-03-06 2001-09-14 Toyota Motor Corp Fuel cell and collector panel thereof
JP2003331892A (en) * 2002-05-13 2003-11-21 Mitsubishi Heavy Ind Ltd Fuel cell system, and starting method of fuel cell system
WO2004084333A1 (en) * 2003-03-18 2004-09-30 Toyota Jidosha Kabushiki Kaisha Fuel cell and method for producing electrolyte membrane for fuel cell
JP2007287585A (en) * 2006-04-19 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Gas sealing structure and gas sealing method for solid-oxide fuel cell
JP2009004353A (en) * 2007-05-22 2009-01-08 Ngk Insulators Ltd Solid oxide fuel cell
JP2009129726A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Fuel cell, fuel cell stack, and fuel cell system
WO2010038869A1 (en) * 2008-10-02 2010-04-08 日本特殊陶業株式会社 Solid oxide fuel battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157179A (en) * 2012-01-30 2013-08-15 Ngk Spark Plug Co Ltd Fuel cell
US9761888B2 (en) 2012-01-30 2017-09-12 Ngk Spark Plug Co., Ltd. Fuel cell
KR20160008214A (en) * 2013-05-02 2016-01-21 할도르 토프쉐 에이/에스 Gas inlet for soec unit
JP2016520970A (en) * 2013-05-02 2016-07-14 ハルドール・トプサー・アクチエゼルスカベット Gas inlet for SOEC unit
US10074864B2 (en) 2013-05-02 2018-09-11 Haldor Topsoe A/S Gas inlet for SOEC unit
KR102080573B1 (en) * 2013-05-02 2020-02-24 할도르 토프쉐 에이/에스 Gas inlet for soec unit
JP2016170939A (en) * 2015-03-12 2016-09-23 日本特殊陶業株式会社 Fuel battery stack
JP2017228481A (en) * 2016-06-24 2017-12-28 日本特殊陶業株式会社 Electrochemical reaction cell stack

Also Published As

Publication number Publication date
JP5486743B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
KR101603449B1 (en) Fuel Cell and Fuel Cell Stack
US20120178012A1 (en) Sealing member for solid oxide fuel cell and solid oxide fuel cell employing the same
KR101708133B1 (en) Fuel cell, and fuel cell stack
US20180040906A1 (en) Fuel cell stack
JP5486743B2 (en) Fuel cell and fuel cell stack or fuel cell device
KR101725695B1 (en) Fuel cell, and fuel cell stack
JP5551495B2 (en) Fuel cell module
JP5254588B2 (en) Solid oxide fuel cell module
JP5685349B2 (en) Fuel cell and fuel cell stack
US20140120450A1 (en) Solid oxide fuel cell module
JP5095970B2 (en) Fuel cell
JPH0589890A (en) Cell of solid electrolyte type fuel battery and power generating device using it
JP4949737B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP5872951B2 (en) Fuel cell
JP4285522B2 (en) FUEL CELL, FUEL CELL STACK, FUEL CELL DEVICE, AND ELECTRONIC DEVICE
JP5125376B2 (en) Fuel cell
JP6013006B2 (en) Fuel cell
KR20140082300A (en) Solid oxide fuel cell
US11658326B2 (en) Cell stack device, module, and module housing device
JP5722742B2 (en) Fuel cell
JPH05166518A (en) Cell for solid electrolyte fuel cell and power generating device using it
JP4228895B2 (en) Solid oxide fuel cell
JPH05242904A (en) Flat solid electrolyte fuel cell
JP2009123711A (en) Fuel cell, fuel cell stack, fuel cell device, and electronic apparatus
JP2013222639A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140222

R150 Certificate of patent or registration of utility model

Ref document number: 5486743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250