JP2011219538A - Method for reforming heavy oil - Google Patents

Method for reforming heavy oil Download PDF

Info

Publication number
JP2011219538A
JP2011219538A JP2010087223A JP2010087223A JP2011219538A JP 2011219538 A JP2011219538 A JP 2011219538A JP 2010087223 A JP2010087223 A JP 2010087223A JP 2010087223 A JP2010087223 A JP 2010087223A JP 2011219538 A JP2011219538 A JP 2011219538A
Authority
JP
Japan
Prior art keywords
heavy oil
reforming
electrolyte
solution
supersaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010087223A
Other languages
Japanese (ja)
Inventor
Masaru Nakahara
勝 中原
Yasuo Tsujino
康夫 辻野
Jun Kawada
潤 河田
Mitsuru Takakura
満 高倉
Noriko Kono
則子 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINKO KAGAKU ENERGY KAIHATSU KK
Original Assignee
JINKO KAGAKU ENERGY KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINKO KAGAKU ENERGY KAIHATSU KK filed Critical JINKO KAGAKU ENERGY KAIHATSU KK
Priority to JP2010087223A priority Critical patent/JP2011219538A/en
Publication of JP2011219538A publication Critical patent/JP2011219538A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for reforming a heavy oil by simply removing sulfur components contained in the heavy oil under mild conditions.SOLUTION: The method for reforming a heavy oil is characterized by removing sulfur components contained in the heavy oil by mixing a saturated or supersaturated electrolyte solution and the heavy oil. By this method, sulfur components contained in a heavy oil such as A-heavy oil, B-heavy oil or C-heavy oil can be effectively removed without using supercritical water to which a metal or metal catalyst which reacts with water in the presence of alkali and generates hydrogen, has been added.

Description

本発明は、重油の改質方法に関する。より詳細には、重油に含まれる硫黄成分を温和な条件で簡易に除去することによる重油の改質方法に関する。   The present invention relates to a method for reforming heavy oil. More specifically, the present invention relates to a method for reforming heavy oil by simply removing sulfur components contained in heavy oil under mild conditions.

重油は、今後のエネルギー需要に応えるための資源として重要な位置付けにあるが、重油を燃料として有効利用するためには、そこに含まれる硫黄成分を除去することによる改質が必要であることは周知の通りである。従って、重油の脱硫方法についてはこれまでにも種々の方法が提案されているが、近年、超臨界水の特性を生かした方法が注目されている。例えば、特許文献1では、アルカリの存在下で水と反応して水素を発生する鉄などの金属を反応系内に添加し、重油に含まれるチオフェンを超臨界水条件での水熱反応で分解する方法が提案されている。また、反応系内にNiMo触媒などの金属触媒を添加して行う超臨界水条件での水素化脱硫反応による方法なども提案されている(例えば非特許文献1を参照のこと)。しかしながら、水の臨界温度は374℃、臨界圧力は218気圧であるため、超臨界水を用いて重油の脱硫を行うためには高温高圧に耐えうる設備が必要になるといった制約がある。また、特許文献1や非特許文献1に記載の方法では、アルカリの存在下で水と反応して水素を発生する金属や金属触媒を反応系内に添加する必要があるため、処理工程が複雑になる。   Heavy oil is important as a resource to meet future energy demand, but in order to effectively use heavy oil as fuel, it is necessary to modify it by removing the sulfur component contained in it. As is well known. Therefore, various methods for desulfurization of heavy oil have been proposed so far, but in recent years, methods utilizing the characteristics of supercritical water have attracted attention. For example, in Patent Document 1, a metal such as iron that generates hydrogen by reacting with water in the presence of alkali is added to the reaction system, and thiophene contained in heavy oil is decomposed by hydrothermal reaction under supercritical water conditions. A method has been proposed. In addition, a method using a hydrodesulfurization reaction under supercritical water conditions in which a metal catalyst such as a NiMo catalyst is added to the reaction system has also been proposed (see, for example, Non-Patent Document 1). However, since the critical temperature of water is 374 ° C. and the critical pressure is 218 atm, there is a restriction that desulfurization of heavy oil using supercritical water requires equipment that can withstand high temperature and pressure. Further, in the methods described in Patent Document 1 and Non-Patent Document 1, it is necessary to add a metal or a metal catalyst that generates hydrogen by reacting with water in the presence of an alkali to the reaction system, so that the treatment process is complicated. become.

特開2002−219350JP2002-219350

阿尻雅文、「重質油の超臨界水改質」、日本エネルギー学会誌、第88巻第3号、2009年3月、172−175頁Masafumi Ajiri, “Supercritical water reforming of heavy oil”, Journal of the Japan Institute of Energy, Vol. 88, No. 3, March 2009, pp. 172-175

そこで本発明は、重油に含まれる硫黄成分を温和な条件で簡易に除去することによる重油の改質方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for reforming heavy oil by simply removing sulfur components contained in heavy oil under mild conditions.

本発明者らは、上記の点に鑑みて鋭意研究を重ねた結果、飽和濃度以上の電解質溶液と重油を混合すると、アルカリの存在下で水と反応して水素を発生する金属や金属触媒を添加したり、超臨界水を用いたりすることなく、常温常圧の条件であっても、重油に含まれる硫黄成分を効果的に除去することができることを知見した。   As a result of intensive studies in view of the above points, the present inventors have developed a metal or metal catalyst that reacts with water in the presence of alkali to generate hydrogen when an electrolyte solution having a saturated concentration or higher and heavy oil are mixed. It has been found that sulfur components contained in heavy oil can be effectively removed even under normal temperature and normal pressure conditions without adding or using supercritical water.

上記の知見に基づいてなされた本発明の重油の改質方法は、請求項1記載の通り、飽和乃至過飽和濃度の電解質溶液と重油を混合することで重油に含まれる硫黄成分を除去することを特徴とする。
また、請求項2記載の重油の改質方法は、請求項1記載の重油の改質方法において、常圧の常温〜200℃の条件で攪拌して行うことを特徴とする。
また、請求項3記載の改質方法は、請求項1または2記載の改質方法において、飽和乃至過飽和濃度の電解質溶液と重油の混合比率を20:1〜1:20(体積比)とすることを特徴とする。
The method for reforming heavy oil of the present invention based on the above knowledge is to remove the sulfur component contained in heavy oil by mixing a saturated or supersaturated electrolyte solution and heavy oil as claimed in claim 1. Features.
Further, the heavy oil reforming method according to claim 2 is characterized in that in the heavy oil reforming method according to claim 1, stirring is performed under conditions of normal pressure to normal temperature to 200 ° C.
The reforming method according to claim 3 is the reforming method according to claim 1 or 2, wherein the mixing ratio of the saturated or supersaturated electrolyte solution and heavy oil is 20: 1 to 1:20 (volume ratio). It is characterized by that.

本発明によれば、重油に含まれる硫黄成分を温和な条件で簡易に除去することによる重油の改質方法を提供することができる。   According to the present invention, it is possible to provide a method for reforming heavy oil by simply removing sulfur components contained in heavy oil under mild conditions.

実施例1におけるステンレス管に注入した重油の脱硫率の時間的推移を示すグラフである。It is a graph which shows the time transition of the desulfurization rate of the heavy oil inject | poured into the stainless steel pipe | tube in Example 1. FIG. 同、実施例2におけるグラフである。It is a graph in Example 2 same as the above. 同、実施例3におけるグラフである。It is a graph in Example 3 same as the above. 同、実施例4におけるグラフである。It is a graph in Example 4 same as the above. 同、実施例5におけるグラフである。It is a graph in Example 5 similarly. 同、実施例6におけるグラフである。It is a graph in Example 6 similarly. 同、実施例7におけるグラフである。It is a graph in Example 7 similarly.

本発明の重油の改質方法は、飽和乃至過飽和濃度の電解質溶液と重油を混合することで重油に含まれる硫黄成分を除去することを特徴とするものである。本発明によれば、アルカリの存在下で水と反応して水素を発生する金属や金属触媒を添加したり、超臨界水を用いたりすることなく、A重油、B重油、C重油などの重油に含まれる硫黄成分を効果的に除去することができる。   The method for reforming heavy oil according to the present invention is characterized in that a sulfur component contained in heavy oil is removed by mixing a saturated or supersaturated electrolyte solution with heavy oil. According to the present invention, heavy oil such as A heavy oil, B heavy oil, C heavy oil, etc., without adding a metal or metal catalyst that generates hydrogen by reacting with water in the presence of alkali or using supercritical water. The sulfur component contained in can be effectively removed.

飽和乃至過飽和濃度の電解質溶液を調製するための電解質としては、アルカリ性電解質である水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウムなどの金属水酸化物などを用いてもよいが、中性電解質である塩化リチウム、塩化カリウム、塩化ルビジウム、塩化ナトリウム、塩化セシウム、塩化マグネシウム、塩化カルシウムなどの金属塩化物、硫酸リチウム、硫酸カリウム、硫酸ルビジウム、硫酸ナトリウム、硫酸セシウム、硫酸マグネシウム、硫酸カルシウムなどの硫酸金属塩、炭酸リチウム、炭酸カリウム、炭酸ルビジウム、炭酸ナトリウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウムなどの炭酸金属塩などを用いることが処理環境に対する安全性の観点から望ましい。電解質の価数は特段限定されるものではないが、脱硫効果が優れる点において1価よりも2価が望ましい。なお、飽和乃至過飽和濃度の電解質溶液の調製は、処理温度において飽和乃至過飽和濃度とするための必要量の電解質を水に溶解することで行えばよい。   Examples of the electrolyte for preparing a saturated or supersaturated electrolyte solution include alkaline electrolytes such as sodium hydroxide, lithium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, and calcium hydroxide. Hydroxides may be used, but neutral electrolytes such as lithium chloride, potassium chloride, rubidium chloride, sodium chloride, cesium chloride, magnesium chloride, calcium chloride and other metal chlorides, lithium sulfate, potassium sulfate, rubidium sulfate Use of metal sulfates such as sodium sulfate, cesium sulfate, magnesium sulfate, calcium sulfate, metal carbonates such as lithium carbonate, potassium carbonate, rubidium carbonate, sodium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, etc. Against Desirable from the point of view of gender. The valence of the electrolyte is not particularly limited, but divalent is preferable to monovalent in that the desulfurization effect is excellent. It should be noted that the electrolyte solution having a saturated or supersaturated concentration may be prepared by dissolving a necessary amount of electrolyte for obtaining a saturated or supersaturated concentration at the treatment temperature in water.

飽和乃至過飽和濃度の電解質溶液と重油の混合は、例えば常圧(加圧や減圧を行っていない圧力)の常温(例えば5℃〜35℃)〜200℃の条件で攪拌(例えばスターラーを100rpm〜2000rpmで回転させることによる)して行うことが、多量のエネルギーを消費することなく短時間で効果的に脱硫を行うことができる点において望ましい。特筆すべきは、常温常圧であっても脱硫を行うことができることであり、本発明の方法は、これまでに提案されているアルカリの存在下で水と反応して水素を発生する金属や金属触媒を添加した超臨界水を用いる方法とは根本的に異なるものである。飽和乃至過飽和濃度の電解質溶液と重油の混合比率は、例えば20:1〜1:20(体積比)とすることが望ましい。飽和乃至過飽和濃度の電解質溶液に対して重油が少なすぎると脱硫効率に劣る恐れがある一方、重油が多すぎると脱硫を十分に行うことができない恐れがある。なお、攪拌混合時間は例えば10分間〜100時間とすればよい。処理後は油水分離を行うことで脱硫された重油を回収することができる。また、回収した重油に対して再び本発明の方法によって脱硫を行ってもよい。   Mixing of the electrolyte solution with saturated or supersaturated concentration and heavy oil is performed, for example, with stirring (for example, a stirrer of 100 rpm to 100 rpm) at normal pressure (pressure not applied or reduced pressure) at normal temperature (eg, 5 ° C. to 35 ° C.) to 200 ° C. (By rotating at 2000 rpm) is desirable in that desulfurization can be performed effectively in a short time without consuming a large amount of energy. It should be noted that desulfurization can be performed even at room temperature and normal pressure, and the method of the present invention is a metal or metal that reacts with water in the presence of an alkali so far to generate hydrogen. This is fundamentally different from the method using supercritical water to which a metal catalyst is added. The mixing ratio of the saturated or supersaturated electrolyte solution and heavy oil is preferably 20: 1 to 1:20 (volume ratio), for example. If the amount of heavy oil is too small relative to the electrolyte solution having a saturated or supersaturated concentration, the desulfurization efficiency may be inferior. On the other hand, if the amount of heavy oil is excessive, desulfurization may not be performed sufficiently. The stirring and mixing time may be, for example, 10 minutes to 100 hours. After the treatment, desulfurized heavy oil can be recovered by performing oil-water separation. Further, the recovered heavy oil may be desulfurized again by the method of the present invention.

以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted.

実施例1:電解質として水酸化ナトリウムを用いた検討(その1)
全長:15cm×外径:1cm×内径:0.7cmのステンレス管(SUS316)に、20N(規定:以下同じ)の水酸化ナトリウム水溶液(150℃における飽和濃度溶液)約5gと重油(A重油)約0.4gを注入し(体積比にして約9:1)、回転子を入れてネジ式の蓋を閉め、ホットスターラー上のオイルバスに浸し、150℃にて48時間、回転子を1500rpmで回転させてステンレス管内の試料を常圧で攪拌混合した。ステンレス管に注入した重油の脱硫率の時間的推移を図1に示す。図1には20Nの水酸化ナトリウム水溶液に代わりに1Nの水酸化ナトリウム水溶液と10Nの水酸化ナトリウム水溶液をそれぞれ用いた場合の結果をあわせて示す。なお、重油の脱硫率(%)は(1−処理後の硫黄成分含量wt%/処理前の硫黄成分含量wt%)×100の数式で求めた。処理前後の重油中の硫黄成分含量は、重油(約2mg)を試料容器に精密秤量し、Heキャリアーガスと共に900℃〜1000℃の反応管内に導入し、熱分解した重油中の硫黄成分を酸素ガスにより燃焼酸化して吸収液に捕集し(SO,SO→SO 2−)、吸収液の一定量をイオンクロマトグラフィーに注入して定量し、既知標準サンプルから求めた検量線に基づいて算出した。
図1から明らかなように、20Nの水酸化ナトリウム水溶液を用いた場合、150℃での48時間の処理で15%の脱硫率を達成することができた。1Nの水酸化ナトリウム水溶液と10Nの水酸化ナトリウム水溶液をそれぞれ用いた場合でも脱硫を行うことができたが、その程度は極めて低いものであった。以上の結果から、150℃という超臨界水条件よりもはるかに温和な条件であっても、飽和濃度の水酸化ナトリウム水溶液と重油を攪拌混合することで、アルカリの存在下で水と反応して水素を発生する金属や金属触媒などを反応系内に添加することなく、重油に含まれる硫黄成分を効果的に除去することができることがわかった。
Example 1: Investigation using sodium hydroxide as electrolyte (part 1)
Total length: 15cm x outer diameter: 1cm x inner diameter: 0.7cm stainless steel tube (SUS316), 20N (regulation: same as below) sodium hydroxide aqueous solution (saturated concentration solution at 150 ° C) about 5g and heavy oil (heavy oil A) Inject about 0.4 g (volume ratio: about 9: 1), put the rotor, close the screw-type lid, immerse it in an oil bath on a hot stirrer, and heat the rotor to 1500 rpm at 150 ° C. for 48 hours. The sample in the stainless steel tube was stirred and mixed at normal pressure. The time course of the desulfurization rate of heavy oil injected into the stainless steel pipe is shown in FIG. FIG. 1 also shows the results when a 1N aqueous sodium hydroxide solution and a 10N aqueous sodium hydroxide solution were used in place of the 20N aqueous sodium hydroxide solution, respectively. In addition, the desulfurization rate (%) of heavy oil was calculated | required by the numerical formula of (1-sulfur component content wt% after a process / sulfur component content wt% before a process) x100. The sulfur content in the heavy oil before and after the treatment is as follows. Heavy oil (about 2 mg) is precisely weighed in a sample container, introduced into a reaction tube at 900 ° C. to 1000 ° C. with He carrier gas, and the sulfur component in the pyrolyzed heavy oil is oxygenated. Combusted and oxidized with gas and collected in the absorption liquid (SO 2 , SO 3 → SO 4 2− ), and a fixed amount of the absorption liquid was injected into ion chromatography for quantification, and a calibration curve obtained from a known standard sample was obtained. Based on the calculation.
As is apparent from FIG. 1, when a 20N aqueous sodium hydroxide solution was used, a desulfurization rate of 15% could be achieved by treatment at 150 ° C. for 48 hours. Desulfurization could be carried out even when a 1N aqueous sodium hydroxide solution and a 10N aqueous sodium hydroxide solution were used, respectively, but the degree was extremely low. From the above results, even under conditions that are much milder than the supercritical water condition of 150 ° C., by stirring and mixing a saturated sodium hydroxide aqueous solution and heavy oil, it reacts with water in the presence of alkali. It was found that the sulfur component contained in heavy oil can be effectively removed without adding a metal or metal catalyst that generates hydrogen into the reaction system.

実施例2:電解質として水酸化ナトリウムを用いた検討(その2)
処理温度を100℃として、20Nの水酸化ナトリウム水溶液(100℃における過飽和濃度溶液)を用いること以外は実施例1と同様の条件で処理を行った。結果を図2に示す。図2から明らかなように、処理温度において水酸化ナトリウム水溶液を過飽和濃度溶液にすることで、実施例1よりも低温の100℃において脱硫率が向上することがわかった。
Example 2: Investigation using sodium hydroxide as electrolyte (part 2)
The treatment was performed under the same conditions as in Example 1 except that the treatment temperature was 100 ° C. and a 20N aqueous sodium hydroxide solution (supersaturated solution at 100 ° C.) was used. The results are shown in FIG. As is clear from FIG. 2, it was found that the desulfurization rate was improved at 100 ° C. lower than that of Example 1 by changing the aqueous sodium hydroxide solution to a supersaturated concentration solution at the treatment temperature.

実施例3:電解質の相違が脱硫効果に及ぼす影響の検討
処理温度を150℃として、25Nの水酸化ナトリウム水溶液と6Nの塩化マグネシウム水溶液をそれぞれ用いる(いずれも150℃における過飽和濃度溶液)こと以外は実施例1と同様の条件で処理を行った。結果を図3に示す。図3から明らかなように、処理温度において水酸化ナトリウム水溶液を過飽和濃度溶液にすることで、実施例1よりも短時間で脱硫を行うことができることがわかった。また、過飽和濃度の塩化マグネシウム水溶液を用いた場合でも同様の結果が得られたことから、この脱硫反応は、アルカリ性電解質を用いた場合に限定される反応ではなく、中性電解質を用いた場合でも起こる反応であることがわかった。以上の結果から、飽和乃至過飽和濃度の電解質溶液は、豊富なイオン電荷による電場が重油に含まれる硫黄成分の除去が起こるための反応場を提供し、とりわけ過飽和濃度においては析出したイオン結晶がもたらす界面電場が脱硫に好適な反応場を形成することで、超臨界水条件よりもはるかに温和な条件であっても、重油に含まれる硫黄成分が効果的に除去されるものであると推察された。
Example 3: Examination of influence of electrolyte difference on desulfurization effect Except for using a 25N sodium hydroxide aqueous solution and a 6N magnesium chloride aqueous solution at a treatment temperature of 150 ° C (both are supersaturated solutions at 150 ° C). The treatment was performed under the same conditions as in Example 1. The results are shown in FIG. As is clear from FIG. 3, it was found that desulfurization can be performed in a shorter time than in Example 1 by changing the aqueous sodium hydroxide solution to a supersaturated concentration solution at the treatment temperature. In addition, since the same result was obtained even when using a supersaturated magnesium chloride aqueous solution, this desulfurization reaction is not limited to the case where an alkaline electrolyte is used, and even when a neutral electrolyte is used. It turned out to be a reaction that takes place. From the above results, the electrolyte solution of saturated to supersaturated concentration provides a reaction field for the removal of the sulfur component contained in heavy oil by the electric field due to abundant ionic charges, and in particular at the supersaturated concentration, the precipitated ionic crystals result. It is presumed that the sulfur component contained in heavy oil is effectively removed even when the interface electric field forms a reaction field suitable for desulfurization, even under milder conditions than supercritical water conditions. It was.

実施例4:電解質として1価の中性電解質を用いた常温常圧における脱硫効果の検討
塩化ナトリウムと塩化セシウムを用い、図4に示す4種類の条件(処理温度:25℃。いずれも電解質溶液は25℃における過飽和濃度溶液であって、OilはA重油、Wは電解質溶液、比率は体積比を示す)で処理を行うこと以外は実施例1と同様の条件で処理を行ったところ、図4から明らかなように、25℃において処理を開始してからわずか30分間で30%以上の脱硫率を達成することができた(塩化セシウムの処理時間は30分間)。
Example 4: Examination of desulfurization effect at normal temperature and pressure using a monovalent neutral electrolyte as an electrolyte Using sodium chloride and cesium chloride, four types of conditions shown in FIG. 4 (treatment temperature: 25 ° C., both of which are electrolyte solutions Is a supersaturated concentration solution at 25 ° C., where Oil is A heavy oil, W is an electrolyte solution, and the ratio is a volume ratio). As can be seen from FIG. 4, a desulfurization rate of 30% or more could be achieved in only 30 minutes after starting the treatment at 25 ° C. (treatment time of cesium chloride was 30 minutes).

実施例5:電解質として2価の中性電解質を用いた常温常圧における脱硫効果の検討
塩化マグネシウムと塩化カルシウムを用い、図5に示す4種類の条件(処理温度:25℃。いずれも電解質溶液は25℃における過飽和濃度溶液であって、OilはA重油、Wは電解質溶液、比率は体積比を示す)で処理を行うこと以外は実施例1と同様の条件で処理を行ったところ、図5から明らかなように、25℃において処理を開始してからわずか30分間で35%以上の脱硫率を達成することができた(塩化カルシウムの処理時間は30分間)。実施例5の脱硫率は実施例4の脱硫率よりも総じて優れていることから、電解質の価数は1価よりも2価が適していることがわかった。
Example 5: Examination of desulfurization effect at normal temperature and normal pressure using a divalent neutral electrolyte as an electrolyte Using magnesium chloride and calcium chloride, four conditions shown in FIG. 5 (treatment temperature: 25 ° C., both of which are electrolyte solutions Is a supersaturated concentration solution at 25 ° C., where Oil is A heavy oil, W is an electrolyte solution, and the ratio is a volume ratio). As can be seen from FIG. 5, a desulfurization rate of 35% or more could be achieved in only 30 minutes after starting the treatment at 25 ° C. (calcium chloride treatment time was 30 minutes). Since the desulfurization rate of Example 5 was generally superior to the desulfurization rate of Example 4, it was found that the valence of the electrolyte was more suitable than the monovalence.

実施例6:電解質として塩化マグネシウムを用いた検討(その1)
過飽和濃度の塩化マグネシウム水溶液を用い、図6に示す条件で処理を行うこと以外は実施例1と同様の条件で処理を行ったところ、図6から明らかなように、20℃において処理を開始してからわずか30分間で30%以上の脱硫率を達成することができた。
Example 6: Investigation using magnesium chloride as an electrolyte (part 1)
When a treatment was performed under the same conditions as in Example 1 except that a supersaturated magnesium chloride aqueous solution was used and the treatment was carried out under the conditions shown in FIG. 6, the treatment was started at 20 ° C. as apparent from FIG. In just 30 minutes, a desulfurization rate of 30% or more was achieved.

実施例7:電解質として塩化マグネシウムを用いた検討(その2)
過飽和濃度の塩化マグネシウム水溶液を用い、図7に示す条件で処理を行うこと以外は実施例1と同様の条件で処理を行ったところ、図7から明らかなように、20℃において処理を開始してからわずか30分間で30%以上の脱硫率を達成することができた。
Example 7: Investigation using magnesium chloride as an electrolyte (part 2)
When the supersaturated magnesium chloride aqueous solution was used and the treatment was carried out under the same conditions as in Example 1 except that the treatment was carried out under the conditions shown in FIG. 7, the treatment was started at 20 ° C. as apparent from FIG. In just 30 minutes, a desulfurization rate of 30% or more was achieved.

実施例8:攪拌の有無が脱硫効果に及ぼす影響の検討
スターラーを回転させて攪拌混合せずに24時間放置すること以外は実施例4と実施例5と同様の条件で処理を行ったところ、いずれの場合も30%〜35%の脱硫率を達成することができた。以上の結果から、攪拌は脱硫のために必須ではないが、処理時間の短縮に効果があることがわかった。
Example 8: Examination of the influence of the presence or absence of stirring on the desulfurization effect When the treatment was performed under the same conditions as in Examples 4 and 5, except that the stirrer was rotated and left for 24 hours without stirring and mixing, In any case, a desulfurization rate of 30% to 35% could be achieved. From the above results, it was found that stirring is not essential for desulfurization but is effective in shortening the treatment time.

本発明は、重油に含まれる硫黄成分を温和な条件で簡易に除去することによる重油の改質方法を提供することができる点において産業上の利用可能性を有する。   The present invention has industrial applicability in that it can provide a method for reforming heavy oil by simply removing sulfur components contained in heavy oil under mild conditions.

Claims (3)

飽和乃至過飽和濃度の電解質溶液と重油を混合することで重油に含まれる硫黄成分を除去することを特徴とする重油の改質方法。   A method for reforming heavy oil, characterized in that a sulfur component contained in heavy oil is removed by mixing a saturated or supersaturated electrolyte solution with heavy oil. 常圧の常温〜200℃の条件で攪拌して行うことを特徴とする請求項1記載の重油の改質方法。   The method for reforming heavy oil according to claim 1, wherein the reforming is performed under normal pressure to normal temperature to 200 ° C. under stirring. 飽和乃至過飽和濃度の電解質溶液と重油の混合比率を20:1〜1:20(体積比)とすることを特徴とする請求項1または2記載の重油の改質方法。
The method for reforming heavy oil according to claim 1 or 2, wherein a mixing ratio of the electrolyte solution having a saturated or supersaturated concentration and heavy oil is 20: 1 to 1:20 (volume ratio).
JP2010087223A 2010-04-05 2010-04-05 Method for reforming heavy oil Withdrawn JP2011219538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087223A JP2011219538A (en) 2010-04-05 2010-04-05 Method for reforming heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087223A JP2011219538A (en) 2010-04-05 2010-04-05 Method for reforming heavy oil

Publications (1)

Publication Number Publication Date
JP2011219538A true JP2011219538A (en) 2011-11-04

Family

ID=45036934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087223A Withdrawn JP2011219538A (en) 2010-04-05 2010-04-05 Method for reforming heavy oil

Country Status (1)

Country Link
JP (1) JP2011219538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914885B2 (en) 2013-03-05 2018-03-13 Saudi Arabian Oil Company Process to upgrade and desulfurize crude oil by supercritical water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914885B2 (en) 2013-03-05 2018-03-13 Saudi Arabian Oil Company Process to upgrade and desulfurize crude oil by supercritical water

Similar Documents

Publication Publication Date Title
US8747660B2 (en) Process for desulfurizing petroleum feedstocks
US9297084B2 (en) Electrochemical production of hydrogen
CN105229843A (en) The processing method of fluorine-containing electrolyte
TWI507363B (en) Treatment of Copper Etching Waste
JP5849880B2 (en) Method for leaching metal and method for recovering metal from battery
JP6921791B2 (en) Lithium carbonate manufacturing method
CN102115279B (en) Method for removing phosphorus in sodium hypochlorite wastewater in acetylene cleaning process
JP5190320B2 (en) Methane gas recovery method and energy conversion system
JP2011219538A (en) Method for reforming heavy oil
JP4954131B2 (en) Treatment method of water containing borofluoride
JP5834750B2 (en) Method for treating wastewater containing a fluorophosphate compound
CN205974105U (en) Lose liquid waste liquid treatment device a little
JP6483406B2 (en) Treatment method for fluorine-containing wastewater
FR2817492A1 (en) METHOD OF DISSOLVING SOLIDS FORMED IN A NUCLEAR PLANT
Kitamura et al. Utilization of carbon dioxide to synthesize large scorodite particles under ultrasound irradiation
ES2650952T3 (en) Process to desulfurize petroleum raw materials
CN106635431A (en) Method for producing polyhydroxy vegetable oil by using swill oil
JP6723057B2 (en) Water treatment method and water treatment system
JPWO2016129009A1 (en) Method for producing metal vanadium
JP4913649B2 (en) Method for producing pentavalent arsenic-containing liquid
JP6276281B2 (en) Processing method of mixed solution
CN110629033A (en) Method for recovering cobalt and nickel from tungsten waste smelting slag
JP6723058B2 (en) Water treatment method and water treatment system
JP6730986B2 (en) Method for recovering lithium from a lithium-sulfur battery
CN104477999A (en) Method for preparing manganese sulfate by absorbing sulfur dioxide in flue gas by composite pulp

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702