JP2011221422A - Zoom optical system, optical apparatus equipped with zoom optical system and method for manufacturing zoom optical system - Google Patents

Zoom optical system, optical apparatus equipped with zoom optical system and method for manufacturing zoom optical system Download PDF

Info

Publication number
JP2011221422A
JP2011221422A JP2010092772A JP2010092772A JP2011221422A JP 2011221422 A JP2011221422 A JP 2011221422A JP 2010092772 A JP2010092772 A JP 2010092772A JP 2010092772 A JP2010092772 A JP 2010092772A JP 2011221422 A JP2011221422 A JP 2011221422A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
focal length
end state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092772A
Other languages
Japanese (ja)
Other versions
JP5494955B2 (en
Inventor
Hiroshi Yamamoto
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010092772A priority Critical patent/JP5494955B2/en
Publication of JP2011221422A publication Critical patent/JP2011221422A/en
Application granted granted Critical
Publication of JP5494955B2 publication Critical patent/JP5494955B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom optical system capable of obtaining excellent optical performance, an optical apparatus equipped with the zoom optical system, and a method for manufacturing the zoom optical system.SOLUTION: The zoom optical system ZL mounted on a digital single lens reflex camera 1 and the like includes, in order from an object side: a first lens group G1 having positive refractive power; a second lens group G2 having negative refractive power; a third lens group G3 having positive refractive power; a fourth lens group G4 having negative refractive power; and a fifth lens group G5 having positive refractive power. The zoom optical system ZL moves in such a way that the distance between the fourth lens group G4 and the fifth lens group G5 is decreased, when zooming from a wide-angle end state to a telephoto end state.

Description

本発明は、変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus including the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開平8−94932号公報JP-A-8-94932

しかしながら、従来の変倍光学系は、良好な光学性能を達成できていないという問題があった。   However, the conventional variable magnification optical system has a problem that it cannot achieve good optical performance.

本発明はこのような課題に鑑みてなされたものであり、良好な光学性能を有する変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and provides a variable magnification optical system having good optical performance, an optical apparatus including the variable magnification optical system, and a method for manufacturing the variable magnification optical system. With the goal.

前記課題を解決するために、本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有し、広角端状態から望遠端状態への変倍に際して、第4レンズ群と第5レンズ群との間隔が縮小して移動するよう構成され、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2とし、第3レンズ群の焦点距離をf3とし、広角端状態における全系の焦点距離をfwとしたとき、次式
0.10 < f3/(−f2) < 1.35
3.0 < f1/fw < 20.0
の条件を満足する。
In order to solve the above problems, a variable magnification optical system according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction. A third lens group having a power, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, and upon zooming from the wide-angle end state to the telephoto end state, The distance between the fourth lens group and the fifth lens group is reduced and moved. The focal length of the first lens group is f1, the focal length of the second lens group is f2, and the focal point of the third lens group. When the distance is f3 and the focal length of the entire system in the wide-angle end state is fw, the following expression 0.10 <f3 / (− f2) <1.35
3.0 <f1 / fw <20.0
Satisfy the conditions.

また、この変倍光学系は、広角端状態から望遠端状態への変倍に際して、第4レンズ群と第5レンズ群との広角端状態での空気間隔をd4wとし、第4レンズ群と第5レンズ群との望遠端状態での空気間隔をd4tとしたとき、次式
(d4w−d4t)/fw > 0.00
Further, in this zoom optical system, upon zooming from the wide-angle end state to the telephoto end state, the air interval between the fourth lens group and the fifth lens group in the wide-angle end state is d4w, and the fourth lens group and the fourth lens group When the distance between the air in the telephoto end state with the five lens groups is d4t, the following formula (d4w−d4t) / fw> 0.00

また、この変倍光学系は、第4レンズ群の焦点距離をf4としたとき、次式
0.50 < f3/(−f4) < 1.50
の条件を満足することが好ましい。
Further, in this zoom optical system, when the focal length of the fourth lens group is f4, the following formula 0.50 <f3 / (− f4) <1.50
It is preferable to satisfy the following conditions.

また、この変倍光学系は、次式
0.58 < (−f2)/fw < 0.95
の条件を満足することが好ましい。
The variable magnification optical system has the following formula 0.58 <(− f2) / fw <0.95.
It is preferable to satisfy the following conditions.

また、この変倍光学系は、第4レンズ群の焦点距離をf4としたとき、次式
0.40 < f2/f4 < 1.20
の条件を満足することが好ましい。
Further, in this variable power optical system, when the focal length of the fourth lens group is f4, the following formula 0.40 <f2 / f4 <1.20
It is preferable to satisfy the following conditions.

また、この変倍光学系は、第1レンズ群の焦点距離をf1としたとき、次式
3.0 < f1/f3 < 6.0
の条件を満足することが好ましい。
Further, in this variable magnification optical system, when the focal length of the first lens group is f1, the following expression 3.0 <f1 / f3 <6.0
It is preferable to satisfy the following conditions.

また、この変倍光学系は、無限遠から近距離物点への合焦に際し、第2レンズ群の少なくとも一部が光軸上を移動することが好ましい。   In the zoom optical system, it is preferable that at least a part of the second lens group moves on the optical axis when focusing from infinity to a short-distance object point.

また、この変倍光学系は、第2レンズ群の最も像側のレンズ面は非球面形状であることが好ましい。   In this zoom optical system, it is preferable that the lens surface closest to the image side of the second lens group has an aspherical shape.

また、この変倍光学系において、第4レンズ群は、少なくとも1枚の接合レンズを有することが好ましい。   In the zoom optical system, it is preferable that the fourth lens group has at least one cemented lens.

また、この変倍光学系は、広角端状態から望遠端状態に変倍する際に、第1レンズ群と第2レンズ群との間隔が増大し、第2レンズ群と第3レンズ群との間隔が減少し、第3レンズ群と第4レンズ群との間隔が増大し、第4レンズ群と第5レンズ群との間隔が減少するように、各レンズ群が移動することが好ましい。   Further, in the zoom optical system, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the second lens group and the third lens group It is preferable that the lens groups move so that the distance decreases, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases.

また、この変倍光学系において、第4レンズ群の少なくとも一部は、光軸と直交する方向の成分を持つように移動することが好ましい。   In this zoom optical system, it is preferable that at least a part of the fourth lens group moves so as to have a component in a direction orthogonal to the optical axis.

また、この変倍光学系は、第2レンズ群の最も物体側のレンズ面は非球面形状であることが好ましい。   In this variable magnification optical system, it is preferable that the most object side lens surface of the second lens group has an aspherical shape.

また、本発明に係る光学機器は、上述の変倍光学系のいずれかを備えて構成される。   An optical apparatus according to the present invention includes any of the above-described variable magnification optical systems.

また、本発明に係る変倍光学系の製造方法は物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍に際して、第4レンズ群と第5レンズ群との間隔が縮小して移動するよう配置し、第1レンズ群の焦点距離をf1とし、第2レンズ群の焦点距離をf2とし、第3レンズ群の焦点距離をf3とし、広角端状態における全系の焦点距離をfwとしたとき、次式
0.10 < f3/(−f2) < 1.35
3.0 < f1/fw < 20.0
の条件を満足するように配置する。
In addition, in the manufacturing method of the variable magnification optical system according to the present invention, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a first lens group having a positive refractive power. A method of manufacturing a variable magnification optical system having three lens groups, a fourth lens group having a negative refractive power, and a fifth lens group having a positive refractive power, from a wide-angle end state to a telephoto end state Is arranged such that the distance between the fourth lens group and the fifth lens group is reduced and moved, the focal length of the first lens group is f1, the focal length of the second lens group is f2, When the focal length of the three lens units is f3 and the focal length of the entire system in the wide-angle end state is fw, the following expression 0.10 <f3 / (− f2) <1.35
3.0 <f1 / fw <20.0
Arrange to satisfy the conditions of

本発明に係る変倍光学系、この変倍光学系を備える光学機器、及び、変倍光学系の製造方法を以上のように構成すると、良好な光学性能を得ることができる。   When the variable magnification optical system according to the present invention, the optical apparatus including the variable magnification optical system, and the method for manufacturing the variable magnification optical system are configured as described above, good optical performance can be obtained.

第1実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 1st Example. 第1実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での諸収差図であり、(b)中間焦点距離状態での収差図であり、(c)は望遠端状態での諸収差図である。FIG. 6 is a diagram illustrating various aberrations in an infinitely focused state according to the first example, (a) is a diagram illustrating various aberrations in a wide-angle end state, (b) is a diagram illustrating aberrations in an intermediate focal length state, and (c) is a diagram illustrating aberrations. It is an aberration diagram in the telephoto end state. 第2実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 2nd Example. 第2実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での諸収差図であり、(b)中間焦点距離状態での諸収差図であり、(c)は望遠端状態での諸収差図である。FIG. 6 is a diagram illustrating various aberrations in the infinitely focused state according to the second embodiment, (a) illustrating various aberrations in the wide-angle end state, (b) various aberration diagrams in the intermediate focal length state, and (c). These are aberration diagrams in the telephoto end state. 第3実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 3rd Example. 第3実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での諸収差図であり、(b)中間焦点距離状態での諸収差図であり、(c)は望遠端状態での諸収差図である。FIG. 6 is a diagram illustrating various aberrations in the infinitely focused state according to the third example, (a) illustrating various aberrations in the wide-angle end state, (b) various aberration diagrams in the intermediate focal length state, and (c). These are aberration diagrams in the telephoto end state. 第4実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 4th Example. 第4実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での諸収差図であり、(b)中間焦点距離状態での諸収差図であり、(c)は望遠端状態での諸収差図である。FIG. 10 is a diagram illustrating all aberrations in the infinitely focused state according to the fourth example, (a) is a diagram illustrating various aberrations in the wide-angle end state, (b) is a diagram illustrating various aberrations in the intermediate focal length state, and (c) These are aberration diagrams in the telephoto end state. 第5実施例による変倍光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the variable magnification optical system by 5th Example. 第5実施例の無限遠合焦状態の諸収差図であり、(a)は広角端状態での諸収差図であり、(b)中間焦点距離状態での諸収差図であり、(c)は望遠端状態での諸収差図である。FIG. 10 is a diagram illustrating various aberrations in the infinitely focused state according to the fifth example, (a) illustrating various aberrations in the wide-angle end state, (b) various aberration diagrams in the intermediate focal length state, and (c). These are aberration diagrams in the telephoto end state. 本実施形態に係る変倍光学系を搭載するデジタル一眼レフカメラの断面図を示す。1 is a cross-sectional view of a digital single-lens reflex camera equipped with a variable magnification optical system according to the present embodiment. 本実施形態に係る変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本願の好ましい実施形態について図面を参照して説明する。まず、本実施形態の変倍光学系ZLは、図1に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成される。このような構成により、鏡筒の小型化とズーミングの収差変動を良好に補正することができる。   Hereinafter, preferred embodiments of the present application will be described with reference to the drawings. First, as shown in FIG. 1, the variable magnification optical system ZL of the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. The third lens group G3 having positive refractive power, the fourth lens group G4 having negative refractive power, and the fifth lens group G5 having positive refractive power. With such a configuration, it is possible to satisfactorily correct the aberration of zooming and zooming.

また、本実施形態の変倍光学系ZLは、広角端状態から望遠端状態への変倍に際して、第4レンズ群G4と第5レンズ群G5との間隔が縮小するように移動することが望ましい。このような構成により、所定の変倍比とズーミングの収差変動とを良好に補正することができる。   Further, it is desirable that the zoom optical system ZL of the present embodiment moves so that the distance between the fourth lens group G4 and the fifth lens group G5 is reduced when zooming from the wide-angle end state to the telephoto end state. . With such a configuration, it is possible to satisfactorily correct a predetermined zoom ratio and zooming aberration fluctuation.

また、本実施形態の変倍光学系ZLは、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3としたとき、以下の条件式(1)を満足することが望ましい。   Further, the variable magnification optical system ZL of the present embodiment satisfies the following conditional expression (1) when the focal length of the second lens group G2 is f2 and the focal length of the third lens group G3 is f3. Is desirable.

0.10 < f3/(−f2) < 1.35 (1) 0.10 <f3 / (− f2) <1.35 (1)

条件式(1)は、第2レンズ群G2の焦点距離f2と第3レンズ群G3の焦点距離f3との比を規定するものである。本実施形態の変倍光学系ZLは、この条件式(1)を満足することで良好な光学性能と所定の変倍比とを実現することができる。この条件式(1)の上限値を上回ると、第2レンズ群G2の屈折力が強くなり、広角端におけるコマ収差と像面湾曲との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を1.33にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(1)の上限値を1.31にすることが更に好ましい。反対に、条件式(1)の下限値を下回ると、第3レンズ群G3の屈折力が強くなり、望遠端における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を0.60にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(1)の下限値を1.00にすることが更に好ましい。   Conditional expression (1) defines the ratio between the focal length f2 of the second lens group G2 and the focal length f3 of the third lens group G3. The zooming optical system ZL of the present embodiment can achieve good optical performance and a predetermined zooming ratio by satisfying this conditional expression (1). Exceeding the upper limit of conditional expression (1) is not preferable because the refractive power of the second lens group G2 becomes strong and it becomes difficult to correct coma and field curvature at the wide-angle end. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 1.33. In order to further secure the effect of the present embodiment, it is more preferable to set the upper limit of conditional expression (1) to 1.31. On the other hand, if the lower limit of conditional expression (1) is not reached, the refractive power of the third lens group G3 becomes strong, and it becomes difficult to correct spherical aberration and coma at the telephoto end, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 0.60. In order to further secure the effect of the present embodiment, it is more preferable to set the lower limit of conditional expression (1) to 1.00.

また、本実施形態に係る変倍光学系ZLは、第1レンズ群G1の焦点距離をf1とし、広角端状態における全系の焦点距離をfwとしたとき、以下の条件式(2)を満足することが望ましい。   The variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (2) when the focal length of the first lens group G1 is f1 and the focal length of the entire system in the wide-angle end state is fw. It is desirable to do.

2.5 < f1/fw < 20.0 (2) 2.5 <f1 / fw <20.0 (2)

条件式(2)は、第1レンズ群G1の焦点距離f1と広角端状態における全系の焦点距離fwとの比を規定するものである。本実施形態の変倍光学系ZLは、この条件式(2)を満足することで良好な光学性能と所定の変倍比とを実現することができる。この条件式(2)の上限値を上回ると、第1レンズ群G1の屈折力が弱くなり、所定の変倍比を得るために移動量が増大し、鏡筒構造が大きくなる。この影響を緩和するために、他の群の屈折力を強めることになり、望遠端における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を10.0にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(2)の上限値を7.0にすることが更に好ましい。反対に、条件式(2)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、望遠端におけるコマ収差と球面収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を3.2にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(2)の下限値を3.4にすることが更に好ましい。   Conditional expression (2) defines the ratio between the focal length f1 of the first lens group G1 and the focal length fw of the entire system in the wide-angle end state. The zoom optical system ZL according to the present embodiment can achieve good optical performance and a predetermined zoom ratio by satisfying the conditional expression (2). If the upper limit of conditional expression (2) is exceeded, the refractive power of the first lens group G1 becomes weak, the amount of movement increases to obtain a predetermined zoom ratio, and the lens barrel structure becomes large. In order to mitigate this effect, the refractive power of the other group is increased, and correction of spherical aberration and coma at the telephoto end becomes difficult. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 10.0. In order to further secure the effect of the present embodiment, it is more preferable to set the upper limit of conditional expression (2) to 7.0. On the other hand, if the lower limit value of conditional expression (2) is not reached, the refractive power of the first lens group G1 becomes strong, and correction of coma and spherical aberration at the telephoto end becomes difficult. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 3.2. In order to further secure the effect of the present embodiment, it is more preferable to set the lower limit of conditional expression (2) to 3.4.

また、本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態への変倍に際して、第4レンズ群G4と第5レンズ群G5との広角端状態での空気間隔をd4wとし、第4レンズ群G4と第5レンズ群G5との望遠端状態での空気間隔をd4tとし、広角端状態における全系の焦点距離をfwとしたとき、以下の条件式(3)を満足することが望ましい。   Further, in the zoom optical system ZL according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the air gap in the wide-angle end state between the fourth lens group G4 and the fifth lens group G5 is d4w. When the air gap between the fourth lens group G4 and the fifth lens group G5 in the telephoto end state is d4t and the focal length of the entire system in the wide-angle end state is fw, the following conditional expression (3) is satisfied. It is desirable.

(d4w−d4t)/fw > 0.00 (3) (D4w−d4t) / fw> 0.00 (3)

条件式(3)は、広角端状態から望遠端状態に変倍する際の、全系の焦点距離fwに対する、第4レンズ群G4と第5レンズ群G5との空気間隔の変化量を規定するための条件式である。本変倍光学系ZLは、この条件式(3)を満足することで所定の変倍比と像面湾曲等の収差を良好に補正することができる。なお、本発明の効果を確実にするために、条件式(3)の上限値を0.05にすることが好ましい。また、本発明の効果を更に確実にするために、条件式(3)の上限値0.10にすることが好ましい。   Conditional expression (3) defines the amount of change in the air gap between the fourth lens group G4 and the fifth lens group G5 with respect to the focal length fw of the entire system when zooming from the wide-angle end state to the telephoto end state. Is a conditional expression. This zoom optical system ZL can satisfactorily correct aberrations such as a predetermined zoom ratio and field curvature by satisfying conditional expression (3). In order to secure the effect of the present invention, it is preferable to set the upper limit of conditional expression (3) to 0.05. In order to further secure the effect of the present invention, it is preferable to set the upper limit of 0.10 in conditional expression (3).

また、本実施形態に係る変倍光学系ZLは、第3レンズ群G3の焦点距離をf3とし、第4レンズ群G4の焦点距離をf4としたと、以下の条件式(4)を満足することが望ましい。   In the zoom optical system ZL according to the present embodiment, when the focal length of the third lens group G3 is f3 and the focal length of the fourth lens group G4 is f4, the following conditional expression (4) is satisfied. It is desirable.

0.50 < f3/(−f4) < 1.50 (4) 0.50 <f3 / (− f4) <1.50 (4)

条件式(4)は、第4レンズ群G4の焦点距離f4と第3レンズ群G3の焦点距離f3との比を規定するものである。本実施形態の変倍光学系ZLは、この条件式(4)を満足することで鏡筒の小型化と手ぶれ補正時にも良好な光学性能とを実現することができる。この条件式(4)の上限値を上回ると、第4レンズ群G4の屈折力が強くなり、広角端における球面収差とコマ収差との補正が困難になる。また、手ぶれ補正時の像面湾曲の変動と、偏芯コマ収差の変動とを同時に補正することが困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の上限値を1.10にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(4)の上限値を1.00にすることが更に好ましい。反対に、条件式(4)の下限値を下回ると、第3レンズ群G3の屈折力が強くなり、望遠端における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(4)の下限値を0.60にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(4)の下限値を0.70にすることが更に好ましい。   Conditional expression (4) defines the ratio between the focal length f4 of the fourth lens group G4 and the focal length f3 of the third lens group G3. The variable magnification optical system ZL of the present embodiment can realize the downsizing of the lens barrel and good optical performance even during camera shake correction by satisfying the conditional expression (4). If the upper limit of conditional expression (4) is exceeded, the refractive power of the fourth lens group G4 becomes strong, and it becomes difficult to correct spherical aberration and coma at the wide-angle end. Further, it is not preferable because it is difficult to simultaneously correct the fluctuation of the curvature of field and the fluctuation of the decentration coma during the camera shake correction. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 1.10. In order to further secure the effect of the present embodiment, it is more preferable to set the upper limit of conditional expression (4) to 1.00. On the other hand, if the lower limit of conditional expression (4) is not reached, the refractive power of the third lens group G3 becomes strong, and it becomes difficult to correct spherical aberration and coma at the telephoto end, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.60. In order to further secure the effect of the present embodiment, it is more preferable to set the lower limit of conditional expression (4) to 0.70.

また、本実施形態に係る変倍光学系ZLは、第2レンズ群G2の焦点距離をf2とし、広角端状態における全系の焦点距離をfwとしたとき、以下の条件式(5)を満足することが望ましい。   In the variable magnification optical system ZL according to the present embodiment, when the focal length of the second lens group G2 is f2, and the focal length of the entire system in the wide-angle end state is fw, the following conditional expression (5) is satisfied. It is desirable to do.

0.58 < (−f2)/fw < 0.95 (5) 0.58 <(− f2) / fw <0.95 (5)

条件式(5)は、第2レンズ群G2の焦点距離f2と広角端状態における全系の焦点距離fwとの比を規定するものである。本実施形態の変倍光学系ZLは、この条件式(5)を満足することで良好な光学性能と所定の変倍比とを実現することができる。この条件式(5)の上限値を上回ると、第2レンズ群G2の屈折力が弱くなり、所定の変倍比を得るために他の群の屈折力を強めることになり、望遠端における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(5)の上限値を1.00にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(5)の上限値を0.90にすることが更に好ましい。反対に、条件式(5)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、広角端におけるコマ収差と像面湾曲との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(5)の下限値を0.50にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(5)の下限値を0.60にすることが更に好ましい。   Conditional expression (5) defines the ratio between the focal length f2 of the second lens group G2 and the focal length fw of the entire system in the wide-angle end state. The zooming optical system ZL of the present embodiment can achieve good optical performance and a predetermined zooming ratio by satisfying this conditional expression (5). If the upper limit value of the conditional expression (5) is exceeded, the refractive power of the second lens group G2 becomes weak, and the refractive power of the other groups is strengthened in order to obtain a predetermined zoom ratio, and the spherical surface at the telephoto end. Since correction of aberration and coma becomes difficult, it is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 1.00. In order to further secure the effect of the present embodiment, it is more preferable to set the upper limit of conditional expression (5) to 0.90. On the other hand, if the lower limit value of conditional expression (5) is not reached, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct coma and field curvature at the wide angle end, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.50. In order to further secure the effect of the present embodiment, it is more preferable to set the lower limit of conditional expression (5) to 0.60.

また、本実施形態に係る変倍光学系ZLは、第2レンズ群G2の焦点距離をf2とし、第4レンズ群G4の焦点距離をf4としたとき、以下の条件式(6)を満足することが望ましい。   Further, the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (6) when the focal length of the second lens group G2 is f2 and the focal length of the fourth lens group G4 is f4. It is desirable.

0.40 < f2/f4 < 1.00 (6) 0.40 <f2 / f4 <1.00 (6)

条件式(6)は、第4レンズ群G4の焦点距離f4と第2レンズ群G2の焦点距離f2との比を規定するものである。本実施形態の変倍光学系ZLは、この条件式(6)を満足することで手ぶれ補正時にも良好な光学性能を実現し、かつ、所定の変倍比を確保することができる。この条件式(6)の上限値を上回ると、第4レンズ群G4の屈折力が強くなり、手ぶれ補正時の像面湾曲の変動と、偏芯コマ収差の変動とを同時に補正することが困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の上限値を0.70にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(6)の上限値を0.65にすることが更に好ましい。反対に、条件式(6)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、望遠端における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(6)の下限値を0.50にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(6)の下限値を0.55にすることが更に好ましい。   Conditional expression (6) defines the ratio between the focal length f4 of the fourth lens group G4 and the focal length f2 of the second lens group G2. The zooming optical system ZL of the present embodiment can satisfy the conditional expression (6) to realize good optical performance even during camera shake correction and to ensure a predetermined zooming ratio. If the upper limit value of conditional expression (6) is exceeded, the refractive power of the fourth lens group G4 becomes strong, and it is difficult to simultaneously correct fluctuations in curvature of field at the time of camera shake correction and fluctuations in eccentric coma. This is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (6) to 0.70. In order to further secure the effect of the present embodiment, it is more preferable to set the upper limit value of conditional expression (6) to 0.65. On the other hand, if the lower limit of conditional expression (6) is not reached, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct spherical aberration and coma at the telephoto end, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 0.50. In order to further secure the effect of the present embodiment, it is more preferable to set the lower limit of conditional expression (6) to 0.55.

また、本実施形態に係る変倍光学系ZLは、第1レンズ群G1の焦点距離をf1とし、第3レンズ群G3の焦点距離をf3としたとき、以下の条件式(7)を満足することが望ましい。   Further, the variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (7) when the focal length of the first lens group G1 is f1 and the focal length of the third lens group G3 is f3. It is desirable.

3.0 < f1/f3 < 10.0 (7) 3.0 <f1 / f3 <10.0 (7)

条件式(7)は、第1レンズ群G1の焦点距離f1と第3レンズ群G3の焦点距離f3との比を規定するものである。本実施形態の変倍光学系ZLは、この条件式(7)を満足することで良好な光学性能と所定の変倍比とを実現することができる。この条件式(7)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、望遠端における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(7)の上限値を8.0にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(7)の上限値を6.0にすることが更に好ましい。反対に、条件式(7)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、望遠端における球面収差の補正が困難となる。また、広角端における倍率色収差の劣化も顕著となるため好ましくない。なお、本実施形態の効果を確実にするために、条件式(7)の下限値を3.5にすることが好ましい。また、本実施形態の効果を更に確実にするために、条件式(7)の下限値を4.0にすることが更に好ましい。   Conditional expression (7) defines the ratio between the focal length f1 of the first lens group G1 and the focal length f3 of the third lens group G3. The zooming optical system ZL of the present embodiment can achieve good optical performance and a predetermined zooming ratio by satisfying this conditional expression (7). Exceeding the upper limit of conditional expression (7) is not preferable because the refractive power of the third lens group G3 becomes strong and it becomes difficult to correct spherical aberration and coma at the telephoto end. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (7) to 8.0. In order to further secure the effect of the present embodiment, it is more preferable to set the upper limit of conditional expression (7) to 6.0. On the other hand, if the lower limit of conditional expression (7) is not reached, the refractive power of the first lens group G1 will become strong, and it will be difficult to correct spherical aberration at the telephoto end. Further, the deterioration of lateral chromatic aberration at the wide-angle end becomes remarkable, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (7) to 3.5. In order to further secure the effect of the present embodiment, it is more preferable to set the lower limit of conditional expression (7) to 4.0.

また、本実施形態に係る変倍光学系ZLは、無限遠から近距離物点への合焦に際し、第2レンズ群G2の少なくとも一部が光軸上を移動することが望ましい。このような構成により、鏡筒の小型化と合焦の収差変動を良好に補正することができる。   In the zoom optical system ZL according to this embodiment, it is desirable that at least a part of the second lens group G2 moves on the optical axis when focusing from infinity to a short-distance object point. With such a configuration, it is possible to satisfactorily correct aberration variations in downsizing and focusing of the lens barrel.

また、本実施形態に係る変倍光学系ZLは、第2レンズ群G2の最も像側のレンズ面は非球面形状であることが望ましい。この構成により、望遠端の球面収差を良好に補正することができる。   In the zoom optical system ZL according to the present embodiment, it is desirable that the most image side lens surface of the second lens group G2 has an aspherical shape. With this configuration, spherical aberration at the telephoto end can be corrected well.

また、本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4は、少なくとも1枚の接合レンズを有することが望ましい。この構成により、手ぶれ補正時の色収差の変動を良好に補正することができる。   In the zoom optical system ZL according to this embodiment, it is desirable that the fourth lens group G4 has at least one cemented lens. With this configuration, it is possible to satisfactorily correct chromatic aberration fluctuations during camera shake correction.

また、本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態に変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少するように、各レンズ群が移動することが望ましい。この構成により、ズーミングにおける球面収差と像面湾曲との変動を効果的に補正しつつ、所定の変倍比を確保することができる。   Further, in the zoom optical system ZL according to the present embodiment, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group The distance between G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, and the distance between the fourth lens group G4 and the fifth lens group G5 decreases. In addition, it is desirable for each lens group to move. With this configuration, it is possible to ensure a predetermined zoom ratio while effectively correcting variations in spherical aberration and field curvature during zooming.

また、本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4の少なくとも一部は、光軸と直交する方向の成分を持つように移動することが望ましい。この構成により、鏡筒を小型化しつつ、手ぶれ補正時の像面湾曲の変動と偏芯コマ収差の変動とを同時に補正することができる。   In the zoom optical system ZL according to this embodiment, it is desirable that at least a part of the fourth lens group G4 moves so as to have a component in a direction orthogonal to the optical axis. With this configuration, it is possible to simultaneously correct the fluctuation of the curvature of field and the fluctuation of the eccentric coma aberration during camera shake correction while reducing the size of the lens barrel.

また、本実施形態に係る変倍光学系ZLは、第2レンズ群G2の最も物体側のレンズ面は非球面形状であることが望ましい。この構成により、広角端の像面湾曲と歪曲収差とを良好に補正することができる。   In the zoom optical system ZL according to this embodiment, it is desirable that the lens surface closest to the object side of the second lens group G2 has an aspherical shape. With this configuration, it is possible to satisfactorily correct the curvature of field and distortion at the wide-angle end.

図11に、上述の変倍光学系ZLを備える光学機器として、デジタル一眼レフカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、変倍光学系2(変倍光学系ZL)で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。   FIG. 11 is a schematic cross-sectional view of a digital single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described variable magnification optical system ZL. In this camera 1, light from an object (subject) (not shown) is condensed by a variable magnification optical system 2 (variable magnification optical system ZL) and imaged on a focusing screen 4 via a quick return mirror 3. . The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、変倍光学系2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図11に記載のカメラ1は、変倍光学系ZLを着脱可能に保持するものでも良く、変倍光学系ZLと一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良く、クイックリターンミラー等を有さないコンパクトカメラでも良い。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and the light of the object (subject) (not shown) collected by the zoom optical system 2 is reflected on the image sensor 7. A subject image is formed on the screen. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can shoot an object (subject) with the camera 1. Note that the camera 1 shown in FIG. 11 may hold the variable magnification optical system ZL in a detachable manner, or may be formed integrally with the variable magnification optical system ZL. The camera 1 may be a so-called single-lens reflex camera or a compact camera without a quick return mirror or the like.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

まず、上述の説明及び以降に示す実施例においては、5群構成を示したが、以上の構成条件等は、6群、7群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   First, in the above description and the embodiments described below, the five-group configuration is shown. However, the above-described configuration conditions and the like can be applied to other group configurations such as the sixth group and the seventh group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、単独または複数のレンズ群、または部分レンズ群を光軸に沿って移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、第2レンズ群G2の少なくとも一部を合焦レンズ群とするのが望ましい。   In addition, a single lens group or a plurality of lens groups, or a partial lens group may be moved along the optical axis to be a focusing lens group that performs focusing from an object at infinity to a near object. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is desirable that at least a part of the second lens group G2 is a focusing lens group.

レンズ群または部分レンズ群を光軸と直交方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としても良い。特に、第4レンズ群G4の少なくとも一部を防振レンズ群とするのが好ましい。   Image stabilization that corrects image blur caused by camera shake by moving the lens group or partial lens group so as to have a component perpendicular to the optical axis, or by rotating (swinging) the lens group or partial lens group in the in-plane direction including the optical axis It may be a lens group. In particular, it is preferable that at least a part of the fourth lens group G4 is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。また、レンズ面が非球面の場合、この非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. In addition, when the lens surface is aspheric, this aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface made of glass with an aspherical shape, and a composite type in which resin is formed on the glass surface in an aspherical shape. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、第3レンズ群G3近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably arranged in the vicinity of the third lens group G3, but the role of the aperture stop S may be substituted by a lens frame without providing a member as an aperture stop.

さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態に係る変倍光学系ZLは、変倍比が3〜5程度である。   The zoom optical system ZL according to the present embodiment has a zoom ratio of about 3 to 5.

本実施形態に係る変倍光学系ZLは、第1レンズ群G1が正のレンズ成分を2つ有するのが好ましい。また、本実施形態に係る変倍光学系ZLは、第2レンズ群G2が正のレンズ成分を1つと負のレンズ成分を3つ有するのが好ましい。また、第2レンズ群G2は、物体側から順に、負負正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。更に、本実施形態に係る変倍光学系ZLは、第3レンズ群G3が正のレンズ成分を2つ有するのが好ましい。また、本実施形態に係る変倍光学系ZLは、第4レンズ群G4が負のレンズ成分を2つ有するのが好ましい。また、本実施形態に係る変倍光学系ZLは、第5レンズ群G5が正のレンズ成分を1つ有するのが好ましい。または、第5レンズ群G5が正のレンズ成分を2つ有するのが好ましい。   In the zoom optical system ZL according to the present embodiment, it is preferable that the first lens group G1 has two positive lens components. In the variable magnification optical system ZL according to this embodiment, it is preferable that the second lens group G2 has one positive lens component and three negative lens components. In the second lens group G2, it is preferable to dispose the lens components in the order of negative, positive and negative in order from the object side with an air gap interposed therebetween. Furthermore, in the variable magnification optical system ZL according to this embodiment, it is preferable that the third lens group G3 has two positive lens components. In the zoom optical system ZL according to this embodiment, it is preferable that the fourth lens group G4 has two negative lens components. In the zoom optical system ZL according to the present embodiment, it is preferable that the fifth lens group G5 has one positive lens component. Alternatively, it is preferable that the fifth lens group G5 has two positive lens components.

なお、本願を分かり易く説明するために実施形態の構成要件を付して説明したが、本願がこれに限定されるものではないことは言うまでもない。   In addition, in order to explain this application in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present application is not limited to this.

以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図12を参照して説明する。まず、各レンズを配置してレンズ群をそれぞれ準備する(ステップS100)。具体的に、本実施形態では、例えば、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合によりなる接合正レンズCL1、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側から順に、物体側に凸面を向け、物体側面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、両凸レンズL23、及び、像側面に非球面を有する非球面両凹レンズL23を配置して第2レンズ群G2とし、物体側から順に、物体側に凸面を向けた凹メニスカスレンズL31と両凸レンズL32との接合によりなる接合正レンズCL2、及び、両凸レンズL33を配置して第3レンズ群G3とし、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズCL3、及び、物体側に凹面を向けた負メニスカスレンズL43を配置して第4レンズ群G4とし、物体側から順に、物体側に凹面を向け、物体側に非球面を有する非球面正レンズL51、及び、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合正レンズCL4を配置して第5レンズ群G5とする。このようにして準備した各レンズ群を配置して変倍光学系ZLを製造する。   Hereinafter, an outline of a method for manufacturing the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. First, each lens is arranged and a lens group is prepared (step S100). Specifically, in this embodiment, for example, in order from the object side, a cemented positive lens CL1 formed by cementing a negative meniscus lens L11 having a convex surface toward the object side and a positive meniscus lens L12 having a convex surface toward the object side; A positive meniscus lens L13 having a convex surface facing the object side is arranged as the first lens group G1, and in order from the object side, an aspheric negative meniscus lens L21 having a convex surface facing the object side and an aspheric surface on the object side surface, A negative meniscus lens L22 having a concave surface on its side, a biconvex lens L23, and an aspherical biconcave lens L23 having an aspheric surface on the image side surface are arranged as a second lens group G2, and the convex surface on the object side is formed in order from the object side. A concave positive meniscus lens L31 and a biconvex lens L32, and a cemented positive lens CL2 and a biconvex lens L33 are arranged to form a third lens group G3. In order from the object side, a fourth lens is formed by arranging a cemented negative lens CL3 formed by cementing a positive meniscus lens L41 having a concave surface facing the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. In order from the object side to the group G4, an aspheric positive lens L51 having a concave surface directed toward the object side and an aspheric surface facing the object side, a positive meniscus lens L52 having a concave surface directed toward the object side, and a concave surface directed toward the object side A cemented positive lens CL4 formed by cementing with the negative meniscus lens L53 is disposed to form a fifth lens group G5. The variable power optical system ZL is manufactured by arranging the lens groups thus prepared.

このとき、広角端状態から望遠端状態への変倍に際して、第4レンズ群G4と第5レンズ群G5との間隔が縮小するように移動するよう配置する(ステップS200)。また、第2レンズ群G2の焦点距離をf2とし、第3レンズ群G3の焦点距離をf3とし、広角端状態における全系の焦点距離をfwとしたとき、前述の条件式(1)及び(2)を満足するよう配置する(ステップS300)。   At this time, at the time of zooming from the wide-angle end state to the telephoto end state, the fourth lens group G4 and the fifth lens group G5 are arranged so as to move so as to be reduced (step S200). When the focal length of the second lens group G2 is f2, the focal length of the third lens group G3 is f3, and the focal length of the entire system in the wide-angle end state is fw, the above conditional expressions (1) and ( Arrange so as to satisfy 2) (step S300).

以下、本願の各実施例を、添付図面に基づいて説明する。図1、図3、図5、図7、及び図9に、変倍光学系ZL1〜ZL5の構成を示す。各実施例に係る変倍光学系ZL1〜ZL5は、図1、図3、図5、図7、及び図9に示すように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成され、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が減少するように各レンズ群の間隔が変化する。   Embodiments of the present application will be described below with reference to the accompanying drawings. FIGS. 1, 3, 5, 7, and 9 show the configurations of the variable magnification optical systems ZL1 to ZL5. As shown in FIGS. 1, 3, 5, 7, and 9, the variable magnification optical systems ZL <b> 1 to ZL <b> 5 according to each example include a first lens group G <b> 1 having a positive refractive power in order from the object side. A second lens group G2 having a negative refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a fifth lens having a positive refractive power In the zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the third lens group G3. Each lens group so that the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 decreases. The interval of changes.

開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して第3レンズ群G3とともに移動する。無限遠から近距離物点への合焦は、第2レンズ群G2を物体方向に移動させて行う。   The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. Focusing from infinity to a short-distance object point is performed by moving the second lens group G2 in the object direction.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ is the conic constant, and An is the nth-order aspheric coefficient, and is expressed by the following equation (a). . In the following examples, “E−n” indicates “× 10 −n ”.

S(y)=(y2/r)/{1+(1−κ×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1−κ × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の左側に*印を付している。   In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the left side of the surface number.

〔第1実施例〕
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1の変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合によりなる接合正レンズCL1、及び、物体側に凸面を向けた正メニスカスレンズL13から構成される。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、両凸レンズL23、及び、像側面に非球面を有する非球面両凹レンズL23から構成される。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた凹メニスカスレンズL31と両凸レンズL32との接合によりなる接合正レンズCL2、及び、両凸レンズL33から構成される。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example. In the variable magnification optical system ZL1 of FIG. 1, the first lens group G1 is joined in order from the object side by a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. And a positive meniscus lens L13 having a convex surface facing the object side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side, a negative meniscus lens L22 having a concave surface on the object side, a biconvex lens L23, and And an aspherical biconcave lens L23 having an aspherical surface on the image side surface. The third lens group G3 includes, in order from the object side, a cemented positive lens CL2 formed by cementing a concave meniscus lens L31 having a convex surface toward the object side and a biconvex lens L32, and a biconvex lens L33.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズCL3、及び、物体側に凹面を向けた負メニスカスレンズL43から構成される。第5レンズ群G5は、物体側から順に、物体側に凹面を向け、物体側に非球面を有する非球面正レンズL51、及び、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合負レンズCL4から構成される。   The fourth lens group G4 includes, in order from the object side, a cemented negative lens CL3 formed by cementing a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. Consists of The fifth lens group G5 includes, in order from the object side, an aspheric positive lens L51 having a concave surface directed toward the object side and an aspheric surface facing the object side; a positive meniscus lens L52 having a concave surface directed toward the object side; Is composed of a cemented negative lens CL4 formed by cementing with a negative meniscus lens L53 facing the lens.

第1実施例において、手ぶれ補正(防振)は、第4レンズ群G4の接合負レンズCL3を光軸と直交方向に移動させることにより行う。   In the first example, camera shake correction (anti-vibration) is performed by moving the cemented negative lens CL3 of the fourth lens group G4 in a direction orthogonal to the optical axis.

以下の表1に、第1実施例の諸元の値を掲げる。この表1において、fは全系の焦点距離、FNOはFナンバー、ωは半画角(単位は「°」)、Bfはバックフォーカスをそれぞれ表している。さらに、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、面間隔は各光学面から次の光学面までの光軸上の間隔を、屈折率及びアッベ数はそれぞれd線(λ=587.6nm)に対する値を示している。ここで、以下の全ての諸元値において掲載されている焦点距離、曲率半径、面間隔、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。尚、曲率半径0.0000は平面を示し、空気の屈折率1.00000は省略してある。なお、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Table 1 below lists values of specifications of the first embodiment. In Table 1, f represents the focal length of the entire system, FNO represents the F number, ω represents a half angle of view (unit is “°”), and Bf represents back focus. Furthermore, the surface number is the order of the lens surfaces from the object side along the direction of travel of the light beam, the surface interval is the distance on the optical axis from each optical surface to the next optical surface, and the refractive index and Abbe number are each The value for the d-line (λ = 587.6 nm) is shown. Here, “mm” is generally used for the focal length, the radius of curvature, the surface interval, and other length units listed in all the following specifications, but the optical system is proportionally enlarged or reduced. However, the same optical performance can be obtained, and the present invention is not limited to this. The radius of curvature of 0.0000 indicates a plane, and the refractive index of air of 1.0000 is omitted. The description of these symbols and the description of the specification table are the same in the following examples.

(表1)
広角端 望遠端
f = 24.70 〜 68.00
F.NO = 3.51 〜 4.51
ω = 42.63 〜 16.87
像高 = 21.6 〜 21.6
全長 =112.599 〜 138.896
Bf = 38.818 〜 54.481

面番号 曲率半径 面間隔 アッベ数 屈折率
1 119.6327 2.0000 23.78 1.84666
2 51.5992 5.9473 54.66 1.72915
3 167.6477 0.1000
4 53.0631 4.8163 46.62 1.81600
5 153.0342 (d1)
*6 170.9361 0.1000 38.09 1.55389
7 106.5297 1.3500 47.38 1.78800
8 12.1629 5.4444
9 -70.1431 1.0000 45.29 1.79499
10 -12967.6190 0.1000
11 44.7347 3.5960 23.78 1.84666
12 -35.0279 0.2750
13 -28.6001 1.2000 40.10 1.85134
*14 513.7697 (d2)
15 0.0000 0.5000 (開口絞りS)
16 19.1753 1.5000 31.27 1.90366
17 11.8114 4.5937 67.90 1.59319
18 -46.2164 0.1000
19 36.3395 1.9928 67.90 1.59319
20 -1099.6266 (d3)
21 -34.1938 2.1967 25.45 2.00069
22 -14.4410 1.0000 40.94 1.80610
23 134.8372 2.2858
24 -19.2920 1.0000 45.29 1.79499
25 -29.5578 (d4)
*26 -255.0409 0.2200 38.09 1.55389
27 -68.0972 4.2876 46.58 1.80400
28 -18.1288 0.3000
29 -366.2097 3.7695 70.41 1.48749
30 -21.6919 1.0000 23.78 1.84666
31 -167.4750 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離離
第1レンズ群 1 94.37965
第2レンズ群 6 -17.00020
第3レンズ群 16 20.63769
第4レンズ群 21 -27.63787
第5レンズ群 26 36.61953
(Table 1)
Wide angle end Telephoto end
f = 24.70 to 68.00
F.NO = 3.51 to 4.51
ω = 42.63 to 16.87
Image height = 21.6 to 21.6
Total length = 112.599 to 138.896
Bf = 38.818 to 54.481

Surface number Curvature radius Surface spacing Abbe number Refractive index
1 119.6327 2.0000 23.78 1.84666
2 51.5992 5.9473 54.66 1.72915
3 167.6477 0.1000
4 53.0631 4.8163 46.62 1.81600
5 153.0342 (d1)
* 6 170.9361 0.1000 38.09 1.55389
7 106.5297 1.3500 47.38 1.78800
8 12.1629 5.4444
9 -70.1431 1.0000 45.29 1.79499
10 -12967.6190 0.1000
11 44.7347 3.5960 23.78 1.84666
12 -35.0279 0.2750
13 -28.6001 1.2000 40.10 1.85134
* 14 513.7697 (d2)
15 0.0000 0.5000 (Aperture stop S)
16 19.1753 1.5000 31.27 1.90366
17 11.8114 4.5937 67.90 1.59319
18 -46.2164 0.1000
19 36.3395 1.9928 67.90 1.59319
20 -1099.6266 (d3)
21 -34.1938 2.1967 25.45 2.00069
22 -14.4410 1.0000 40.94 1.80610
23 134.8372 2.2858
24 -19.2920 1.0000 45.29 1.79499
25 -29.5578 (d4)
* 26 -255.0409 0.2200 38.09 1.55389
27 -68.0972 4.2876 46.58 1.80400
28 -18.1288 0.3000
29 -366.2097 3.7695 70.41 1.48749
30 -21.6919 1.0000 23.78 1.84666
31 -167.4750 (Bf)

[Lens focal length]
Lens group Start surface Focal length separation First lens group 1 94.37965
Second lens group 6 -17.00020
Third lens group 16 20.63769
4th lens group 21 -27.63787
5th lens group 26 36.61953

この第1実施例において、第6面、第14面、及び、第26面のレンズ面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the first embodiment, the lens surfaces of the sixth surface, the fourteenth surface, and the twenty-sixth surface are formed in an aspherical shape. Table 2 below shows aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A10.

(表2)
κ A4 A6 A8 A10
第6面 1.0000 1.4021OE-05 -5.18660E-08 4.00920E-11 1.50390E-14
第14面 1.0000 -1.64370E-05 -1.3331OE-08 -1.50790E-09 6.80220E-12
第26面 1.0000 -5.03290E-05 1.53080E-08 -2.33370E-10 0.00000E+00
(Table 2)
κ A4 A6 A8 A10
6th surface 1.0000 1.4021OE-05 -5.18660E-08 4.00920E-11 1.50390E-14
14th surface 1.0000 -1.64370E-05 -1.3331OE-08 -1.50790E-09 6.80220E-12
26th surface 1.0000 -5.03290E-05 1.53080E-08 -2.33370E-10 0.00000E + 00

この第1実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表3に、この第1実施例に係る変倍光学系ZL1の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the first embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 3 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL1 according to the first example.

(表3)
広角端 中間焦点距離 望遠端
d1 2.90788 20.86608 26.79652
d2 14.81058 4.73190 1.55737
d3 1.38046 3.50970 4.28626
d4 4.00583(d4w) 1.87660 1.10000(d4t)
(Table 3)
Wide angle end Intermediate focal length Telephoto end
d1 2.90788 20.86608 26.79652
d2 14.81058 4.73190 1.55737
d3 1.38046 3.50970 4.28626
d4 4.00583 (d4w) 1.87660 1.10000 (d4t)

次の表4に、この第1実施例における条件式対応値を示す。なおこの表4において、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、f4は第4レンズ群G4の焦点距離を、fwは広角端状態における全系の焦点距離を、d4wは第4レンズ群G4と第5レンズ群G5との広角端状態での空気間隔を、d4tは第4レンズ群G4と第5レンズ群G5との望遠端状態での空気間隔を、それぞれ表している。以降の実施例においても、特にことわりのない場合は、この符号の説明は同様である。   Table 4 below shows values corresponding to the conditional expression in the first embodiment. In Table 4, f1 is the focal length of the first lens group G1, f2 is the focal length of the second lens group G2, f3 is the focal length of the third lens group G3, and f4 is the fourth lens group G4. The focal length, fw is the focal length of the entire system in the wide-angle end state, d4w is the air gap between the fourth lens group G4 and the fifth lens group G5 in the wide-angle end state, and d4t is the fourth lens group G4 and the fourth lens group G4. The air space | interval in a telephoto end state with 5 lens groups G5 is each represented. In the following embodiments, the description of the reference numerals is the same unless otherwise specified.

(表4)
(1)f3/(−f2)=1.21
(2)f1/fw=3.82
(3)(d4w−d4t)/fw=0.12
(4)f3/(−f4)=0.75
(5)(−f2)/fw=0.69
(6)f2/f4=0.62
(7)f1/f3=4.57
(Table 4)
(1) f3 / (− f2) = 1.21
(2) f1 / fw = 3.82
(3) (d4w-d4t) /fw=0.12
(4) f3 / (− f4) = 0.75
(5) (−f2) /fw=0.69
(6) f2 / f4 = 0.62
(7) f1 / f3 = 4.57

この第1実施例の広角端状態での無限遠合焦状態の収差図を図2(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図2(b)に、望遠端状態での無限遠合焦状態の収差図を図2(c)に示す。各収差図において、非点収差図中の実線はサジタル像面を、破線はメリディオナル像面を示し、FNOはFナンバーを、Yは像高を、ωは半画角を表す。また、各収差図中でd、gはそれぞれd線(λ=587.6nm)、g線(λ=435.6nm)における収差を表す。これらの各収差図から明らかなように、第1実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。   FIG. 2A shows an aberration diagram in the infinite focus state in the wide-angle end state of this first embodiment, and FIG. 2B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 2C shows an aberration diagram in the infinite focus state in the end state. In each aberration diagram, a solid line in the astigmatism diagram indicates a sagittal image plane, a broken line indicates a meridional image plane, FNO indicates an F number, Y indicates an image height, and ω indicates a half field angle. In each aberration diagram, d and g represent aberrations at d-line (λ = 587.6 nm) and g-line (λ = 435.6 nm), respectively. As is apparent from these respective aberration diagrams, it is clear that in the first embodiment, various aberrations are corrected well and the imaging performance is excellent.

〔第2実施例〕
図3は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図3の変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズCL1、及び、物体側に凸面を向けた正メニスカスレンズL13から構成される。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側面に非球面を有する非球面負メニスカスレンズL21、両凹レンズL22、両凸レンズL23、及び、像側面に非球面を有する非球面負メニスカスレンズL24から構成される。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた凹メニスカスレンズL31と両凸レンズL32との接合によりなる接合負レンズCL2、及び、両凸レンズL33から構成される。
[Second Embodiment]
FIG. 3 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example. In the variable magnification optical system ZL2 of FIG. 3, the first lens group G1 includes, in order from the object side, a cemented positive lens CL1 formed by cementing a negative meniscus lens L11 having a convex surface toward the object side and a biconvex lens L12, and It is composed of a positive meniscus lens L13 having a convex surface facing the object side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side, a biconcave lens L22, a biconvex lens L23, and an aspheric surface on the image side. An aspheric negative meniscus lens L24 is used. The third lens group G3 includes, in order from the object side, a cemented negative lens CL2 formed by cementing a concave meniscus lens L31 having a convex surface directed toward the object side and a biconvex lens L32, and a biconvex lens L33.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズCL3、及び、物体側に凹面を向けた負メニスカスレンズL43から構成される。第5レンズ群G5は、物体側から順に、物体側に凹面を向け、物体側に非球面を有する非球面正レンズL51、及び、両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合負レンズCL4から構成される。   The fourth lens group G4 includes, in order from the object side, a cemented negative lens CL3 formed by cementing a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. Consists of The fifth lens group G5 includes, in order from the object side, an aspheric positive lens L51 having a concave surface directed to the object side and an aspheric surface on the object side, a biconvex lens L52, and a negative meniscus lens L53 having a concave surface directed to the object side. This is composed of a cemented negative lens CL4.

第2実施例において、手ぶれ補正(防振)は、第4レンズ群G4の接合負レンズCL3を光軸と直交方向に移動させることにより行う。   In the second example, camera shake correction (anti-vibration) is performed by moving the cemented negative lens CL3 of the fourth lens group G4 in a direction orthogonal to the optical axis.

以下の表5に、第2実施例の諸元の値を掲げる。   Table 5 below lists values of specifications of the second embodiment.

(表5)
広角端 望遠端
f = 24.70 〜 82.50
F.NO = 3.60 〜 4.60
ω = 42.62 〜 14.04
像高 = 21.6 〜 21.6
全長 =121.098 〜 158.098
Bf = 38.818 〜 58.586

面番号 曲率半径 面間隔 アッベ数 屈折率
1 493.7028 2.0000 23.78 1.84666
2 91.8270 6.5000 54.66 1.72916
3 -397.4511 0.1000
4 50.0642 4.2615 49.61 1.77250
5 92.7163 (d1)
*6 58.1931 0.1400 38.09 1.55389
7 73.0305 1.3500 42.72 1.83481
8 12.5058 5.9710
9 -50.7335 1.0000 49.61 1.77250
10 119.0154 0.1000
11 67.9846 3.8696 23.78 1.84666
12 -28.6111 0.1537
13 -26.7639 1.0000 40.94 1.80610
*14 -150.1370 (d2)
15 0.0000 0.5000 (開口絞りS)
16 21.9480 1.4780 31.27 1.90366
17 14.3469 5.1437 82.56 1.49782
18 -38.0929 0.1000
19 26.7398 2.7410 70.45 1.48749
20 -362.8585 (d3)
21 -42.7051 2.6106 32.35 1.85026
22 -15.2281 1.0000 50.24 1.71999
23 109.5535 2.2966
24 -22.3871 1.0000 55.52 1.69680
25 -46.4739 (d4)
*26 -303.9316 0.2000 38.09 1.55389
27 -80.8569 4.4886 46.58 1.80400
28 -20.1230 0.7000
29 162.2628 5.1828 70.45 1.48749
30 -25.6127 1.0000 23.78 1.84666
31 -843.7978 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離離
第1レンズ群 1 103.18796
第2レンズ群 6 -17.51593
第3レンズ群 16 22.89002
第4レンズ群 21 -28.72503
第5レンズ群 26 36.52696
(Table 5)
Wide angle end Telephoto end
f = 24.70 to 82.50
F.NO = 3.60 to 4.60
ω = 42.62 to 14.04
Image height = 21.6 to 21.6
Total length = 121.098 to 158.098
Bf = 38.818 to 58.586

Surface number Curvature radius Surface spacing Abbe number Refractive index
1 493.7028 2.0000 23.78 1.84666
2 91.8270 6.5000 54.66 1.72916
3 -397.4511 0.1000
4 50.0642 4.2615 49.61 1.77250
5 92.7163 (d1)
* 6 58.1931 0.1400 38.09 1.55389
7 73.0305 1.3500 42.72 1.83481
8 12.5058 5.9710
9 -50.7335 1.0000 49.61 1.77250
10 119.0154 0.1000
11 67.9846 3.8696 23.78 1.84666
12 -28.6111 0.1537
13 -26.7639 1.0000 40.94 1.80610
* 14 -150.1370 (d2)
15 0.0000 0.5000 (Aperture stop S)
16 21.9480 1.4780 31.27 1.90366
17 14.3469 5.1437 82.56 1.49782
18 -38.0929 0.1000
19 26.7398 2.7410 70.45 1.48749
20 -362.8585 (d3)
21 -42.7051 2.6106 32.35 1.85026
22 -15.2281 1.0000 50.24 1.71999
23 109.5535 2.2966
24 -22.3871 1.0000 55.52 1.69680
25 -46.4739 (d4)
* 26 -303.9316 0.2000 38.09 1.55389
27 -80.8569 4.4886 46.58 1.80400
28 -20.1230 0.7000
29 162.2628 5.1828 70.45 1.48749
30 -25.6127 1.0000 23.78 1.84666
31 -843.7978 (Bf)

[Lens focal length]
Lens group Start surface Focal length separation 1st lens group 1 103.18796
Second lens group 6 -17.51593
Third lens group 16 22.89002
Fourth lens group 21 -28.72503
5th lens group 26 36.52696

この第2実施例において、第6面、第14面、及び、第26面のレンズ面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the second embodiment, the lens surfaces of the sixth surface, the fourteenth surface, and the twenty-sixth surface are formed in an aspherical shape. Table 6 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A10.

(表6)
κ A4 A6 A8 A10
第6面 1.0000 -4.22970E-06 -3.33950E-08 -7.99730E-11 2.41860E-13
第14面 1.0000 -1.85220E-05 -7.78240E-08 -2.01280E-10 -1.35490E-12
第26面 1.0000 -3.45120E-05 -6.00890E-09 -6.40440E-11 0.OOOOOE+00
(Table 6)
κ A4 A6 A8 A10
6th surface 1.0000 -4.22970E-06 -3.33950E-08 -7.99730E-11 2.41860E-13
14th surface 1.0000 -1.85220E-05 -7.78240E-08 -2.01280E-10 -1.35490E-12
26th surface 1.0000 -3.45120E-05 -6.00890E-09 -6.40440E-11 0.OOOOOE + 00

この第2実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表7に、この第2実施例に係る変倍光学系ZL2の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the second embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 7 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL2 according to the second example.

(表7)
広角端 中間焦点距離 望遠端
d1 2.98229 20.32592 35.45766
d2 16.29014 6.35565 1.05000
d3 2.75730 5.42675 6.96720
d4 5.36317(d4w) 2.69552 1.15000(d4t)
(Table 7)
Wide angle end Intermediate focal length Telephoto end
d1 2.98229 20.32592 35.45766
d2 16.29014 6.35565 1.05000
d3 2.75730 5.42675 6.96720
d4 5.36317 (d4w) 2.69552 1.15000 (d4t)

次の表8に、この第2実施例における条件式対応値を示す。   Table 8 below shows values corresponding to the conditional expressions in the second embodiment.

(表8)
(1)f3/(−f2)=1.31
(2)f1/fw=4.18
(3)(d4w−d4t)/fw=0.17
(4)f3/(−f4)=0.80
(5)(−f2)/fw=0.71
(6)f2/f4=0.61
(7)f1/f3=4.51
(Table 8)
(1) f3 / (− f2) = 1.31
(2) f1 / fw = 4.18
(3) (d4w-d4t) /fw=0.17
(4) f3 / (− f4) = 0.80
(5) (−f2) /fw=0.71
(6) f2 / f4 = 0.61
(7) f1 / f3 = 4.51

この第2実施例の広角端状態での無限遠合焦状態の収差図を図4(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図4(b)に、望遠端状態での無限遠合焦状態の収差図を図4(c)に示す。これらの各収差図から明らかなように、第2実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。   FIG. 4A shows an aberration diagram in the infinite focus state in the wide-angle end state of this second embodiment, and FIG. 4B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 4C shows an aberration diagram in the infinite focus state in the end state. As is apparent from these respective aberration diagrams, it is clear that in the second embodiment, various aberrations are corrected satisfactorily and the imaging performance is excellent.

〔第3実施例〕
図5は、第3実施例に係る変倍光学系ZL3の構成を示す図である。この図5の変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズCL1、及び、物体側に凸面を向けた正メニスカスレンズL13から構成される。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、両凸レンズL23、及び、像側面に非球面を有する非球面両凹レンズL24から構成される。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合によりなる接合正レンズCL2、及び、物体側に凸面を向けた正メニスカスレンズL33から構成される。
[Third embodiment]
FIG. 5 is a diagram showing a configuration of the variable magnification optical system ZL3 according to the third example. In the variable magnification optical system ZL3 of FIG. 5, the first lens group G1 includes, in order from the object side, a cemented positive lens CL1 formed by cementing a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and It is composed of a positive meniscus lens L13 having a convex surface facing the object side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side, a negative meniscus lens L22 having a concave surface on the object side, a biconvex lens L23, and And an aspherical biconcave lens L24 having an aspherical surface on the image side surface. The third lens group G3 includes, in order from the object side, a cemented positive lens CL2 composed of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex lens L32, and a positive meniscus lens L33 having a convex surface facing the object side. Consists of

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズCL3、及び、物体側に凹面を向けた負メニスカスレンズL43から構成される。第5レンズ群G5は、物体側から順に、物体側に凹面を向け、物体側に非球面を有する非球面正レンズL51、及び、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合負レンズCL4から構成される。   The fourth lens group G4 includes, in order from the object side, a cemented negative lens CL3 formed by cementing a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. Consists of The fifth lens group G5 includes, in order from the object side, an aspheric positive lens L51 having a concave surface directed toward the object side and an aspheric surface facing the object side; a positive meniscus lens L52 having a concave surface directed toward the object side; Is composed of a cemented negative lens CL4 formed by cementing with a negative meniscus lens L53 facing the lens.

第3実施例において、手ぶれ補正(防振)は、第4レンズ群G4の接合負レンズCL3を光軸と直交方向に移動させることにより行う。   In the third example, camera shake correction (anti-vibration) is performed by moving the cemented negative lens CL3 of the fourth lens group G4 in a direction orthogonal to the optical axis.

以下の表9に、この第3実施例の諸元の値を掲げる。   Table 9 below shows values of specifications of the third embodiment.

(表9)
広角端 望遠端
f = 28.80 〜 102.00
F.NO = 3.63 〜 4.62
ω = 38.28 〜 9.85
像高 = 21.6 〜 21.6
全長 =123.531 〜 157.844
Bf = 38.818 〜 54.339

面番号 曲率半径 面間隔 アッベ数 屈折率
1 373.4938 2.0000 23.78 1.84666
2 77.6757 6.7304 49.61 1.77250
3 -1234.3385 0.1000
4 48.2194 4.5930 52.29 1.75500
5 101.7218 (d1)
*6 47.1145 0.1593 38.09 1.55389
7 50.8335 1.3500 42.72 1.83481
8 12.6630 5.5655
9 -52.3028 1.0000 46.63 1.81600
10 227.2789 0.1000
11 32.8197 3.9598 23.78 1.84666
12 -42.6430 0.3193
13 -31.8833 1.2000 42.72 1.83481
*14 116.8095 (d2)
15 0.0000 0.5000 (開口絞りS)
16 23.2900 1.0000 29.37 1.95000
17 15.2398 5.0245 82.56 1.49782
18 -27.9655 0.1000
19 31.1370 2.3000 65.47 1.60300
20 553.0656 (d3)
21 -69.4703 2.0528 32.35 1.85026
22 -21.5187 1.0000 54.66 1.72916
23 128.1185 3.0000
24 -23.0906 1.0000 49.61 1.77250
25 -65.5308 (d4)
*26 -77.3371 0.2200 38.09 1.55389
27 -92.4298 5.0000 46.58 1.80400
28 -18.4338 2.0000
29 -142.5947 4.5000 70.41 1.48749
30 -27.4884 1.0000 23.78 1.84666
31 -189.9631 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離離
第1レンズ群 1 95.71637
第2レンズ群 6 -17.43082
第3レンズ群 16 21.90000
第4レンズ群 21 -28.69220
第5レンズ群 26 41.26939
(Table 9)
Wide angle end Telephoto end
f = 28.80 to 102.00
F.NO = 3.63 to 4.62
ω = 38.28 to 9.85
Image height = 21.6 to 21.6
Total length = 123.531 to 157.844
Bf = 38.818 to 54.339

Surface number Curvature radius Surface spacing Abbe number Refractive index
1 373.4938 2.0000 23.78 1.84666
2 77.6757 6.7304 49.61 1.77250
3 -1234.3385 0.1000
4 48.2194 4.5930 52.29 1.75500
5 101.7218 (d1)
* 6 47.1145 0.1593 38.09 1.55389
7 50.8335 1.3500 42.72 1.83481
8 12.6630 5.5655
9 -52.3028 1.0000 46.63 1.81600
10 227.2789 0.1000
11 32.8197 3.9598 23.78 1.84666
12 -42.6430 0.3193
13 -31.8833 1.2000 42.72 1.83481
* 14 116.8095 (d2)
15 0.0000 0.5000 (Aperture stop S)
16 23.2900 1.0000 29.37 1.95000
17 15.2398 5.0245 82.56 1.49782
18 -27.9655 0.1000
19 31.1370 2.3000 65.47 1.60300
20 553.0656 (d3)
21 -69.4703 2.0528 32.35 1.85026
22 -21.5187 1.0000 54.66 1.72916
23 128.1185 3.0000
24 -23.0906 1.0000 49.61 1.77250
25 -65.5308 (d4)
* 26 -77.3371 0.2200 38.09 1.55389
27 -92.4298 5.0000 46.58 1.80400
28 -18.4338 2.0000
29 -142.5947 4.5000 70.41 1.48749
30 -27.4884 1.0000 23.78 1.84666
31 -189.9631 (Bf)

[Lens focal length]
Lens group Start surface Focal length separation 1st lens group 1
Second lens group 6 -17.43082
Third lens group 16 21.90000
4th lens group 21 -28.69220
5th lens group 26 41.26939

この第3実施例において、第6面、第14面、及び、第26面のレンズ面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the third embodiment, the lens surfaces of the sixth surface, the fourteenth surface, and the twenty-sixth surface are formed in an aspherical shape. Table 10 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A10.

(表10)
κ A4 A6 A8 A10
第6面 1.0000 -4.40512E-06 -3.71332E-08 1.47511E-11 1.31683E-14
第14面 1.0000 -1.32774E-05 -5.36912E-08 -1.55477E-10 9.34102E-13
第26面 1.0000 -4.17159E-05 -2.45154E-09 -2.01155E-10 0.OOOOOE+00
(Table 10)
κ A4 A6 A8 A10
6th surface 1.0000 -4.40512E-06 -3.71332E-08 1.47511E-11 1.31683E-14
14th surface 1.0000 -1.32774E-05 -5.36912E-08 -1.55477E-10 9.34102E-13
26th surface 1.0000 -4.17159E-05 -2.45154E-09 -2.01155E-10 0.OOOOOE + 00

この第3実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表11に、この第3実施例に係る変倍光学系ZL3の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the third example, the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 11 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL3 according to the third example.

(表11)
広角端 中間焦点距離 望遠端
d1 3.18675 17.24856 37.12206
d2 16.64276 8.80625 1.50000
d3 3.47378 6.09325 8.00899
d4 5.63522(d4w) 3.01569 1.10000(d4t)
(Table 11)
Wide angle end Intermediate focal length Telephoto end
d1 3.18675 17.24856 37.12206
d2 16.64276 8.80625 1.50000
d3 3.47378 6.09325 8.00899
d4 5.63522 (d4w) 3.01569 1.10000 (d4t)

次の表12に、この第3実施例における条件式対応値を示す。   Table 12 below shows values corresponding to the conditional expressions in the third embodiment.

(表12)
(1)f3/(−f2)=1.26
(2)f1/fw=3.42
(3)(d4w−d4t)/fw=0.16
(4)f3/(−f4)=0.76
(5)(−f2)/fw=0.62
(6)f2/f4=0.61
(7)f1/f3=4.37
(Table 12)
(1) f3 / (− f2) = 1.26
(2) f1 / fw = 3.42
(3) (d4w-d4t) /fw=0.16
(4) f3 / (− f4) = 0.76
(5) (−f2) /fw=0.62
(6) f2 / f4 = 0.61
(7) f1 / f3 = 4.37

この第3実施例の広角端状態での無限遠合焦状態の収差図を図6(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図6(b)に、望遠端状態での無限遠合焦状態の収差図を図6(c)に示す。これらの各収差図から明らかなように、第3実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。   FIG. 6A shows an aberration diagram in the infinite focus state in the wide-angle end state of this third embodiment, and FIG. 6B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 6C shows an aberration diagram in the infinite focus state in the end state. As is apparent from these respective aberration diagrams, it is clear that in the third example, the various aberrations are corrected well and the imaging performance is excellent.

〔第4実施例〕
図7は、第4実施例に係る変倍光学系ZL4の構成を示す図である。この図7の変倍光学系ZL4において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合によりなる接合正レンズCL1、及び、物体側に凸面を向けた正メニスカスレンズL13から構成される。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、及び、両凸レンズL23と物体側に凹面を向け、像側面に非球面を有する非球面負メニスカスレンズL24との接合によりなる接合正レンズCL2から構成される。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合によりなる接合正レンズCL3、及び、両凸レンズL33から構成される。
[Fourth embodiment]
FIG. 7 is a diagram showing a configuration of the variable magnification optical system ZL4 according to the fourth example. In the variable magnification optical system ZL4 of FIG. 7, the first lens group G1 is joined in order from the object side by a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. And a positive meniscus lens L13 having a convex surface facing the object side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side, a negative meniscus lens L22 having a concave surface on the object side, and a biconvex lens L23. And a cemented positive lens CL2 formed by cementing with an aspheric negative meniscus lens L24 having an aspheric surface on the image side and an aspheric surface on the object side. The third lens group G3 includes, in order from the object side, a cemented positive lens CL3 formed by cementing a negative meniscus lens L31 having a convex surface toward the object side and a biconvex lens L32, and a biconvex lens L33.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズCL4、及び、物体側に凹面を向けた負メニスカスレンズL43から構成される。第5レンズ群G5は、物体側から順に、物体側に非球面を有する非球面正レンズL51、及び、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合負レンズCL5から構成される。   The fourth lens group G4 includes, in order from the object side, a cemented negative lens CL4 formed by cementing a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. Consists of The fifth lens group G5 includes, in order from the object side, an aspheric positive lens L51 having an aspheric surface on the object side, a positive meniscus lens L52 with a concave surface facing the object side, and a negative meniscus lens L53 with a concave surface facing the object side. This is composed of a cemented negative lens CL5.

第4実施例において、手ぶれ補正(防振)は、第4レンズ群G4の接合負レンズCL4を光軸と直交方向に移動させることにより行う。   In the fourth example, camera shake correction (anti-vibration) is performed by moving the cemented negative lens CL4 of the fourth lens group G4 in a direction orthogonal to the optical axis.

以下の表13に、この第4実施例の諸元の値を掲げる。   Table 13 below lists values of specifications of the fourth embodiment.

(表13)
広角端 望遠端
f = 24.70 〜 87.20
F.NO = 3.60 〜 5.80
ω = 42.64 〜 11.49
像高 = 21.6 〜 21.6
全長 =124.699 〜 156.696
Bf = 38.819 〜 56.191

面番号 曲率半径 面間隔 アッベ数 屈折率
1 372.6274 2.0000 23.78 1.84666
2 75.9854 6.7706 49.61 1.77249
3 14844.1810 0.1000
4 50.9400 4.9948 46.62 1.81600
5 114.4889 (d1)
*6 73.7591 0.1000 41.42 1.53610
7 70.2551 1.3500 42.72 1.83480
8 12.9582 7.0662
9 -45.1259 1.0000 42.72 1.83480
10 -115.7746 0.1000
11 130.5670 3.9850 22.79 1.80809
12 -25.0000 1.2000 42.71 1.82079
*13 -5015.0001 (d2)
14 0.0000 0.5000 (開口絞りS)
15 24.3980 1.3049 31.27 1.90366
16 13.4702 4.2437 65.46 1.60300
17 -57.0278 0.1000
18 29.6013 2.6177 82.52 1.49782
19 -71.1125 (d3)
20 -37.4166 2.4500 25.45 2.00069
21 -15.0220 1.0000 40.94 1.80610
22 151.7344 4.1314
23 -33.7925 1.0000 46.58 1.80400
24 -87.2793 (d4)
*25 388.1656 0.2200 41.42 1.53610
26 -145.3355 4.6004 40.94 1.80610
27 -20.4944 0.3000
28 -224.8928 4.3669 70.41 1.48749
29 -21.8074 1.0000 23.78 1.84666
30 -900.0000 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離離
第1レンズ群 1 96.08538
第2レンズ群 6 -16.89627
第3レンズ群 15 21.34372
第4レンズ群 20 -28.60078
第5レンズ群 25 43.38019
(Table 13)
Wide angle end Telephoto end
f = 24.70 to 87.20
F.NO = 3.60 to 5.80
ω = 42.64 to 11.49
Image height = 21.6 to 21.6
Total length = 124.699 〜 156.696
Bf = 38.819 to 56.191

Surface number Curvature radius Surface spacing Abbe number Refractive index
1 372.6274 2.0000 23.78 1.84666
2 75.9854 6.7706 49.61 1.77249
3 14844.1810 0.1000
4 50.9400 4.9948 46.62 1.81600
5 114.4889 (d1)
* 6 73.7591 0.1000 41.42 1.53610
7 70.2551 1.3500 42.72 1.83480
8 12.9582 7.0662
9 -45.1259 1.0000 42.72 1.83480
10 -115.7746 0.1000
11 130.5670 3.9850 22.79 1.80809
12 -25.0000 1.2000 42.71 1.82079
* 13 -5015.0001 (d2)
14 0.0000 0.5000 (Aperture stop S)
15 24.3980 1.3049 31.27 1.90366
16 13.4702 4.2437 65.46 1.60300
17 -57.0278 0.1000
18 29.6013 2.6177 82.52 1.49782
19 -71.1125 (d3)
20 -37.4166 2.4500 25.45 2.00069
21 -15.0220 1.0000 40.94 1.80610
22 151.7344 4.1314
23 -33.7925 1.0000 46.58 1.80400
24 -87.2793 (d4)
* 25 388.1656 0.2200 41.42 1.53610
26 -145.3355 4.6004 40.94 1.80610
27 -20.4944 0.3000
28 -224.8928 4.3669 70.41 1.48749
29 -21.8074 1.0000 23.78 1.84666
30 -900.0000 (Bf)

[Lens focal length]
Lens group Start surface Focal length separation first lens group 1 96.08538
Second lens group 6 -16.89627
Third lens group 15 21.34372
Fourth lens group 20 -28.60078
5th lens group 25 43.38019

この第4実施例において、第6面、第13面、及び、第25面のレンズ面は非球面形状に形成されている。次の表14に、非球面のデータ、すなわち円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the fourth embodiment, the sixth, thirteenth and twenty-fifth lens surfaces are aspherical. Table 14 below shows the aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A10.

(表14)
κ A4 A6 A8 A10
第6面 1.0000 3.30880E-08 -3.84340E-08 7.47270E-11 -1.03500E-13
第13面 1.0000 -1.43270E-05 -9.77370E-08 4.07760E-10 -3.09250E-12
第25面 1.0000 -3.96100E-05 4.06470E-09 -9.63610E-11 0.00000E+00
(Table 14)
κ A4 A6 A8 A10
6th surface 1.0000 3.30880E-08 -3.84340E-08 7.47270E-11 -1.03500E-13
13th surface 1.0000 -1.43270E-05 -9.77370E-08 4.07760E-10 -3.09250E-12
25th surface 1.0000 -3.96100E-05 4.06470E-09 -9.63610E-11 0.00000E + 00

この第4実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表15に、この第4実施例に係る変倍光学系ZL5の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the fourth embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 15 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL5 according to the fourth example.

(表15)
広角端 中間焦点距離 望遠端
d1 3.10000 19.45499 34.60972
d2 18.37739 7.76715 1.50000
d3 1.99464 4.84201 6.59326
d4 5.90657(d4w) 3.05904 1.30000(d4t)
(Table 15)
Wide angle end Intermediate focal length Telephoto end
d1 3.10000 19.45499 34.60972
d2 18.37739 7.76715 1.50000
d3 1.99464 4.84201 6.59326
d4 5.90657 (d4w) 3.05904 1.30000 (d4t)

次の表16に、この第4実施例における条件式対応値を示す。   Table 16 below shows values corresponding to the conditional expressions in the fourth embodiment.

(表16)
(1)f3/(−f2)=1.26
(2)f1/fw=3.89
(3)(d4w−d4t)/fw=0.19
(4)f3/(−f4)=0.75
(5)(−f2)/fw=0.68
(6)f2/f4=0.59
(7)f1/f3=4.50
(Table 16)
(1) f3 / (− f2) = 1.26
(2) f1 / fw = 3.89
(3) (d4w-d4t) /fw=0.19
(4) f3 / (− f4) = 0.75
(5) (−f2) /fw=0.68
(6) f2 / f4 = 0.59
(7) f1 / f3 = 4.50

この第4実施例の広角端状態での無限遠合焦状態の収差図を図8(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図8(b)に、望遠端状態での無限遠合焦状態の収差図を図8(c)に示す。これらの各収差図から明らかなように、第4実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。   FIG. 8A shows an aberration diagram in the infinite focus state in the wide-angle end state of this fourth embodiment, and FIG. 8B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 8C shows an aberration diagram in the infinite focus state in the end state. As is apparent from these respective aberration diagrams, it is clear that in the fourth example, various aberrations are satisfactorily corrected and the imaging performance is excellent.

〔第5実施例〕
図9は、第5実施例に係る変倍光学系ZL5の構成を示す図である。この図9の変倍光学系ZL5において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合によりなる接合正レンズCL1、及び、物体側に凸面を向けた正メニスカスレンズL13から構成される。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、及び、両凸レンズL23と物体側に凹面を向け、像側面に非球面を有する非球面負メニスカスレンズL24との接合によりなる接合正レンズCL2から構成される。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合によりなる接合正レンズCL3、及び、両凸レンズL33から構成される。
[Fifth embodiment]
FIG. 9 is a diagram showing a configuration of the variable magnification optical system ZL5 according to the fifth example. In the variable magnification optical system ZL5 of FIG. 9, the first lens group G1 is joined in order from the object side by a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side. And a positive meniscus lens L13 having a convex surface facing the object side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side, a negative meniscus lens L22 having a concave surface on the object side, and a biconvex lens L23. And a cemented positive lens CL2 formed by cementing with an aspheric negative meniscus lens L24 having an aspheric surface on the image side and an aspheric surface on the object side. The third lens group G3 includes, in order from the object side, a cemented positive lens CL3 formed by cementing a negative meniscus lens L31 having a convex surface toward the object side and a biconvex lens L32, and a biconvex lens L33.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズCL4、及び、物体側に凹面を向けた負メニスカスレンズL43から構成される。第5レンズ群G5は、物体側から順に、物体側に非球面を有する非球面正レンズL51、及び、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合負レンズCL5から構成される。   The fourth lens group G4 includes, in order from the object side, a cemented negative lens CL4 formed by cementing a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. Consists of The fifth lens group G5 includes, in order from the object side, an aspheric positive lens L51 having an aspheric surface on the object side, a positive meniscus lens L52 with a concave surface facing the object side, and a negative meniscus lens L53 with a concave surface facing the object side. This is composed of a cemented negative lens CL5.

第5実施例において、手ぶれ補正(防振)は、第4レンズ群G4の接合負レンズCL4を光軸と直交方向に移動させることにより行う。   In the fifth embodiment, camera shake correction (anti-vibration) is performed by moving the cemented negative lens CL4 of the fourth lens group G4 in a direction orthogonal to the optical axis.

以下の表17に、この第5実施例の諸元の値を掲げる。   Table 17 below provides values of specifications of the fifth embodiment.

(表17)
広角端 望遠端
f = 22.55 〜 77.20
F.NO = 3.59 〜 5.78
ω = 45.22 〜 15.08
像高 = 21.6 〜 21.6
全長 =126.365 〜 166.395
Bf = 38.819 〜 68.503

面番号 曲率半径 面間隔 アッベ数 屈折率
1 3000.0000 2.0000 23.78 1.84666
2 100.5704 5.0710 49.61 1.77249
3 1103.1027 0.1000
4 61.3430 4.9688 46.62 1.81600
5 199.6806 (d1)
*6 57.3089 0.1000 41.42 1.53610
7 54.9009 1.3500 42.72 1.83481
8 12.9643 7.7463
9 -42.1100 1.0000 42.72 1.83481
10 -157.1970 0.1000
11 100.6959 4.2633 22.79 1.80809
12 -26.6968 1.2000 42.71 1.82079
*13 -739.7322 (d2)
14 0.0000 0.5000 (開口絞りS)
15 25.1876 1.5000 31.27 1.90366
16 13.9732 4.9264 65.46 1.60300
17 -74.5596 0.1000
18 28.3447 2.9402 82.52 1.49782
19 -73.1263 (d3)
20 -36.2470 2.4500 25.45 2.00069
21 -15.0096 1.0000 40.94 1.80610
22 312.0276 3.6428
23 -45.6498 1.0000 42.72 1.83481
24 -771.8920 (d4)
*25 203.2702 0.2200 41.42 1.53610
26 -255.2250 4.6508 40.94 1.80610
27 -21.8434 0.3000
28 -2672.0362 4.3134 70.41 1.48749
29 -22.7690 1.0000 23.78 1.84666
30 -900.0000 (Bf)

[レンズ群焦点距離]
レンズ群 始面 焦点距離離
第1レンズ群 1 121.86217
第2レンズ群 6 -17.82540
第3レンズ群 15 22.49990
第4レンズ群 20 -27.88943
第5レンズ群 25 39.72862
(Table 17)
Wide angle end Telephoto end
f = 22.55 to 77.20
F.NO = 3.59 to 5.78
ω = 45.22 to 15.08
Image height = 21.6 to 21.6
Total length = 126.365 to 166.395
Bf = 38.819 to 68.503

Surface number Curvature radius Surface spacing Abbe number Refractive index
1 3000.0000 2.0000 23.78 1.84666
2 100.5704 5.0710 49.61 1.77249
3 1103.1027 0.1000
4 61.3430 4.9688 46.62 1.81600
5 199.6806 (d1)
* 6 57.3089 0.1000 41.42 1.53610
7 54.9009 1.3500 42.72 1.83481
8 12.9643 7.7463
9 -42.1100 1.0000 42.72 1.83481
10 -157.1970 0.1000
11 100.6959 4.2633 22.79 1.80809
12 -26.6968 1.2000 42.71 1.82079
* 13 -739.7322 (d2)
14 0.0000 0.5000 (Aperture stop S)
15 25.1876 1.5000 31.27 1.90366
16 13.9732 4.9264 65.46 1.60 300
17 -74.5596 0.1000
18 28.3447 2.9402 82.52 1.49782
19 -73.1263 (d3)
20 -36.2470 2.4500 25.45 2.00069
21 -15.0096 1.0000 40.94 1.80610
22 312.0276 3.6428
23 -45.6498 1.0000 42.72 1.83481
24 -771.8920 (d4)
* 25 203.2702 0.2200 41.42 1.53610
26 -255.2250 4.6508 40.94 1.80610
27 -21.8434 0.3000
28 -2672.0362 4.3134 70.41 1.48749
29 -22.7690 1.0000 23.78 1.84666
30 -900.0000 (Bf)

[Lens focal length]
Lens group Start surface Focal length separation 1st lens group 1 121.86217
Second lens group 6 -17.82540
Third lens group 15 22.49990
Fourth lens group 20 -27.88943
5th lens group 25 39.72862

この第5実施例において、第6面、第13面、及び、第25面のレンズ面は非球面形状に形成されている。次の表18に、非球面のデータ、すなわち円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the fifth embodiment, the sixth, thirteenth, and twenty-fifth lens surfaces are aspherical. Table 18 below shows aspheric data, that is, the values of the conic constant κ and the aspheric constants A4 to A10.

(表18)
κ A4 A6 A8 A10
第6面 1.0000 8.62870E-06 -3.15620E-08 -3.40720E-12 -1.85500E-14
第13面 1.0000 -9.91640E-06 -5.81720E-08 -1.71080E-12 -1.15620E-12
第25面 1.0000 -3.49860E-05 8.58470E-09 -1.10080E-10 0.00000E+00
(Table 18)
κ A4 A6 A8 A10
6th surface 1.0000 8.62870E-06 -3.15620E-08 -3.40720E-12 -1.85500E-14
13th surface 1.0000 -9.91640E-06 -5.81720E-08 -1.71080E-12 -1.15620E-12
25th surface 1.0000 -3.49860E-05 8.58470E-09 -1.10080E-10 0.00000E + 00

この第5実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、及び、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は変倍に際して変化する。次の表19に、この第5実施例に係る変倍光学系ZL5の広角端状態、中間焦点距離状態、望遠端状態の各焦点距離における可変間隔データを示す。   In the fifth embodiment, the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d3 between the fourth lens group G4 and the on-axis air distance d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 19 below shows variable interval data at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system ZL5 according to the fifth example.

(表19)
広角端 中間焦点距離 望遠端
d1 2.76993 20.20213 31.60535
d2 19.97523 6.47914 1.50000
d3 2.28121 5.46623 7.04383
d4 6.07697(d4w) 2.89189 1.30000(d4t)
(Table 19)
Wide angle end Intermediate focal length Telephoto end
d1 2.76993 20.20213 31.60535
d2 19.97523 6.47914 1.50000
d3 2.28121 5.46623 7.04383
d4 6.07697 (d4w) 2.89189 1.30000 (d4t)

次の表20に、この第5実施例における条件式対応値を示す。   Table 20 below shows values corresponding to the conditional expressions in the fifth embodiment.

(表20)
(1)f3/(−f2)=1.26
(2)f1/fw=5.42
(3)(d4w−d4t)/fw=0.21
(4)f3/(−f4)=0.81
(5)(−f2)/fw=0.79
(6)f2/f4=0.64
(7)f1/f3=5.42
(Table 20)
(1) f3 / (− f2) = 1.26
(2) f1 / fw = 5.42
(3) (d4w-d4t) /fw=0.21
(4) f3 / (− f4) = 0.81
(5) (−f2) /fw=0.79
(6) f2 / f4 = 0.64
(7) f1 / f3 = 5.42

この第5実施例の広角端状態での無限遠合焦状態の収差図を図10(a)に、中間焦点距離状態での無限遠合焦状態の収差図を図10(b)に、望遠端状態での無限遠合焦状態の収差図を図10(c)に示す。これらの各収差図から明らかなように、第5実施例では、諸収差が良好に補正され、優れた結像性能を有していることが明らかである。   FIG. 10A shows an aberration diagram in the infinite focus state in the wide-angle end state of this fifth embodiment, and FIG. 10B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 10C shows an aberration diagram in the infinite focus state in the end state. As is apparent from these respective aberration diagrams, it is clear that in the fifth example, various aberrations are corrected well and the imaging performance is excellent.

ZL(ZL1〜ZL5) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
G4 第4レンズ群 G5 第5レンズ群
1 デジタル一眼レフカメラ(光学機器)
ZL (ZL1 to ZL5) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group 1 Digital single-lens reflex camera (optical apparatus)

Claims (14)

物体側から順に、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、
負の屈折力を有する第4レンズ群と、
正の屈折力を有する第5レンズ群と、を有し、
広角端状態から望遠端状態への変倍に際して、前記第4レンズ群と前記第5レンズ群との間隔が縮小して移動するよう構成され、
前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3とし、広角端状態における全系の焦点距離をfwとしたとき、次式
0.10 < f3/(−f2) < 1.35
3.0 < f1/fw < 20.0
の条件を満足する変倍光学系。
From the object side,
A first lens group having a positive refractive power;
A second lens group having negative refractive power;
A third lens group having positive refractive power;
A fourth lens group having negative refractive power;
A fifth lens group having a positive refractive power,
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the fourth lens group and the fifth lens group is reduced and moved.
When the focal length of the first lens group is f1, the focal length of the second lens group is f2, the focal length of the third lens group is f3, and the focal length of the entire system in the wide-angle end state is fw. The following formula 0.10 <f3 / (− f2) <1.35
3.0 <f1 / fw <20.0
Variable magnification optical system that satisfies the above conditions.
広角端状態から望遠端状態への変倍に際して、前記第4レンズ群と前記第5レンズ群との広角端状態での空気間隔をd4wとし、前記第4レンズ群と前記第5レンズ群との望遠端状態での空気間隔をd4tとしたとき、次式
(d4w−d4t)/fw > 0.00
の条件を満足する請求項1に記載の変倍光学系。
At the time of zooming from the wide-angle end state to the telephoto end state, the air gap between the fourth lens group and the fifth lens group in the wide-angle end state is d4w, and the fourth lens group and the fifth lens group When the air interval in the telephoto end state is d4t, the following formula (d4w−d4t) / fw> 0.00
The zoom optical system according to claim 1, wherein the following condition is satisfied.
前記第4レンズ群の焦点距離をf4としたとき、次式
0.50 < f3/(−f4) < 1.50
の条件を満足する請求項1または2に記載の変倍光学系。
When the focal length of the fourth lens group is f4, the following formula 0.50 <f3 / (− f4) <1.50
The zoom optical system according to claim 1, wherein the zoom lens satisfies the following condition.
次式
0.58 < (−f2)/fw < 0.95
の条件を満足する請求項1〜3いずれか一項に記載の変倍光学系。
The following formula 0.58 <(− f2) / fw <0.95
The variable magnification optical system as described in any one of Claims 1-3 which satisfy | fills these conditions.
前記第4レンズ群の焦点距離をf4としたとき、次式
0.40 < f2/f4 < 1.20
の条件を満足する請求項1〜4いずれか一項に記載の変倍光学系。
When the focal length of the fourth lens group is f4, the following formula 0.40 <f2 / f4 <1.20
The zoom lens system according to any one of claims 1 to 4, which satisfies the following condition.
次式
3.0 < f1/f3 < 10.0
の条件を満足する請求項1〜5いずれか一項に記載の変倍光学系。
The following expression 3.0 <f1 / f3 <10.0
The zoom lens system according to any one of claims 1 to 5, which satisfies the following condition.
無限遠から近距離物点への合焦に際し、前記第2レンズ群の少なくとも一部が光軸上を移動する、請求項1〜6いずれか一項に記載の変倍光学系。   The zoom optical system according to claim 1, wherein at least a part of the second lens group moves on the optical axis when focusing from infinity to a short-distance object point. 前記第2レンズ群の最も像側のレンズ面は非球面形状である、請求項1〜7いずれか一項に記載の変倍光学系。   The zoom lens system according to any one of claims 1 to 7, wherein a lens surface closest to the image side of the second lens group has an aspherical shape. 前記第4レンズ群は、少なくとも1枚の接合レンズを有する、請求項1〜8いずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 8, wherein the fourth lens group includes at least one cemented lens. 広角端状態から望遠端状態に変倍する際に、
前記第1レンズ群と前記第2レンズ群との間隔が増大し、
前記第2レンズ群と前記第3レンズ群との間隔が減少し、
前記第3レンズ群と前記第4レンズ群との間隔が増大し、
前記第4レンズ群と前記第5レンズ群との間隔が減少するように、各レンズ群が移動する、請求項1〜9いずれか一項に記載の変倍光学系。
When zooming from the wide-angle end state to the telephoto end state,
An interval between the first lens group and the second lens group is increased;
An interval between the second lens group and the third lens group is reduced;
An interval between the third lens group and the fourth lens group is increased;
The variable magnification optical system according to any one of claims 1 to 9, wherein each lens group moves so that an interval between the fourth lens group and the fifth lens group decreases.
前記第4レンズ群の少なくとも一部は、光軸と直交する方向の成分を持つように移動する、請求項1〜10いずれか一項に記載の変倍光学系。   11. The variable magnification optical system according to claim 1, wherein at least a part of the fourth lens group moves so as to have a component in a direction orthogonal to the optical axis. 前記第2レンズ群の最も物体側のレンズ面は非球面形状である、請求項1〜11いずれか一項に記載の変倍光学系。   The zoom lens system according to any one of claims 1 to 11, wherein a lens surface closest to the object side of the second lens group has an aspherical shape. 請求項1〜12いずれか一項に記載の撮影レンズを備えた光学機器。   An optical apparatus comprising the photographing lens according to claim 1. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有する変倍光学系の製造方法であって、
広角端状態から望遠端状態の変倍に際して、前記第4レンズ群と前記第5レンズ群の間隔が縮小して移動するよう配置し、
前記第1レンズ群の焦点距離をf1とし、前記第2レンズ群の焦点距離をf2とし、前記第3レンズ群の焦点距離をf3とし、広角端状態における全系の焦点距離をfwとしたとき、次式
0.10 < f3/(−f2) < 1.35
3.0 < f1/fw < 20.0
の条件を満足するように配置する変倍光学系の製造方法。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power A variable magnification optical system having a group and a fifth lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the fourth lens group and the fifth lens group is reduced and moved.
When the focal length of the first lens group is f1, the focal length of the second lens group is f2, the focal length of the third lens group is f3, and the focal length of the entire system in the wide-angle end state is fw. The following formula 0.10 <f3 / (− f2) <1.35
3.0 <f1 / fw <20.0
A method for manufacturing a variable magnification optical system arranged so as to satisfy the above condition.
JP2010092772A 2010-04-14 2010-04-14 Variable magnification optical system and optical apparatus provided with the variable magnification optical system Active JP5494955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092772A JP5494955B2 (en) 2010-04-14 2010-04-14 Variable magnification optical system and optical apparatus provided with the variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092772A JP5494955B2 (en) 2010-04-14 2010-04-14 Variable magnification optical system and optical apparatus provided with the variable magnification optical system

Publications (2)

Publication Number Publication Date
JP2011221422A true JP2011221422A (en) 2011-11-04
JP5494955B2 JP5494955B2 (en) 2014-05-21

Family

ID=45038446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092772A Active JP5494955B2 (en) 2010-04-14 2010-04-14 Variable magnification optical system and optical apparatus provided with the variable magnification optical system

Country Status (1)

Country Link
JP (1) JP5494955B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182246A (en) * 2012-03-05 2013-09-12 Canon Inc Zoom lens and image pickup device having the same
EP2857883A1 (en) 2013-09-25 2015-04-08 Konica Minolta, Inc. Zooming optical system, imaging optical device, and digital device
JP2015075570A (en) * 2013-10-08 2015-04-20 キヤノン株式会社 Zoom lens and imaging device having the same
US9395524B2 (en) 2013-06-10 2016-07-19 Konica Minolta, Inc. Variable magnification optical system, imaging optical device, and digital appliance

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993411A (en) * 1982-11-19 1984-05-29 Canon Inc Zoom lens
JPH0894932A (en) * 1994-09-22 1996-04-12 Konica Corp Compact high variable-power zoom lens
JP2003050350A (en) * 2001-08-06 2003-02-21 Canon Inc Zoom lens and optical equipment
JP2004117827A (en) * 2002-09-26 2004-04-15 Minolta Co Ltd Imaging apparatus
JP2006078964A (en) * 2004-09-13 2006-03-23 Canon Inc Zoom lens and image pickup device having the same
JP2007108699A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it
JP2007171456A (en) * 2005-12-21 2007-07-05 Tamron Co Ltd Bent zoom lens
JP2010044191A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993411A (en) * 1982-11-19 1984-05-29 Canon Inc Zoom lens
JPH0894932A (en) * 1994-09-22 1996-04-12 Konica Corp Compact high variable-power zoom lens
JP2003050350A (en) * 2001-08-06 2003-02-21 Canon Inc Zoom lens and optical equipment
JP2004117827A (en) * 2002-09-26 2004-04-15 Minolta Co Ltd Imaging apparatus
JP2006078964A (en) * 2004-09-13 2006-03-23 Canon Inc Zoom lens and image pickup device having the same
JP2007108699A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it
JP2007171456A (en) * 2005-12-21 2007-07-05 Tamron Co Ltd Bent zoom lens
JP2010044191A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182246A (en) * 2012-03-05 2013-09-12 Canon Inc Zoom lens and image pickup device having the same
US9395524B2 (en) 2013-06-10 2016-07-19 Konica Minolta, Inc. Variable magnification optical system, imaging optical device, and digital appliance
US10007099B2 (en) 2013-06-10 2018-06-26 Konica Minolta, Inc. Variable-magnification optical system, imaging optical device, and digital appliance
EP2857883A1 (en) 2013-09-25 2015-04-08 Konica Minolta, Inc. Zooming optical system, imaging optical device, and digital device
US9164259B2 (en) 2013-09-25 2015-10-20 Konica Minolta, Inc. Zooming optical system, imaging optical device, and digital device
JP2015075570A (en) * 2013-10-08 2015-04-20 キヤノン株式会社 Zoom lens and imaging device having the same

Also Published As

Publication number Publication date
JP5494955B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5510876B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP5614039B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP5678424B2 (en) Variable magnification optical system, optical apparatus equipped with the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5582303B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2008046612A (en) Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2010145759A (en) Zoom lens, optical apparatus with the zoom lens and method for producing the zoom lens
JP2010044191A (en) Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010175899A (en) Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP5648900B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2012155087A (en) Variable power optical system, optical device, and manufacturing method for variable power optical system
JP5494955B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP5471487B2 (en) Photographic lens and optical apparatus provided with the photographic lens
JP5212813B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP2010175903A (en) Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2010186141A (en) Zoom lens, optical apparatus with the same mounted thereon, and method for manufacturing the same
JP5333903B2 (en) Zoom lens and optical equipment
JP5494161B2 (en) Variable magnification optical system and optical apparatus provided with the variable magnification optical system
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6372058B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6281199B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6260075B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP5326433B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5540515B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5494955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250