JP2011217588A - Ground fault detection apparatus for electric circuit of non-grounded system and ground fault protective relay using the apparatus, and method of detecting ground fault - Google Patents

Ground fault detection apparatus for electric circuit of non-grounded system and ground fault protective relay using the apparatus, and method of detecting ground fault Download PDF

Info

Publication number
JP2011217588A
JP2011217588A JP2010120705A JP2010120705A JP2011217588A JP 2011217588 A JP2011217588 A JP 2011217588A JP 2010120705 A JP2010120705 A JP 2010120705A JP 2010120705 A JP2010120705 A JP 2010120705A JP 2011217588 A JP2011217588 A JP 2011217588A
Authority
JP
Japan
Prior art keywords
ground fault
zero
circuit
ground
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010120705A
Other languages
Japanese (ja)
Other versions
JP5444122B2 (en
Inventor
Yoshikazu Inoue
善和 井上
Hiroaki Kamigaki
博昭 上垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI DENKI HOAN KYOKAI
Original Assignee
KANSAI DENKI HOAN KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI DENKI HOAN KYOKAI filed Critical KANSAI DENKI HOAN KYOKAI
Priority to JP2010120705A priority Critical patent/JP5444122B2/en
Publication of JP2011217588A publication Critical patent/JP2011217588A/en
Application granted granted Critical
Publication of JP5444122B2 publication Critical patent/JP5444122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To calculate a ground fault current caused to flow in an electric circuit of a non-grounded system electric path by a ground fault accident in premises of the electric circuit of the non-grounded system by simple arithmetic processing.SOLUTION: A ground fault detection apparatus 2 is connected to a potential transformer 7 which detects a zero-phase voltage Vo caused to appear in the electric circuit 1 of the non-grounded system by a ground fault accident in premises of the electric circuit 1 of the non-grounded system, and a zero-phase current transformer 8 which detects a zero-phase current Io caused to flow in the electric circuit 1 of the non-grounded system on the occurrence of the ground fault accident in the premises are connected. The apparatus includes a differential circuit 9 which differentiates the zero-phase voltage Vo obtained by the potential transformer 7 with respect to time, an arithmetic circuit 10 which sets ground static capacitance C of the premises of the electric circuit 1 of the non-grounded system, a multiplication circuit 11 which multiplies a differentiated value dVo/dt calculated by the differential circuit 9 by the ground static capacitance C calculated by the arithmetic circuit 10, and a subtraction circuit 12 which obtains a ground fault current Ig by subtracting a multiplication value C×(dVo/dt) calculated by multiplying the ground static capacitance C by the differentiated value dVo/dt from the zero-phase current Io.

Description

本発明は、例えば6.6kV高圧の非接地系電路の構内で発生した地絡事故を監視し、その構内地絡時の地絡電流を検出する地絡検出装置とこれを用いた地絡保護継電器および地絡検出方法に関する。   The present invention monitors, for example, a ground fault accident occurring in a 6.6 kV high-voltage ungrounded electric circuit premises, and detects a ground fault current at the time of the premises ground fault, and a ground fault protection using the same. The present invention relates to a relay and a ground fault detection method.

例えば6.6kVの高圧受電設備からなる非接地系電路では、高圧受電設備(系統母線)に開閉器を介して各種の負荷が接続されており、その受電点である開閉器から負荷側の電路を構内と称して保護範囲とし、系統側の電路を構外と称して保護範囲外としているのが一般的である。従来、この非接地系電路の構内で発生した地絡事故を監視し、その構内地絡時に流れる零相電流を零相変流器で検出する地絡検出装置としては種々のものが提案されている(例えば、特許文献1参照)。   For example, in a non-grounded electric circuit consisting of a 6.6 kV high-voltage power receiving facility, various loads are connected to the high-voltage power receiving facility (system bus) via a switch. Is generally referred to as a premise and is defined as a protection range, and an electric circuit on the system side is generally referred to as a premise and is outside the protection range. Conventionally, various types of ground fault detection devices have been proposed for monitoring a ground fault occurring on the premises of this non-grounded electric circuit and detecting a zero phase current flowing at the time of the ground fault with a zero phase current transformer. (For example, refer to Patent Document 1).

この特許文献1は、非接地系電路の線路定数を活線状態で計測すると共に、この線路定数から電路の絶縁状態を的確に把握する線路定数計測装置、およびこれによって計測された線路定数に基づいて算出した零相電流から地絡電流を精度高く求めることができる非接地系電路の地絡監視装置を開示したものである。   This Patent Document 1 is based on a line constant measuring device that measures the line constant of an ungrounded electric circuit in a live line state and accurately grasps the insulation state of the electric circuit from the line constant, and the line constant measured thereby. This discloses a ground fault monitoring device for a non-grounded electric circuit capable of obtaining a ground fault current with high accuracy from the zero-phase current calculated as described above.

つまり、特許文献1に開示された線路定数計測装置は、非接地系電路に流れる零相電流を検出する零相電流検出手段と、その非接地電路の零相電圧を検出する零相電圧検出手段と、電路の一部の電圧を検出して零相分を除いた基準電圧を作成する基準電圧作成手段と、線路定数計測開始時の零相電流と零相電圧を記憶し、検出している零相電圧がこの記憶値から所定値以上変動したとき、検出している零相電流と零相電圧を記憶する電路変化検出手段と、各相の対地アドミタンスのベクトル和を第1の線路定数とし、各相の対地アドミタンスの不平衡分によって流れる零相電流を基準電圧によって表した式における対地アドミタンスを第2の線路定数とするとき電路変化検出手段によって記憶された零相電圧および零相電流に基づき、二元連立ベクトル方程式を解いて、第1の線路定数および第2の線路定数を算出する線路定数演算手段とを備えたものである。   That is, the line constant measuring device disclosed in Patent Document 1 includes a zero-phase current detection unit that detects a zero-phase current flowing in a non-grounded circuit, and a zero-phase voltage detection unit that detects a zero-phase voltage of the non-grounded circuit. And a reference voltage generating means for detecting a partial voltage of the electric circuit and generating a reference voltage excluding the zero phase, and storing and detecting the zero phase current and the zero phase voltage at the start of the line constant measurement. When the zero-phase voltage fluctuates by more than a predetermined value from this stored value, the electric line change detecting means for storing the detected zero-phase current and zero-phase voltage, and the vector sum of the ground admittance of each phase as the first line constant When the ground admittance in the equation representing the zero phase current flowing due to the unbalanced portion of the ground admittance of each phase as a reference voltage is the second line constant, the zero phase voltage and the zero phase current stored by the circuit change detecting means are Based on binary By solving the vector equation, in which a line constant computing means for calculating a first line constant and a second line constants.

また、特許文献1に開示された地絡監視装置は、前述の線路定数計測装置を有し、この装置によって算出した第1の線路定数と第2の線路定数を用い、零相電流、零相電圧、基準電圧をベクトル量として入力し、所定の演算式に基づくベクトル演算を行って地絡電流を算出する地絡電流演算手段を備えたものである。   Moreover, the ground fault monitoring apparatus disclosed in Patent Document 1 has the above-described line constant measurement device, and uses the first line constant and the second line constant calculated by this device, and the zero-phase current, zero-phase A ground fault current calculating means for inputting a voltage and a reference voltage as a vector quantity and performing a vector calculation based on a predetermined calculation formula to calculate a ground fault current is provided.

特許第2992615号公報Japanese Patent No. 2999615

ところで、特許文献1で開示された線路定数計測装置および地絡監視装置では、非接地系電路の線路定数を活線状態で計測すると共に、この線路定数から電路の絶縁状態を的確に把握し、これによって計測された線路定数に基づいて算出した零相電流から地絡電流を精度高く求めることができるようにしている。   By the way, in the line constant measuring device and the ground fault monitoring device disclosed in Patent Document 1, the line constant of the non-grounded electric circuit is measured in a live line state, and the insulation state of the electric circuit is accurately grasped from the line constant, Thus, the ground fault current can be obtained with high accuracy from the zero-phase current calculated based on the measured line constant.

しかしながら、この特許文献1で開示された線路定数計測装置および地絡監視装置では、地絡電流を高精度に検出していることから、その地絡電流を算出するための演算処理が複雑となる。この装置を実現するためには、高精度なアナログ部品や複雑なデジタル処理が必要となり高価な装置になる。   However, since the line constant measuring device and the ground fault monitoring device disclosed in Patent Document 1 detect the ground fault current with high accuracy, the calculation processing for calculating the ground fault current becomes complicated. . In order to realize this device, high-precision analog parts and complicated digital processing are required, which makes the device expensive.

そこで、本発明は前述の改善点に鑑みて提案されたもので、その目的とするところは、非接地系電路の構内での地絡事故によりその非接地系電路に流れる地絡電流を簡易な演算処理により算出し得る非接地系電路の地絡検出装置とこれを用いた地絡保護継電器及び地絡検出方法を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned improvements, and the object of the present invention is to simplify the ground fault current flowing in the non-grounded circuit due to the ground fault in the premises of the non-grounded circuit. An object of the present invention is to provide a ground fault detection device for a non-grounded circuit that can be calculated by arithmetic processing, a ground fault protection relay using the ground fault detection device, and a ground fault detection method.

前述の目的を達成するための技術的手段として、本発明装置は、非接地系電路の構内での地絡事故によりその非接地系電路に現出した零相電圧Voを検出する零相電圧検出手段と、構内での地絡事故の発生時に非接地系電路に流れる零相電流Ioを検出する零相電流検出手段とが接続された地絡検出装置であって、零相電圧検出手段により得られた零相電圧Voを時間で微分する零相電圧微分手段と、非接地系電路の構内の対地静電容量を整定する静電容量整定手段と、零相電圧微分手段により算出された微分値dVo/dtを静電容量整定手段により算出された対地静電容量Cに乗算する乗算手段と、微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を零相電流Ioから減算して地絡電流Igを求める減算手段とを具備したことを特徴とする。前述した各演算処理はベクトル計算に基づくものである。ここで、「対地静電容量Cを整定する」とは、対地静電容量Cを演算処理により算出することや、対地静電容量Cを測定器により計測することでその値を得ることを意味する。   As a technical means for achieving the above-mentioned object, the device of the present invention is a zero-phase voltage detection for detecting a zero-phase voltage Vo that appears in an ungrounded circuit due to a ground fault in the premises of the ungrounded circuit. And a zero-phase current detecting means for detecting a zero-phase current Io that detects a zero-phase current Io flowing in an ungrounded circuit when a ground fault occurs on the premises, and obtained by the zero-phase voltage detecting means. Zero-phase voltage differentiating means for differentiating the obtained zero-phase voltage Vo with respect to time, capacitance setting means for setting the ground capacitance in the premises of the ungrounded circuit, and the differential value calculated by the zero-phase voltage differentiating means Multiplying means for multiplying dVo / dt by the ground capacitance C calculated by the capacitance setting means, and multiplying value C × (dVo / dt) by multiplying the differential value dVo / dt by the ground capacitance C is zero. Subtracting means for subtracting from the phase current Io to obtain the ground fault current Ig Characterized by comprising a. Each arithmetic processing described above is based on vector calculation. Here, “setting the ground capacitance C” means that the ground capacitance C is calculated by arithmetic processing, or the value is obtained by measuring the ground capacitance C with a measuring instrument. To do.

なお、本発明では、減算手段の後段に、零相電圧検出手段により得られた零相電圧Voを減算手段により求められた地絡電流Igで除算する除算手段を付加するようにしてもよい。このようにすれば、除算手段により算出された除算値Vo/Igを地絡抵抗Rgとして求めることが可能となる。この場合の演算処理もベクトル計算に基づくものである。   In the present invention, a dividing unit that divides the zero-phase voltage Vo obtained by the zero-phase voltage detecting unit by the ground fault current Ig obtained by the subtracting unit may be added after the subtracting unit. In this way, it is possible to obtain the division value Vo / Ig calculated by the dividing means as the ground fault resistance Rg. The arithmetic processing in this case is also based on vector calculation.

また、本発明において、この地絡検出装置に、その地絡検出装置の出力でもって、非接地系電路に設けられた開閉器を動作させるリレーを付加すれば、地絡保護継電器を構成することが可能である。   In the present invention, if a relay for operating a switch provided in the non-grounded electrical circuit is added to the ground fault detection device with the output of the ground fault detection device, a ground fault protection relay is configured. Is possible.

また、本発明方法は、非接地系電路の構内での地絡事故によりその非接地系電路に現出した零相電圧Voおよび零相電流Ioに基づいて地絡電流Igを検出する地絡検出方法であって、その検出された零相電圧Voを時間で微分した微分値dVo/dtを非接地系電路の構内の対地静電容量Cに乗算し、その微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を零相電流Ioから減算して地絡電流Igを求めることを特徴とする。前述した各演算処理はベクトル計算に基づくものである。   Further, the method of the present invention is a ground fault detection for detecting the ground fault current Ig based on the zero phase voltage Vo and the zero phase current Io appearing in the non-ground system circuit due to the ground fault in the premises of the non-ground system circuit. In this method, a differential value dVo / dt obtained by differentiating the detected zero-phase voltage Vo with respect to time is multiplied by a ground capacitance C in the premises of the non-grounded circuit, and the differential value dVo / dt is multiplied by the electrostatic capacitance. A ground fault current Ig is obtained by subtracting a multiplied value C × (dVo / dt) multiplied by the capacitance C from the zero-phase current Io. Each arithmetic processing described above is based on vector calculation.

なお、本発明方法では、零相電圧Voを地絡電流Igで除算するようにしてもよい。このようにすれば、算出された除算値Vo/Igを地絡抵抗Rgとして求めることが可能となる。この場合の演算処理もベクトル計算に基づくものである。   In the method of the present invention, the zero-phase voltage Vo may be divided by the ground fault current Ig. In this way, the calculated division value Vo / Ig can be obtained as the ground fault resistance Rg. The arithmetic processing in this case is also based on vector calculation.

本発明では、非接地系電路の構内での地絡事故によりその非接地系電路に現出した零相電圧Voを時間で微分した微分値dVo/dtを非接地系電路の構内の対地静電容量Cに乗算し、その微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を、構内での地絡事故の発生時に非接地系電路に流れる零相電流Ioから減算して地絡電流Igを求めることにより、非接地系電路の構内での地絡事故によりその非接地系電路に流れる地絡電流Igを簡易な演算処理により算出することができる。   In the present invention, the differential value dVo / dt obtained by differentiating the zero-phase voltage Vo appearing in the non-grounded circuit due to a ground fault in the ground of the non-grounded circuit with respect to time is obtained from the differential value dVo / dt. The multiplication value C × (dVo / dt) obtained by multiplying the capacitance C and multiplying the differential value dVo / dt by the ground capacitance C is a zero-phase current that flows in the ungrounded electric circuit when a ground fault occurs on the premises. By subtracting from Io to obtain the ground fault current Ig, the ground fault current Ig flowing in the non-grounded electrical circuit due to the ground fault in the premises of the non-grounded electrical circuit can be calculated by simple arithmetic processing.

本発明によれば、非接地系電路の構内での地絡事故によりその非接地系電路に現出した零相電圧Voを時間で微分した微分値dVo/dtを非接地系電路の構内の対地静電容量Cに乗算し、その微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を、構内での地絡事故の発生時に非接地系電路に流れる零相電流Ioから減算して地絡電流Igを求めることにより、非接地系電路の構内での地絡事故によりその非接地系電路に流れる地絡電流Igを簡易な演算処理により算出することができる。このような簡易な演算処理により地絡電流Igを算出することから、簡易なデジタル処理で地絡事故の発生を検出する非接地系電路の地絡検出装置とこれを用いた地絡保護継電器及び地絡検出方法を提供できる。   According to the present invention, the differential value dVo / dt obtained by differentiating the zero-phase voltage Vo appearing in the non-grounded circuit due to a ground fault in the ground of the non-grounded circuit with respect to the ground of the non-grounded circuit is shown. A multiplication value C × (dVo / dt) obtained by multiplying the capacitance C and multiplying the differential value dVo / dt by the ground capacitance C is zero flowing in the ungrounded circuit when a ground fault occurs on the premises. By subtracting from the phase current Io to obtain the ground fault current Ig, the ground fault current Ig flowing in the non-grounded circuit due to the ground fault in the premises of the non-grounded circuit can be calculated by a simple calculation process. . Since the ground fault current Ig is calculated by such a simple calculation process, a ground fault detection device for an ungrounded electrical circuit that detects the occurrence of a ground fault by simple digital processing, a ground fault protection relay using the ground fault detection device, and A ground fault detection method can be provided.

本発明の実施形態で、非接地系電路に設置された地絡検出装置を示す概略構成ブロック図である。In the embodiment of the present invention, it is a schematic configuration block diagram showing a ground fault detection device installed in a non-grounded electrical circuit. 本発明の実施形態で、非接地系電路に設置された地絡検出装置を有する地絡保護継電器を示す概略構成ブロック図である。In embodiment of this invention, it is a schematic block diagram which shows the ground fault protection relay which has the ground fault detection apparatus installed in the non-ground system electric circuit. 本発明の他の実施形態で、非接地系電路の分岐電路に設置された地絡検出装置を示す概略構成ブロック図である。In other embodiment of this invention, it is a schematic block diagram which shows the ground fault detection apparatus installed in the branch electric circuit of a non-ground system electric circuit. 本発明の他の実施形態で、非接地系電路の分岐電路に設置された地絡検出装置を有する地絡保護継電器を示す概略構成ブロック図である。In other embodiment of this invention, it is a schematic block diagram which shows the ground fault protection relay which has the ground fault detection apparatus installed in the branch circuit of a non-ground system circuit. 図1および図2の非接地系電路で構内地絡が発生した場合の等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit in the case where a ground fault has occurred in the ungrounded electrical circuit of FIGS. 1 and 2. 地絡事故が発生していない健全時の場合で、(A)は零相電圧と零相電流を示す波形図、(B)は零相電圧の微分値と零相電流を示す波形図である。In the case of a healthy state in which no ground fault has occurred, (A) is a waveform diagram showing zero-phase voltage and zero-phase current, and (B) is a waveform diagram showing differential values of zero-phase voltage and zero-phase current. . 構内地絡が発生した場合で、(A)は零相電圧と零相電流を示す波形図、(B)は零相電圧の微分値と零相電流を示す波形図である。When a local ground fault occurs, (A) is a waveform diagram showing zero phase voltage and zero phase current, and (B) is a waveform diagram showing differential values of zero phase voltage and zero phase current. 零相電圧波形の特異点に基づく地絡抵抗および対地静電容量の瞬時値計算を説明するためのもので、零相電圧、零相電流、地絡電流および対地静電容量に流れる電流を示す波形図である。It is for explaining instantaneous value calculation of ground fault resistance and ground capacitance based on singular point of zero phase voltage waveform, and shows current flowing in zero phase voltage, zero phase current, ground fault current and ground capacitance It is a waveform diagram. 零相電圧波形の特異点を用いて瞬時値計算により地絡抵抗を求める地絡検出装置を示す概略構成ブロック図である。It is a schematic block diagram showing a ground fault detection device for obtaining ground fault resistance by instantaneous value calculation using a singular point of a zero phase voltage waveform. 零相電圧波形の特異点を用いて瞬時値計算により対地静電容量を求める地絡検出装置を示す概略構成ブロック図である。It is a schematic block diagram showing a ground fault detection device for obtaining ground capacitance by instantaneous value calculation using a singular point of a zero phase voltage waveform.

図1は本発明の実施形態で、例えば6.6kVの高圧受電設備からなる非接地系電路1に設けられた地絡検出装置2を示す。この地絡検出装置2は、非接地系電路1の構内で発生した地絡事故を監視し、その構内地絡時に流れる地絡電流を検出する。また、図2は本発明の他の実施形態で、受電する負荷設備を保護するため、前述の地絡検出装置2を組み込んだ地絡保護継電器3を示す。この地絡保護継電器3は、前述の地絡検出装置2と、その地絡検出装置2から出力される検出結果に基づいて開閉器4を選択的に開閉動作させるリレー6とからなる。   FIG. 1 shows an embodiment of the present invention, and shows a ground fault detection device 2 provided in a non-grounded electric circuit 1 composed of, for example, a 6.6 kV high-voltage power receiving facility. The ground fault detection device 2 monitors a ground fault that has occurred on the premises of the ungrounded electrical circuit 1 and detects a ground fault current that flows when the ground fault occurs. FIG. 2 shows another embodiment of the present invention, which shows a ground fault protection relay 3 incorporating the above-described ground fault detection device 2 in order to protect a load facility to receive power. The ground fault protection relay 3 includes the above-described ground fault detection device 2 and a relay 6 that selectively opens and closes the switch 4 based on the detection result output from the ground fault detection device 2.

この非接地系電路1においては、高圧受電設備(系統母線)に開閉器4を介して各種の負荷5が接続され、その受電点である開閉器4から負荷側の電路を構内と称して零相変流器8で零相電流Ioを検出できる保護範囲とするのに対してその系統側の電路を構外と称して保護範囲外としている。なお、地絡検出装置2は、前述した高圧受電設備以外の特別高圧受電設備、特別高圧受電している高圧受電設備や低圧受電設備からなる他の非接地系電路にも適用可能である。   In this non-grounded electric circuit 1, various loads 5 are connected to a high-voltage power receiving facility (system bus) via a switch 4, and the load-side electric circuit from the switch 4 that is the power receiving point is referred to as a premises and is zero. In contrast to the protection range in which the phase current transformer 8 can detect the zero-phase current Io, the electric circuit on the system side is referred to as off-premise and out of the protection range. The ground fault detection device 2 can also be applied to other non-grounded electric circuits including special high voltage power receiving equipment other than the above-described high voltage power receiving equipment, high voltage power receiving equipment receiving special high voltage, and low voltage power receiving equipment.

また、非接地系電路1では、図3および図4に示すように、主電路の受電点から構内側で複数に分岐した分岐電路11〜1nを有する場合がある。この分岐電路11〜1nにおいても、分岐電路11〜1nで発生した地絡事故を監視し、その構内地絡時に流れる地絡電流を検出する地絡検出装置21〜2nを設置することが可能である。なお、図3は、各分岐電路11〜1nに地絡検出装置21〜2nを設置した場合を例示し、図4は、その地絡検出装置21〜2nを組み込んだ地絡保護継電器31〜3nを各分岐電路11〜1nに設置した場合を例示する。 Further, as shown in FIGS. 3 and 4, the non-grounded electric circuit 1 may have branch electric circuits 1 1 to 1 n that are branched into a plurality from the power receiving point of the main electric circuit on the inner side. In this branch circuit 1 1 to 1 n , a ground fault detection device 2 1 to 2 n that monitors a ground fault occurring in the branch circuit 1 1 to 1 n and detects a ground fault current that flows at the time of the ground fault of the campus is provided. It is possible to install. Incidentally, FIG. 3, illustrate case of installing the ground fault sensing device 2 1 to 2 n to the respective branch paths 1 1 to 1 n, 4, land incorporating the grounding detector 2 1 to 2 n The case where the fault protection relays 3 1 to 3 n are installed in the branch electric circuits 1 1 to 1 n is illustrated.

図1および図2に示すように、構内地絡の発生により非接地系電路1に現出した零相電圧Voを検出する零相電圧検出手段である計器用変圧器7と、地絡事故の発生により流れる零相電流Ioを検出する零相電流検出手段である零相変流器8とが地絡検出装置2に接続されている。なお、前述の零相電圧Voや零相電流Ioはベクトル量を表し、以下で説明する零相電圧Voの微分値dVo/dt、地絡電流Ig、対地静電容量Cに流れる電流Icもベクトル量を表す。また、各演算処理はベクトル計算に基づく。   As shown in FIGS. 1 and 2, an instrument transformer 7 which is a zero-phase voltage detecting means for detecting a zero-phase voltage Vo appearing in the non-grounded electric circuit 1 due to the occurrence of a ground fault on the premises, A zero-phase current transformer 8, which is a zero-phase current detection means for detecting the zero-phase current Io flowing due to the generation, is connected to the ground fault detection device 2. The zero-phase voltage Vo and the zero-phase current Io described above represent vector quantities, and the differential value dVo / dt of the zero-phase voltage Vo, the ground fault current Ig, and the current Ic flowing through the ground capacitance C described below are also vectors. Represents an amount. Each calculation process is based on vector calculation.

また、非接地系電路1が複数の分岐電路11〜1nを有する場合、図3および図4に示すように、図1および図2の場合と同様、主電路に開閉器41〜4nを介して各種の負荷51〜5nが接続され、地絡事故の発生により流れる零相電流Ioを検出する零相電流検出手段である零相変流器81〜8nが地絡検出装置21〜2nに接続されている。 When the ungrounded circuit 1 has a plurality of branch circuits 1 1 to 1 n , as shown in FIGS. 3 and 4, the switches 4 1 to 4 are connected to the main circuit as in FIGS. Various loads 5 1 to 5 n are connected via n, and zero phase current transformers 8 1 to 8 n which are zero phase current detecting means for detecting the zero phase current Io flowing due to the occurrence of a ground fault are ground faults. It is connected to the detection devices 2 1 to 2 n .

なお、この図3および図4に示す実施形態における地絡検出装置21〜2nの構成および動作(各分岐電路11〜1nでの地絡抵抗Rg1〜Rgnの算出)については、図1および図2に示す実施形態における地絡検出装置2の構成および動作(非接地系電路1での地絡抵抗Rgの算出)と同様であるため、以下では、図1および図2の実施形態について詳述し、図3および図4の実施形態での重複説明は省略する。 Note that FIG. 3 and ground fault detecting in the embodiment shown in FIG. 4 device 2 1 to 2 n of the structure and operation (calculation of the ground fault resistance Rg 1 ~Rg n in each branch path 1 1 to 1 n) are 1 and FIG. 2 are the same as the configuration and operation of the ground fault detection device 2 in the embodiment shown in FIG. 1 (calculation of the ground fault resistance Rg in the non-grounded electric circuit 1). The embodiment will be described in detail, and redundant description in the embodiment of FIGS. 3 and 4 will be omitted.

この地絡検出装置2は、計器用変圧器7から出力される零相電圧Voを時間で微分する零相電圧微分手段である微分回路9と、非接地系電路1の構内の対地静電容量Cを例えば演算処理により算出することにより整定する静電容量整定手段である演算回路10と、微分回路9により算出された零相電圧Voの微分値dVo/dtを、演算回路10により算出された対地静電容量Cに乗算する乗算手段である乗算回路11と、この乗算回路11により微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を零相変流器8により検出された零相電流Ioから減算する減算手段である減算回路12と、計器用変圧器7により得られた零相電圧Voを減算回路12により求められた地絡電流Igで除算する除算回路13とで主要部が構成され、この除算回路13により算出された除算値Vo/Igが地絡抵抗Rgとして求められる。この実施形態では除算回路13を設けて地絡抵抗Rgを求めているが、この除算回路13を省略すれば、減算回路12により算出された減算値Io−C×(dVo/dt)を地絡電流Igとして求めるようにしてもよい。なお、非接地系電路1の構内の対地静電容量Cは演算回路10により算出するようにしているが、測定器により計測するようにしてもよい。   The ground fault detection device 2 includes a differentiating circuit 9 which is a zero-phase voltage differentiating means for differentiating the zero-phase voltage Vo output from the instrument transformer 7 with respect to time, and a ground capacitance in the premises of the ungrounded electric circuit 1. For example, the arithmetic circuit 10 which is a capacitance setting means for setting C by calculating the arithmetic processing and the differential value dVo / dt of the zero-phase voltage Vo calculated by the differentiating circuit 9 is calculated by the arithmetic circuit 10. A multiplication circuit 11 which is a multiplication means for multiplying the ground capacitance C, and a multiplication value C × (dVo / dt) obtained by multiplying the differential value dVo / dt by the ground capacitance C by the multiplication circuit 11 is a zero-phase current transformation. The subtracting circuit 12 which is a subtracting means for subtracting from the zero phase current Io detected by the calculator 8 and the zero phase voltage Vo obtained by the instrument transformer 7 are divided by the ground fault current Ig obtained by the subtracting circuit 12. Mainly with division circuit 13 Part is configured, the division value Vo / Ig calculated by the division circuit 13 is obtained as the ground fault resistance Rg. In this embodiment, the ground fault resistance Rg is obtained by providing the division circuit 13. However, if the division circuit 13 is omitted, the subtraction value Io-C × (dVo / dt) calculated by the subtraction circuit 12 is grounded. You may make it obtain | require as electric current Ig. The ground capacitance C in the premises of the non-grounded electric circuit 1 is calculated by the arithmetic circuit 10, but may be measured by a measuring instrument.

図5は、図1および図2の非接地系電路1で構内地絡が発生した場合の等価回路を示す。図5に示すように、非接地系電路1の構内で地絡事故(抵抗地絡)が発生すると、電源電圧Egおよび電源側インピーダンスZoからなる零相電圧Voが非接地系電路1に現出し、零相変流器8で検出可能な零相電流Ioが非接地系電路1に流れる。ここで、零相電流Ioは、構内の対地静電容量Cに流れる電流Icと、構内地絡時の地絡抵抗Rgに流れる電流、つまり、地絡電流Igとの和である〔Io=Ic+Ig・・・(1)〕。また、Ic=jωCVoであることから、Ic=C×(dVo/dt)・・・(2)となる。従って、前述の(1)(2)式から、零相電流Ioは以下の(3)式で表される。   FIG. 5 shows an equivalent circuit in the case where a ground fault has occurred in the ungrounded circuit 1 of FIGS. 1 and 2. As shown in FIG. 5, when a ground fault (resistance ground fault) occurs in the premises of the ungrounded circuit 1, a zero-phase voltage Vo composed of the power supply voltage Eg and the power supply side impedance Zo appears on the ungrounded circuit 1. The zero-phase current Io that can be detected by the zero-phase current transformer 8 flows in the ungrounded electric circuit 1. Here, the zero-phase current Io is the sum of the current Ic flowing through the ground capacitance C on the campus and the current flowing through the ground fault resistance Rg at the time of the ground fault, that is, the ground fault current Ig [Io = Ic + Ig (1)]. Since Ic = jωCVo, Ic = C × (dVo / dt) (2). Therefore, the zero phase current Io is expressed by the following equation (3) from the above equations (1) and (2).

Io=C×(dVo/dt)+Ig ・・・(3)   Io = C × (dVo / dt) + Ig (3)

この実施形態では、非接地系電路1の構内地絡によりその非接地系電路1に現出した零相電圧Voを計器用変圧器7で検出し、その零相電圧Voを微分回路9により時間で微分した微分値dVo/dtを算出する。一方、構内の対地静電容量Cを演算回路10により算出する。この微分回路9で算出された零相電圧Voの微分値dVo/dtを、演算回路10により算出された対地静電容量Cに乗算回路11で乗算する。その零相電圧Voの微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を、零相変流器8により検出された零相電流Ioから減算回路12により減算する。つまり、前述の(3)式から、地絡電流Igは、この減算回路12により算出された減算値Io−C×(dVo/dt)として以下の(4)式で示すように求められる。   In this embodiment, the zero-phase voltage Vo appearing in the non-grounded electric circuit 1 due to the ground fault of the non-grounded electric circuit 1 is detected by the instrument transformer 7, and the zero-phase voltage Vo is detected by the differentiation circuit 9 in time. The differential value dVo / dt differentiated by is calculated. On the other hand, the ground capacitance C on the premises is calculated by the arithmetic circuit 10. The multiplication circuit 11 multiplies the ground capacitance C calculated by the arithmetic circuit 10 by the differential value dVo / dt of the zero-phase voltage Vo calculated by the differentiation circuit 9. The multiplication value C × (dVo / dt) obtained by multiplying the differential value dVo / dt of the zero-phase voltage Vo by the ground capacitance C is subtracted from the zero-phase current Io detected by the zero-phase current transformer 8 by the subtracting circuit 12. Subtract. That is, the ground fault current Ig is obtained as the subtraction value Io−C × (dVo / dt) calculated by the subtraction circuit 12 as shown in the following expression (4) from the above expression (3).

Ig=Io−C×(dVo/dt) ・・・(4)   Ig = Io−C × (dVo / dt) (4)

ここで、構内で地絡事故が発生していない健全時の場合、図6(A)に示すように零相電圧Voに対して零相電流Ioが90°遅れ位相となっていることから、その零相電圧Voの微分値dVo/dtは、図6(B)に示すように零相電流Ioと逆位相(180°)になる。前述の(2)式により、この零相電圧Voの微分値dVo/dtに構内の対地静電容量Cを乗算した乗算値C×(dVo/dt)は、対地静電容量Cに流れる電流Icとなることから、この対地静電容量Cに流れる電流Icを零相電流Ioから減算すると、地絡電流Igは0となる。   Here, in the case of a healthy state where no ground fault has occurred on the premises, as shown in FIG. 6A, the zero-phase current Io is 90 ° behind the zero-phase voltage Vo. The differential value dVo / dt of the zero-phase voltage Vo has an opposite phase (180 °) to the zero-phase current Io as shown in FIG. The multiplication value C × (dVo / dt) obtained by multiplying the differential value dVo / dt of the zero-phase voltage Vo by the ground capacitance C on the premises is the current Ic flowing through the ground capacitance C according to the above equation (2). Therefore, when the current Ic flowing through the ground capacitance C is subtracted from the zero-phase current Io, the ground fault current Ig becomes zero.

一方、構内地絡の発生時の場合、図7(A)に示すように零相電圧Voに対して零相電流Ioが90°進み位相となっていることから、その零相電圧Voの微分値dVo/dtは、図7(B)に示すように零相電流Ioと同位相になる。前述したように、この零相電圧Voの微分値dVo/dtに構内の対地静電容量Cを乗算した乗算値C×(dVo/dt)は、対地静電容量Cに流れる電流Icとなることから〔(2)式参照〕、この対地静電容量Cに流れる電流Icを零相電流Ioから減算することにより地絡電流Igが求められる。   On the other hand, in the case of occurrence of a ground fault on the premises, as shown in FIG. 7A, the zero-phase current Io has a 90 ° advance phase with respect to the zero-phase voltage Vo. The value dVo / dt is in phase with the zero-phase current Io as shown in FIG. As described above, the multiplication value C × (dVo / dt) obtained by multiplying the differential value dVo / dt of the zero-phase voltage Vo by the ground capacitance C on the premises becomes the current Ic flowing through the ground capacitance C. [Refer to equation (2)], the ground fault current Ig is obtained by subtracting the current Ic flowing through the ground capacitance C from the zero-phase current Io.

以上のように、非接地系電路1の構内での地絡事故によりその非接地系電路1に現出した零相電圧Voを時間で微分した微分値dVo/dtを非接地系電路1の構内の対地静電容量Cに乗算し、その微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を、構内での地絡事故の発生時に非接地系電路1に流れる零相電流Ioから減算して地絡電流Igを求めることにより、非接地系電路1の構内での地絡事故によりその非接地系電路1に流れる地絡電流Igを簡易な演算処理により算出することができる。さらに、計器用変圧器7により得られた零相電圧Voを減算回路12により求められた地絡電流Igで除算回路13により除算することにより、地絡抵抗Rgは、この除算回路13により算出された除算値Vo/Igとして以下の(5)式で示すように求められる。   As described above, the differential value dVo / dt obtained by differentiating the zero-phase voltage Vo appearing in the non-grounded electric circuit 1 with respect to time due to a ground fault in the non-grounded electric circuit 1 is determined in the non-grounded electric circuit 1. Is multiplied by the differential value dVo / dt multiplied by the ground capacitance C, and a multiplied value C × (dVo / dt) is obtained when a ground fault occurs on the premises. By subtracting from the zero-phase current Io flowing to the ground, the ground fault current Ig is obtained, so that the ground fault current Ig flowing to the non-grounded circuit 1 due to the ground fault in the premises of the non-grounded circuit 1 can be obtained by simple arithmetic processing. Can be calculated. Further, the ground fault resistance Rg is calculated by the division circuit 13 by dividing the zero-phase voltage Vo obtained by the instrument transformer 7 by the ground fault current Ig obtained by the subtraction circuit 12 by the division circuit 13. The division value Vo / Ig is obtained as shown by the following equation (5).

Rg=Vo/Ig・・・(5)   Rg = Vo / Ig (5)

図1の実施形態のように地絡検出装置2を単独で使用した場合、地絡検出装置2の除算回路13から出力される地絡抵抗Rgを検出データとして作業員が現地から持ち帰り、あるいは通信回線により伝送し、別の場所に設置された解析装置に入力することにより、現地での検出データに基づく判断処理が別の場所に設けられた解析装置で可能となる。なお、地絡検出装置2の除算回路13の出力を警報信号して利用することも可能である。また、図2の実施形態のように、地絡検出装置2を地絡保護継電器3に組み込んだ構成とした場合、地絡検出装置2の除算回路13の出力に基づいてリレー6を作動させて開閉器4を開閉動作させることが可能である。この地絡検出装置2の出力を警報信号やリレー作動信号として利用する場合には、所定の閾値を設定するようにしてもよい。   When the ground fault detection device 2 is used alone as in the embodiment of FIG. 1, an operator takes home from the site or communicates with the ground fault resistance Rg output from the division circuit 13 of the ground fault detection device 2 as detection data. By transmitting through a line and inputting to an analysis apparatus installed at another location, determination processing based on on-site detection data can be performed by the analysis apparatus provided at another location. It is also possible to use the output of the divider circuit 13 of the ground fault detection device 2 as an alarm signal. Moreover, when it is set as the structure which incorporated the ground fault detection apparatus 2 in the ground fault protection relay 3 like embodiment of FIG. 2, the relay 6 is operated based on the output of the division circuit 13 of the ground fault detection apparatus 2. It is possible to open and close the switch 4. When the output of the ground fault detection device 2 is used as an alarm signal or a relay operation signal, a predetermined threshold value may be set.

以上のようにして、地絡抵抗Rgは前述の(5)式に基づいてベクトル計算により求めることができるが、以下で詳述するように、図8に示す零相電圧Voの特異点A,Bに基づいて地絡抵抗Rgや対地静電容量Cを瞬時値計算により求めることも可能である。   As described above, the ground fault resistance Rg can be obtained by vector calculation based on the above-described equation (5). As described in detail below, the singular points A and 0 of the zero-phase voltage Vo shown in FIG. Based on B, the ground fault resistance Rg and the ground capacitance C can be obtained by instantaneous value calculation.

図8に示すように、零相電圧Voの微分値dVo/dtが0の時、零相電流Ioが地絡電流Igの最大値IgMAXとなる。このように、零相電圧Voの波形において、零相電圧Voの微分値dVo/dtが0の時を特異点A(図中の黒丸)として、この時の零相電圧Voが最大値VoMAXとなり、零相変流器8で検出される零相電流Ioが地絡電流Igの最大値IgMAXとなることで、以下の(6)式で示すように、零相電圧Voの最大値VoMAXを地絡電流Igの最大値IgMAXで除算することで、地絡抵抗Rgを簡易な演算処理により求めることができる。 As shown in FIG. 8, when the differential value dVo / dt of the zero-phase voltage Vo is 0, the zero-phase current Io becomes the maximum value Ig MAX of the ground fault current Ig. Thus, in the waveform of the zero-phase voltage Vo, when the differential value dVo / dt of the zero-phase voltage Vo is 0, the singular point A (black circle in the figure) is used, and the zero-phase voltage Vo at this time is the maximum value Vo MAX. Thus, the zero-phase current Io detected by the zero-phase current transformer 8 becomes the maximum value Ig MAX of the ground fault current Ig, so that the maximum value Vo of the zero-phase voltage Vo is expressed by the following equation (6). By dividing MAX by the maximum value Ig MAX of the ground fault current Ig, the ground fault resistance Rg can be obtained by simple arithmetic processing.

Rg=VoMAX/IgMAX ・・・(6) Rg = Vo MAX / Ig MAX (6)

このように、地絡抵抗Rgを瞬時値計算により求めるには、図9に示すように、零相電圧Voを時間で微分する微分回路21と、その零相電圧Voの微分値dVo/dtが0となるのを検出するゼロ検出回路22と、零相電圧Voの微分値dVo/dtが0の時の零相電圧Voを最大値VoMAXとして抽出するサンプリング回路23と、微分値dVo/dtが0の時の零相電流Ioを地絡電流Igの最大値IgMAXとして抽出するサンプリング回路24と、サンプリング回路23により得られた零相電圧Voの最大値VoMAXを、サンプリング回路24により得られた地絡電流Igの最大値IgMAXで除算して地絡抵抗Rgを求める除算回路25とを具備した地絡検出装置で実現可能となる。 Thus, in order to obtain the ground fault resistance Rg by instantaneous value calculation, as shown in FIG. 9, the differentiation circuit 21 for differentiating the zero-phase voltage Vo with time, and the differential value dVo / dt of the zero-phase voltage Vo are A zero detection circuit 22 for detecting zero, a sampling circuit 23 for extracting the zero-phase voltage Vo when the differential value dVo / dt of the zero-phase voltage Vo is 0 as the maximum value Vo MAX , and a differential value dVo / dt The sampling circuit 24 that extracts the zero-phase current Io when the value is 0 as the maximum value Ig MAX of the ground fault current Ig, and the maximum value Vo MAX of the zero-phase voltage Vo obtained by the sampling circuit 23 is obtained by the sampling circuit 24 This can be realized by a ground fault detection device including a division circuit 25 that obtains a ground fault resistance Rg by dividing by the maximum value Ig MAX of the ground fault current Ig.

また、図8に示すように、零相電圧Voが0の時、零相電流Ioが対地静電容量Cに流れる電流Icの最大値IcMAXとなる。このように、零相電圧Voの波形において、零相電圧Voが0の時を特異点B(図中の白丸)として、この時の零相電圧Voが0の時の微分値dVo/dtが最大値(dVo/dt)MAXとなり、零相電流Ioが対地静電容量Cに流れる電流Icの最大値IcMAXとなることで、以下の(7)式で示すように、対地静電容量Cに流れる電流Icの最大値IcMAXを、微分値dVo/dtの最大値(dVo/dt)MAXで除算することで、対地静電容量Cを簡易な演算処理により求めることができる。 Further, as shown in FIG. 8, when the zero-phase voltage Vo is 0, the zero-phase current Io becomes the maximum value Ic MAX of the current Ic flowing through the ground capacitance C. Thus, in the waveform of the zero-phase voltage Vo, when the zero-phase voltage Vo is 0, the singular point B (white circle in the figure) is used, and the differential value dVo / dt when the zero-phase voltage Vo at this time is 0 is When the maximum value (dVo / dt) MAX is reached and the zero-phase current Io becomes the maximum value Ic MAX of the current Ic flowing through the ground capacitance C, the ground capacitance C is expressed by the following equation (7). By dividing the maximum value Ic MAX of the current Ic flowing through the current by the maximum value (dVo / dt) MAX of the differential value dVo / dt, the ground capacitance C can be obtained by simple arithmetic processing.

C=IcMAX/(dVo/dt)MAX ・・・(7) C = Ic MAX / (dVo / dt) MAX (7)

このように、対地静電容量Cを瞬時値計算により求めるには、図10に示すように、零相電圧Voが0となるのを検出するゼロ検出回路31と、零相電圧Voが0の時の微分値dVo/dtを最大値(dVo/dt)MAXとして算出する微分回路32と、零相電圧Voが0の時の零相電流Ioを対地静電容量Cに流れる電流Icの最大値IcMAXとして抽出するサンプリング回路33と、そのサンプリング回路33により得られた最大値IcMAXを、微分回路32により算出された微分値dVo/dtの最大値(dVo/dt)MAXで除算して対地静電容量Cを求める除算回路34とを具備した地絡検出装置で実現可能となる。 Thus, in order to obtain the ground capacitance C by instantaneous value calculation, as shown in FIG. 10, a zero detection circuit 31 that detects that the zero-phase voltage Vo is zero, and the zero-phase voltage Vo is zero. Differential circuit 32 that calculates the differential value dVo / dt at the time as the maximum value (dVo / dt) MAX , and the maximum value of the current Ic that flows through the ground capacitance C from the zero-phase current Io when the zero-phase voltage Vo is 0 The sampling circuit 33 that is extracted as Ic MAX , and the maximum value Ic MAX obtained by the sampling circuit 33 is divided by the maximum value (dVo / dt) MAX of the differential value dVo / dt calculated by the differentiating circuit 32. This can be realized by a ground fault detection device including a division circuit 34 for obtaining the capacitance C.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

1 非接地系電路
2 地絡検出装置
3 地絡保護継電器
4 開閉器
6 リレー
7 零相電圧検出手段(計器用変圧器)
8 零相電流検出手段(零相変流器)
9 零相電圧微分手段(微分回路)
10 対地静電容量整定手段(演算回路)
11 乗算手段(乗算回路)
12 減算手段(減算回路)
DESCRIPTION OF SYMBOLS 1 Non-ground system electric circuit 2 Ground fault detection device 3 Ground fault protection relay 4 Switch 6 Relay 7 Zero phase voltage detection means (instrument transformer)
8 Zero-phase current detection means (zero-phase current transformer)
9 Zero-phase voltage differentiation means (differential circuit)
10 Ground capacitance setting means (arithmetic circuit)
11 Multiplication means (multiplication circuit)
12 Subtraction means (subtraction circuit)

Claims (5)

非接地系電路の構内での地絡事故によりその非接地系電路に現出した零相電圧V0を検出する零相電圧検出手段と、前記構内での地絡事故の発生時に非接地系電路に流れる零相電流I0を検出する零相電流検出手段とが接続された地絡検出装置であって、
前記零相電圧検出手段により得られた零相電圧Voを時間で微分する零相電圧微分手段と、前記非接地系電路の構内の対地静電容量を整定する静電容量整定手段と、前記零相電圧微分手段により算出された微分値dVo/dtを前記静電容量整定手段により算出された対地静電容量Cに乗算する乗算手段と、前記微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を前記零相電流Ioから減算して地絡電流Igを求める減算手段とを具備したことを特徴とする非接地系電路の地絡検出装置。
Zero-phase voltage detecting means for detecting the zero-phase voltage V 0 that appears in the non-grounded circuit due to a ground fault in the ground of the non-grounded circuit, and the non-grounded circuit in the event of a ground fault in the campus A ground fault detection device connected to zero phase current detection means for detecting zero phase current I 0 flowing through
Zero-phase voltage differentiation means for differentiating the zero-phase voltage Vo obtained by the zero-phase voltage detection means with respect to time, capacitance setting means for setting a ground capacitance in the premises of the ungrounded circuit, and the zero Multiplication means for multiplying the differential capacitance dVo / dt calculated by the phase voltage differentiation means by the ground capacitance C calculated by the capacitance setting means; and the differential value dVo / dt multiplied by the ground capacitance C. And a subtracting means for subtracting the multiplied value C × (dVo / dt) from the zero-phase current Io to obtain a ground fault current Ig.
前記減算手段の後段に、前記零相電圧検出手段により得られた零相電圧Voを減算手段により求められた地絡電流Igで除算して地絡抵抗Rgを求める除算手段を付加した請求項1に記載の非接地系電路の地絡検出装置。   2. A division means for adding a ground fault resistance Rg by dividing the zero phase voltage Vo obtained by the zero phase voltage detection means by the ground fault current Ig obtained by the subtraction means is added to the subsequent stage of the subtraction means. A ground fault detection device for a non-grounded electrical circuit according to claim 1. 前記請求項1又は2に記載の地絡検出装置と、その地絡検出装置の出力でもって、非接地系電路に設けられた開閉器を動作させるリレーとを具備した地絡保護継電器。   A ground fault protection relay comprising the ground fault detection device according to claim 1 and a relay for operating a switch provided in a non-grounded electrical circuit with an output of the ground fault detection device. 非接地系電路の構内での地絡事故によりその非接地系電路に現出した零相電圧Voおよび零相電流Ioに基づいて地絡を検出する地絡検出方法であって、その検出された零相電圧Voを時間で微分した微分値dVo/dtを前記非接地系電路の構内の対地静電容量Cに乗算し、その微分値dVo/dtに対地静電容量Cを乗算した乗算値C×(dVo/dt)を前記零相電流Ioから減算して地絡電流Igを求めることを特徴とする非接地系電路の地絡検出方法。   A ground fault detection method for detecting a ground fault based on a zero-phase voltage Vo and a zero-phase current Io that appear in the non-ground system circuit due to a ground fault in the premises of the non-ground system circuit. A differential value dVo / dt obtained by differentiating the zero-phase voltage Vo with respect to time is multiplied by a ground capacitance C in the premises of the non-grounded circuit, and a multiplication value C obtained by multiplying the differential value dVo / dt by the ground capacitance C. A ground fault detection method for a non-grounded electric circuit, wherein x (dVo / dt) is subtracted from the zero-phase current Io to obtain a ground fault current Ig. 前記零相電圧Voを前記地絡電流Igで除算して地絡抵抗Rgを求める請求項4に記載の非接地系電路の地絡検出方法。   The ground fault detection method for an ungrounded electrical circuit according to claim 4, wherein the zero-phase voltage Vo is divided by the ground fault current Ig to obtain a ground fault resistance Rg.
JP2010120705A 2010-03-16 2010-05-26 Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method Active JP5444122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120705A JP5444122B2 (en) 2010-03-16 2010-05-26 Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010059669 2010-03-16
JP2010059669 2010-03-16
JP2010120705A JP5444122B2 (en) 2010-03-16 2010-05-26 Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method

Publications (2)

Publication Number Publication Date
JP2011217588A true JP2011217588A (en) 2011-10-27
JP5444122B2 JP5444122B2 (en) 2014-03-19

Family

ID=44946731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120705A Active JP5444122B2 (en) 2010-03-16 2010-05-26 Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method

Country Status (1)

Country Link
JP (1) JP5444122B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165204A (en) * 2014-03-03 2015-09-17 中部電力株式会社 Ground fault detector
WO2016203633A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Leak current detecting device
JP2020046276A (en) * 2018-09-19 2020-03-26 日置電機株式会社 Assisting device, inspection system, and program for assist process
KR102495562B1 (en) * 2022-04-13 2023-02-06 (주)비즈커넥트 Measuring device and method of insulation resistance and capacitance of each phase in live wire state in main circuit of 3-phase 4-wire type electrical equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008232B (en) * 2017-10-23 2020-11-10 国网山东省电力公司青岛供电公司 Secondary current loop detection method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271384A (en) * 1998-03-19 1999-10-08 Kansai Denki Hoan Kyokai Apparatus for measuring line constant of nongrounding system line and apparatus for monitoring ground fault
JP2000324682A (en) * 1999-05-14 2000-11-24 Kansai Electric Power Co Inc:The Method and device for estimating earth current
JP2003164055A (en) * 2001-11-27 2003-06-06 Kansai Denki Hoan Kyokai Grounding fault detection device of non-grounding system line, and grounding protection relay and grounding fault detection method using the same
JP2005304114A (en) * 2004-04-07 2005-10-27 Hitachi Ltd Tree contact monitor of distribution line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271384A (en) * 1998-03-19 1999-10-08 Kansai Denki Hoan Kyokai Apparatus for measuring line constant of nongrounding system line and apparatus for monitoring ground fault
JP2000324682A (en) * 1999-05-14 2000-11-24 Kansai Electric Power Co Inc:The Method and device for estimating earth current
JP2003164055A (en) * 2001-11-27 2003-06-06 Kansai Denki Hoan Kyokai Grounding fault detection device of non-grounding system line, and grounding protection relay and grounding fault detection method using the same
JP2005304114A (en) * 2004-04-07 2005-10-27 Hitachi Ltd Tree contact monitor of distribution line

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165204A (en) * 2014-03-03 2015-09-17 中部電力株式会社 Ground fault detector
WO2016203633A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Leak current detecting device
JPWO2016203633A1 (en) * 2015-06-19 2017-09-14 三菱電機株式会社 Leakage current detector
KR20170132324A (en) * 2015-06-19 2017-12-01 미쓰비시덴키 가부시키가이샤 Leakage current detection device
KR101952063B1 (en) * 2015-06-19 2019-02-25 미쓰비시덴키 가부시키가이샤 Leakage current detection device
EP3312621B1 (en) * 2015-06-19 2022-04-27 Mitsubishi Electric Corporation Leak current detecting device
JP2020046276A (en) * 2018-09-19 2020-03-26 日置電機株式会社 Assisting device, inspection system, and program for assist process
JP7184575B2 (en) 2018-09-19 2022-12-06 日置電機株式会社 Support equipment, inspection systems and programs for support processing
KR102495562B1 (en) * 2022-04-13 2023-02-06 (주)비즈커넥트 Measuring device and method of insulation resistance and capacitance of each phase in live wire state in main circuit of 3-phase 4-wire type electrical equipment

Also Published As

Publication number Publication date
JP5444122B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Farughian et al. Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks
CN106415286B (en) System and method for impulse ground fault detection and localization
RU2631025C2 (en) Detection of direction of weakly resistant short circuit to earth of average voltage with help of linear correlation
CN103782509A (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US20110074436A1 (en) Identification of false positives in high impedance fault detection
SE1150535A1 (en) A method for detecting earth faults
US9568535B2 (en) Methods for detecting an open current transformer
JP5444122B2 (en) Non-grounded circuit ground fault detection device, ground fault protection relay using the same, and ground fault detection method
US20180159310A1 (en) Arc fault circuit interrupter apparatus and methods using symmetrical component harmonic detection
WO2014135680A1 (en) Overcurrent protection device and method
US10338122B2 (en) Method and device for detecting a fault in an electrical network
Biswal et al. Detection of current transformer saturation phenomenon for secured operation of smart power network
Penido et al. An analytical zero sequence method to locate fault in distribution systems rich in DG
Khan et al. An accurate algorithm of PMU-based wide area measurements for fault detection using positive-sequence voltage and unwrapped dynamic angles
CN105486984B (en) A kind of direct current grounding trouble shooting method and instrument based on the control of dynamic electric potential source
Lin et al. Fault location for three-ended ring-topology power system using minimum GPS-based measurements and CVT/CT sensing
JP5926419B1 (en) Phase loss detector
Reis et al. Influence of instrument transformers and anti-aliasing filters on the performance of fault locators
Abd Allah Experimental results and technique evaluation based on alienation coefficients for busbar protection scheme
JP3312172B2 (en) Distribution line ground fault protection relay test method and apparatus
Hänninen et al. A probabilistic method for detection and location of very high resistive earth faults
Zhang et al. Fault locating in ungrounded and compensated systems
Mourad An enhanced distance protection algorithm based on characteristics-travelling waves measured from the current for HVDC Lines
Mati et al. A new framework of numerical distance relay using LabVIEW
Zhou et al. Fault location for aircraft distribution systems using harmonic impedance estimation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5444122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250