JP2011219809A - High strength steel sheet - Google Patents

High strength steel sheet Download PDF

Info

Publication number
JP2011219809A
JP2011219809A JP2010089492A JP2010089492A JP2011219809A JP 2011219809 A JP2011219809 A JP 2011219809A JP 2010089492 A JP2010089492 A JP 2010089492A JP 2010089492 A JP2010089492 A JP 2010089492A JP 2011219809 A JP2011219809 A JP 2011219809A
Authority
JP
Japan
Prior art keywords
steel sheet
strength
mpa
steel
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010089492A
Other languages
Japanese (ja)
Inventor
Takuo Imanaga
拓男 今永
Yoshitaka Okitsu
貴隆 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010089492A priority Critical patent/JP2011219809A/en
Publication of JP2011219809A publication Critical patent/JP2011219809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel sheet having low yield stress and high tensile strength and breaking elongation.SOLUTION: An Ni equivalent amount indicated by the following equation (A) is 21.5 to 25.5%, Md30 indicated by the following equation (B) is 98 to 260°C, the ratio of an austenitic phase occupying a metal structure is ≥85%, the crystal grain size of the austenitic phase is ≥20 μm, 0.2% proof stress is ≤400 MPa, tensile stress is ≥1,000 MPa, and stretch is ≥60%: wherein (A) Ni equivalent amount=Ni+12.93C+1.11Mn+0.72Cr+0.88Mo-0.27Si+0.53Cu-0.69Al+7.55N, and (B) Md30(°C)=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+Cu)-18.2Mo.

Description

本発明は、低降伏比かつ高延性でプレス成形性に優れ、しかも高い強度を有する高強度鋼板に関する。   The present invention relates to a high strength steel sheet having a low yield ratio, high ductility, excellent press formability, and high strength.

近年、自動車の衝突安全性への要求が高まってきており、衝突時において乗員の生存空間を確保し乗員を保護するための車体技術の開発が進められている。その一方で、地球温暖化問題の観点で燃費改善の要求は日々高まってきており、自動車車体の軽量化が強く求められている。このような相反する要求を満足するためには、車体構成部品の大半を占める鋼板の高強度化が重要である。   In recent years, there has been an increasing demand for collision safety of automobiles, and the development of vehicle body technology for protecting the occupant's living space and protecting the occupant in the event of a collision has been promoted. On the other hand, demands for improving fuel efficiency are increasing day by day from the viewpoint of global warming, and there is a strong demand for weight reduction of automobile bodies. In order to satisfy such conflicting requirements, it is important to increase the strength of the steel sheet that occupies most of the vehicle body components.

しかしながら、一般に鋼板の強度を上げれば延性は低下し、引張強度で1GPaを超える超高強度鋼板では、破断伸びが数%まで低下してしまうため、プレス成形を主体とした自動車の製造プロセスでは加工が困難になり、生産性が大幅に低下するといった問題が発生する。また、これまでは鋼板の強度を向上させた分、鋼板の板厚を低減させ衝突安全性と車体軽量化の両立を行なってきたが、板厚の低減は車体剛性低下を招く可能性がある。この欠点を補うためには、例えばリブ等を設けるなど部品の形状により車体の剛性を向上させる必要があり、その結果、部品の形状が複雑となる。   However, in general, if the strength of the steel sheet is increased, the ductility decreases, and the tensile strength exceeds 1 GPa, and the elongation at break decreases to several percent. This causes problems such as difficulty in productivity and a significant reduction in productivity. In the past, the strength of the steel sheet has been improved, and the thickness of the steel sheet has been reduced to achieve both collision safety and weight reduction. However, the reduction of the plate thickness may lead to a decrease in the rigidity of the vehicle body. . In order to compensate for this drawback, it is necessary to improve the rigidity of the vehicle body by the shape of the parts, for example, by providing ribs or the like, and as a result, the shape of the parts becomes complicated.

この点、超高強度鋼板を使用した場合には、延性低下による部品の形状が制約されるため、車体剛性の維持が困難となる。このような理由から、現在では、自動車車体の中で複雑形状が要求されるものは引張強度が270MPa級の鋼板が利用されており、強度を要求される部材には引張強度が590MPa級の鋼板が広く適用されている。したがって、590MPa級と同等以下の降伏応力(400MPa以下)を有し、270MPa級並みの成形自由度(伸び>50%)が得られ、超高強度鋼板並の引張強度(1000MPa以上)を有する鋼板が実現できれば、産業上の利用価値は非常に高い。   In this regard, when an ultra-high strength steel plate is used, the shape of the part is restricted due to a decrease in ductility, so that it is difficult to maintain vehicle body rigidity. For these reasons, steel plates with a tensile strength of 270 MPa are currently used for automobile bodies that require complex shapes, and steel plates with a tensile strength of 590 MPa are used for members that require strength. Has been widely applied. Therefore, a steel sheet having a yield stress (400 MPa or less) equivalent to or less than that of the 590 MPa class, a forming freedom degree (elongation> 50%) comparable to that of the 270 MPa class, and a tensile strength (1000 MPa or more) comparable to that of an ultra-high strength steel sheet. If this can be realized, the industrial utility value is very high.

なお、現状の冷間加工用自動車用鋼板の技術で高強度と高延性の両立が困難なのは、鋼の高強度化手法として、焼入組織強化が用いられるためである。これに対して、フェライト組織のままで引張強度を1000MPa以上に高めながら破断伸び60%以上を確保することは困難である。これは焼入組織の代表であるマルテンサイトは高強度である一方延性に乏しいため、鋼板の伸びも大きく劣化してしまうためであり、従来技術の延長では1GPaを超える高強度、高延性の両立は実現不可能である。   The reason why it is difficult to achieve both high strength and high ductility with the current technology for cold-working automotive steel sheets is because hardening structure strengthening is used as a technique for increasing the strength of steel. On the other hand, it is difficult to ensure a breaking elongation of 60% or more while increasing the tensile strength to 1000 MPa or more with the ferrite structure. This is because martensite, which is representative of a hardened structure, has high strength but lacks ductility, so that the elongation of the steel sheet is also greatly deteriorated. With the extension of the prior art, both high strength exceeding 1 GPa and high ductility are achieved. Is not feasible.

高強度と成形性を両立させた鋼板へのニーズは従来から非常に高いが、フェライト主体の組織では上記のとおり限界がある。一方、オーステナイトステンレス鋼に代表されるオーステナイト組織は、比較的強度が高く、伸びはフェライト組織鋼に比較して良好である。たとえば、特許文献1には、衝突吸収性能に優れたオーステナイト系ステンレス鋼が開示されている。   The need for a steel sheet that has both high strength and formability has been very high, but there is a limit as described above in the structure mainly composed of ferrite. On the other hand, an austenitic structure typified by austenitic stainless steel has a relatively high strength, and its elongation is better than that of ferritic structure steel. For example, Patent Document 1 discloses austenitic stainless steel having excellent collision absorption performance.

また双晶誘起塑性(TWIP)を利用したTWIP鋼で、高強度と高延性の両立を図る技術が検討されている。たとえば、特許文献2には、25重量%程度のMnと、SiとAlを合計で12重量%以下の範囲で含有するオーステナイト鋼であって、TWIP(双晶誘起塑性)およびTRIP(変態誘起塑性)の特性を備えており、降伏応力が400MPa以上を示し引張強さが1100MPaに達すること、均一伸びが70%に達し、最大伸びが90%に達する鋼板が開示されている。   In addition, a technique for achieving both high strength and high ductility in a TWIP steel using twinning induced plasticity (TWIP) has been studied. For example, Patent Document 2 discloses an austenitic steel containing about 25% by weight of Mn, Si and Al in a total range of 12% by weight or less, and includes TWIP (twinning induced plasticity) and TRIP (transformation induced plasticity). ), A steel sheet with a yield stress of 400 MPa or more, a tensile strength of 1100 MPa, a uniform elongation of 70%, and a maximum elongation of 90% is disclosed.

特開2002−20843号公報JP 2002-20843 A 特表2002−507251号公報Special table 2002-507251 gazette

しかしながら、特許文献1に記載のオーステナイト系ステンレス鋼は、降伏応力は低く破断伸びは高いものの引張強度は800MPa程度であり、強度が不充分である。また、特許文献2に記載の鋼板は、SiやAlといった元素を多量に含むため、降伏応力が高いといった課題がある。また、Mnを25%も含んでいる上、Crを全く含まないため、耐食性が著しく悪化し、自動車へ適用するためには化成処理やめっき技術の開発が求められ、現状のままでは適用は困難である。   However, although the austenitic stainless steel described in Patent Document 1 has a low yield stress and a high elongation at break, the tensile strength is about 800 MPa, and the strength is insufficient. Moreover, since the steel plate described in Patent Document 2 contains a large amount of elements such as Si and Al, there is a problem that the yield stress is high. In addition, it contains 25% of Mn and does not contain Cr at all, so the corrosion resistance is remarkably deteriorated. In order to apply it to automobiles, development of chemical conversion treatment and plating technology is required. It is.

本発明は、上記のような事情に鑑みてなされたもので、降伏応力が低く、しかも高い引張強度と破断伸びを有する高強度鋼板を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-strength steel sheet having low yield stress and high tensile strength and elongation at break.

本発明者らは、オーステナイト鋼の降伏応力の上昇を抑制しながら強度・延性のバランスを向上させるべく鋭意研究を重ねた。その結果、強度・延性バランスが最適化される合金成分の設計手法を確立した。さらに、本発明者らは、高合金化にともなう降伏応力の上昇を抑制する手法を見出した。具体的にはNi当量とMd30の最適化により変形前の金属組織をオーステナイト主体としながら加工誘起変態が最も起こりやすくなるようなオーステナイト鋼の成分範囲を見出し、さらに、結晶粒径の最適化により高強度・高延性でありながら低降伏応力を実現した。これにより、1000MPa超級の引張強度を有しながら高いプレス成形性を得ることが可能な高強度鋼板を見出した。なお、オーステナイトは明確な降伏現象が現れ難いため、本発明では同種の特性である0.2%耐力を特定する。以下においては、「0.2%耐力」を用いて説明する。   The inventors of the present invention have intensively studied to improve the balance between strength and ductility while suppressing an increase in yield stress of austenitic steel. As a result, we established a design method for alloy components that optimizes the balance between strength and ductility. Furthermore, the present inventors have found a technique for suppressing an increase in yield stress associated with high alloying. Specifically, by optimizing the Ni equivalent and Md30, the composition range of the austenitic steel where the processing-induced transformation is most likely to occur while the metal structure before deformation is mainly composed of austenite is found. Low yield stress was achieved despite its strength and high ductility. As a result, a high-strength steel sheet capable of obtaining high press formability while having a tensile strength exceeding 1000 MPa was found. Since austenite does not easily exhibit a clear yield phenomenon, the present invention specifies 0.2% yield strength, which is the same kind of characteristic. In the following description, “0.2% yield strength” is used.

本発明の高強度鋼板は上記知見に基づいてなされたものであり、質量%で、C:0.005〜0.25%、N:0.005〜0.2%、Si:0.01〜3%、Mn:8.9〜17.5%、Cr:2〜14.5%を含有し、残部Feおよび不可避的不純物からなり、CとNの含有量の合計が0.01〜0.25%であり、下記(A)式で表されるNi当量が21.5〜25.5%であり、下記(B)式で表されるMd30が98〜260℃であり、金属組織に占めるオーステナイト相の面積率が85%以上、オーステナイト相の結晶粒径が20μm以上であり、0.2%耐力が400MPa以下、引張応力が1000MPa以上、伸びが60%以上であることを特徴とする。
Ni当量=Ni+12.93C+1.11Mn+0.72Cr+0.88Mo−0
.27Si+0.53Cu−0.69Al+7.55N・・・(A)
Md30(℃)=551−462(C+N)−9.2Si−8.1Mn−13.7
Cr−29(Ni+Cu)−18.2Mo・・・(B)
ただし、各元素記号は当該元素の質量百分率を示す
The high-strength steel sheet of the present invention has been made based on the above findings, and in mass%, C: 0.005 to 0.25%, N: 0.005 to 0.2%, Si: 0.01 to 3%, Mn: 8.9 to 17.5%, Cr: 2 to 14.5%, the balance being Fe and unavoidable impurities, the total content of C and N being 0.01 to 0.00. It is 25%, Ni equivalent represented by the following formula (A) is 21.5 to 25.5%, Md30 represented by the following formula (B) is 98 to 260 ° C., and occupies the metal structure The area ratio of the austenite phase is 85% or more, the crystal grain size of the austenite phase is 20 μm or more, the 0.2% proof stress is 400 MPa or less, the tensile stress is 1000 MPa or more, and the elongation is 60% or more.
Ni equivalent = Ni + 12.93C + 1.11Mn + 0.72Cr + 0.88Mo-0
. 27Si + 0.53Cu-0.69Al + 7.55N (A)
Md30 (° C) = 551-462 (C + N) -9.2Si-8.1 Mn-13.7
Cr-29 (Ni + Cu) -18.2Mo (B)
However, each element symbol indicates a mass percentage of the element.

本発明では、上記した合金成分の範囲内においてNi当量を21.5〜25.5としているので、オーステナイト相を面積率で85%以上含む組織となる。また、Md30を98〜260℃としているから、変形時には加工誘起マルテンサイト変態が従来材と比較して高い水準で発生するため、非常に高い強度と伸びを得ることができる。なお、Md30は、30%の歪みを鋼に与えたときに、材料の半分が変態するときの温度であり、この値が高い程マルテンサイトに変態し易い。一方、オーステナイト相の結晶粒径が20μm以上であるため、高合金成分でありながら、0.2%耐力を400MPa以下に抑制することが可能となる。   In the present invention, since the Ni equivalent is 21.5 to 25.5 within the range of the alloy components described above, the structure includes an austenite phase of 85% or more in area ratio. Further, since Md30 is set to 98 to 260 ° C., deformation-induced martensitic transformation occurs at a higher level than that of the conventional material at the time of deformation, so that very high strength and elongation can be obtained. Md30 is the temperature at which half of the material transforms when 30% strain is applied to the steel, and the higher this value, the easier it is to transform into martensite. On the other hand, since the crystal grain size of the austenite phase is 20 μm or more, the 0.2% proof stress can be suppressed to 400 MPa or less while being a high alloy component.

本発明によれば、0.2%耐力が低く、しかも高い引張強度と破断伸びを有する高強度鋼板を提供することができる。したがって、構造用部材を薄くして軽量化を図ることができるとともに、リブなどを有する複雑な形状に成形して剛性を維持することができる。   According to the present invention, it is possible to provide a high-strength steel sheet having a low 0.2% yield strength and a high tensile strength and elongation at break. Therefore, the structural member can be thinned to reduce the weight, and the rigidity can be maintained by forming the structural member into a complicated shape having ribs and the like.

本発明の実施例における焼鈍温度と結晶粒径との関係を示すグラフである。It is a graph which shows the relationship between the annealing temperature and the crystal grain diameter in the Example of this invention. 本発明の実施例における結晶粒径と0.2%耐力との関係を示す線図である。It is a diagram which shows the relationship between the crystal grain diameter and 0.2% yield strength in the Example of this invention. 本発明の実施例で使用した試料を示す平面図である。It is a top view which shows the sample used in the Example of this invention. 本発明の実施例における伸びと応力との関係を示すグラフである。It is a graph which shows the relationship between elongation and stress in the Example of this invention.

本発明のオーステナイト鋼は、変形前はオーステナイトを主体とした金属組織を有しており、変形に伴い加工誘起マルテンサイトが発現することにより、高い強度と伸びを実現する。したがって、オーステナイトの安定度を示す指標であるNi当量とMd30が適正範囲を満足する合金成分に調整する必要がある。ここで、適正範囲とは、Ni当量:21.5〜25.5、Md30:98〜260℃を同時に満たす範囲である。以下に、合金成分の効果とその限定理由について詳述する。なお、以下の説明において「%」は「質量%」を意味する。   The austenitic steel of the present invention has a metal structure mainly composed of austenite before deformation, and realizes high strength and elongation by expressing work-induced martensite with deformation. Therefore, it is necessary to adjust the Ni equivalent and Md30, which are indices indicating the stability of austenite, to alloy components that satisfy an appropriate range. Here, the appropriate range is a range that simultaneously satisfies Ni equivalent: 21.5 to 25.5 and Md30: 98 to 260 ° C. Below, the effect of an alloy component and the reason for limitation will be described in detail. In the following description, “%” means “mass%”.

C:0.005〜0.25%
Cは、オーステナイト形成元素であり、加工硬化率の上昇に有効な元素である。Cの含有量が0.005%を下回ると、そのような効果は期待できない。一方、Cの含有量が0.25%を超えると、加工誘起マルテンサイト相と未変態のオーステナイト相の硬度差が高まり、脆性的な破断形態を示し、結果的に強度・延性が低下してしまうことがある。よって、Cの含有量は0.005〜0.25%とする。ただし、Cの含有量が0.03%未満になると延性は上昇するものの加工硬化率が低くなる。このため、0.03%未満の場合はNi当量を22%程度まで低く抑えるような合金成分設計にする必要がある。Cの含有量は、耐食性や精錬性を考慮すると0.05〜0.15%が望ましい。
C: 0.005-0.25%
C is an austenite forming element and is an element effective for increasing the work hardening rate. If the C content is less than 0.005%, such an effect cannot be expected. On the other hand, if the content of C exceeds 0.25%, the hardness difference between the work-induced martensite phase and the untransformed austenite phase increases, showing a brittle fracture form, resulting in a decrease in strength and ductility. May end up. Therefore, the C content is 0.005 to 0.25%. However, when the C content is less than 0.03%, ductility increases, but the work hardening rate decreases. For this reason, when it is less than 0.03%, it is necessary to make an alloy component design that keeps the Ni equivalent low to about 22%. The content of C is preferably 0.05 to 0.15% in consideration of corrosion resistance and refinability.

N:0.005〜0.2%
Nは、Cと同様、オーステナイトを形成させる元素であり、耐食性を向上させる効果も有するため積極的に添加する。Nの含有量は、鋼材に不可避的に混入する量とする。Nの含有量が0.2%を超えると鋼の脆化を招き熱間成形性が著しく低下するため上限を0.2%とする。
N: 0.005 to 0.2%
N, like C, is an element that forms austenite, and since it also has the effect of improving corrosion resistance, it is positively added. The N content is an amount inevitably mixed in the steel material. If the N content exceeds 0.2%, the steel becomes brittle and the hot formability is remarkably reduced, so the upper limit is made 0.2%.

C+N:0.01〜0.25%
上記のようにCとNはオーステナイトの安定化および脆化に対して同様の効果を有しているため、CとNの含有量の合計を0.25%以下とする。
C + N: 0.01 to 0.25%
As described above, since C and N have the same effect on the stabilization and embrittlement of austenite, the total content of C and N is set to 0.25% or less.

Si:0.01〜3.0%
Siは、耐食性や耐時期割れ性、耐応力腐食割れ性の向上に有効な元素である。Siの含有量が0.01%未満ではそのような効果は発揮されず、3.0%を超えて含有すると熱間成形性の悪化をまねく。よって、Siの含有量は0.01〜3.0%とする。
Si: 0.01-3.0%
Si is an element effective for improving corrosion resistance, time crack resistance, and stress corrosion crack resistance. If the Si content is less than 0.01%, such an effect is not exhibited. If the Si content exceeds 3.0%, the hot formability deteriorates. Therefore, the Si content is set to 0.01 to 3.0%.

Mn:8.9〜17.5%
Mnは、オーステナイトの安定化元素であり、Md30を高くする効果が高い。目標値であるMd30>98を確保するためには、Mnは8.9%以上含有する必要がある。一方、Mnの含有量が17.5%を超えると、Mnは蒸気圧が高いため精錬性が著しく低下してしまう。よって、Mnの含有量は8.9〜17.5%とする。なお、耐食性や製造性を考慮するとMnの含有量は8.5〜13.0%が望ましい。
Mn: 8.9 to 17.5%
Mn is an austenite stabilizing element and has a high effect of increasing Md30. In order to ensure the target value of Md30> 98, Mn needs to be contained in an amount of 8.9% or more. On the other hand, if the content of Mn exceeds 17.5%, Mn has a high vapor pressure, so that the refinability is significantly lowered. Therefore, the Mn content is 8.9 to 17.5%. In view of corrosion resistance and manufacturability, the Mn content is desirably 8.5 to 13.0%.

Cr:2.0〜14.5%
Crは、オーステナイトを安定化させ、積層欠陥エネルギーを低減させて加工硬化率を上昇させるため、高強度化に有益な元素である。Crの含有量が2.0%未満ではそのような効果は発揮されず、14.5%を超えると、δフェライトの抑制のために高価なNiを多量に添加しなければならなくなるとともに、熱間加工性の悪化や降伏応力の上昇を招く。なお、耐食性を考慮すると7〜14.5%が望ましい。
Cr: 2.0-14.5%
Cr stabilizes austenite, reduces stacking fault energy, and increases the work hardening rate, so is an element useful for increasing the strength. If the Cr content is less than 2.0%, such an effect is not exhibited, and if it exceeds 14.5%, a large amount of expensive Ni must be added to suppress δ ferrite, This causes deterioration of inter-workability and an increase in yield stress. In consideration of corrosion resistance, 7 to 14.5% is desirable.

以上は本発明が必須とする成分である。以下に添加して望ましい成分とその含有量について説明する。
Cu:0.5〜1.6%
Cuは、オーステナイト安定化元素であり、耐食性や延性の改善に有効な元素である。そのような効果を得るためにCuは0.5%以上含有する必要がある。一方、Cuの含有量が1.5%を超えると、積層欠陥エネルギーを上昇させる効果が非常に高く、加工誘起マルテンサイトの生成が著しく低下し強度低下を招く。また、Cuの過剰な添加は熱間脆性を招くおそれがある。よって、Cuの含有量は、0.5〜1.6%とする。
The above is an essential component of the present invention. The components added and desired and their contents will be described below.
Cu: 0.5 to 1.6%
Cu is an austenite stabilizing element and is an element effective for improving corrosion resistance and ductility. In order to acquire such an effect, it is necessary to contain Cu 0.5% or more. On the other hand, if the Cu content exceeds 1.5%, the effect of increasing the stacking fault energy is very high, and the formation of work-induced martensite is remarkably reduced, leading to a reduction in strength. Further, excessive addition of Cu may cause hot brittleness. Therefore, the Cu content is set to 0.5 to 1.6%.

Ni:0.5〜7.2%
Niは、オーステナイト安定化元素であり、耐食性や延性の改善に有効な元素である。そのような効果を得るために0.5%以上含有する必要がある。一方、Niの含有量が7.2%を超えると、Md30の低下を招き、加工硬化率が低下して充分な強度が得られなくなる。また、Niは、非常に高価なため、通常は添加しない。Mnよりも、鋼の延性を向上させる効果が高いため、とくに延性を必要とする場合は、Mnに代替して添加する。Niの含有量は、強度やコストを考慮すると0.5〜4%が望ましい。
Ni: 0.5 to 7.2%
Ni is an austenite stabilizing element, and is an element effective for improving corrosion resistance and ductility. In order to acquire such an effect, it is necessary to contain 0.5% or more. On the other hand, if the Ni content exceeds 7.2%, the Md30 is lowered, the work hardening rate is lowered, and sufficient strength cannot be obtained. Ni is not usually added because it is very expensive. Since the effect of improving the ductility of steel is higher than that of Mn, when ductility is particularly required, Mn is added instead of Mn. The Ni content is preferably 0.5 to 4% in consideration of strength and cost.

Mo:0.01〜2.5%
Moは、鋼中のSiと結合してMo3Si、MoSi2などの析出物を形成し、降伏点の上昇を招くおそれがあるとともに非常に高価な元素であるため通常は添加しない。しかしながら耐食性の向上には有効な元素であるため使用環境に応じて0.1%以上添加することができる。ただし2.5%以上の添加は降伏応力の上昇と延性の低下を招くため上限を2.5%とする。
Mo: 0.01 to 2.5%
Mo is combined with Si in the steel to form precipitates such as Mo3Si and MoSi2, which may increase the yield point, and is an extremely expensive element, so it is not usually added. However, since it is an element effective for improving corrosion resistance, it can be added in an amount of 0.1% or more depending on the use environment. However, addition of 2.5% or more causes an increase in yield stress and a decrease in ductility, so the upper limit is made 2.5%.

Al:0.02〜0.05%
Alは積層欠陥エネルギーを著しく増大させ、加工誘起マルテンサイト変態の生成が著しく低下するため通常は添加しない。ただし、Alは脱酸剤としての効果が高いため、0.05%までは添加することができる。
Al: 0.02 to 0.05%
Al is not usually added because it significantly increases the stacking fault energy and significantly reduces the formation of work-induced martensitic transformation. However, since Al is highly effective as a deoxidizer, it can be added up to 0.05%.

B:0.0004〜0.002%
Bはオーステナイト鋼の粒界を強化する作用があるため、必要に応じて添加することができる。ただし、添加量が高くなりすぎると脆性が発現するので上限を0.002%とする。
B: 0.0004 to 0.002%
B has an effect of strengthening the grain boundary of austenitic steel, and can be added as necessary. However, if the amount added is too high, brittleness will develop, so the upper limit is made 0.002%.

金属組織
本発明においては、上記に示した合金成分範囲内において、Ni当量を21.5〜25.5%とすることにより、オーステナイト相を面積率で85%以上含む組織となる。また、Md30を98〜260℃とすることにより、変形時には加工誘起マルテンサイト変態が従来材と比較して高い水準で発生するため、非常に高い強度と伸びを有する鋼板となる。これに加えて、低降伏応力という要求に対しては、熱処理により20μm以上の結晶粒径サイズに調整することで高合金成分でありながら、0.2%耐力を400MPa以下に抑制することが可能となる。
Metallic structure In the present invention, by setting the Ni equivalent to 21.5 to 25.5% within the above-described alloy component range, a structure containing an austenite phase of 85% or more in area ratio is obtained. Further, by setting Md30 to 98 to 260 ° C., deformation-induced martensite transformation occurs at a higher level than that of the conventional material at the time of deformation, so that the steel sheet has very high strength and elongation. In addition to this, it is possible to suppress the 0.2% proof stress to 400 MPa or less, even though it is a high alloy component, by adjusting the crystal grain size to 20 μm or more by heat treatment for the requirement of low yield stress. It becomes.

以下、具体的な実施例により本発明をさらに詳細に説明する。
表1に示す合金成分の鋼を真空溶解で溶製し、熱間圧延により厚さ7mmの熱延鋼板を作製した。この熱延鋼板を1100℃で30分間焼鈍し、鋼板表面の酸化スケールを研削し4.5mm厚の熱延鋼板を作製した。さらにこれらの熱延鋼板を300℃に加熱後、炉から取り出して1.4mmの厚さまで圧延した後、1050℃で10分間の焼鈍後、575℃まで空冷した後直ちに575℃で10分間の焼鈍と酸洗を行い、冷延・焼鈍鋼板を作製した。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
Steels of alloy components shown in Table 1 were melted by vacuum melting, and hot rolled steel sheets having a thickness of 7 mm were produced by hot rolling. This hot-rolled steel sheet was annealed at 1100 ° C. for 30 minutes, and the oxidized scale on the steel sheet surface was ground to produce a hot-rolled steel sheet having a thickness of 4.5 mm. Further, these hot-rolled steel sheets were heated to 300 ° C., removed from the furnace, rolled to a thickness of 1.4 mm, annealed at 1050 ° C. for 10 minutes, air-cooled to 575 ° C., and immediately annealed at 575 ° C. for 10 minutes. Then, pickling was performed to produce a cold-rolled / annealed steel sheet.

Figure 2011219809
Figure 2011219809

図1に本発明例14の鋼種の焼鈍温度と結晶粒径の関係、図2に本発明例14の鋼種の結晶粒径と0.2%耐力との関係を示す。図1に示すように、1025℃以上の焼鈍温度であれば、20μm以上の結晶粒径が得られ、この結果、図2に示すように、0.2%耐力を400MPa以下に低減することが可能である。ただし、製造条件のばらつきや温度管理のコストを考慮すると1050〜1100℃程度の温度が望ましい。なお、冷間圧延後に行う焼鈍において575℃で10分間の熱処理を実施したが、この熱処理は1050℃で焼鈍した後の冷却速度が3℃/分以下であれば必要ないが、これ以上の冷却速度の場合は必要である。以上の工程を完了した上で、冷延・焼鈍鋼板から図3に示した微小引張試験片を作製し、静的引張試験を実施した。引張試験は鷺宮製作所製の高速引張試験機TS−2000を用いて、引張速度0.05mm/minの引張速度で実施した。   FIG. 1 shows the relationship between the annealing temperature and crystal grain size of the steel type of Invention Example 14, and FIG. 2 shows the relationship between the crystal grain size and 0.2% proof stress of the steel type of Example 14 of the invention. As shown in FIG. 1, when the annealing temperature is 1025 ° C. or higher, a crystal grain size of 20 μm or more is obtained. As a result, as shown in FIG. 2, the 0.2% proof stress can be reduced to 400 MPa or less. Is possible. However, a temperature of about 1050 to 1100 ° C. is desirable in consideration of variations in manufacturing conditions and temperature management costs. In addition, although the heat processing for 10 minutes was implemented at 575 degreeC in the annealing performed after cold rolling, this heat processing is unnecessary if the cooling rate after annealing at 1050 degreeC is 3 degrees C / min or less, but more cooling than this Needed for speed. After completing the above steps, a micro tensile test piece shown in FIG. 3 was produced from the cold-rolled / annealed steel sheet, and a static tensile test was performed. The tensile test was carried out at a tensile speed of 0.05 mm / min using a high-speed tensile tester TS-2000 manufactured by Kinomiya Seisakusho.

組織観察は圧延方向と平行な断面を観察できるように鋼板を切断して、#1000まで湿式研磨を行ない、最終的に電解研磨により表面仕上げを行なった。TSL製のEBSP装置により、結晶粒径および相分布状態を解析して求めた。なお、マルテンサイト含有率の測定には、たとえば鋼板の透磁率を測定して推定する方法を利用することができるが、本発明において詳細に検討した結果、透磁率は合金元素や残留歪の影響を多大に受ける為、正確なフェライト量の計測が困難であることが明らかになった。したがって本発明においてはEBSP装置による測定結果を採用した。   In the structure observation, the steel sheet was cut so that a cross section parallel to the rolling direction could be observed, wet polishing was performed up to # 1000, and finally surface finishing was performed by electrolytic polishing. The crystal grain size and the phase distribution state were analyzed by an EBSP apparatus manufactured by TSL. For the measurement of the martensite content, for example, a method of measuring and estimating the magnetic permeability of a steel sheet can be used. However, as a result of detailed examination in the present invention, the magnetic permeability is affected by the alloying elements and residual strain. Therefore, it became clear that it was difficult to accurately measure the amount of ferrite. Therefore, in the present invention, the measurement result by the EBSP apparatus is adopted.

以下、実施例および比較例における以上の結果ついて詳細に説明する。表1において本発明スラブ1〜14は、いずれも、式(A)、(B)および合金成分範囲、結晶粒径をすべて満足しており、比較スラブは、式(A)、(B)および合金成分範囲、結晶粒径のうち1または2つ以上の条件が満たされていない。また、発明スラブ1〜6は高価なNiやMoを一切添加せず安価に供給されるスラブである。   Hereinafter, the above results in Examples and Comparative Examples will be described in detail. In Table 1, the slabs 1 to 14 of the present invention all satisfy the formulas (A) and (B), the alloy component range, and the crystal grain size, and the comparative slabs have the formulas (A), (B) and One or more conditions of the alloy component range and the crystal grain size are not satisfied. Inventive slabs 1 to 6 are slabs supplied at low cost without adding any expensive Ni or Mo.

図2は結晶粒径と0.2%耐力との関係を示したもので、結晶粒径が1〜20μmまではホールペッチ則が成り立つが、20μm以上では0.2%耐力が400MPa以下で安定しているのが判る。よって、結晶粒径は20μm以上必要である。   FIG. 2 shows the relationship between the crystal grain size and the 0.2% proof stress. The Hall Petch rule holds for crystal grain sizes from 1 to 20 μm, but the 0.2% proof stress is stable at 400 MPa or less at 20 μm or more. I understand that. Therefore, the crystal grain size needs to be 20 μm or more.

図4は実施例と比較例の応力−歪曲線を表すものである。比較材に対して本発明材は降伏応力を低く抑えながら高い強度と伸びを実現できていることが判る   FIG. 4 shows stress-strain curves of the example and the comparative example. It can be seen that the present invention material achieves high strength and elongation while keeping the yield stress low compared to the comparative material.

以上のように、本発明によれば590MPa級の鋼板レベルの降伏応力で1GPa超級の引張強度と60%以上の伸びを付与することができ、これにより自動車の軽量化と衝突安全性の向上が可能となり、環境への貢献、人命保護など様々な社会貢献が期待できる。   As described above, according to the present invention, a tensile strength of over 1 GPa and an elongation of 60% or more can be imparted with a yield stress of a steel plate level of 590 MPa, thereby reducing the weight of the automobile and improving the collision safety. It is possible to make various social contributions such as environmental contributions and human life protection.

本発明の高強度鋼板は、0.2%耐力が低く、しかも高い引張強度と破断伸びを有する強度とともに優れた深絞り性を有するので、自動車およびその他の技術分野において構造用鋼板として適用することができる。   The high-strength steel sheet of the present invention has a low 0.2% proof stress, and has an excellent deep drawability as well as a high tensile strength and strength having elongation at break. Therefore, it should be applied as a structural steel sheet in automobiles and other technical fields. Can do.

Claims (2)

質量%で、C:0.005〜0.25%、N:0.005〜0.2%、Si:0.01〜3%、Mn:8.9〜17.5%、Cr:2〜14.5%を含有し、残部Feおよび不可避的不純物からなり、CとNの含有量の合計が0.01〜0.25%であり、下記(A)式で表されるNi当量が21.5〜25.5%であり、下記(B)式で表されるMd30が98〜260℃であり、金属組織に占めるオーステナイト相の割合が85%以上、オーステナイト相の結晶粒径が20μm以上であり、0.2%耐力が400MPa以下、引張応力が1000MPa以上、伸びが60%以上であることを特徴とする高強度鋼板。
Ni当量=Ni+12.93C+1.11Mn+0.72Cr+0.88Mo−0
.27Si+0.53Cu−0.69Al+7.55N・・・(A)
Md30(℃)=551−462(C+N)−9.2Si−8.1Mn−13.7
Cr−29(Ni+Cu)−18.2Mo・・・(B)
ただし、各元素記号は当該元素の質量百分率を示す
In mass%, C: 0.005 to 0.25%, N: 0.005 to 0.2%, Si: 0.01 to 3%, Mn: 8.9 to 17.5%, Cr: 2 to 14.5% is included, the balance is Fe and inevitable impurities, the total content of C and N is 0.01 to 0.25%, and the Ni equivalent represented by the following formula (A) is 21. 0.5 to 25.5%, Md30 represented by the following formula (B) is 98 to 260 ° C., the proportion of the austenite phase in the metal structure is 85% or more, and the crystal grain size of the austenite phase is 20 μm or more. A high-strength steel sheet having a 0.2% proof stress of 400 MPa or less, a tensile stress of 1000 MPa or more, and an elongation of 60% or more.
Ni equivalent = Ni + 12.93C + 1.11Mn + 0.72Cr + 0.88Mo-0
. 27Si + 0.53Cu-0.69Al + 7.55N (A)
Md30 (° C) = 551-462 (C + N) -9.2Si-8.1 Mn-13.7
Cr-29 (Ni + Cu) -18.2Mo (B)
However, each element symbol indicates a mass percentage of the element.
質量%で、Cu:0.5〜1.6%、Ni:0.5〜7.2%、Mo:0.01〜2.5%、Al:0.02〜0.05%、B:0.0004〜0.002%の1種または2種以上をさらに含有することを特徴とする請求項1に記載の高強度鋼板。
In mass%, Cu: 0.5-1.6%, Ni: 0.5-7.2%, Mo: 0.01-2.5%, Al: 0.02-0.05%, B: The high-strength steel sheet according to claim 1, further comprising one or more of 0.0004 to 0.002%.
JP2010089492A 2010-04-08 2010-04-08 High strength steel sheet Pending JP2011219809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089492A JP2011219809A (en) 2010-04-08 2010-04-08 High strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089492A JP2011219809A (en) 2010-04-08 2010-04-08 High strength steel sheet

Publications (1)

Publication Number Publication Date
JP2011219809A true JP2011219809A (en) 2011-11-04

Family

ID=45037153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089492A Pending JP2011219809A (en) 2010-04-08 2010-04-08 High strength steel sheet

Country Status (1)

Country Link
JP (1) JP2011219809A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514208A (en) * 2013-03-04 2016-05-19 オウトクンプ ニロスタ ゲゼルシャフト ミット ベシュレンクテル ハフツングOutokumpu Nirosta GmbH Method for producing ultra-high strength materials with high elongation
CN106987785A (en) * 2015-09-25 2017-07-28 斯沃奇集团研究和开发有限公司 Nickel-less austenitic stainless steel
JP6477983B1 (en) * 2018-03-29 2019-03-06 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
CN110062814A (en) * 2016-12-13 2019-07-26 株式会社Posco Low alloy steel plate with excellent intensity and ductility
WO2019186911A1 (en) * 2018-03-29 2019-10-03 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
CN111133122A (en) * 2017-09-25 2020-05-08 株式会社Posco Low alloy steel sheet having excellent strength and ductility and method for manufacturing the same
JP2021511437A (en) * 2018-01-17 2021-05-06 ザ・ナノスティール・カンパニー・インコーポレーテッド Methods for developing yield strength distribution during the formation of alloys and metal parts

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514208A (en) * 2013-03-04 2016-05-19 オウトクンプ ニロスタ ゲゼルシャフト ミット ベシュレンクテル ハフツングOutokumpu Nirosta GmbH Method for producing ultra-high strength materials with high elongation
CN106987785A (en) * 2015-09-25 2017-07-28 斯沃奇集团研究和开发有限公司 Nickel-less austenitic stainless steel
CN110062814A (en) * 2016-12-13 2019-07-26 株式会社Posco Low alloy steel plate with excellent intensity and ductility
JP2020509175A (en) * 2016-12-13 2020-03-26 ポスコPosco Low alloy steel sheet with excellent strength and softness
CN111133122A (en) * 2017-09-25 2020-05-08 株式会社Posco Low alloy steel sheet having excellent strength and ductility and method for manufacturing the same
JP2021511437A (en) * 2018-01-17 2021-05-06 ザ・ナノスティール・カンパニー・インコーポレーテッド Methods for developing yield strength distribution during the formation of alloys and metal parts
JP7262470B2 (en) 2018-01-17 2023-04-21 ザ・ナノスティール・カンパニー・インコーポレーテッド Alloys and methods for developing yield strength distribution during formation of metal parts
JP6477983B1 (en) * 2018-03-29 2019-03-06 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
WO2019186906A1 (en) * 2018-03-29 2019-10-03 日本製鉄株式会社 Austenitic abrasion-resistant steel sheet
WO2019186911A1 (en) * 2018-03-29 2019-10-03 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
EP3594374A4 (en) * 2018-03-29 2020-06-10 Nippon Steel Corporation Austenitic abrasion-resistant steel sheet
US11326237B2 (en) 2018-03-29 2022-05-10 Nippon Steel Corporation Austenitic wear-resistant steel plate

Similar Documents

Publication Publication Date Title
JP6096907B2 (en) Austenitic stainless steel
US11085093B2 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
US10329635B2 (en) High-strength cold-rolled steel sheet having excellent bendability
JP5500960B2 (en) Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
JP4498847B2 (en) Austenitic high Mn stainless steel with excellent workability
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
EP2410068B1 (en) Duplex stainless steel plate having excellent press moldability
US11072837B2 (en) Martensitic stainless steel sheet
EP2947170B1 (en) Stainless steel sheet
JP2011219809A (en) High strength steel sheet
JP5308726B2 (en) Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
JP2019014933A (en) Steel sheet and method of producing the same
KR20150074697A (en) Low-nickel containing stainless steels
JPWO2018061101A1 (en) steel
JP5977609B2 (en) Saving Ni-type austenitic stainless steel
WO2018114865A1 (en) An object comprising a duplex stainless steel and the use thereof
US11680301B2 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
WO2012160594A1 (en) Austenitic stainless steel for spring, and stainless processing material for spring
RU2362814C2 (en) Low-alloy steel and product implemented from it
JP2014189802A (en) LOW Ni AUSTENITIC STAINLESS STEEL SHEET EXCELLENT IN AGE HARDENING PROPERTY AND METHOD OF PRODUCING THE SAME
US20230287549A1 (en) Austenitic stainless steel with improved deep drawing
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
KR20160080304A (en) Duplex stainless steel excellent in deep drawing quality
JP2021143396A (en) Austenite stainless steel and method for calculating upper limit of n
KR20150074698A (en) Low-nickel containing stainless steels