JP2011221258A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2011221258A
JP2011221258A JP2010089872A JP2010089872A JP2011221258A JP 2011221258 A JP2011221258 A JP 2011221258A JP 2010089872 A JP2010089872 A JP 2010089872A JP 2010089872 A JP2010089872 A JP 2010089872A JP 2011221258 A JP2011221258 A JP 2011221258A
Authority
JP
Japan
Prior art keywords
optical
modulator
modulation means
signal
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010089872A
Other languages
Japanese (ja)
Other versions
JP5662050B2 (en
Inventor
Yasushi Yamazaki
裕史 山崎
Takashi Go
隆司 郷
Hiroshi Takahashi
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010089872A priority Critical patent/JP5662050B2/en
Publication of JP2011221258A publication Critical patent/JP2011221258A/en
Application granted granted Critical
Publication of JP5662050B2 publication Critical patent/JP5662050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a multi-valued optical modulator in which loss of light is low theoretically.SOLUTION: The optical modulator comprises: first optical modulation means for modulating input light from a main input port, and outputting simultaneously first and second light signals, which have the same constellation figures and different data mapping each other, from different ports; second optical modulation means for further modulating the first light signal and outputting a third light signal; and optical coupling means for coupling the second and third light signals and outputting the signals to a main output port.

Description

本発明は、光通信システムに応用可能な光変調器に関する。   The present invention relates to an optical modulator applicable to an optical communication system.

近年、光通信システムにおける、帯域利用効率の向上に向け、無線通信分野で用いられるような多値変調方式を光通信へ導入する検討が盛んに行われている。代表的な多値変調方式として、n値位相シフト変調(n−level Phase−Shift Keying:nPSK),n値強度・位相シフト変調(n−level Amplitude−and−Phase−Shift Keying:nAPSK),n値直交振幅変調(n−level Quadrature Amplitude Modulation:nQAM)方式が挙げられる。   In recent years, in order to improve band utilization efficiency in an optical communication system, studies have been actively conducted to introduce a multi-level modulation method used in the field of wireless communication into optical communication. Typical multi-level modulation schemes include n-level phase-shift keying (n-level phase-shift keying: nPSK), n-level intensity-phase-shift keying (n-level amplitude-and-phase-shift keying: nAPSK), n. A value quadrature amplitude modulation (nQAM) method may be used.

このような、多値変調信号を生成する手段の1つとして、複数の2値PSK(Binary−PSK:BPSK)光信号を干渉させ、多値光信号を合成する手法が知られている。図1に、4値変調である直交位相変調(Quadrature Phase−Shift Keying:QPSK)信号を生成するための良く知られた変調器構成100を示す(従来技術1)。図1において、変調器100は、光強度分岐比及び結合比1:1(0.5:0.5)のY字型の光分岐及び結合手段131、132を有し、それらで構成されるマッハツェンダ(Mach−Zehnder:MZ)回路の各アームにそれぞれBPSK変調手段111および112が配置され、さらに片方のアームにπ/2の位相変化を与える位相シフタ121が設けられている。このとき、メイン入力ポート101への入力光電場をEin、メイン出力ポート102からの出力光電場をEout(いずれも複素数表現)とすると、変調器の伝達関数Tは、以下の式で表現することができる。 As one of means for generating such a multi-level modulation signal, there is known a method of interfering a plurality of binary PSK (Binary-PSK: BPSK) optical signals and synthesizing the multi-level optical signals. FIG. 1 shows a well-known modulator configuration 100 for generating a quadrature phase-shift keying (QPSK) signal that is quaternary modulation (prior art 1). In FIG. 1, a modulator 100 has Y-shaped optical branching and coupling means 131 and 132 having a light intensity branching ratio and a coupling ratio of 1: 1 (0.5: 0.5), and is configured by them. BPSK modulation means 111 and 112 are arranged in each arm of a Mach-Zehnder (MZ) circuit, and a phase shifter 121 that gives a phase change of π / 2 is provided in one arm. At this time, assuming that the input photoelectric field to the main input port 101 is E in and the output photoelectric field from the main output port 102 is E out (both are complex numbers), the transfer function T of the modulator is expressed by the following equation: can do.

Figure 2011221258
Figure 2011221258

ここでr1、r2は、それぞれ、光分岐及び結合手段131、132の光強度分岐及び結合比であり、本実施形態では、r1=r2=0.5である。b1、b2は、それぞれBPSK変調手段111、112の伝達関数であり、シンボル点(時間軸上でのシンボルの中心タイミング)においては、+1または−1のいずれかの値をとる。なお、本明細書では、モデル簡易化のため、光分岐手段、結合手段、BPSK変調手段およびそれらをつなぐ光導波路は、全て過剰損失ゼロの理想的な場合を仮定する。 Here, r 1 and r 2 are the light intensity branching and coupling ratios of the light branching and coupling means 131 and 132, respectively, and in this embodiment, r 1 = r 2 = 0.5. b 1 and b 2 are transfer functions of the BPSK modulation means 111 and 112, respectively, and take a value of +1 or −1 at a symbol point (symbol center timing on the time axis). In this specification, for simplification of the model, the optical branching unit, the coupling unit, the BPSK modulation unit, and the optical waveguide connecting them are assumed to be an ideal case with no excess loss.

図2(a)、(b)、(c)は、それぞれTの右辺第1項0.5b1、第2項0.5jb2およびTのシンボル点における値を複素平面上に表した複素平面プロット200、210、220である。同図中の[d12]は、各点に対するバイナリデータのマッピングを表している。データビット値は、シンボル点における各BPSK変調手段の伝達関数の値と1対1で関連付けられる。ここでは、bn=+1のときdn=0、bn=−1のときdn=1とした。図2(a)に対応する数式1のTの右辺第1項は、b2に依存しないため、2ビット目のデータはx(任意値)としてある。図2(b)についても、同様である。連続光Ein=1を入力すると、Eout=Tであるため、図2(c)は、そのまま、出力信号ダイアグラムに相当する。b1およびb2が、それぞれI相(実部)およびQ相(虚部)の正負に対応するQPSK信号が得られることがわかる。なお、BPSK変調手段としては両アームに高速位相変調手段を有するMZ回路(以下、単に「MZ変調回路」)を用いることが最も一般的である。このため一般的な、QPSK変調器は、図1の光分岐及び結合手段131、132で構成されるMZ回路の各アームにBPSK変調手段であるMZ変調回路が埋め込まれた形となり、しばしば、ネスト型MZ変調器とも呼ばれる。 2A, 2B, and 2C show complex planes in which the values of the first term 0.5b 1 , the second term 0.5jb 2 and the symbol term of T on the right side of T are represented on the complex plane. Plots 200, 210 and 220 are shown. [D 1 d 2 ] in the figure represents the mapping of binary data to each point. The data bit value is associated one-to-one with the value of the transfer function of each BPSK modulation means at the symbol point. Here, d n = 0 when b n = + 1, and d n = 1 when b n = −1. Since the first term on the right side of T in Equation 1 corresponding to FIG. 2A does not depend on b 2 , the second bit data is x (arbitrary value). The same applies to FIG. 2B. When continuous light E in = 1 is input, since E out = T, FIG. 2C corresponds to the output signal diagram as it is. It can be seen that b 1 and b 2 are QPSK signals corresponding to the positive and negative of the I phase (real part) and Q phase (imaginary part), respectively. It is most common to use an MZ circuit (hereinafter simply referred to as “MZ modulation circuit”) having high-speed phase modulation means in both arms as the BPSK modulation means. For this reason, a general QPSK modulator has an MZ modulation circuit as a BPSK modulation means embedded in each arm of the MZ circuit composed of the optical branching and coupling means 131 and 132 in FIG. Also called a type MZ modulator.

非特許文献1では、さらに複雑な構成を使用したQAM変調器が報告されている。同文献では光強度分岐比及び結合比4:2:1の光分岐及び結合手段を用いたQPSK変調回路を3回路並列に接続することで、64QAM変調器を構成している。さらに、光強度分岐比及び結合比2N-1:2N-2:・・・:1の光分岐及び結合手段を用いてN個のQPSK変調回路を並列接続すれば4NQAM変調器を構成できることが記述されている。 Non-Patent Document 1 reports a QAM modulator using a more complicated configuration. In this document, a 64QAM modulator is configured by connecting three QPSK modulation circuits using optical branching and coupling means having a light intensity branching ratio and a coupling ratio of 4: 2: 1 in parallel. Further, the light intensity branching ratio and coupling ratio 2 N-1: 2 N- 2: ···: 4 N QAM modulator if parallel connection of N QPSK modulation circuit using one of the light branching and coupling means It is described that it can be configured.

図3に、同記述を応用した16QAM変調器の構成300を示す(従来技術2)。本構成では、分岐比及び結合比2:1(0.67:0.33)のY字型の光分岐及び結合手段335、336で構成されるMZ回路の各アームに、従来技術1と同構成のQPSK変調手段341、342が配置され、QPSK変調手段342の後段に位相シフタ323が配置されている。位相シフタ323の位相シフト量はπ/2の整数倍であればよいが、ここではモデル簡易化のため位相シフト量をゼロとして議論を進める。メイン入力ポート301からメイン出力ポート302への伝達関数Tは、以下の通りとなる。   FIG. 3 shows a configuration 300 of a 16QAM modulator to which the description is applied (prior art 2). In this configuration, each arm of the MZ circuit composed of the Y-shaped optical branching and coupling means 335 and 336 having a branching ratio and coupling ratio of 2: 1 (0.67: 0.33) is the same as that in the prior art 1. QPSK modulation means 341 and 342 having the configuration are arranged, and a phase shifter 323 is arranged after the QPSK modulation means 342. The phase shift amount of the phase shifter 323 may be an integer multiple of π / 2, but here the discussion proceeds with the phase shift amount set to zero for simplification of the model. The transfer function T from the main input port 301 to the main output port 302 is as follows.

Figure 2011221258
Figure 2011221258

ここで、T1、T2は、それぞれQPSK変調手段341、342の伝達関数である。b1、b2、b3、b4は、それぞれBPSK変調手段311、312、313、314の伝達関数であり、シンボル点においては+1または−1のいずれかの値をとる。r1、r2はそれぞれ光分岐及び結合手段335、336の光強度分岐及び結合比であり、本実施形態では、r1=r2=0.67である。 Here, T 1 and T 2 are transfer functions of the QPSK modulation means 341 and 342, respectively. b 1 , b 2 , b 3 , and b 4 are transfer functions of the BPSK modulation units 311, 312, 313, and 314, respectively, and take a value of +1 or −1 at the symbol point. r 1 and r 2 are the light intensity branching and coupling ratios of the light branching and coupling means 335 and 336, respectively. In this embodiment, r 1 = r 2 = 0.67.

図4は、数式2の右辺各項および伝達関数Tのシンボル点における値を複素平面上に表した複素平面プロット400、410、420である。同図中の[d1234]は各点に対するバイナリデータのマッピングを表しており、bn=+1のときdn=0、bn=−1のときdn=1である。T1とT2を電界振幅比2:1(0.33:0.17)で足し合わせることで、T1に対応する4点の各々がT2の値に応じて4点に分裂し、16QAMの信号ダイアグラムが得られることがわかる。 FIG. 4 is complex plane plots 400, 410, and 420 that represent values on the right side of Equation 2 and values at symbol points of the transfer function T on the complex plane. [D 1 d 2 d 3 d 4 ] in the figure represents the mapping of binary data to each point, d n = 0 when b n = + 1, d n = 1 when b n = -1. is there. By adding T 1 and T 2 with an electric field amplitude ratio of 2: 1 (0.33: 0.17), each of the four points corresponding to T 1 is divided into four points according to the value of T 2 , It can be seen that a 16QAM signal diagram is obtained.

図5に、非特許文献2のFig.15(b)に示される8APSK変調器の構成に、若干の修正と非特許文献1のアイディアを加えた例500を示す(従来技術3)。本実施形態では、2APSK変調手段541と、QPSK変調手段542が直列に接続されている。2APSK変調手段541は、分岐比及び結合比1−r:rのY字型の光分岐及び結合手段531、532を有し、それらで構成されるMZ回路の一方のアームのみにBPSK変調手段511、および位相変化π/4を与える位相シフタ521が配置されており、他方のアームは直線導波路となっている。本従来技術においては、   FIG. 5 shows FIG. An example 500 in which some modifications and the idea of Non-Patent Document 1 are added to the configuration of the 8APSK modulator shown in FIG. 15B is shown (Prior Art 3). In the present embodiment, 2APSK modulation means 541 and QPSK modulation means 542 are connected in series. The 2APSK modulation means 541 has Y-shaped optical branching and coupling means 531 and 532 having a branching ratio and a coupling ratio of 1-r: r, and the BPSK modulating means 511 is provided only in one arm of the MZ circuit constituted by them. , And a phase shifter 521 that gives a phase change π / 4 is disposed, and the other arm is a straight waveguide. In this conventional technology,

Figure 2011221258
Figure 2011221258

である。2APSK変調手段541の伝達関数T1、QPSK変調手段542の伝達関数T2および変調器全体の伝達関数Tは、それぞれ以下の式で表現できる。 It is. 2APSK transfer function T of the entire transfer function T 2 and modulators of the transfer function T 1, QPSK modulation unit 542 of the modulation means 541 may be respectively expressed by the following equations.

Figure 2011221258
Figure 2011221258

ここで、b1、b2、b3は、それぞれBPSK変調手段511、512、513の伝達関数であり、シンボル点においては、+1、または−1のいずれかの値をとる。 Here, b 1 , b 2 , and b 3 are transfer functions of the BPSK modulation means 511, 512, and 513, respectively, and take a value of +1 or −1 at the symbol point.

図6は、数式3のT1、T2およびTのシンボル点における値を複素平面上に表した複素平面プロット600、610、620である。同図中の同図中の[d123]は各点に対するバイナリデータのマッピングを表しており、bn=+1のときdn=0、bn=−1のときdn=1である。T1は、原点から実軸正方向へ1−rだけシフトした点を基点に、角度−π/4又は+π・3/4[rad]方向へそれぞれrだけシフトした2値をとる。原点から見たときの位相角は、それぞれ−π/12、+π/6であり、動径はそれぞれ FIG. 6 is complex plane plots 600, 610, and 620 showing values at symbol points of T 1 , T 2, and T in Equation 3 on the complex plane. [D 1 d 2 d 3] in the drawing in the figure represents the mapping of binary data for each point, when b n = + d n = 0 when 1, b n = -1 d n = 1. T 1 takes a binary value that is shifted by r in the direction of the angle −π / 4 or + π · 3/4 [rad] with the point shifted by 1−r from the origin in the positive direction of the real axis as the base point. The phase angles when viewed from the origin are −π / 12 and + π / 6, respectively, and the radius is respectively

Figure 2011221258
Figure 2011221258

なので、T1のとる2値は相対位相π/4、電界強度比 So, the binary value of T 1 is relative phase π / 4, electric field strength ratio

Figure 2011221258
Figure 2011221258

の変則的な2APSKの信号ダイアグラムに相当する。一方T2は、数式2からも明らかな通り、動径 Corresponds to the anomalous 2APSK signal diagram. On the other hand, T 2 is the radius vector as is clear from Equation 2.

Figure 2011221258
Figure 2011221258

のQPSKの信号ダイアグラムに相当する4値をとる。このため、T=T2・T1のとる8値を複素平面上にプロットすると、外側QPSK信号点(図中[100]、[110]、[111]、[101])と内側QPSK信号点(図中[000]、[010]、[011]、[001])が互いに位相角π/4だけオフセットして配置され、外側QPSKと内側QPSKの電界強度比は、 It takes four values corresponding to the signal diagram of QPSK. Therefore, when the eight values of T = T 2 · T 1 are plotted on the complex plane, the outer QPSK signal points ([100], [110], [111], [101] in the figure) and the inner QPSK signal points ([000], [010], [011], [001] in the figure) are offset from each other by a phase angle of π / 4, and the electric field strength ratio between the outer QPSK and the inner QPSK is

Figure 2011221258
Figure 2011221258

であるような信号ダイアグラムが得られる。外側QPSKの1点とそれに近接する内側QPSKの2点、例えば[100]、[001]、[000]の3点が正三角形をなしていることが特徴である。この配置は、8値変調において、所与の出力信号ピーク強度(図3の場合、例えば[100]の状態における出力光強度)に対する最近接信号点間のユークリッド距離を最大化する配置であり、OSNR耐性の観点から有利であるため、近年多値光伝送の学術検討においてもしばしば用いられる変調方式である(例えば非特許文献3)。この変調方式は、8QAMと呼ばれることも多いが、本明細書では非特許文献2に倣い8APSKの呼称を採用する。   A signal diagram is obtained. A feature is that one point of the outer QPSK and two points of the inner QPSK adjacent thereto, for example, three points [100], [001], and [000] form an equilateral triangle. This arrangement is an arrangement that maximizes the Euclidean distance between nearest signal points for a given output signal peak intensity (in the case of FIG. 3, for example, the output light intensity in the state of [100] in FIG. 3) in 8-level modulation. Since this is advantageous from the viewpoint of OSNR tolerance, it is a modulation method often used in academic studies of multilevel optical transmission in recent years (for example, Non-Patent Document 3). This modulation system is often called 8QAM, but in this specification, the name of 8APSK is adopted following Non-Patent Document 2.

なお、非特許文献2のFig.15(b)では、2APSK変調手段におけるアーム間の光電界振幅比として2:1(光強度比が1:1/4、従って電界振幅比が1:1/2=2:1)が記載されているが、これは本実施形態に示した理想値   Note that FIG. 15 (b) describes the optical field amplitude ratio between the arms in the 2APSK modulation means as 2: 1 (light intensity ratio is 1: 1/4, so the electric field amplitude ratio is 1: 1/2 = 2: 1). This is the ideal value shown in this embodiment.

Figure 2011221258
Figure 2011221258

を整数で近似した値と考えられる。また、同文献では、電界振幅比2:1(理想的には   Can be considered as a value approximated by an integer. In the same document, the electric field amplitude ratio is 2: 1 (ideally,

Figure 2011221258
Figure 2011221258

)を得るための具体的な回路構成についても記載されていないが、同文献Fig.5(b)から単純に類推して6dB光減衰器を用いると、減衰させた分の光過剰損失が生じてしまう。本実施形態では、ここへ、非特許文献1のアイディアを応用し、光強度分岐比及び結合比   The specific circuit configuration for obtaining the above is not described, but FIG. If a 6 dB optical attenuator is used simply by analogy with 5 (b), an excess optical loss will occur. In the present embodiment, the idea of Non-Patent Document 1 is applied here, the light intensity branching ratio and the coupling ratio.

Figure 2011221258
Figure 2011221258

の光分岐及び光結合手段を用いることで、光減衰器を用いる場合に比較して光過剰損失を低減している。   By using the optical branching and optical coupling means, excess optical loss is reduced as compared with the case of using an optical attenuator.

特開2009−260822号公報JP 2009-260822 A

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, ‘‘64QAM Modulator With a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators,’’ IEEE Photon. Technol. Lett., Vol. 22, No. 5, pp. 344-346, 2010.H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, '' 64QAM Modulator With a Hybrid Configuration of Silica PLCs and LiNbO3 Phase Modulators, '' IEEE Photon. Technol. Lett., Vol. 22 , No. 5, pp. 344-346, 2010. N. Kikuchi, ‘‘Intersymbol Interference (ISI) Suppression Technique for Optical Binary and Multilevel Signal Generation,’’ J. Lightwave Technol., Vol. 25, No. 8, pp. 2060-2068, 2007.N. Kikuchi, ‘‘ Intersymbol Interference (ISI) Suppression Technique for Optical Binary and Multilevel Signal Generation, ’J. Lightwave Technol., Vol. 25, No. 8, pp. 2060-2068, 2007. X. Zhou, J. Yu, M. F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. B. Matthew, and S. K. Mishra, ‘‘32Tb/s (320x114Gb/s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber,’’ Proc. of OFC2009, paper PDPB4, 2009.X. Zhou, J. Yu, MF Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, HB Matthew, and SK Mishra, '' 32Tb / s (320x114Gb / s) PDM-RZ-8QAM transmission over 580km of SMF-28 ultra-low-loss fiber, '' Proc. Of OFC2009, paper PDPB4, 2009. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, ‘‘Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,’’ Electron. Lett., Vol. 26, No. 17, pp. 1326-1327, 1990.K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, '' Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio, '' Electron. Lett., Vol. 26, No. 17, pp 1326-1327, 1990. K. Jinguji, and M. Kawachi, ‘‘Synthesis of Coherent Two-Port Lattice-Form Optical Delay-Line Circuit,’’ J. Lightwave Technol., Vol. 13, No. 1, pp. 73-82, 1995.K. Jinguji, and M. Kawachi, ‘‘ Synthesis of Coherent Two-Port Lattice-Form Optical Delay-Line Circuit, ’’ J. Lightwave Technol., Vol. 13, No. 1, pp. 73-82, 1995.

しかしながら、上記従来技術においては、変調器構成に起因する原理的な光損失が生じてしまうという問題があった。但し、ここで言う「変調器構成に起因する原理的な光損失」(以下単に「原理損失」)とは、光導波路の導波損失やプロセスエラーによる損失等がゼロであるような理想条件下においても、光信号の合成過程で不可避的に生じる光損失を指す。また、強度変調を伴う変調方式(QAM、APSKなど)においては、光電界振幅の最も大きい信号点における出力信号光と入力光の強度比として定義する。例えば従来技術1(図2)の例では、各信号点の動径は、   However, the above-described prior art has a problem that a fundamental optical loss due to the modulator configuration occurs. However, the “principal optical loss due to the modulator configuration” (hereinafter simply referred to as “principal loss”) is an ideal condition in which the waveguide loss of the optical waveguide or the loss due to the process error is zero. Also refers to optical loss inevitably occurring in the process of combining optical signals. In addition, in a modulation scheme (QAM, APSK, etc.) involving intensity modulation, it is defined as the intensity ratio between output signal light and input light at a signal point having the largest optical electric field amplitude. For example, in the example of prior art 1 (FIG. 2), the radius of each signal point is

Figure 2011221258
Figure 2011221258

その2乗は、1/2なので、原理損失は、3.0dBである。従来技術2(図4)では、電界振幅最大の信号点(たとえば[0000])での動径は、   Since the square is 1/2, the principle loss is 3.0 dB. In the prior art 2 (FIG. 4), the moving radius at the signal point with the maximum electric field amplitude (for example, [0000]) is

Figure 2011221258
Figure 2011221258

であり、原理損失は、3.0dBである。従来技術3(図6)では、外側QPSKの動径は、   The principle loss is 3.0 dB. In prior art 3 (FIG. 6), the outer QPSK radius is

Figure 2011221258
Figure 2011221258

であり、原理損失は、3.6dBである。   The principle loss is 3.6 dB.

本発明は、このような課題に鑑みてなされたものであり、その目的は、原理的な光損失の小さい多値光変調器を提供することである。   The present invention has been made in view of such problems, and an object of the present invention is to provide a multi-level optical modulator with a small optical loss.

上記の課題を解決するために、本発明の請求項1に記載の光変調器は、メイン入力ポートからの入力光を変調し、互いにコンスタレーション図形が等しくデータマッピングが異なる第1及び第2の光信号を同時に異なるポートから出力する第1の光変調手段と、上記第1の光信号をさらに変調し、第3の光信号を出力する第2の光変調手段と、上記第2及び上記第3の光信号を結合させ、メイン出力ポートへ出力する光結合手段とを備えることを特徴とする。   In order to solve the above problems, an optical modulator according to claim 1 of the present invention modulates input light from a main input port, and the first and second constellation figures are equal to each other and data mapping is different. First optical modulation means for simultaneously outputting optical signals from different ports, second optical modulation means for further modulating the first optical signal and outputting a third optical signal, the second and the second And optical coupling means for coupling the three optical signals and outputting them to the main output port.

上記の課題を解決するために、本発明の請求項2に記載の光変調器は、メイン入力ポートからの入力光を変調し、互いにコンスタレーション図形が等しくデータマッピングが異なる第1及び第2の光信号を同時に異なるポートから出力する第1の光変調手段と、上記第1の光信号をさらに変調し、第3の光信号を出力する第2の光変調手段と、上記第2の光信号をさらに変調し、第4の光信号を出力する第3の光変調手段と、上記第3及び上記第4の光信号を結合させ、メイン出力ポートへ出力する光結合手段とを備え、第2の変調手段と第3の変調手段は、互いに異なる変調を行うことを特徴とする。   In order to solve the above problems, an optical modulator according to claim 2 of the present invention modulates input light from a main input port, and the first and second constellation figures are equal to each other and data mapping is different. First optical modulation means for simultaneously outputting optical signals from different ports, second optical modulation means for further modulating the first optical signal and outputting a third optical signal, and the second optical signal And a third optical modulation means for outputting a fourth optical signal, and an optical coupling means for combining the third and fourth optical signals and outputting them to the main output port. The modulation means and the third modulation means perform different modulations.

また、本発明の請求項3に記載の光変調器は、上記第2の光変調手段が、2値位相変調もしくはN値直交振幅変調(Nは4以上の整数)手段であることを特徴とする。   The optical modulator according to claim 3 of the present invention is characterized in that the second optical modulation means is binary phase modulation or N-value quadrature amplitude modulation (N is an integer of 4 or more). To do.

また、本発明の請求項4に記載の光変調器は、上記第1、第2、及び第3の変調手段が、それぞれ単一もしくは複数の2値位相変調手段と位相シフタを並列又は直列に組み合わせた回路であることを特徴とする。   In the optical modulator according to claim 4 of the present invention, the first, second, and third modulating means are each configured such that a single or plural binary phase modulating means and a phase shifter are connected in parallel or in series. It is a combination circuit.

また、本発明の請求項5に記載の光変調器は、上記2値位相変調手段の各々がマッハツェンダ変調回路であることを特徴とする。   The optical modulator according to claim 5 of the present invention is characterized in that each of the binary phase modulation means is a Mach-Zehnder modulation circuit.

また、本発明の請求項6に記載の光変調器は、光変調器のメイン入力ポートとメイン出力ポートを逆転させ、かつ上記2値変調手段の各々について入出力ポートの方向を逆転させた光回路構成を有することを特徴とする。   According to a sixth aspect of the present invention, there is provided an optical modulator in which the main input port and the main output port of the optical modulator are reversed and the direction of the input / output port is reversed for each of the binary modulation means. It has a circuit configuration.

本発明によれば、原理的な光損失の小さい多値光変調器を構成することができる。   According to the present invention, it is possible to configure a multilevel optical modulator with a small optical loss.

第1の従来技術であるQPSK変調器の回路構成を表す図である。It is a figure showing the circuit structure of the QPSK modulator which is the 1st prior art. 第1の従来技術であるQPSK変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the QPSK modulator which is the first prior art. 第2の従来技術である16QAM変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 16QAM modulator which is the 2nd prior art. 第2の従来技術である16QAM変調器の伝達関値の複素平面プロットである。It is a complex plane plot of the transfer function value of 16QAM modulator which is the 2nd prior art. 第3の従来技術である8APSK変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 8APSK modulator which is the 3rd prior art. 第3の従来技術である8APSK変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of 8APSK modulator which is the 3rd prior art. 本発明の第1の実施形態である8APSK変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 8APSK modulator which is the 1st Embodiment of this invention. 本発明の第1の実施形態である8APSK変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the 8APSK modulator which is the 1st Embodiment of this invention. 本発明の第2の実施形態である8PSK変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the 8PSK modulator which is the 2nd Embodiment of this invention. 本発明の第3の実施形態である16QAM変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 16QAM modulator which is the 3rd Embodiment of this invention. 本発明の第3の実施形態である16QAM変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the 16QAM modulator which is the 3rd Embodiment of this invention. 本発明の第4の実施形態である64QAM変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 64QAM modulator which is the 4th Embodiment of this invention. 本発明の第4の実施形態である64QAM変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the 64QAM modulator which is the 4th embodiment of the present invention. 本発明の第5の実施形態である16QAM変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 16QAM modulator which is the 5th Embodiment of this invention. 本発明の第5の実施形態である16QAM変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the 16QAM modulator which is the 5th Embodiment of this invention. 本発明の第6の実施形態である16APSK変調器の回路構成を表す図である。It is a figure showing the circuit structure of the 16APSK modulator which is the 6th Embodiment of this invention. 本発明の第6の実施形態である16APSK変調器の伝達関数値の複素平面プロットである。It is a complex plane plot of the transfer function value of the 16APSK modulator which is the 6th embodiment of this invention.

本発明は、変調器の回路構成に関するものであって、その効果は、変調器を形成する材料には依存しないため、以下に示す実施形態においては、材料を特に指定しない。変調器を形成する材料としては、電気光学(Electro−Optic:EO)効果の一種であるポッケルス効果を有するLiNbO3(LN)やKTa1-xNbx3やK1-yLiyTa1-xNbx3などの多元系酸化物結晶、電界吸収(Electro−Absorption:EA)効果や量子閉じ込めシュタルク効果(Quantum Confined Stark Effect:QCSE)による屈折率または吸収係数の変調が可能なGaAs系やInP系の化合物半導体、クロモフォアなどのEO効果を有するポリマなどを用いることができる。さらには、複雑な構成の変調器回路を低損失に作製するため、非特許文献1で示されているように、上記材料基板と石英系平面光波回路(Planar Lightwave Circuit:PLC)との異種基板接合型構成を用いてもよい。 The present invention relates to a circuit configuration of a modulator, and the effect thereof does not depend on the material forming the modulator. Therefore, the material is not particularly specified in the embodiments described below. As a material for forming the modulator, LiNbO 3 (LN), KTa 1-x Nb x O 3 , K 1-y Li y Ta 1 having a Pockels effect which is a kind of electro-optic (EO) effect. -x Nb x O 3 and other multi-element oxide crystals, GaAs system capable of modulating refractive index or absorption coefficient by electro-absorption (EA) effect or quantum confined stark effect (QCSE) Or an InP-based compound semiconductor, a polymer having an EO effect such as a chromophore, or the like can be used. Further, in order to manufacture a modulator circuit having a complicated configuration with low loss, as shown in Non-Patent Document 1, a heterogeneous substrate of the material substrate and a quartz-based planar lightwave circuit (PLC). A junction type configuration may be used.

以下、実施形態において、複数のBPSK変調手段の組み合わせによる多値変調器の構成を示すが、BPSK変調手段としてはMZ変調回路を用いることが最も一般的である。非特許文献2で、詳しく論じられている通り、MZ変調回路をアーム間位相差+π〜−πを与えるような電圧振幅でプッシュプル駆動すれば、駆動電気信号ノイズに起因する光出力の揺らぎを最小限に抑え、シンボル間干渉を抑制することができるというメリットがある。しかし、本発明の効果は、BPSK変調手段の具体的構成には依存しないので、例えば直線型の位相変調器等を用いても良い。   Hereinafter, in the embodiment, a configuration of a multi-level modulator using a combination of a plurality of BPSK modulation units will be described. As the BPSK modulation unit, an MZ modulation circuit is most commonly used. As discussed in detail in Non-Patent Document 2, if the MZ modulation circuit is push-pull driven with a voltage amplitude that gives the phase difference between arms + π to −π, the fluctuation of the optical output caused by the drive electric signal noise can be reduced. There is an advantage that interference between symbols can be suppressed to a minimum. However, since the effect of the present invention does not depend on the specific configuration of the BPSK modulation means, for example, a linear phase modulator or the like may be used.

なお、特に断りのない場合、MZ回路の両アームの光路長は、全て等長とする。実際には、プロセスエラーやDCドリフト等により光路長のズレが生じるが、一般にそのようなズレは、位相シフタの調整により補償される。補償量は、材料や製造条件、また、変調器の使用環境等によって様々に異なるため、一意に定まるものではない。このため、以下の実施形態における位相シフタの位相シフト量の値には光路長補償のための位相シフト分は、含まないものとする。また、以下、実施形態においては数式による説明を簡易化するため位相シフタは、MZ回路の一方のアームのみに配置しているが、MZ回路においてはアーム間の位相差が本質的なパラメータであるため、位相シフタを他方のアームに配置しても、また両方のアームに配置しても、アーム間の位相差が同じになるような位相シフト量を設定すれば同じ効果が得られることは自明であり、本発明の効果は、位相シフタを配置するアーム(一方のアーム、他方のアーム、両方のアーム)の選択には依存しない。   Unless otherwise specified, the optical path lengths of both arms of the MZ circuit are all equal. In practice, optical path length deviations occur due to process errors, DC drift, etc., but such deviations are generally compensated by adjusting the phase shifter. The compensation amount varies depending on the material, the manufacturing conditions, the usage environment of the modulator, and the like, and is not uniquely determined. For this reason, the value of the phase shift amount of the phase shifter in the following embodiments does not include the phase shift amount for optical path length compensation. In the following embodiments, the phase shifter is disposed only on one arm of the MZ circuit in order to simplify the explanation using mathematical formulas, but the phase difference between the arms is an essential parameter in the MZ circuit. Therefore, it is obvious that the same effect can be obtained if the phase shift amount is set so that the phase difference between the arms is the same regardless of whether the phase shifter is arranged on the other arm or both arms. The effect of the present invention does not depend on the selection of the arm (one arm, the other arm, or both arms) on which the phase shifter is arranged.

また、本明細書の説明において、「信号ダイアグラム」とは、当該光信号の全信号点を複素平面上にプロットし、さらに、各信号点に対応するデータ値のマッピングを記載したものを指し、「コンスタレーション図形」とは、信号ダイアグラムからデータマッピングの情報を除いた図形、すなわち単に、信号点の描く図形を指すものとする。さらに、コンスタレーション図形同士を複素平面上での回転操作のみによって互いに重ねることができる場合、コンスタレーション図形が「等しい」と表現し、回転操作によって重ねることができない場合は、コンスタレーション図形が「異なる」と表現する。データマッピングが「等しい」または、「異なる」と表現する場合も同様である。これは、複素平面上での回転操作は単に基準位相の取り方の変更に相当するため、回転操作によって重ねることのできるコンスタレーション図形(または、データマッピング)は実質的に等しいと見做せるためである。   In the description of the present specification, the “signal diagram” refers to a plot of all signal points of the optical signal on a complex plane, and further describing mapping of data values corresponding to each signal point, The “constellation graphic” refers to a graphic obtained by removing data mapping information from a signal diagram, that is, a graphic drawn simply by signal points. Furthermore, if the constellation figures can be overlapped with each other only by the rotation operation on the complex plane, the constellation figures are expressed as "equal", and if the constellation figures cannot be overlapped by the rotation operation, the constellation figures are "different" ". The same applies when the data mapping is expressed as “equal” or “different”. This is because the rotation operation on the complex plane is simply equivalent to changing the way of taking the reference phase, so that the constellation figures (or data mapping) that can be overlaid by the rotation operation can be considered to be substantially equal. It is.

(第1の実施形態)
図7に、本発明の第1の実施形態である8APSK変調器の構成700を示す。第1の光信号を出力する出力ポート771及び第2の光信号を出力する出力ポート772を有する第1の光変調手段741と、出力ポート771に接続され、第1の光信号をさらに変調し第3の光信号を出力する第2の光変調手段742と、第3及び第2の光信号を結合させメイン出力ポート2へ出力させる光結合手段753とで構成されている。
(First embodiment)
FIG. 7 shows a configuration 700 of the 8APSK modulator according to the first embodiment of the present invention. A first optical modulation means 741 having an output port 771 for outputting the first optical signal and an output port 772 for outputting the second optical signal, and connected to the output port 771, further modulates the first optical signal. The second optical modulation unit 742 that outputs the third optical signal and the optical coupling unit 753 that combines the third and second optical signals and outputs them to the main output port 2 are configured.

第1の光変調手段741は前記従来技術1とほぼ同等のQPSK変調手段であり、光分岐手段及び結合手段751、752と、それらで構成されるMZ回路の各アームに配置されたBPSK変調手段711および712、及び片方のアームに配置され、π/2の位相変化を与える位相シフタ721で構成されているが、光分岐手段及び結合手段として光強度結合比1:1(0.5:0.5)の2入力2出力の方向性結合器を用いる点が異なる。よく知られている通り、方向性結合器の伝達行列Scは、以下の式で表すことができる(非特許文献5等を参照)。 The first optical modulation means 741 is a QPSK modulation means substantially equivalent to the prior art 1, and includes an optical branching and combining means 751 and 752 and a BPSK modulation means arranged in each arm of the MZ circuit constituted by them. 711 and 712, and a phase shifter 721 which is arranged on one arm and gives a phase change of π / 2, but has a light intensity coupling ratio of 1: 1 (0.5: 0) as an optical branching unit and a coupling unit. .5) is different in that the two-input two-output directional coupler is used. As is well known, the transfer matrix S c of the directional coupler can be expressed by the following equation (see Non-Patent Document 5, etc.).

Figure 2011221258
Figure 2011221258

但し、Ein,A、Ein,Bは、それぞれ入力ポートA、Bからの入力光電場、Eout,C、Eout,Dは、それぞれ出力ポートC、Dからの出力光電場(いずれも複素数表現)、Rは光強度結合比である。第2の光変調手段742は、直列に接続されたBPSK変調手段713と位相シフタ722で構成されている。メイン入力ポート701から出力ポート771(スルー側)への伝達関数T1、メイン入力ポート701から出力ポート772(クロス側)の伝達関数T1´、第2の光変調手段の伝達関数T2、及びメイン入力ポート701からメイン出力ポート702への伝達関数Tは、それぞれ以下の式で表すことができる。 However, Ein , A , Ein , B are the input photoelectric fields from the input ports A, B, respectively. Eout, C , Eout, D are the output photoelectric fields from the output ports C, D, respectively (both (Complex number expression), R is the light intensity coupling ratio. The second light modulation means 742 includes a BPSK modulation means 713 and a phase shifter 722 connected in series. The transfer function T 1 of the Main input port 701 to output port 771 (through side), the transfer function T 1 ', the transfer function T 2 of the second light modulating means output port 772 from the main input port 701 (cross side), The transfer function T from the main input port 701 to the main output port 702 can be expressed by the following equations, respectively.

Figure 2011221258
Figure 2011221258

ただし、b1、b2、b3は、それぞれBPSK変調手段711、712、713の伝達関数であり、シンボル点においては、+1または−1のいずれかの値をとる。φは位相シフタ722による位相変化量であり、本実施形態では、φ=−π/4である。rは光結合手段753の光強度結合比であり、本実施形態では、 However, b 1 , b 2 , and b 3 are transfer functions of the BPSK modulation means 711, 712, and 713, respectively, and take a value of +1 or −1 at the symbol point. φ is the amount of phase change by the phase shifter 722, and in this embodiment, φ = −π / 4. r is the light intensity coupling ratio of the optical coupling means 753, and in this embodiment,

Figure 2011221258
Figure 2011221258

である。   It is.

図8(a)〜(e)は、T1、T1´、Tの右辺各項およびTのシンボル点における値を複素平面上にプロットした複素平面プロット800、810、820、830、840である。同図中の[d123]は各点に対するデータマッピングを表しており、bn=+1のとき、dn=0、bn=−1のとき、dn=1である。図8(a)及び(b)に示すT1及びT1´のプロット800、810は、メイン入力ポート701に連続光を入力した場合の第1及び第2の光信号の信号ダイアグラムに相当する。両者のコンスタレーション図形は、互いに等しく、動径 FIGS. 8A to 8E are complex plane plots 800, 810, 820, 830, and 840 obtained by plotting values on the right side terms of T 1 , T 1 ′, and T, and symbol values of T on the complex plane. is there. [D 1 d 2 d 3 ] in the figure represents data mapping for each point. When b n = + 1, d n = 0, and when b n = −1, d n = 1. Plots 800 and 810 of T 1 and T 1 ′ shown in FIGS. 8A and 8B correspond to the signal diagrams of the first and second optical signals when continuous light is input to the main input port 701. . Both constellation figures are equal to each other

Figure 2011221258
Figure 2011221258

(従って原理損失3dB)のQPSKのコンスタレーション図形となっている。しかしながら両者のデータマッピングは異なっており、ちょうど[00x]と[11x]を結ぶ直線を対称軸とした鏡面対称の関係になっているため、どのように回転させても両者を一致させることはできないことがわかる。第1の光信号は第2の変調手段212によってさらに変調され第3の光信号として光結合手段753へと送られる。図8(c)は、Tの右辺第1項のプロット820であり、これは第3の光信号に対応する伝達関数T21に光結合手段753の光強度結合比に対応する係数 This is a constellation figure of QPSK (therefore, a principle loss of 3 dB). However, the data mapping of the two is different, and since they are in a mirror-symmetrical relationship with the straight line connecting [00x] and [11x] as the symmetry axis, they cannot be matched no matter how they are rotated. I understand that. The first optical signal is further modulated by the second modulation means 212 and sent to the optical coupling means 753 as a third optical signal. FIG. 8C is a plot 820 of the first term on the right side of T, which is a coefficient corresponding to the light intensity coupling ratio of the optical coupling means 753 to the transfer function T 2 T 1 corresponding to the third optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものである。各信号点に2種類のデータが重なったQPSK信号となっていることがわかる。一方、第2の光信号はそれ以上の変調を受けずに光結合手段に到達する。図8(d)は、Tの右辺第2項のプロット830であり、これは単に第2の光信号に対応する伝達関数T1´に係数 Multiplied by. It can be seen that each signal point is a QPSK signal in which two types of data are overlapped. On the other hand, the second optical signal reaches the optical coupling means without being further modulated. FIG. 8D is a plot 830 of the second term on the right-hand side of T, which is simply a coefficient in the transfer function T 1 ′ corresponding to the second optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものである。図8(e)は、最終的な変調器の伝達関数Tのプロット840である。図8(d)の各点[d12x]が図8(c)の[d120]と[d121]に対応する2点に分裂(例えば、図8(d)の[10x]が図8(c)の[100]と[101]に対応する2点に分裂)し、8APSKの信号ダイアグラムとなっていることがわかる。このとき、外側の信号点(たとえば[101])の動径は、約0.89であり、前記の定義による原理損失は、1.0dBである。すなわち、前記従来技術3に比較し、原理損失を2.6dB低減している。 Multiplied by. FIG. 8 (e) is a plot 840 of the final modulator transfer function T. Each point [d 1 d 2 x] in FIG. 8D is split into two points corresponding to [d 1 d 2 0] and [d 1 d 2 1] in FIG. 8C (for example, FIG. 8 ( It can be seen that [10x] in d) is split into two points corresponding to [100] and [101] in FIG. 8C, resulting in an 8APSK signal diagram. At this time, the radius of the outer signal point (for example, [101]) is about 0.89, and the principle loss according to the above definition is 1.0 dB. That is, the principle loss is reduced by 2.6 dB compared to the prior art 3.

なお、rの値は、   The value of r is

Figure 2011221258
Figure 2011221258

としてもよく、また、φはπ/4の奇数倍であればよい。r、φを変更するとデータマッピングも、図8と異なる形となるが、やはり、原理損失1.0dBの8APSK信号が得られることは容易に確かめられる。   Also, φ may be an odd multiple of π / 4. If r and φ are changed, the data mapping is also different from that in FIG. 8, but it is easily confirmed that an 8APSK signal with a principle loss of 1.0 dB can be obtained.

また、本実施形態を含む本発明の全ての実施形態において、2入力2出力の光結合手段(本例では光結合手段752)としては、方向性結合器の他にもマルチモード干渉(Multi Mode Interference:MMI)カプラや、非特許文献4に示される波長無依存カプラ(Wavelength Insensitive Coupler:WINC)を用いることもできる。これらのカプラの伝達関数は数式4とは異なるが、どのような2入力2出力カプラを用いても第1及び第2の光信号は、コンスタレーション図形が等しく、データマッピングが異なる関係となり、本実施形態の構成においてはデータマッピングが互いに鏡面対称になる。このことは、光カプラの相反性とエネルギー保存則から導くことができる(厳密には、カプラの内部損失によって信号ダイアグラムが乱れる場合があるが、内部損失の充分小さいカプラを用いれば問題ない)。さらに、メイン入力ポートに接続された光分岐手段(本例では、光分岐手段751)及びメイン出力ポートに接続された光結合手段(本例では、光結合手段753)としては、上記のような2入力2出力カプラを用いても、また、Y字型カプラを用いてもよい。但し、カプラの位相特性はカプラの種類によって異なるため、位相シフタ721、722の位相シフト量は用いるカプラの種類に応じて前記の値から変更する必要がある。   Further, in all embodiments of the present invention including this embodiment, as a two-input two-output optical coupling means (optical coupling means 752 in this example), in addition to a directional coupler, multimode interference (Multi Mode) is used. An interface (MMI) coupler or a wavelength-independent coupler (WINC) shown in Non-Patent Document 4 can also be used. Although the transfer functions of these couplers are different from those in Equation 4, the first and second optical signals have the same constellation figure and different data mapping, regardless of which 2-input 2-output coupler is used. In the configuration of the embodiment, the data mappings are mirror-symmetric with each other. This can be derived from the reciprocity of the optical coupler and the energy conservation law (strictly speaking, the signal diagram may be disturbed by the internal loss of the coupler, but there is no problem if a coupler having a sufficiently small internal loss is used). Further, the optical branching means (in this example, the optical branching means 751) connected to the main input port and the optical coupling means (in this example, the optical coupling means 753) connected to the main output port are as described above. A 2-input 2-output coupler may be used, or a Y-shaped coupler may be used. However, since the phase characteristics of the coupler differ depending on the type of coupler, the phase shift amounts of the phase shifters 721 and 722 need to be changed from the above values depending on the type of coupler used.

さて、本実施形態を含む本発明の全実施形態では、前記第1及び第2の光信号の両方を用いて最終的な出力光信号を生成しており、この点が本発明のアイディアの核である。QPSK変調手段の出力側光結合手段を2入力2出力カプラとし、第1及び第2の光信号を出力させる構成自体は、従来から知られている。例えば、特許文献1では、第1及び第2の光信号(同文献では「正相信号」及び「逆相信号」と表記)のうち一方を出力信号光、他方を変調器調整用のモニタ信号光として用いる構成が開示されている。しかしながら、第1及び第2の光信号の両方が出力信号光の合成に用いられることは従来なかった。なぜなら、第1及び第2の光信号は、データマッピングが互いに異なるため、単純に結合させただけでは、信号ダイアグラムを乱してしまうためである。一例として、両者を単純に結合させ、原理損失が3dBより小さいQPSK信号を得られるかどうか検討してみる。原理損失を最小化するためには、同じシンボル値に対応する信号同士が電界振幅を強めあうよう、同位相で干渉させればよい。例えば図8(a)、(b)の信号点[00x]と[11x]に着目すると、同位相で干渉させるためには第1及び第2の光信号を位相差ゼロで結合させればよいことがわかる。しかし、その場合信号点[10x]と[01x]は逆位相(位相差がπの奇数倍)で結合するため打ち消しあってしまい、結局QPSK信号を得ることはできない。より一般的には、第1及び第2の光信号を光強度比r´(0<r´≦1)、相対位相φ´で単純に結合させる場合の伝達関数、すなわち、   Now, in all embodiments of the present invention including this embodiment, a final output optical signal is generated using both the first and second optical signals, which is the core of the idea of the present invention. It is. A configuration itself in which the output side optical coupling means of the QPSK modulation means is a two-input two-output coupler and outputs the first and second optical signals is conventionally known. For example, in Patent Document 1, one of the first and second optical signals (referred to as “normal phase signal” and “reverse phase signal” in the same document) is output signal light, and the other is a monitor signal for modulator adjustment. A configuration for use as light is disclosed. However, there has never been a case where both the first and second optical signals are used for combining output signal lights. This is because the data mapping of the first and second optical signals is different from each other, so that the signal diagram is disturbed if they are simply combined. As an example, let us consider whether or not a QPSK signal with a principle loss of less than 3 dB can be obtained by simply combining the two. In order to minimize the principle loss, the signals corresponding to the same symbol value may be interfered in the same phase so that the electric field amplitudes are strengthened. For example, focusing on the signal points [00x] and [11x] in FIGS. 8A and 8B, the first and second optical signals may be combined with a zero phase difference in order to cause interference in the same phase. I understand that. However, in this case, the signal points [10x] and [01x] cancel each other because they are coupled in opposite phases (the phase difference is an odd multiple of π), and as a result, a QPSK signal cannot be obtained. More generally, the transfer function when the first and second optical signals are simply combined with the light intensity ratio r ′ (0 <r ′ ≦ 1) and the relative phase φ ′, that is,

Figure 2011221258
Figure 2011221258

を考えればよい。QPSK信号を得るためにはb1とb2の係数の絶対値が等しく、位相がπ/2(もしくは、その奇数倍)異なることが必要だが、それを満たす実数r´、φ´の組み合わせが存在しないことは容易に確かめられる。このため、従来は、第1および第2の光信号のうちどちらか一方をメイン出力信号光として用い、他方はモニタ光として用いるしか利用手段はなく、これが3dBの原理損失要因となっていた。なお、前記従来技術1〜3のように光結合手段として2入力1出力のY字型カプラ等を用いた場合、図1、3、5に示した通り、第2(又は第1)の光信号に相当する光は、光結合部において放射光として捨てられており、やはり3dBの原理損失要因となっていた。本発明では、このように従来同時に信号光生成に用いることのできなかった第1及び第2の光信号に対し、その一方に他方とは、異なる変調をさらに加えてから結合させるという新たな着想により、同時に信号光生成に用いることを可能としている。これによって、従来より、小さい原理損失での多値信号生成を可能にしている。 Should be considered. In order to obtain a QPSK signal, it is necessary that the absolute values of the coefficients of b 1 and b 2 are equal and the phases are different by π / 2 (or an odd multiple thereof), but there are combinations of real numbers r ′ and φ ′ that satisfy them. It can be easily verified that it does not exist. For this reason, conventionally, only one of the first and second optical signals is used as the main output signal light, and the other is used as the monitor light, and this has been the cause of the principle loss of 3 dB. When a 2-input 1-output Y-shaped coupler or the like is used as the optical coupling means as in the prior arts 1 to 3, the second (or first) light is used as shown in FIGS. The light corresponding to the signal was discarded as radiated light in the optical coupling portion, and was also a cause of the principle loss of 3 dB. In the present invention, the new idea of combining the first and second optical signals, which could not be used for signal light generation at the same time in the prior art, after further applying a different modulation to one of the other. Therefore, it can be used for signal light generation at the same time. As a result, it is possible to generate a multi-level signal with a small principle loss.

(第2の実施形態)
図7に示した8APSK変調器と同様の構成で、光結合手段753の光強度結合比を
(Second Embodiment)
With the same configuration as the 8APSK modulator shown in FIG.

Figure 2011221258
Figure 2011221258

とし、位相シフタ722の位相シフト量をφ=π/2とすれば、8PSK変調器を構成することができる。変調器の伝達関数の形は数式5と同じである。   Assuming that the phase shift amount of the phase shifter 722 is φ = π / 2, an 8PSK modulator can be configured. The form of the modulator transfer function is the same as Equation 5.

図9(a)〜(e)は、数式5で   9 (a) to 9 (e) are expressed by Equation 5.

Figure 2011221258
Figure 2011221258

とした場合のT1、T1´、Tの右辺各項およびTのシンボル点における値を複素平面上にプロットした複素平面プロット900、910、920、930、940である。図8に示した8APSKの場合と同様に、図9(c)に示すTの右辺第1項のプロット(第3の光信号に対応する伝達関数T21に係数 The complex plane plots 900, 910, 920, 930, and 940 are obtained by plotting the values at the right side terms of T 1 , T 1 ′, and the symbol point of T on the complex plane. As in the case of 8APSK shown in FIG. 8, the plot of the first term on the right side of T shown in FIG. 9C (the coefficient in the transfer function T 2 T 1 corresponding to the third optical signal)

Figure 2011221258
Figure 2011221258

を掛けたもの)920は、各信号点に2種類のデータが重なったQPSK信号となるが、図9(e)に示す通り最終的な変調器の伝達関数Tのプロット940は、図9(d)の各点が図9(c)の値に対応する2点に分裂した8PSKの信号ダイアグラムとなる。このとき、各信号点の動径は、   920) is a QPSK signal in which two types of data overlap each signal point. As shown in FIG. 9E, a plot 940 of the final modulator transfer function T is shown in FIG. Each point of d) is an 8PSK signal diagram divided into two points corresponding to the values of FIG. 9C. At this time, the radius of each signal point is

Figure 2011221258
Figure 2011221258

なので、原理損失は、3.0dBである。図5に示した前記従来技術3と同じ構成で、光分岐および結合手段531および532の光強度分岐及び結合比を   Therefore, the principle loss is 3.0 dB. The light intensity branching and coupling ratios of the light branching and coupling means 531 and 532 with the same configuration as the prior art 3 shown in FIG.

Figure 2011221258
Figure 2011221258

とし、位相シフタ522の位相シフト量をφ=π/2とすればやはり8PSK変調器を構成することができるが、その原理損失は5.3dBとなる。すなわち、本実施形態は、従来技術3から容易に想到しうる8PSK変調器に比べ、原理損失を2.3dB低減している。   Assuming that the phase shift amount of the phase shifter 522 is φ = π / 2, an 8PSK modulator can also be constructed, but its principle loss is 5.3 dB. That is, the present embodiment reduces the principle loss by 2.3 dB compared to the 8PSK modulator that can be easily conceived from the prior art 3.

さらに、図9(e)のデータマッピングは、グレイコードになっていることがわかる(隣接信号点間で反転するビットの数が常に1ビット)。つまり、本例の8PSK変調器を用いれば、特別なエンコーダーを用いることなくグレイコードのマッピングが可能になるという副次的な効果も得られる。   Furthermore, it can be seen that the data mapping in FIG. 9E is a Gray code (the number of bits inverted between adjacent signal points is always 1 bit). That is, if the 8PSK modulator of this example is used, a secondary effect that gray code mapping becomes possible without using a special encoder can be obtained.

なお、rの値は   The value of r is

Figure 2011221258
Figure 2011221258

としてもよく、また、φはπ/2の奇数倍であればよい。これらの値を変更した場合のデータマッピングは、図9とは異なるが、やはり原理損失3.0dBの8PSK信号が得られることは容易に確かめられる。   Also, φ may be an odd multiple of π / 2. Although the data mapping when these values are changed is different from that in FIG. 9, it is easily confirmed that an 8PSK signal with a principle loss of 3.0 dB is obtained.

(第3の実施形態)
図10に、本発明の第3の実施形態である16QAM変調器の構成1000を示す。第1の光信号を出力する出力ポート1071及び第2の光信号を出力する出力ポート1072を有する第1の光変調手段1041と、出力ポート1042に接続され、第1の光信号をさらに変調し第3の光信号を出力する第2の光変調手段1042と、第3及び第2の光信号を結合させメイン出力ポート1002へ出力させる光結合手段1053とで構成されている。
(Third embodiment)
FIG. 10 shows a configuration 1000 of a 16QAM modulator which is the third embodiment of the present invention. First optical modulation means 1041 having an output port 1071 for outputting the first optical signal and an output port 1072 for outputting the second optical signal, and connected to the output port 1042, further modulates the first optical signal. The second optical modulation unit 1042 that outputs the third optical signal and the optical coupling unit 1053 that combines the third and second optical signals and outputs them to the main output port 1002.

第1の光変調手段1041は、図7に示した第1の実施形態の第1の光変調手段1041と同等のQPSK変調手段である。第2の光変調手段1042は、図1に示した従来技術1と同等のQPSK変調手段に位相シフタ1022が直列接続されたものである。前記第1の実施形態と同様に伝達関数T1、T1´、T2、Tを定義すると、T2のみ数式5と異なり以下の形となる。 The first light modulation means 1041 is a QPSK modulation means equivalent to the first light modulation means 1041 of the first embodiment shown in FIG. The second light modulation means 1042 is obtained by connecting a phase shifter 1022 in series to a QPSK modulation means equivalent to the prior art 1 shown in FIG. When the transfer functions T 1 , T 1 ′, T 2 , and T are defined as in the first embodiment, only T 2 has the following form unlike Equation 5.

Figure 2011221258
Figure 2011221258

ただしb3、b4は、それぞれBPSK変調手段1013、1014の伝達関数であり、シンボル点においては+1または−1のいずれかの値をとる。φは位相シフタ1022による位相変化量であり、本実施形態では、φ=−π/4である。また光結合手段1053の光強度結合比rは、本実施形態では、r=1/3である。 However, b 3 and b 4 are transfer functions of the BPSK modulation means 1013 and 1014, respectively, and take a value of +1 or −1 at the symbol point. φ is a phase change amount by the phase shifter 1022, and in the present embodiment, φ = −π / 4. Further, the light intensity coupling ratio r of the light coupling means 1053 is r = 1/3 in this embodiment.

図11(a)〜(e)は、本実施形態における、T1、T1´、Tの右辺各項およびTのシンボル点における値を複素平面上にプロットしたものである。同図中の[d1234]は各点に対するバイナリデータのマッピングを表しており、bn=+1のときdn=0、bn=−1のときdn=1である。図11(a)、(b)に示すT1、T1´のプロット1100、1110は、第1、第2の光信号の信号ダイアグラムに対応し、これは図7に示した前記第1の従来例と同等である。図11(c)に示すTの右辺第1項のプロット1120は、第3の光信号の信号ダイアグラムに係数 FIGS. 11A to 11E are plots of values on the right-hand side of T 1 , T 1 ′, T, and symbol points of T on the complex plane in the present embodiment. [D 1 d 2 d 3 d 4 ] in the figure represents the mapping of binary data to each point, d n = 0 when b n = + 1, d n = 1 when b n = -1. is there. The plots 1100 and 1110 of T 1 and T 1 ′ shown in FIGS. 11A and 11B correspond to the signal diagrams of the first and second optical signals, which are the first and second plots shown in FIG. This is equivalent to the conventional example. A plot 1120 of the first term on the right side of T shown in FIG. 11C is a coefficient on the signal diagram of the third optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものに対応し、本例では各信号点に4種類のデータが重なったQPSKの形となる。図11(d)は、Tの右辺第2項のプロット1130であり、これは単に第2の光信号に対応する伝達関数T1´に係数 In this example, each signal point has a form of QPSK in which four types of data are overlapped. FIG. 11D is a plot 1130 of the second term on the right-hand side of T, which is simply a coefficient in the transfer function T 1 ′ corresponding to the second optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものである。図11(e)は、最終的な変調器の伝達関数Tのプロットであり、図11(d)の各点が、図11(c)の値に対応する4点に分裂する形で16QAMの信号ダイアグラムが得られていることがわかる。このとき、電界振幅が最大となる信号点(たとえば[1011])の動径は、   Multiplied by. FIG. 11 (e) is a plot of the final modulator transfer function T, where each point in FIG. 11 (d) is split into 4 points corresponding to the values in FIG. It can be seen that a signal diagram is obtained. At this time, the moving radius of the signal point (for example, [1011]) at which the electric field amplitude becomes maximum is

Figure 2011221258
Figure 2011221258

なので、原理損失は、1.2dBである。すなわち、前記従来技術2に比べ原理損失をさらに1.8dB低減している。   Therefore, the principle loss is 1.2 dB. That is, the principle loss is further reduced by 1.8 dB as compared with the prior art 2.

なお、第2の変調手段1042のQPSK変調部としては、図1に示した従来技術1と同等のQPSK変調手段のほかに、本実施形態の第1の光変調手段1041と同構成のQPSK変調手段を用いてもよい。後者を用いる場合、スルー側(数式7のT1に相当)とクロス側(数式7のT1´に相当)のどちらを用いても良い。またφは、π/4の奇数倍であればよい。いずれの置き換えを行った場合も、データマッピングが図11と異なる形になるが、やはり、原理損失1.2dBの16QAM信号が得られることは容易に確かめられる。 In addition to the QPSK modulation unit equivalent to the prior art 1 shown in FIG. 1, the QPSK modulation unit of the second modulation unit 1042 has the same configuration as the first optical modulation unit 1041 of the present embodiment. Means may be used. When using the latter, either the through side (corresponding to T 1 in Equation 7) or the cross side (corresponding to T 1 ′ in Equation 7) may be used. Φ may be an odd multiple of π / 4. In any case, the data mapping is different from that in FIG. 11, but it is easily confirmed that a 16QAM signal having a principle loss of 1.2 dB can be obtained.

(第4の実施形態)
図12に、本発明の第4の実施形態である64QAM変調器の構成1200を示す。第1の光信号を出力する出力ポート1271及び第2の光信号を出力する出力ポート1272を有する第1の光変調手段1241と、出力ポート1271に接続され、第1の光信号をさらに変調し第3の光信号を出力する第2の光変調手段1242と、第3及び第2の光信号を結合させ、メイン出力ポート1202へ出力させる光結合手段1253とで構成されている。
(Fourth embodiment)
FIG. 12 shows a configuration 1200 of a 64QAM modulator according to the fourth embodiment of the present invention. A first optical modulation means 1241 having an output port 1271 for outputting the first optical signal and an output port 1272 for outputting the second optical signal, and connected to the output port 1271, further modulates the first optical signal. The second optical modulation unit 1242 that outputs the third optical signal and the optical coupling unit 1253 that combines the third and second optical signals and outputs them to the main output port 1202.

第1の光変調手段1241は、図7に示した第1の実施形態の第1の光変調手段1241と同等のQPSK変調手段である。第2の光変調手段1242は、図10に示した第3の実施形態と同等の16QAM変調手段1263に位相シフタ1222が直列接続されたものである。但し説明の都合上、図10のBPSK変調手段1011、1012、1013、1014は、以下の説明においてBPSK変調手段1213、1214、1215、1216と番号を読み替える。前記第1の実施形態と同様に伝達関数T1、T1´、T2、Tを定義すると、T2のみ数式5と異なり以下の形となる。 The first light modulation means 1241 is a QPSK modulation means equivalent to the first light modulation means 1241 of the first embodiment shown in FIG. The second light modulator 1242 is obtained by connecting a phase shifter 1222 in series to a 16QAM modulator 1263 equivalent to the third embodiment shown in FIG. However, for convenience of explanation, the BPSK modulation means 1011, 1012, 1013, and 1014 in FIG. 10 are replaced with BPSK modulation means 1213, 1214, 1215, and 1216 in the following explanation. When the transfer functions T 1 , T 1 ′, T 2 , and T are defined as in the first embodiment, only T 2 has the following form unlike Equation 5.

Figure 2011221258
Figure 2011221258

但し、T16QAM(b3、b4、b5、b6)は16QAM変調手段1263の伝達関数であり、数式7におけるTの変数b1、b2、b3、b4をb3、b4、b5、b6で置き換えた関数である。b3、b4、b5、b6は、それぞれ第2の変調手段の中に含まれるBPSK変調手段1213、1214、1215、1216の伝達関数であり、シンボル点においては、+1または−1のいずれかの値をとる。φは図12の位相シフタ1222による位相変化量であり、本例ではφ=−π/4である。rは、図12の光結合手段1253の光強度結合比であり、本例では、r=3/7である。 However, T 16QAM (b 3 , b 4 , b 5 , b 6 ) is a transfer function of the 16QAM modulation means 1263, and T variables b 1 , b 2 , b 3 , and b 4 in Equation 7 are changed to b 3 , b 4 , b 5 and b 6 are replaced. b 3 , b 4 , b 5 , b 6 are transfer functions of BPSK modulation means 1213, 1214, 1215, 1216 included in the second modulation means respectively, and at the symbol point, +1 or −1 Take one of the values. φ is a phase change amount by the phase shifter 1222 of FIG. 12, and in this example, φ = −π / 4. r is the light intensity coupling ratio of the optical coupling means 1253 in FIG. 12, and in this example, r = 3/7.

図13(a)〜(e)は、本例におけるT1、T1´、Tの右辺各項およびTのシンボル点における値を複素平面上にプロット1300〜1340したものである。同図中の[d123456]は各点に対するバイナリデータのマッピングを表しており、bn=+1のときdn=0、bn=−1のときdn=1である。但し図面の煩雑化を避けるため図13(c)、(e)は、4隅の点のみマッピング1320、1330を図示している。数式8にbnの値を代入してゆけば図13(c)、(e)の各点がどのようなデータ列に対応するかは容易に確認できる。図13(a)、(b)に示すT1、T1´のプロット1300、1310は第1、第2の光信号の信号ダイアグラムに対応し、これは、図7に示した前記第1の従来技術と同等である。図13(c)に示すTの右辺第1項のプロット1320は第3の光信号の信号ダイアグラムに係数 FIGS. 13A to 13E are plots 1300 to 1340 of values on the right side of T 1 , T 1 ′, and T, and symbol values of T on the complex plane in this example. [D 1 d 2 d 3 d 4 d 5 d 6 ] in the figure represents the mapping of binary data to each point. When b n = + 1, d n = 0, and when b n = −1, d n = 1. However, in order to avoid complication of the drawings, FIGS. 13C and 13E show the mappings 1320 and 1330 only at the four corner points. By substituting the value of b n into Equation 8, it is possible to easily confirm what data sequence each point in FIGS. 13C and 13E corresponds to. Plots 1300 and 1310 of T 1 and T 1 ′ shown in FIGS. 13A and 13B correspond to the signal diagrams of the first and second optical signals, which are the first and second plots shown in FIG. It is equivalent to the prior art. A plot 1320 of the first term on the right side of T shown in FIG. 13C is a coefficient in the signal diagram of the third optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものに対応し、本例では各信号点に4種類のデータが重なった16QAMの形となる。図13(d)はTの右辺第2項のプロット1330であり、これは単に第2の光信号に対応する伝達関数T1´に係数 In this example, each signal point has a form of 16QAM in which four types of data overlap each other. FIG. 13D is a plot 1330 of the second term on the right-hand side of T, which simply represents the coefficient in the transfer function T 1 ′ corresponding to the second optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものである。図13(e)は最終的な変調器の伝達関数Tのプロット1340であり、図13(d)の各点が図13(c)の値に対応する16点に分裂する形で64QAMの信号ダイアグラム1320が得られていることがわかる。このとき、電界振幅が最大となる信号点(たとえば[100111])の動径は   Multiplied by. FIG. 13 (e) is a plot 1340 of the final modulator transfer function T, where the 64QAM signal is such that each point in FIG. 13 (d) is split into 16 points corresponding to the values in FIG. 13 (c). It can be seen that a diagram 1320 is obtained. At this time, the moving radius of the signal point (for example, [100111]) at which the electric field amplitude becomes maximum is

Figure 2011221258
Figure 2011221258

なので、原理損失は、0.6dBである。非特許文献1の図8に示されるような従来の64QAM変調器においては、原理損失は3.0dBとなるため、本例は従来に比べ原理損失をさらに2.4dB低減している。   Therefore, the principle loss is 0.6 dB. In the conventional 64QAM modulator as shown in FIG. 8 of Non-Patent Document 1, the principle loss is 3.0 dB. Therefore, in this example, the principle loss is further reduced by 2.4 dB compared to the conventional example.

なお、前記第3の実施形態の16QAM変調器を新たな第2の光変調手段として埋め込むことで本例の64QAM変調器が得られたように、本例の64QAM変調器を新たな第2の光変調手段として埋め込めば、さらに256QAM変調器を構成できる。同様のスケーリングは、理論的には無限に可能であり、第2の変調手段として4n-1QAM変調手段を埋め込めば、4nQAM変調器を構成できる。この場合、nが大きくなる程、原理損失は小さくなる。一方、本実施形態における第2の光変調手段としては、ここで用いた原理損失1.8dBの16QAM変調器構成に限らず、従来技術2の原理損失3.0dBの16QAM変調器構成を用いることもできる。但し、光結合手段1453の光強度結合比r=9/17とする必要がある。この場合でも、従来より、原理損失の小さい64QAM変調器(原理損失1.4dB)を構成することができる。一般に、本例の構成を拡張し、第2の光変調手段として原理損失がxdBの4n-1QAM変調手段を用いて4nQAM変調器を構成する場合、光結合手段1453の光強度結合比rについては Note that the 64QAM modulator of this example is replaced with a new second QLD modulator by embedding the 16QAM modulator of the third embodiment as a new second optical modulation means. If embedded as an optical modulation means, a 256QAM modulator can be further configured. The same scaling is theoretically possible infinitely, and if a 4 n-1 QAM modulation unit is embedded as the second modulation unit, a 4 n QAM modulator can be configured. In this case, the principle loss decreases as n increases. On the other hand, the second optical modulation means in the present embodiment is not limited to the 16QAM modulator configuration with the principle loss of 1.8 dB used here, but the 16QAM modulator configuration with the principle loss of 3.0 dB of the prior art 2 is used. You can also. However, the light intensity coupling ratio r of the optical coupling means 1453 needs to be 9/17. Even in this case, a 64QAM modulator (principle loss 1.4 dB) with a smaller principle loss can be configured than before. In general, when the configuration of this example is expanded and a 4 n-1 QAM modulator having a principle loss of x dB is used as the second optical modulator, a 4 n QAM modulator is configured. For the ratio r

Figure 2011221258
Figure 2011221258

とすればよい。 And it is sufficient.

なお、本実施形態および本実施形態の構成を拡張した4nQAM変調器においても、前記第3の実施形態と同様、φはπ/4の奇数倍であればよいが、データマッピングはφに応じて異なる形となる。 Note that in this embodiment and the 4 n QAM modulator in which the configuration of this embodiment is expanded, φ may be an odd multiple of π / 4 as in the third embodiment, but the data mapping is set to φ. Depending on the shape.

(第5の実施形態)
図14に、本発明の第5の実施形態である16QAM変調器の構成を示す。第1の光信号を出力する出力ポート1471及び第2の光信号を出力する出力ポート1472を有する第1の光変調手段1441と、出力ポート1471に接続され、第1の光信号をさらに変調し第3の光信号を出力する第2の光変調手段1443と、出力ポート1472に接続され、第2の光信号をさらに変調し第4の光信号を出力する第2の光変調手段1442と、第3及び第4の光信号を結合させメイン出力ポート1402へ出力させる光結合手段1453とで構成されている。
(Fifth embodiment)
FIG. 14 shows the configuration of a 16QAM modulator which is the fifth embodiment of the present invention. A first optical modulation means 1441 having an output port 1471 for outputting the first optical signal and an output port 1472 for outputting the second optical signal, and connected to the output port 1471, further modulates the first optical signal. A second optical modulator 1443 that outputs a third optical signal; a second optical modulator 1442 that is connected to the output port 1472 and further modulates the second optical signal and outputs a fourth optical signal; It comprises optical coupling means 1453 that couples the third and fourth optical signals and outputs them to the main output port 1402.

第1の光変調手段1441は、図7に示した実施形態1の第1の光変調手段1441と同等のQPSK変調手段である。第2の光変調手段1442は、BPSK変調手段1413で構成されている。第3の光変調手段1443は、分岐比及び結合比1−r3:r3のY字型の光分岐及び結合手段1431、1432を有し、それらで構成されるMZ回路の一方のアームのみにBPSK変調手段1413、および位相シフト量φ3を与える位相シフタ1423が配置され、他方のアームは直線導波路となっており、さらに光結合手段1432の後段に位相シフタ1422が直列に接続された構成となってる。本例では、r3=1/2、φ3=−π/2である。メイン入力ポート1から第1の変調手段の出力ポート1471(スルー側)への伝達関数T1、メイン入力ポート1401から第1の変調手段の出力ポート1472(クロス側)の伝達関数T1´、第2の変調手段の伝達関数T2、第3の変調手段の伝達関数T3、及びメイン入力ポート1401からメイン出力ポート1402への伝達関数Tは、それぞれ以下の式で表すことができる。 The first light modulation means 1441 is a QPSK modulation means equivalent to the first light modulation means 1441 of the first embodiment shown in FIG. The second light modulation means 1442 is composed of a BPSK modulation means 1413. The third optical modulation means 1443 has Y-shaped optical branching and coupling means 1431 and 1432 having a branching ratio and coupling ratio of 1-r 3 : r 3 , and only one arm of the MZ circuit constituted by them. BPSK modulation means 1413 and a phase shifter 1423 for providing a phase shift amount φ 3 are arranged, the other arm is a linear waveguide, and a phase shifter 1422 is connected in series downstream of the optical coupling means 1432. It is a configuration. In this example, r 3 = 1/2 and φ 3 = −π / 2. The transfer function T 1 of the Main input port 1 to the output port 1471 of the first modulation means (through side), the transfer function T 1 of the output port 1472 of the first modulating means from the main input port 1401 (cross side) ', the transfer function T 2 of the second modulation means, the transfer function T from the transfer function T 3, and the main input port 1401 to the main output port 1402 of the third modulating means, can be expressed by the following equations.

Figure 2011221258
Figure 2011221258

ただし、b1、b2、b3、b4は、それぞれBPSK変調手段1411、1412、1413、1414の伝達関数であり、シンボル点においては、+1または−1のいずれかの値をとる。b4=+1のときT3=0.5(1−j)、b4=−1のときT3=0.5(1+j)となることから、第3の光変調手段は位相シフト幅がπ/2の変則的なBPSK変調手段となっていることがわかる(通常のBPSK変調手段は伝達関数が+1、−1の2値をとるので、位相シフト幅はπである)。φは位相シフタ1422による位相変化量であり、本例ではφ=+π/4である。rは光結合手段1453の光強度結合比であり、本例ではr=2/3である。 However, b 1 , b 2 , b 3 , and b 4 are transfer functions of the BPSK modulators 1411, 1412, 1413, and 1414, respectively, and take a value of +1 or −1 at the symbol point. Since T 3 = 0.5 (1−j) when b 4 = + 1 and T 3 = 0.5 (1 + j) when b 4 = −1, the third optical modulation means has a phase shift width. It can be seen that this is an irregular BPSK modulation means of π / 2 (since the normal BPSK modulation means has a binary transfer function of +1 and −1, the phase shift width is π). φ is a phase change amount by the phase shifter 1422, and in this example, φ = + π / 4. r is the light intensity coupling ratio of the optical coupling means 1453, and in this example, r = 2/3.

図15(a)〜(e)は、本例におけるT1、T1´、Tの右辺各項およびTのシンボル点における値を複素平面上にプロットしたものである。同図中の[d1234]は各点に対するバイナリデータのマッピングを表しており、bn=+1のときdn=0、bn=−1のときdn=1である。図15(a)、(b)に示すT1、T1´のプロット1500、1510は第1、第2の光信号の信号ダイアグラムに対応し、これは図7に示した前期第1の従来例と同等である。図15(c)に示すTの右辺第一項のプロット1520は第3の光信号の信号ダイアグラムに係数 FIGS. 15A to 15E are plots of values on the right side of T 1 , T 1 ′, and T, and symbol values of T on the complex plane in this example. [D 1 d 2 d 3 d 4 ] in the figure represents the mapping of binary data to each point, d n = 0 when b n = + 1, d n = 1 when b n = -1. is there. Plots 1500 and 1510 of T 1 and T 1 ′ shown in FIGS. 15A and 15B correspond to the signal diagrams of the first and second optical signals, which correspond to the first prior art shown in FIG. It is equivalent to the example. A plot 1520 of the first term on the right side of T shown in FIG. 15C is a coefficient on the signal diagram of the third optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものに対応し、本例では各信号点に4種類のデータが重なったQPSKの形となる。図15(d)に示すTの右辺第二項のプロット1530は第4の光信号の信号ダイアグラムに係数   In this example, each signal point has a form of QPSK in which four types of data are overlapped. A plot 1530 of the second term on the right-hand side of T shown in FIG. 15D is a coefficient on the signal diagram of the fourth optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものに対応し、こちらも各信号点に4種類のデータが重なったQPSKの形となるが、図15(c)とはデータマッピングが異なる。図15(e)は最終的な変調器の伝達関数Tのプロット1540である。図15(c)と図15(d)の各点の重なりは解消し、16QAMの信号ダイアグラムが得られていることがわかる。このとき、電界振幅が最大となる信号点(たとえば[1010])の動径は、   This also takes the form of QPSK in which four types of data overlap each signal point, but the data mapping is different from FIG. FIG. 15 (e) is a plot 1540 of the final modulator transfer function T. FIG. It can be seen that the overlapping of each point in FIG. 15C and FIG. 15D is eliminated, and a 16QAM signal diagram is obtained. At this time, the moving radius of the signal point (for example, [1010]) at which the electric field amplitude becomes maximum is

Figure 2011221258
Figure 2011221258

なので、原理損失は、1.2dBである。すなわち、前記従来技術2に比べ原理損失をさらに1.8dB低減している。   Therefore, the principle loss is 1.2 dB. That is, the principle loss is further reduced by 1.8 dB as compared with the prior art 2.

なお、φ、φ3の値は上記の値に限らず、φはπ/4の奇数倍、φ3はπ/2の奇数倍であればよい。いずれの値を変更した場合も図15のデータマッピングが変化するが、やはり原理損失1.2dBの16QAM信号が得られることは容易に確かめられる。 The values of φ and φ 3 are not limited to the above values, and φ may be an odd multiple of π / 4 and φ 3 may be an odd multiple of π / 2. Even if any value is changed, the data mapping of FIG. 15 changes, but it is easily confirmed that a 16QAM signal with a principle loss of 1.2 dB is obtained.

(第6の実施形態)
図16に、本発明の第6の実施形態である16APSK変調器の構成1600を示す。第1の光信号を出力する出力ポート1673及び第2の光信号を出力する出力ポート1674を有する第1の光変調手段1641と、出力ポート1673に接続され、第1の光信号をさらに変調し第3の光信号を出力する第2の光変調手段1642と、第3及び第2の光信号を結合させメイン出力ポート1602へ出力させる光結合手段1653とで構成されている。
(Sixth embodiment)
FIG. 16 shows a 16APSK modulator configuration 1600 according to the sixth embodiment of the present invention. A first optical modulation means 1641 having an output port 1673 for outputting the first optical signal and an output port 1647 for outputting the second optical signal, and connected to the output port 1673, further modulates the first optical signal. The second optical modulation unit 1642 that outputs the third optical signal and the optical coupling unit 1653 that combines the third and second optical signals and outputs them to the main output port 1602.

第1の光変調手段1641は前記第2の実施形態とほぼ同等の8PSK変調手段であり、その構成は図7とほぼ同等であるが、図7の光結合手段753の代わりに光結合手段1654として光強度結合比r1:1−r1の2入力2出力方向性結合器を用いている点が異なる。本実施例では The first optical modulation means 1641 is an 8PSK modulation means substantially the same as that of the second embodiment, and its configuration is substantially the same as in FIG. 7, but the optical coupling means 1654 is used instead of the optical coupling means 753 in FIG. The difference is that a two-input two-output directional coupler having a light intensity coupling ratio r 1 : 1-r 1 is used. In this example

Figure 2011221258
Figure 2011221258

である。また、本例では位相シフタ1622の位相シフト量はゼロである。第2の光変調手段1642は、直列に接続されたBPSK変調手段1614と位相シフタ1623で構成されている。メイン入力ポート1601から出力ポート1673(スルー側)への伝達関数T1、メイン入力ポート1601から出力ポート1674(クロス側)の伝達関数T1´、第2の光変調手段の伝達関数T2、及びメイン入力ポート1からメイン出力ポート2への伝達関数Tはそれぞれ以下の式で表すことができる。 It is. In this example, the phase shift amount of the phase shifter 1622 is zero. The second light modulation means 1642 includes a BPSK modulation means 1614 and a phase shifter 1623 connected in series. The transfer function T 1 of the Main input port 1601 to the output port 1673 (through side), the transfer function T 1 ', the transfer function T 2 of the second light modulating means output port from the main input port 1601 1674 (cross-side), The transfer functions T from the main input port 1 to the main output port 2 can be expressed by the following equations, respectively.

Figure 2011221258
Figure 2011221258

ただしb1、b2、b3、b4は、それぞれBPSK変調手段1611、1612、1613、1614の伝達関数であり、シンボル点においては+1または−1のいずれかの値をとる。φは位相シフタ1623による位相変化量であり、本例ではφ=0である。rは光結合手段1653の光強度結合比であり、本例では However, b 1 , b 2 , b 3 , and b 4 are transfer functions of the BPSK modulation means 1611, 1612, 1613, and 1614, respectively, and take a value of +1 or −1 at the symbol point. φ is a phase change amount by the phase shifter 1623, and in this example, φ = 0. r is the light intensity coupling ratio of the optical coupling means 1653, and in this example

Figure 2011221258
Figure 2011221258

である。 It is.

図17(a)〜(e)は、T1、T1´、Tの右辺各項およびTのシンボル点における値を複素平面上にプロットしたものである。同図中の[d1234]は各点に対するデータマッピングを表しており、bn=+1のときdn=0、bn=−1のときdn=1である。図17(a)及び(b)に示すT1及びT1´のプロットは、それぞれ本実施形態における第1及び第2の光信号の信号ダイアグラムに相当する。両者のコンスタレーション図形は互いに等しく、動径 FIGS. 17A to 17E are plots of values on the right side of T 1 , T 1 ′, T, and the symbol point of T on the complex plane. [D 1 d 2 d 3 d 4 ] in the figure represents data mapping for each point, d n = 0 when b n = + 1, and d n = 1 when b n = -1. The plots of T 1 and T 1 ′ shown in FIGS. 17A and 17B correspond to the signal diagrams of the first and second optical signals in the present embodiment, respectively. Both constellation figures are equal to each other.

Figure 2011221258
Figure 2011221258

(従って原理損失3dB)の8PSKのコンスタレーション図形となっている。しかしながら両者のデータマッピングは、異なっており、図17(a)の16点のうち[111x]、[010x]、[001x]、[100x]の4点からなる正方形のみを180度回転させると図17(b)と等しい信号ダイアグラムが得られるような関係となっている(このため、どのように回転させても両者を一致させることはできない)。図17(c)は、Tの右辺第1項のプロットであり、これは第3の光信号に対応する伝達関数T21に光結合手段1653の光強度結合比に対応する係数 Therefore, it is an 8PSK constellation figure with a principle loss of 3 dB. However, the data mapping of the two is different, and when only the square consisting of four points [111x], [010x], [001x], and [100x] among the 16 points in FIG. The relationship is such that a signal diagram equal to 17 (b) can be obtained (for this reason, the two cannot be matched no matter how they are rotated). FIG. 17C is a plot of the first term on the right side of T. This is a coefficient corresponding to the light intensity coupling ratio of the optical coupling means 1653 to the transfer function T 2 T 1 corresponding to the third optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものである。   Multiplied by.

各信号点に2種類のデータが重なった8PSK信号となっていることがわかる。図17(d)は、Tの右辺第2項のプロット1730であり、これは、単に第2の光信号に対応する伝達関数T1´に係数 It can be seen that each signal point is an 8PSK signal in which two types of data are overlapped. FIG. 17D is a plot 1730 of the second term on the right-hand side of T, which simply represents the coefficient in the transfer function T 1 ′ corresponding to the second optical signal.

Figure 2011221258
Figure 2011221258

を掛けたものである。図17(e)は最終的な変調器の伝達関数Tのプロット1740である。図17(d)の各点[d123x]が図17(c)の[d1230]と[d1231]に対応する2点に分裂して一方が内側リング、他方が外側リング上の点となる形で、8PSKのリングが二重になった形の16APSKの信号ダイアグラムとなっていることがわかる。本実施形態では内側8PSKと外側8PSKとの動径の比は、 Multiplied by. FIG. 17 (e) is a plot 1740 of the final modulator transfer function T. Each point [d 1 d 2 d 3 x] in FIG. 17D is split into two points corresponding to [d 1 d 2 d 3 0] and [d 1 d 2 d 3 1] in FIG. Thus, it can be seen that the signal diagram of 16APSK is such that one is an inner ring and the other is a point on the outer ring, and the 8PSK ring is doubled. In this embodiment, the radial ratio of the inner 8PSK to the outer 8PSK is

Figure 2011221258
Figure 2011221258

となっており、内側の1点(例えば[0010])から見たとき、内側の隣接する2点([1101]、[1011])までの距離と、外側の隣接1点([0011])までの距離が等しくなっている。外側の信号点(たとえば[0011])の動径は約0.87であり、原理損失は1.2dBである。光伝送において16APSKが用いられることは稀であるが、少なくとも本実施形態のような変調器構成はこれまで知られていない。前述の通り、図5に示した前記従来技術3と同じ構成で、光分岐および結合手段1731および1732の光強度分岐及び結合比を   When viewed from one inner point (for example, [0010]), the distance to two adjacent inner points ([1101], [1011]) and one outer adjacent point ([0011]) The distance to is equal. The radius of the outer signal point (eg, [0011]) is about 0.87, and the principle loss is 1.2 dB. Although 16APSK is rarely used in optical transmission, at least the modulator configuration as in this embodiment has not been known so far. As described above, the light intensity branching and coupling ratios of the light branching and coupling means 1731 and 1732 are the same as those of the prior art 3 shown in FIG.

Figure 2011221258
Figure 2011221258

とし、位相シフタ1622の位相シフト量をφ=π/2とすれば8PSK変調器を構成でき、これに強度変調手段を直列接続すれば16APSK変調器を構成できるが、この場合の原理損失は、5.3dBなので、本実施形態は従来技術から容易に想到しうる16APSK変調器に比べ原理損失を4.1dB低減しているとも言える。   If the phase shift amount of the phase shifter 1622 is φ = π / 2, an 8PSK modulator can be configured, and if an intensity modulation means is connected in series to this, a 16APSK modulator can be configured. Since it is 5.3 dB, it can be said that the present embodiment reduces the principle loss by 4.1 dB compared to the 16 APSK modulator that can be easily conceived from the prior art.

なお、本実施形態では、   In this embodiment,

Figure 2011221258
Figure 2011221258

としてもよく、またφはπの奇数倍であればよい。これらの値を変更した場合のデータマッピングは図17とは異なるが、やはり原理損失1.2dBの16PSK信号が得られることは容易に確かめられる。また、内側8PSKと外側8PSKの動径の比は、rを調整することで容易に調整できる。さらには、本例と同じ構成で   And φ may be an odd multiple of π. Although the data mapping when these values are changed is different from that in FIG. 17, it is easily confirmed that a 16PSK signal with a principle loss of 1.2 dB can be obtained. Further, the ratio of the moving radius between the inner 8PSK and the outer 8PSK can be easily adjusted by adjusting r. Furthermore, with the same configuration as this example

Figure 2011221258
Figure 2011221258

または、その奇数倍とすれば、伝達関数Tは、動径   Or, if it is an odd multiple thereof, the transfer function T is

Figure 2011221258
Figure 2011221258

の円周上に16個の信号点が等間隔に並んだ16PSKの信号ダイアグラムの形となり、原理損失3.0dBの16PSK変調器を構成することもできる。   Thus, a 16PSK signal diagram in which 16 signal points are arranged at equal intervals on the circumference of the circuit can be formed, and a 16PSK modulator having a principle loss of 3.0 dB can be configured.

最後に、これまでに挙げた全ての実施形態において、光入出力を逆転、すなわち各BPSK変調手段711〜713、1011〜1014、1211〜1216、1411〜1414、1611〜1614の入出力ポートの方向を逆転し、かつメイン出力ポート702、1002、1202、1402、1602をメイン入力ポートとして、メイン入力ポート701、1001、1201、1401、1601をメイン出力ポートとして用いるような構成としても、本発明の効果は同様に得ることができる。これまでに挙げた全実施形態において、光変調器を構成する回路要素のうちBPSK変調手段を除く回路要素は全てカプラ、位相シフタ、導波路からなる相反的な光回路であるため、BPSK変調手段の伝達関数bnが仮に入出力方向依存性を持たなければ、メイン入出力を逆転させても変調器の伝達関数は変化しない。実際にはBPSK変調手段は、入出力方向依存性を持つ場合がある。例えば、進行波型の変調電極を用いる場合、光の進行方向と駆動電気信号の進行方向を一致させる必要がある。従って、メイン入出力を逆転させた構成とする場合はBPSK変調手段の入出力方向も併せて逆転させればよく、その場合は変調器の伝達関数は元の構成と等しくなるため、同じく原理損失の小さい多値変調器を得ることができる。 Finally, in all the embodiments mentioned so far, the optical input / output is reversed, that is, the direction of the input / output ports of each BPSK modulation means 711-713, 1011-1014, 1211-1216, 1411-1414, 1611-1614 The main output ports 702, 1002, 1202, 1402, and 1602 are used as main input ports, and the main input ports 701, 1001, 1201, 1401, and 1601 are used as main output ports. The effect can be obtained as well. In all the embodiments described so far, circuit elements other than the BPSK modulation means among the circuit elements constituting the optical modulator are all reciprocal optical circuits composed of a coupler, a phase shifter, and a waveguide. If the transfer function b n has no dependency on the input / output direction, the transfer function of the modulator does not change even if the main input / output is reversed. Actually, the BPSK modulation means may have input / output direction dependency. For example, when a traveling wave type modulation electrode is used, it is necessary to make the traveling direction of light coincide with the traveling direction of the drive electric signal. Accordingly, when the main input / output is reversed, the input / output direction of the BPSK modulation means may be reversed as well. In this case, the transfer function of the modulator is equal to the original structure, so that the principle loss is also the same. Can be obtained.

701、1001、1201、1401、1601 メイン入力ポート
702、1002、1202、1402、1602 メイン出力ポート
711、712、713、1011、1012、1013,1014、1211、1212、1411、1412、1413、1414、1611、1612、1613、1614 BPSK変調手段
721、722、1021、1022、1023、1221、1222、1421、1422、1423、1621、1622、1623 位相シフタ
741、1041、1241、1441、1641 第1の光変調手段
742、1042、1242、1442、1642 第2の光変調手段
751、1031、1051、1251、1431、1451、1651 光分岐手段
752、753、1032、1052、1053、1252、1253、1432、1452、1453、1652、1653、1654 光結合手段
771、772、1071、1072、1271、1272、1471、1472、11671、1672、1673、1674 出力ポート
1263 16QAM変調手段
1443 第3の光変調手段
701, 1001, 1201, 1401, 1601 Main input port 702, 1002, 1202, 1402, 1602 Main output port 711, 712, 713, 1011, 1012, 1013, 1014, 1211, 1212, 1411, 1412, 1413, 1414, 1611, 1612, 1613, 1614 BPSK modulation means 721, 722, 1021, 1022, 1023, 1221, 1222, 1421, 1422, 1423, 1621, 1622, 1623 Phase shifters 741, 1041, 1241, 1441, 1641 First light Modulating means 742, 1042, 1242, 1442, 1642 Second optical modulating means 751, 1031, 1051, 1251, 1431, 1451, 1651 Optical branching means 752, 753, 10 2, 1052, 1053, 1252, 1253, 1432, 1452, 1453, 1652, 1653, 1654 Optical coupling means 771, 772, 1071, 1072, 1271, 1272, 1471, 1472, 11671, 1672, 1673, 1673 Output port 1263 16QAM modulation means 1443 Third light modulation means

Claims (6)

メイン入力ポートからの入力光を変調し、互いにコンスタレーション図形が等しくデータマッピングが異なる第1及び第2の光信号を同時に異なるポートから出力する第1の光変調手段と、
前記第1の光信号をさらに変調し、第3の光信号を出力する第2の光変調手段と、
前記第2及び前記第3の光信号を結合させ、メイン出力ポートへ出力する光結合手段と
を備えることを特徴とする光変調器。
First optical modulation means for modulating input light from a main input port, and outputting first and second optical signals having the same constellation figure and different data mapping from different ports simultaneously;
Second optical modulation means for further modulating the first optical signal and outputting a third optical signal;
An optical modulator comprising: an optical coupling unit that couples the second and third optical signals and outputs the coupled optical signal to a main output port.
メイン入力ポートからの入力光を変調し、互いにコンスタレーション図形が等しくデータマッピングが異なる第1及び第2の光信号を同時に異なるポートから出力する第1の光変調手段と、
前記第1の光信号をさらに変調し、第3の光信号を出力する第2の光変調手段と、
前記第2の光信号をさらに変調し、第4の光信号を出力する第3の光変調手段と、
前記第3及び前記第4の光信号を結合させ、メイン出力ポートへ出力する光結合手段と
を備え、
第2の変調手段と第3の変調手段は、互いに異なる変調を行うことを特徴とする光変調器。
First optical modulation means for modulating input light from a main input port, and outputting first and second optical signals having the same constellation figure and different data mapping from different ports simultaneously;
Second optical modulation means for further modulating the first optical signal and outputting a third optical signal;
Third optical modulation means for further modulating the second optical signal and outputting a fourth optical signal;
Optical coupling means for coupling the third and fourth optical signals and outputting them to a main output port;
The second modulator and the third modulator perform different modulations from each other.
前記第2の光変調手段が、2値位相変調もしくはN値直交振幅変調(Nは4以上の整数)手段であることを特徴とする請求項1又は2に記載の光変調器。   3. The optical modulator according to claim 1, wherein the second optical modulation means is binary phase modulation or N-value quadrature amplitude modulation (N is an integer of 4 or more). 前記第1、第2、及び第3の変調手段が、それぞれ単一もしくは複数の2値位相変調手段と位相シフタを並列又は直列に組み合わせた回路であることを特徴とする請求項1乃至3のいずれか1項に記載の光変調器。   4. The circuit according to claim 1, wherein each of the first, second, and third modulation means is a circuit in which single or plural binary phase modulation means and a phase shifter are combined in parallel or in series. The optical modulator according to any one of claims. 前記2値位相変調手段の各々がマッハツェンダ変調回路であることを特徴とする請求項4に記載の光変調器。   5. The optical modulator according to claim 4, wherein each of the binary phase modulation means is a Mach-Zehnder modulation circuit. 請求項4乃至5に記載の光変調器のメイン入力ポートとメイン出力ポートを逆転させ、かつ前記2値変調手段の各々について入出力ポートの方向を逆転させた光回路構成を有することを特徴とする光変調器。   6. An optical circuit configuration in which the main input port and the main output port of the optical modulator according to claim 4 are reversed, and the direction of the input / output port is reversed for each of the binary modulation means. Light modulator.
JP2010089872A 2010-04-08 2010-04-08 Light modulator Expired - Fee Related JP5662050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089872A JP5662050B2 (en) 2010-04-08 2010-04-08 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089872A JP5662050B2 (en) 2010-04-08 2010-04-08 Light modulator

Publications (2)

Publication Number Publication Date
JP2011221258A true JP2011221258A (en) 2011-11-04
JP5662050B2 JP5662050B2 (en) 2015-01-28

Family

ID=45038314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089872A Expired - Fee Related JP5662050B2 (en) 2010-04-08 2010-04-08 Light modulator

Country Status (1)

Country Link
JP (1) JP5662050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094216A1 (en) * 2011-12-22 2013-06-27 日本電信電話株式会社 Optical modulator
WO2014050123A1 (en) * 2012-09-28 2014-04-03 日本電信電話株式会社 Light modulation circuit
US9935716B2 (en) 2015-09-03 2018-04-03 Samsung Electronics Co., Ltd. Optical modulators and data processing systems using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098489A (en) * 2001-08-21 2003-04-03 Lucent Technol Inc Optical modulator and light transmission system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098489A (en) * 2001-08-21 2003-04-03 Lucent Technol Inc Optical modulator and light transmission system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094216A1 (en) * 2011-12-22 2013-06-27 日本電信電話株式会社 Optical modulator
JPWO2013094216A1 (en) * 2011-12-22 2015-04-27 日本電信電話株式会社 Light modulator
US9223184B2 (en) 2011-12-22 2015-12-29 Nippon Telegraph And Telephone Corporation Optical modulator
WO2014050123A1 (en) * 2012-09-28 2014-04-03 日本電信電話株式会社 Light modulation circuit
CN104541196A (en) * 2012-09-28 2015-04-22 日本电信电话株式会社 Light modulation circuit
US9128348B1 (en) 2012-09-28 2015-09-08 Nippon Telegraph And Telephone Corporation Light modulation circuit
JP5860159B2 (en) * 2012-09-28 2016-02-16 日本電信電話株式会社 Optical modulation circuit
US9935716B2 (en) 2015-09-03 2018-04-03 Samsung Electronics Co., Ltd. Optical modulators and data processing systems using the same

Also Published As

Publication number Publication date
JP5662050B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5161370B2 (en) Light modulator
US9485032B2 (en) Optical multilevel transmitter and optical transponder
JP5700731B2 (en) Light modulator
JP2009094988A (en) Quadrature amplitude modulation signal generating device
JP5243334B2 (en) Light modulator
US9104085B2 (en) Method for modulating a carrier light wave
JP2006203886A (en) Offset quadrature phase-shift keying modulation scheme and optical transmitter using the same
JP5860159B2 (en) Optical modulation circuit
JP5662050B2 (en) Light modulator
US20100067841A1 (en) Optical device and optical transmitter
US9172472B2 (en) Method for modulating a carrier light wave
JP5643037B2 (en) Light modulator
JP6353398B2 (en) Optical modulation circuit
JP5466200B2 (en) Optical modulation circuit
Lu et al. Flexible high-order QAM transmitters for elastic optical networks
JP5161330B2 (en) Optical quadrature amplitude modulation circuit and optical transmitter
Albakay et al. Design and performance analysis for a binary-driven QAM transmitter
JP6126538B2 (en) Light modulator
Yamazaki et al. Flexible-format modulator with a lattice configuration
Kawanishi et al. High-speed and presice lightwave modulation technologies
Albakay et al. Square QAM transmitter using QPSK modulators driven by binary electrical signals
JP5161329B2 (en) Optical transmitter and optical quadrature amplitude modulation method
WO2024079894A1 (en) Optical signal generating device and optical signal generating method
JP5239610B2 (en) Mach-Zehnder optical modulator
JP2016151594A (en) Optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140327

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5662050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees