JP2011218757A - Fiber reinforced resin structure member, and method for manufacturing the same - Google Patents

Fiber reinforced resin structure member, and method for manufacturing the same Download PDF

Info

Publication number
JP2011218757A
JP2011218757A JP2010093052A JP2010093052A JP2011218757A JP 2011218757 A JP2011218757 A JP 2011218757A JP 2010093052 A JP2010093052 A JP 2010093052A JP 2010093052 A JP2010093052 A JP 2010093052A JP 2011218757 A JP2011218757 A JP 2011218757A
Authority
JP
Japan
Prior art keywords
fiber
layer portion
reinforced resin
structural member
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010093052A
Other languages
Japanese (ja)
Inventor
Mitsuo Takai
三男 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cap Co Ltd
Original Assignee
Cap Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cap Co Ltd filed Critical Cap Co Ltd
Priority to JP2010093052A priority Critical patent/JP2011218757A/en
Publication of JP2011218757A publication Critical patent/JP2011218757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber reinforced resin structure member capable of reducing weight, reducing a manufacturing cost, improving strength, also enabling mass production, inexpensive in a material and further capable of molding a complicated shape, and to provide a method for manufacturing the same.SOLUTION: In the fiber reinforced resin structure member 1 formed out of a composite material of a resin and fibers, an internal layer part 2 is composed of a core material in which a fiber structure is impregnated with a thermoplastic resin and an external layer part 3 covering the periphery of this internal layer part 2 is composed of a thermoplastic resin containing long fibers.

Description

本発明は、繊維で強化された繊維強化樹脂構造部材及びその製造方法に関するものである。   The present invention relates to a fiber-reinforced resin structural member reinforced with fibers and a method for producing the same.

従来から自動車のパワートレインの筐体等の構造部材は、アルミダイキャスト製法により製造されていたが、更なる、軽量化とコスト低減が自動車業界の課題と要求であり、現状のアルミ素材では、製造プロセスの変革と軽量化は限界に近いものである。   Conventionally, structural members such as the chassis of automobile powertrains have been manufactured by the aluminum die casting method, but further weight reduction and cost reduction are the challenges and requirements of the automobile industry. Manufacturing process transformation and weight reduction are near limits.

そこで、軽量化やコスト低減を図るものとして、特許文献1に記載されたように、繊維強化樹脂よりなる積層構造体が提案されている。このような繊維強化樹脂を射出成形したものは、アルミダイキャストより軽量化が図られると共に、機械加工等の後工程が必要なく製造コストを低減できる。   Therefore, as described in Patent Document 1, a laminated structure made of a fiber reinforced resin has been proposed as a means for reducing weight and cost. Such a fiber reinforced resin injection-molded can be made lighter than aluminum die-casting, and can be manufactured at a lower cost without a post-process such as machining.

しかし、このようなものにあっては、3割程度の軽量化にとどまると共に、自動車部品等の比較的大きな荷重がかかるものにおいては、強度が十分とは言い難かった。   However, in such a case, the weight is only about 30%, and it is difficult to say that the strength is sufficient in a case where a relatively large load such as an automobile part is applied.

そこで、より軽量化を図ることができると共に、強度の向上を図ることができるものとして熱硬化性炭素繊維強化プラスチックが提案されている。   Accordingly, thermosetting carbon fiber reinforced plastics have been proposed as being capable of further reducing the weight and improving the strength.

特開2007−307778号公報JP 2007-307778 A

しかしながら、このような熱硬化性炭素繊維強化プラスチックにあっては、大量生産が難しいと共に、材料が高価であり、又、複雑な形状の成形が難しい、という問題があった。   However, such thermosetting carbon fiber reinforced plastics have problems that mass production is difficult, materials are expensive, and complicated shapes are difficult to mold.

本発明は、かかる従来の技術に鑑み、軽量化、製造コストの低減、強度の向上を図ることができると共に、大量生産が可能で、材料が安価であり、又、複雑な形状の成形が可能な繊維強化樹脂構造部材及びその製造方法を提供することを目的とする。   In view of the conventional technology, the present invention can reduce the weight, reduce the manufacturing cost, improve the strength, can be mass-produced, the material is inexpensive, and a complicated shape can be formed. An object of the present invention is to provide a fiber reinforced resin structural member and a method for producing the same.

かかる課題を解決するため、請求項1に記載の発明は、樹脂と繊維の複合材からなる繊維強化樹脂構造部材であって、内層部を、繊維構造体に熱可塑性樹脂を含浸した芯材で構成し、該内層部の周囲を覆う外層部を、長繊維を含有する熱可塑性樹脂からなる繊維強化樹脂構造部材としたことを特徴とする。   In order to solve this problem, the invention described in claim 1 is a fiber reinforced resin structural member made of a composite material of resin and fiber, wherein the inner layer portion is a core material in which a fibrous structure is impregnated with a thermoplastic resin. The outer layer part which comprises and covers the circumference | surroundings of this inner layer part was made into the fiber reinforced resin structural member which consists of a thermoplastic resin containing a long fiber.

請求項2に記載の発明は、請求項1に記載の構成に加え、前記繊維の前記熱可塑性樹脂に対する含有比率は、前記繊維強化樹脂構造部材の外表面から板厚の中心部に向かって前記繊維の含有率が増大することを特徴とする。   In addition to the structure of Claim 1, the invention according to Claim 2 is characterized in that the content ratio of the fiber to the thermoplastic resin is from the outer surface of the fiber reinforced resin structural member toward the center of the plate thickness. The fiber content is increased.

請求項3に記載の発明は、請求項1又は2に記載の構成に加え、前記外層部の熱可塑性樹脂に金属又は鉱物の粉末が混合されていることを特徴とする。   The invention described in claim 3 is characterized in that, in addition to the structure described in claim 1 or 2, a metal or mineral powder is mixed in the thermoplastic resin of the outer layer portion.

請求項4に記載の発明は、請求項1乃至3の何れか一つに記載の構成に加え、前記繊維構造体及び前記長繊維は、炭素繊維であることを特徴とする。   The invention described in claim 4 is characterized in that, in addition to the structure described in any one of claims 1 to 3, the fiber structure and the long fiber are carbon fibers.

請求項5に記載の発明は、請求項1乃至4の何れか一つに記載の繊維強化樹脂構造部材の製造方法であって、予め所定の形状に成形した前記芯材である前記内層部を成形型内に配置し、前記外層部を構成する前記長繊維を含有する熱可塑性樹脂を前記成形型内に射出して成形する繊維強化樹脂構造部材の製造方法としたことを特徴とする。   Invention of Claim 5 is a manufacturing method of the fiber reinforced resin structural member as described in any one of Claim 1 thru | or 4, Comprising: The said inner-layer part which is the said core material shape | molded in the predetermined shape previously The fiber-reinforced resin structural member is manufactured by injecting a thermoplastic resin containing the long fibers constituting the outer layer portion into the mold and molding the mold.

請求項6に記載の発明は、請求項5に記載の構成に加え、前記内層部を前記成形型内に配置する際に、前記内層部を前記成形型に対して固定する固定手段を設けたことを特徴とする。   The invention described in claim 6 includes, in addition to the configuration described in claim 5, a fixing means for fixing the inner layer portion to the mold when the inner layer portion is disposed in the mold. It is characterized by that.

請求項7に記載の発明は、請求項5又は6に記載の構成に加え、前記外層部の射出成形は、前記成形型の固定型、可動型の略対向する位置に設けた少なくとも一対の吐出口から、前記内層部の両側に、前記長繊維を含有する溶融した前記熱可塑性樹脂を射出することにより成形したことを特徴とする。   According to a seventh aspect of the invention, in addition to the configuration of the fifth or sixth aspect, the outer layer portion is injection-molded by at least a pair of discharge nozzles provided at substantially opposed positions of the fixed mold and the movable mold of the mold. It is characterized by being molded by injecting the molten thermoplastic resin containing the long fibers on both sides of the inner layer portion from the outlet.

請求項1に記載された発明によれば、内層部は繊維構造体に熱可塑性樹脂を含浸した芯材で構成し、外層部は長繊維を含有する熱可塑性樹脂からなるため、軽量化、製造コストの低減、強度の向上を図ることができると共に、大量生産が可能で、材料が安価であり、又、複雑な形状の成形を行うことができる。   According to the first aspect of the present invention, the inner layer portion is composed of a core material in which a fiber structure is impregnated with a thermoplastic resin, and the outer layer portion is made of a thermoplastic resin containing long fibers. The cost can be reduced and the strength can be improved, mass production is possible, the material is inexpensive, and a complicated shape can be formed.

請求項2に記載された発明によれば、繊維の熱可塑性樹脂に対する含有比率は、繊維強化樹脂構造部材の外表面から板厚の中心部に向かって繊維の含有率が増大しているため、強度、剛性を向上させることができる。   According to the invention described in claim 2, since the content ratio of the fiber to the thermoplastic resin is increased from the outer surface of the fiber reinforced resin structural member toward the center of the plate thickness, Strength and rigidity can be improved.

請求項3に記載された発明によれば、外層部の熱可塑性樹脂に金属又は鉱物の粉末が混合されているため、表面には長繊維が露出せず、金属又は鉱物の粉末が表れることから、この金属又は鉱物の粉末を調整することにより、外観の色等を調整できる。   According to the invention described in claim 3, since the metal or mineral powder is mixed with the thermoplastic resin of the outer layer portion, the long fibers are not exposed on the surface, and the metal or mineral powder appears. By adjusting this metal or mineral powder, the color of the appearance can be adjusted.

請求項4に記載された発明によれば、内層部及び外層部には、炭素繊維を用いているため、他の繊維と比べ軽量で効果的に強度を確保できる。   According to the invention described in claim 4, since carbon fibers are used for the inner layer portion and the outer layer portion, the strength can be effectively ensured with a lighter weight than other fibers.

請求項5に記載された発明によれば、内層部の周囲に、外層部を構成する長繊維を含有する熱可塑性樹脂を成形型内に射出して成形したため、容易に繊維強化樹脂構造部材を成形できる。   According to the invention described in claim 5, since the thermoplastic resin containing the long fibers constituting the outer layer portion is injected into the mold and molded around the inner layer portion, the fiber reinforced resin structural member can be easily formed. Can be molded.

請求項6に記載された発明によれば、固定手段を設けることにより、内層部を容易に成形型内に安定的に配設できる。   According to the invention described in claim 6, by providing the fixing means, the inner layer portion can be easily and stably disposed in the mold.

請求項7に記載された発明によれば、外層部の射出成形は、固定型、可動型の略対向する位置に設けた少なくとも一対の吐出口から、内層部の両側に、長繊維を含有する溶融した熱可塑性樹脂を射出するようにしたため、内層部の全周に容易に溶融樹脂を行き渡らせることができると共に、この外層部の肉厚を薄く均一に成形することもできる。   According to the invention described in claim 7, the injection molding of the outer layer portion includes long fibers on both sides of the inner layer portion from at least a pair of discharge ports provided at substantially opposed positions of the fixed mold and the movable mold. Since the molten thermoplastic resin is injected, the molten resin can be easily spread all around the inner layer portion, and the wall thickness of the outer layer portion can be thinly and uniformly formed.

この発明の実施の形態に係る繊維強化樹脂構造部材である自動車用ギヤボックスを示す斜視図である。It is a perspective view which shows the gearbox for motor vehicles which is a fiber reinforced resin structural member which concerns on embodiment of this invention. 同実施の形態に係る繊維強化樹脂構造部材の断面図である。It is sectional drawing of the fiber reinforced resin structural member which concerns on the same embodiment. 同実施の形態に係る成形品である繊維強化樹脂構造部材の断面における板厚中心方向と炭素繊維の含有率との関係を示すグラフ図である。It is a graph which shows the relationship between the plate thickness center direction in the cross section of the fiber reinforced resin structural member which is a molded article which concerns on the same embodiment, and the content rate of carbon fiber. 同実施の形態に係る芯材を成形するプレス型等を示す正面図である。It is a front view which shows the press die etc. which shape | mold the core material which concerns on the same embodiment. 同実施の形態に係る繊維強化樹脂構造部材の成形状態を示す成形型等の断面図である。It is sectional drawing, such as a shaping | molding die which shows the shaping | molding state of the fiber reinforced resin structural member which concerns on the embodiment. 同実施の形態に係る成形型を離型した状態の断面図である。It is sectional drawing of the state which released the shaping | molding die concerning the embodiment. 同実施の形態に係る繊維長と繊維強化効果係数との関係を示すグラフ図である。It is a graph which shows the relationship between the fiber length which concerns on the same embodiment, and a fiber reinforcement effect coefficient. 同実施の形態に係る炭素繊維含有率と引張強さとの関係を示すグラフ図である。It is a graph which shows the relationship between the carbon fiber content rate and tensile strength which concern on the same embodiment.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1乃至図8は、本発明の実施の形態に係る図である。   1 to 8 are diagrams according to an embodiment of the present invention.

この実施の形態に係る繊維強化樹脂構造部材1は、図1に示すように、自動車用ギヤボックスで、樹脂と繊維の複合材からなる樹脂構造部材であって、図2に示すように、内層部2と、この内層部2の周囲を覆うように成形された外層部3とから構成されている。   A fiber reinforced resin structural member 1 according to this embodiment is an automotive gearbox as shown in FIG. 1 and is a resin structural member made of a composite material of resin and fiber, and as shown in FIG. It is comprised from the part 2 and the outer layer part 3 shape | molded so that the circumference | surroundings of this inner layer part 2 might be covered.

その内層部2は、繊維構造体に熱可塑性樹脂を含浸した芯材で構成され、又、外層部3は、長繊維を含有する熱可塑性樹脂から構成されている。この内層部2及び外層部3の熱可塑性樹脂としては、例えばポリプロピレン(PP)、ポリアミド(PA),ポリフェニレンスルファイド(PPS)等が用いられる。ここでは、内層部2と外層部3との熱可塑性樹脂が密着性を確保するため同じ材質で形成されているが、これに限らず、密着性を確保できるものであれば、他の材質でも良い。   The inner layer portion 2 is made of a core material in which a fiber structure is impregnated with a thermoplastic resin, and the outer layer portion 3 is made of a thermoplastic resin containing long fibers. As the thermoplastic resin of the inner layer portion 2 and the outer layer portion 3, for example, polypropylene (PP), polyamide (PA), polyphenylene sulfide (PPS), or the like is used. Here, the thermoplastic resin of the inner layer part 2 and the outer layer part 3 is formed of the same material in order to ensure adhesion, but not limited to this, any material can be used as long as it can ensure adhesion. good.

その繊維構造体及び長繊維は、この実施の形態では炭素繊維であるが、これに限らず、ガラス、ステンレス、ケプラー等の繊維でも良く、又、その繊維構造体は、織布、不織布或いは網等でも良い。   The fiber structure and the long fiber are carbon fibers in this embodiment, but are not limited thereto, and may be fibers such as glass, stainless steel, and Kepler. The fiber structure may be a woven fabric, a non-woven fabric, or a mesh. Etc.

また、その炭素繊維の熱可塑性樹脂に対する含有比率は、繊維強化樹脂構造部材1の外表面から板厚の中心部に向かって炭素繊維の含有率が増大するように成形されている。すなわち、図3には、成形品である繊維強化樹脂構造部材1の断面における板厚中心方向と炭素繊維の含有率との関係を示す。この図によれば、繊維強化樹脂構造部材1の外層部3の表面は、炭素繊維の含有率が0%で、ここから板厚中心に向かうに従って急激に40%まで増加し、40%で暫く安定し、その後、40%から60%まで変化し、内層部2(成形品の中間層)では60%の含有率となっている。   Moreover, the content ratio of the carbon fiber to the thermoplastic resin is formed such that the carbon fiber content increases from the outer surface of the fiber reinforced resin structural member 1 toward the center of the plate thickness. That is, in FIG. 3, the relationship between the plate | board thickness center direction in the cross section of the fiber reinforced resin structural member 1 which is a molded article, and the content rate of carbon fiber is shown. According to this figure, the content of the carbon fiber on the surface of the outer layer portion 3 of the fiber reinforced resin structural member 1 is 0%, and rapidly increases to 40% from here toward the center of the plate thickness, and for a while at 40%. After that, it changes from 40% to 60%, and the inner layer part 2 (intermediate layer of the molded product) has a content of 60%.

さらに、その外層部3の熱可塑性樹脂には、金属(例えばアルミ、銅、鉄等)又は鉱物(例えばサファイヤ等)の粉末が混合されており、図示は省略されているが、表面には炭素繊維が表れていない代わりに、その金属又は鉱物の粉末が表れている。   Further, the thermoplastic resin of the outer layer portion 3 is mixed with powder of metal (for example, aluminum, copper, iron, etc.) or mineral (for example, sapphire, etc.). Instead of the fibers appearing, the metal or mineral powder appears.

次に、かかる構成より成る繊維強化樹脂構造部材1の製造方法について説明する。   Next, the manufacturing method of the fiber reinforced resin structural member 1 which consists of this structure is demonstrated.

まず、内層部2(芯材)を成形するには、図4に示すように成形する。   First, in order to shape | mold the inner layer part 2 (core material), as shown in FIG.

すなわち、「繊維構造体」として複数の炭素繊維織布4と複数の熱可塑性樹脂シート5とを積層して、プレス型7の下型8と上型9との間にセットする。この状態から下型8及び上型9を所定の温度まで加熱して、その積層した炭素繊維織布4と複数の熱可塑性樹脂シート5とをプレスする。これにより、熱可塑性樹脂シート5が溶融して炭素繊維織布4に含浸され、所定の形状に賦形され、内層部2(芯材)の成形が完了する。   That is, a plurality of carbon fiber woven fabrics 4 and a plurality of thermoplastic resin sheets 5 are laminated as a “fiber structure” and set between the lower mold 8 and the upper mold 9 of the press die 7. From this state, the lower mold 8 and the upper mold 9 are heated to a predetermined temperature, and the laminated carbon fiber woven fabric 4 and the plurality of thermoplastic resin sheets 5 are pressed. As a result, the thermoplastic resin sheet 5 is melted and impregnated in the carbon fiber woven fabric 4 and shaped into a predetermined shape, thereby completing the molding of the inner layer portion 2 (core material).

次に、この内層部2(芯材)を図5及び図6に示すような成形型11にセットして、この内層部2の周囲に炭素繊維が混入した熱可塑性樹脂を射出して外層部3を形成する。   Next, the inner layer portion 2 (core material) is set in a molding die 11 as shown in FIGS. 5 and 6, and a thermoplastic resin mixed with carbon fiber is injected around the inner layer portion 2 to inject the outer layer portion. 3 is formed.

まず、その成形型11について説明すると、その成形型11は、成型機の固定側12に固定された固定型13と、可動側14に固定された可動型15とを有し、これら固定型13と可動型15には、それぞれ溶融樹脂が流れるホットランナー13a,15aが設けられている。   First, the mold 11 will be described. The mold 11 includes a fixed mold 13 fixed to the fixed side 12 of the molding machine and a movable mold 15 fixed to the movable side 14. The movable mold 15 is provided with hot runners 13a and 15a through which molten resin flows.

それらホットランナー13a,15aには、それぞれ中央通路13b,15bとこの中央通路13b,15bから分岐し射出空間(キャビティ)まで延びる分岐通路13c,15cとを有している。その固定型13のホットランナー13aの中央通路13bは、図中右側の一端部から溶融された熱可塑性樹脂が流入するようになっており、図中左側の他端部には開閉バルブ13dが配設されている。また、その可動型15のホットランナー15aの中央通路15bは、図中右側の一端部に開閉バルブ15dが設けられ、その固定型13のホットランナー13aの中央通路13bと、図5に示すような型締め状態で連通するようになっている。   The hot runners 13a and 15a have central passages 13b and 15b and branch passages 13c and 15c that branch from the central passages 13b and 15b and extend to an injection space (cavity), respectively. The central passage 13b of the hot runner 13a of the fixed mold 13 is such that molten thermoplastic resin flows from one end on the right side in the figure, and an open / close valve 13d is arranged on the other end on the left side in the figure. It is installed. Further, the central passage 15b of the hot runner 15a of the movable die 15 is provided with an opening / closing valve 15d at one end on the right side in the drawing, and the central passage 13b of the hot runner 13a of the fixed die 13 as shown in FIG. It communicates in a clamped state.

また、その固定型13のホットランナー13aの分岐通路13cは、先端部の吐出口が、収容された内層部2の右側に臨み、又、その可動型15のホットランナー15aの分岐通路15cは、先端部の吐出口が、収容された内層部2の左側に臨むようになっている。そして、それら各分岐通路13c,15cの先端部には、それぞれ開閉バルブ13e,15eが設けられている。これら固定型13の吐出口と、可動型15の吐出口とは、各型13,15の相対向する位置に設けられ、内層部2の両側にそれら吐出口から溶融樹脂を射出するようになっている。   Further, the branch passage 13c of the hot runner 13a of the fixed mold 13 has the discharge port at the tip thereof facing the right side of the accommodated inner layer part 2, and the branch passage 15c of the hot runner 15a of the movable mold 15 is The discharge port at the distal end faces the left side of the accommodated inner layer portion 2. Opening / closing valves 13e and 15e are provided at the distal ends of the branch passages 13c and 15c, respectively. The discharge port of the fixed mold 13 and the discharge port of the movable mold 15 are provided at positions where the molds 13 and 15 face each other, and the molten resin is injected from both of the discharge ports to both sides of the inner layer portion 2. ing.

さらに、この固定型13及び可動型15には、内層部2(芯材)を成型型11に対して固定する「固定手段」としての保持機構16が設けられている。この保持機構16は、保持ピン16aが射出空間に対して出没するように設けられ、突出した状態で内層部2を保持ピン16aにより両側から挟持して固定するようになっている。この保持ピン16aは油圧、空圧やスプリング等により、突出され、又、射出された溶融樹脂の力により、保持ピン16aの先端側の一部が押されて没入されるようになっている。   Further, the fixed mold 13 and the movable mold 15 are provided with a holding mechanism 16 as “fixing means” for fixing the inner layer portion 2 (core material) to the mold 11. The holding mechanism 16 is provided so that the holding pin 16a protrudes and appears in the injection space, and the inner layer portion 2 is sandwiched and fixed from both sides by the holding pin 16a in a protruding state. The holding pin 16a is protruded by hydraulic pressure, pneumatic pressure, a spring or the like, and a part of the holding pin 16a on the front end side is pushed and immersed by the force of the injected molten resin.

このような成形型11を用いて内層部2の周囲に外層部3を以下のように成形する。   The outer layer portion 3 is formed around the inner layer portion 2 using such a mold 11 as follows.

まず、上述のように成形された内層部2を成形型11の射出空間内に収容し、固定型13及び可動型15を型締めした状態で、保持機構16の複数の保持ピン16aを油圧等により突出させて、内層部2を両側から挟持するようにして固定する。   First, the inner layer portion 2 molded as described above is accommodated in the injection space of the molding die 11, and the plurality of holding pins 16 a of the holding mechanism 16 are hydraulically or the like while the fixed die 13 and the movable die 15 are clamped. The inner layer portion 2 is clamped from both sides and fixed.

この状態で、固定型13及び可動型15を加熱し、炭素繊維及び、金属又は鉱物の粉末が混入された溶融樹脂を固定型13のホットランナー13aの中央通路13bに流入させると共に、開閉バルブ13d,15dを開くことにより、溶融樹脂を可動型15のホットランナー15aの中央通路15bに流入させる。   In this state, the fixed mold 13 and the movable mold 15 are heated, and molten resin mixed with carbon fiber and metal or mineral powder flows into the central passage 13b of the hot runner 13a of the fixed mold 13, and the open / close valve 13d. , 15d is opened to allow the molten resin to flow into the central passage 15b of the hot runner 15a of the movable die 15.

これと共に、各開閉バルブ13e,15eを開くことにより、中央通路13b,15bから分岐通路13c,15cを介して射出空間内に溶融樹脂が射出される。この場合には、内層部2の両側の分岐通路13c,15cの吐出口から溶融樹脂が内層部2の両側に射出されることにより、内層部2の周囲に溶融樹脂が射出されることとなる。   At the same time, by opening the on-off valves 13e and 15e, the molten resin is injected into the injection space from the central passages 13b and 15b through the branch passages 13c and 15c. In this case, the molten resin is injected to both sides of the inner layer portion 2 from the discharge ports of the branch passages 13c and 15c on both sides of the inner layer portion 2, so that the molten resin is injected around the inner layer portion 2. .

このように溶融樹脂を内層部2の両側に射出することにより、内層部2の全周に容易に溶融樹脂を行き渡らせることができると共に、この外層部3の肉厚を均一に薄く成形することもできる。例えば、内層部2の片側からのみ溶融樹脂を射出すると、内層部2の反対側まで樹脂が流れて行くようにする必要があり、内層部2の全周に容易に溶融樹脂を行き渡らせるのが容易でなく、又、溶融樹脂が硬化する前に内層部2の全周に溶融樹脂を行き渡らせるためには、肉厚を厚くする必要があることから、その外層部3の肉厚をそれ程、薄くできない。   By injecting the molten resin to both sides of the inner layer portion 2 in this way, the molten resin can be easily spread over the entire circumference of the inner layer portion 2 and the thickness of the outer layer portion 3 is formed to be uniformly thin. You can also. For example, when the molten resin is injected only from one side of the inner layer part 2, it is necessary to cause the resin to flow to the opposite side of the inner layer part 2, and the molten resin can be easily spread over the entire circumference of the inner layer part 2. It is not easy, and in order to spread the molten resin around the entire circumference of the inner layer part 2 before the molten resin is cured, it is necessary to increase the thickness. Cannot be thinned.

この際には、射出された溶融樹脂の力により、保持ピン16aの先端側の一部が押されて没入されることにより、射出空間から保持ピン16aを退避させて、この保持ピン16aが存在していた所に溶融樹脂を行き渡らせることができる。   At this time, the holding pin 16a is retracted from the injection space by a part of the tip side of the holding pin 16a being pushed and immersed by the force of the injected molten resin, so that the holding pin 16a exists. It is possible to spread the molten resin where it was.

また、このように内層部2の全周に溶融樹脂を射出することにより、炭素繊維の熱可塑性樹脂に対する含有比率は、繊維強化樹脂構造部材1の外表面から板厚の中心部に向かって炭素繊維の含有率が増大することとなる。その外層部3の熱可塑性樹脂には、金属(例えばアルミ、銅、鉄等)又は鉱物(例えばサファイヤ等)の粉末が混合されており、図示は省略されているが、表面には炭素繊維が表れていない代わりに、その金属又は鉱物の粉末が表れることとなる。これは、成形型11を加熱することにより、溶融樹脂が成形品表面(成形型11と接触する部分)にまわることから、炭素繊維が表面に表れることなく、溶融樹脂に混入されている金属又は鉱物の粉末が表れるからである。   Further, by injecting the molten resin to the entire circumference of the inner layer portion 2 in this way, the content ratio of the carbon fiber to the thermoplastic resin is increased from the outer surface of the fiber reinforced resin structural member 1 toward the center portion of the plate thickness. The fiber content will increase. The thermoplastic resin of the outer layer part 3 is mixed with powder of metal (for example, aluminum, copper, iron, etc.) or mineral (for example, sapphire, etc.). Instead of appearing, the metal or mineral powder will appear. This is because when the molding die 11 is heated, the molten resin travels around the surface of the molded product (portion in contact with the molding die 11), so that the carbon fiber does not appear on the surface, or the metal mixed in the molten resin or This is because mineral powder appears.

その後、この固定型13及び可動型15を冷却することにより、溶融樹脂を冷却して硬化させることで、内層部2の周囲を覆うように外層部3が成形される。次いで、可動型15を移動させて、離型することにより、成形された繊維強化樹脂構造部材1を取り出すことにより、成形を完了する。   Then, the outer layer part 3 is shape | molded so that the circumference | surroundings of the inner layer part 2 may be covered by cooling this fixed mold | type 13 and the movable mold | type 15, and cooling and hardening a molten resin. Next, the molding is completed by removing the molded fiber-reinforced resin structural member 1 by moving the movable mold 15 and releasing the mold.

このような繊維強化樹脂構造部材1にあっては、内層部2は繊維構造体に熱可塑性樹脂を含浸した芯材で構成し、外層部3は長繊維を含有する熱可塑性樹脂からなるため、アルミダイキャストと比べ軽量化、製造コストの低減を図ることができると共に、従来の射出成形品と比べ強度の向上を図ることができ、熱硬化性樹脂の成形に比べ大量生産が可能で、材料が安価であり、又、複雑な形状の成形を行うことができる。   In such a fiber reinforced resin structural member 1, the inner layer portion 2 is composed of a core material in which a fibrous structure is impregnated with a thermoplastic resin, and the outer layer portion 3 is made of a thermoplastic resin containing long fibers. Compared to aluminum die-casting, the weight can be reduced and the manufacturing cost can be reduced, and the strength can be improved compared to conventional injection-molded products. Mass production is possible compared to the molding of thermosetting resin. Is inexpensive and can be molded into a complicated shape.

この場合の繊維長と繊維強化効果係数との関係を図7に示す。この図に示すように、繊維長が4mm程度まで、繊維強化効果係数が大きな伸びを示しており、強度が向上するように任意の繊維長のものを用いることとする。   FIG. 7 shows the relationship between the fiber length and the fiber reinforcement effect coefficient in this case. As shown in this figure, the fiber reinforcement effect coefficient shows a large elongation up to a fiber length of about 4 mm, and a fiber having an arbitrary fiber length is used so that the strength is improved.

また、炭素繊維の含有率と引張強さとの関係を図8に示す。この図に示すように、炭素繊維の含有率が増加すると引張強さが強くなるため、適当な含有率とする。   FIG. 8 shows the relationship between the carbon fiber content and the tensile strength. As shown in this figure, when the carbon fiber content increases, the tensile strength increases.

さらに、炭素繊維の熱可塑性樹脂に対する含有比率は、繊維強化樹脂構造部材1の外表面から板厚の中心部に向かって炭素繊維の含有率が増大しているため、強度、剛性を向上させることができる。   Furthermore, the content ratio of the carbon fiber to the thermoplastic resin increases the strength and rigidity because the carbon fiber content increases from the outer surface of the fiber reinforced resin structural member 1 toward the center of the plate thickness. Can do.

さらにまた、その外層部3の熱可塑性樹脂に金属又は鉱物の粉末が混合されているため、表面には長繊維が露出せず、金属又は鉱物の粉末が表れることから、この金属又は鉱物の粉末を調整することにより、外観の色等を調整できる。   Furthermore, since the metal or mineral powder is mixed with the thermoplastic resin of the outer layer portion 3, long fibers are not exposed on the surface, and the metal or mineral powder appears. By adjusting the color, the color of the appearance can be adjusted.

また、内層部2及び外層部3には、炭素繊維を用いているため、他の繊維と比べ軽量で効果的に強度を確保できる。   Moreover, since carbon fiber is used for the inner layer part 2 and the outer layer part 3, it is lightweight and can ensure intensity | strength effectively compared with another fiber.

さらに、内層部2の周囲に、外層部3を構成する長繊維を含有する熱可塑性樹脂を成形型11内に射出して成形したため、容易に繊維強化樹脂構造部材1を成形できる。   Furthermore, since the thermoplastic resin containing the long fibers constituting the outer layer portion 3 is injected and molded around the inner layer portion 2 into the mold 11, the fiber reinforced resin structural member 1 can be easily molded.

さらにまた、保持機構16を設けることにより、内層部2を容易に成形型11内に安定的に配設できる。   Furthermore, by providing the holding mechanism 16, the inner layer portion 2 can be easily and stably disposed in the mold 11.

また、外層部3の射出成形は、固定型13、可動型15の略対向する位置に設けた少なくとも一対の吐出口(分岐通路13c,15c)から、芯材(内層部2)の周囲に熱可塑性樹脂を射出するようにしたため、内層部2の周囲に肉厚の薄い外層部3を均一に成形することができる。   Also, the injection molding of the outer layer part 3 is carried out by heating around the core material (inner layer part 2) from at least a pair of discharge ports (branch passages 13c, 15c) provided at substantially opposing positions of the fixed mold 13 and the movable mold 15. Since the plastic resin is injected, the thin outer layer portion 3 can be uniformly formed around the inner layer portion 2.

なお、上記実施の形態では、繊維強化樹脂構造部材1として自動車用ギヤボックスにこの発明を適用したが、これに限らず、強度や軽量化等を要求される構造部材であれば、他のものでも有効にこの発明を適用できる。   In the above-described embodiment, the present invention is applied to an automobile gear box as the fiber reinforced resin structural member 1. However, the present invention is not limited thereto, and any other structural member that requires strength, weight reduction, or the like can be used. However, the present invention can be applied effectively.

また、内層部2を成形型11に対して固定する固定手段として、成形型11側に保持機構16を設けたが、これに限らず、内層部2に突起等の固定手段を設けることもできる。   Further, as a fixing means for fixing the inner layer portion 2 to the mold 11, the holding mechanism 16 is provided on the mold 11 side. .

1…繊維強化樹脂構造部材
2…内層部
3…外層部
4…炭素繊維織布
5…熱可塑性樹脂シート
7…プレス型
8…下型
9…上型
11…成形型
13…固定型
13a…ホットランナー
13b…中央通路
13c…分岐通路
15…可動型
15a…ホットランナー
15b…中央通路
15c…分岐通路
16…保持機構(固定手段)
16a…保持ピン
DESCRIPTION OF SYMBOLS 1 ... Fiber reinforced resin structural member 2 ... Inner layer part 3 ... Outer layer part 4 ... Carbon fiber woven fabric 5 ... Thermoplastic resin sheet 7 ... Press die 8 ... Lower die 9 ... Upper die
11 ... Mold
13 ... Fixed type
13a… Hot runner
13b ... Central passage
13c ... Branch passage
15 ... Moveable type
15a… Hot runner
15b ... Central passage
15c ... Branch passage
16 ... Holding mechanism (fixing means)
16a ... Holding pin

Claims (7)

樹脂と繊維の複合材からなる繊維強化樹脂構造部材であって、
内層部を、繊維構造体に熱可塑性樹脂を含浸した芯材で構成し、該内層部の周囲を覆う外層部を、長繊維を含有する熱可塑性樹脂から構成したことを特徴とする繊維強化樹脂構造部材。
A fiber reinforced resin structural member made of a composite material of resin and fiber,
A fiber reinforced resin comprising an inner layer portion made of a core material in which a fiber structure is impregnated with a thermoplastic resin, and an outer layer portion covering the periphery of the inner layer portion made of a thermoplastic resin containing long fibers. Structural member.
前記繊維の前記熱可塑性樹脂に対する含有比率は、前記繊維強化樹脂構造部材の外表面から板厚の中心部に向かって前記繊維の含有率が増大することを特徴とする請求項1に記載の繊維強化樹脂構造部材。   2. The fiber according to claim 1, wherein a content ratio of the fiber to the thermoplastic resin is such that a content rate of the fiber increases from an outer surface of the fiber reinforced resin structural member toward a center portion of a plate thickness. Reinforced resin structural member. 前記外層部の熱可塑性樹脂に金属又は鉱物の粉末が混合されていることを特徴とする請求項1又は2に記載の繊維強化樹脂構造部材。   The fiber-reinforced resin structural member according to claim 1 or 2, wherein a metal or mineral powder is mixed with the thermoplastic resin of the outer layer portion. 前記繊維構造体及び前記長繊維は、炭素繊維であることを特徴とする請求項1乃至3の何れか一つに記載の繊維強化樹脂構造部材。   The fiber-reinforced resin structural member according to any one of claims 1 to 3, wherein the fiber structure and the long fibers are carbon fibers. 請求項1乃至4の何れか一つに記載の繊維強化樹脂構造部材の製造方法であって、
予め所定の形状に成形した前記芯材である前記内層部を成形型内に配置し、前記外層部を構成する前記長繊維を含有する熱可塑性樹脂を前記成形型内に射出して成形することを特徴とする繊維強化樹脂構造部材の製造方法。
It is a manufacturing method of the fiber reinforced resin structure member according to any one of claims 1 to 4,
The inner layer portion, which is the core material molded in a predetermined shape in advance, is placed in a mold, and the thermoplastic resin containing the long fibers constituting the outer layer portion is injected into the mold and molded. The manufacturing method of the fiber reinforced resin structural member characterized by these.
前記内層部を前記成形型内に配置する際に、前記内層部を前記成形型に対して固定する固定手段を設けたことを特徴とする請求項5に記載の繊維強化樹脂構造部材の製造方法。   6. The method for producing a fiber-reinforced resin structural member according to claim 5, further comprising a fixing unit that fixes the inner layer portion to the mold when the inner layer portion is disposed in the mold. . 前記外層部の射出成形は、前記成形型の固定型、可動型の略対向する位置に設けた少なくとも一対の吐出口から、前記内層部の両側に、前記長繊維を含有する溶融した前記熱可塑性樹脂を射出することにより成形したことを特徴とする請求項5又は6に記載の繊維強化樹脂構造部材の製造方法。   The injection molding of the outer layer portion is performed by melting the thermoplastic resin containing the long fibers on both sides of the inner layer portion from at least a pair of discharge ports provided at positions substantially opposed to the fixed die and the movable die of the molding die. The method for producing a fiber-reinforced resin structural member according to claim 5 or 6, wherein the fiber-reinforced resin structural member is molded by injecting a resin.
JP2010093052A 2010-04-14 2010-04-14 Fiber reinforced resin structure member, and method for manufacturing the same Pending JP2011218757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093052A JP2011218757A (en) 2010-04-14 2010-04-14 Fiber reinforced resin structure member, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093052A JP2011218757A (en) 2010-04-14 2010-04-14 Fiber reinforced resin structure member, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011218757A true JP2011218757A (en) 2011-11-04

Family

ID=45036330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093052A Pending JP2011218757A (en) 2010-04-14 2010-04-14 Fiber reinforced resin structure member, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011218757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024553A (en) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 Method for producing fiber-reinforced resin composite material
US9105953B2 (en) 2011-09-30 2015-08-11 Kabushiki Kaisha Toshiba High frequency line to waveguide converter comprising first and second dielectric layers sandwiching an antenna with an adhesion layer
WO2017018338A1 (en) * 2015-07-30 2017-02-02 Ntn株式会社 Electric linear actuator and electric brake device
JP2017119373A (en) * 2015-12-28 2017-07-06 東レ株式会社 Method for manufacturing composite molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105953B2 (en) 2011-09-30 2015-08-11 Kabushiki Kaisha Toshiba High frequency line to waveguide converter comprising first and second dielectric layers sandwiching an antenna with an adhesion layer
JP2015024553A (en) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 Method for producing fiber-reinforced resin composite material
WO2017018338A1 (en) * 2015-07-30 2017-02-02 Ntn株式会社 Electric linear actuator and electric brake device
JP2017119373A (en) * 2015-12-28 2017-07-06 東レ株式会社 Method for manufacturing composite molding

Similar Documents

Publication Publication Date Title
EP3310545B1 (en) Method for producing a plastic molded article, plastic molded article and mold
US8974713B2 (en) Method and apparatus for producing plastic products with integrated reinforcing structure
US20150017390A1 (en) Molding method for fiber reinforced composite material and molding apparatus for fiber reinforced composite material
US4544588A (en) Hollow bodies of plastic materials
JP5369904B2 (en) Manufacturing method of fiber substrate
EP2748453B1 (en) Control housing module and production method
CN1404978A (en) Method for producing crank of bicycle
DE102011120903A1 (en) Composite semi-finished product for preparing sandwich panels, consists of thermosetting or thermoplastic matrix and reinforcing material chosen from glass, carbon and organic fiber
CN107521124A (en) Carbon fiber dual platen reinforced structure part and its manufacture method
JP2011218757A (en) Fiber reinforced resin structure member, and method for manufacturing the same
US20160167314A1 (en) Mould arrangement and method for compression moulding fiber reinforced preforms
CN105531101B (en) The manufacturing method of fiber reinforcement component
US20160368187A1 (en) Method for producing plastic components, which have a high mechanical load-bearing capacity, with a correct final contour
WO2015075683A1 (en) Semi-finished product manufactured from prepreg, three-dimensional preformed body and overmoulded part
CN106696163B (en) A kind of injection molding process and electric vehicle fender of body outer skin
DE102012010469B4 (en) Process for the production of fiber-reinforced components
JP6735736B2 (en) Manufacture of multi-shell composite components with bonded reinforcement structures
DE102004060009B4 (en) Method for producing a laminated body
DE102011111745A1 (en) Steering box module for internal combustion engine, has corrugated elements with molded reinforcing ribs made from thermoplastic resin, where ribs consist of short fibers from reinforcement material having volume fraction of preset values
KR101827280B1 (en) Manufacturing method of middle core for molding caliper housing of disk brake
CN104812547B (en) The co-injection shaping of the structural portion of vehicle lifting-type vehicle door inner panel
JP5810840B2 (en) Method for producing molded structure and mold
JP6796280B2 (en) Method for manufacturing fiber-reinforced thermoplastic resin molded product
CN105014864A (en) Molding apparatus, method of molding, and molded products
JP5748105B2 (en) Method for producing molded structure and mold