JP2011217159A - Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body - Google Patents

Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body Download PDF

Info

Publication number
JP2011217159A
JP2011217159A JP2010084018A JP2010084018A JP2011217159A JP 2011217159 A JP2011217159 A JP 2011217159A JP 2010084018 A JP2010084018 A JP 2010084018A JP 2010084018 A JP2010084018 A JP 2010084018A JP 2011217159 A JP2011217159 A JP 2011217159A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric body
bodies
laminated
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010084018A
Other languages
Japanese (ja)
Inventor
Yuichi Nishikubo
雄一 西久保
Kenji Onuma
憲司 大沼
Seiwa Morita
聖和 森田
Kenji Suzuki
謙次 鈴木
Hidekazu Kodama
秀和 児玉
Munehiro Date
宗宏 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2010084018A priority Critical patent/JP2011217159A/en
Priority to PCT/JP2011/001033 priority patent/WO2011121882A1/en
Priority to US13/637,850 priority patent/US9375754B2/en
Publication of JP2011217159A publication Critical patent/JP2011217159A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To increase a harmonic component, and at the same time, attenuates a fundamental wave component when transmitting/receiving the harmonic wave using a multilayer piezoelectric body.SOLUTION: When transceiving a third harmonic wave using the three-layer piezoelectric body, the three layers are not laminated arranging a polarization direction of the three layers in order, while letting a direction of a part be inverse direction, and electrode wiring is devised. As a concrete target, electrodes of separated sides of the adjoining piezoelectric bodies are connected each other, and respectively connected to two terminals. When making a direction of residual polarity of the piezoelectric body 1 (+P) as a reference, if the piezoelectric body 2 is of the same direction (+P), and the piezoelectric body 3 is of the inverse direction in parallel (-P), sensitivity is negated for λ/4 resonance, and enhanced for 3λ/4 resonance in an electric displacement between terminals. In the way, it is possible to suppress the fundamental wave, and extract the third harmonic waves without using a filter or an amplifier.

Description

本発明は、超音波診断装置の探触子などとして用いられる超音波トランスデューサと、それに用いられる圧電体で、特に複数層積層されて成る積層型圧電体およびその作成方法とに関する。   The present invention relates to an ultrasonic transducer used as a probe or the like of an ultrasonic diagnostic apparatus, and a piezoelectric material used therefor, in particular, a laminated piezoelectric material formed by laminating a plurality of layers, and a method for producing the same.

一般に、超音波トランスデューサには圧電体が用いられる。これは、圧電体が機械エネルギーを電気エネルギーに変換する、またその逆のいわゆる電気系と機械系との結合作用を持つためである。用いられる圧電体は、一対の電極が設けられたシート状、板状あるいは棒状で、一方の電極が背後層に固定され、もう一方の電極が音響レンズや整合層を介して媒質に接する。   In general, a piezoelectric body is used for an ultrasonic transducer. This is because the piezoelectric body converts mechanical energy into electrical energy, and vice versa, and has a so-called electric system-mechanical coupling action. The piezoelectric body used is in the form of a sheet, plate or rod provided with a pair of electrodes, one electrode is fixed to the back layer, and the other electrode is in contact with the medium via the acoustic lens or matching layer.

そして、圧電超音波トランスデューサの多くは、d33モードやe33モードにより媒質に音波を放射し、あるいは媒質に伝搬する音波を検出する。d33モードは柱状振動子の縦振動、e33モードは板状振動子の厚み振動と一般に言われている。PZTセラミックスやPVDFなどの強誘電体や、P(VDCN/VAc)といった高誘電体、ポーラスポリマーエレクトレット圧電体では、ポーリング処理による電気双極子の配向により残留分極を保持し、d33やe33を示す。一方、残留分極を持たない圧電結晶では、ZnO、LiNbO、KNbOといった圧電結晶の場合はC軸、水晶の場合はA軸を、それぞれ電極面に対して垂直に配向すれば、前記d33やe33(水晶ではd11やe11)を示す。圧電コンポジット材料については、用いられる材料に応じる。 Many piezoelectric ultrasonic transducers radiate sound waves to the medium or detect sound waves propagating to the medium in the d 33 mode or e 33 mode. The d 33 mode is generally called longitudinal vibration of the columnar vibrator, and the e 33 mode is generally called thickness vibration of the plate vibrator. In ferroelectric materials such as PZT ceramics and PVDF, high dielectric materials such as P (VDCN / VAc), and porous polymer electret piezoelectric materials, the residual polarization is maintained by the orientation of the electric dipole by the poling process, and d 33 and e 33 are set. Show. On the other hand, in the case of a piezoelectric crystal having no remanent polarization, if the piezoelectric crystal such as ZnO, LiNbO 3 , KNbO 3 is oriented perpendicularly to the electrode surface with the C-axis in the case of quartz crystal or the A-axis in the case of quartz, d 33 And e 33 (d 11 and e 11 for quartz). The piezoelectric composite material depends on the material used.

ここで、超音波トランスデューサを構成する圧電体において、最も単純な力学境界条件は、一端が固定端でもう一端が自由端の場合である。なお、理論上は、接する物の音響インピーダンスZ(単位はMRayl.)と境界条件には、Z=0が自由端、Z=∞が固定端の関係があるが、本明細書においてはそこまで厳密ではなく、接着層や電極層を除いて、接する物のZに対し、圧電材料のインピーダンスZが、小さいもしくは同等の場合に固定端、大きい場合に自由端とみなすものとする。また、超音波トランスデューサの送波および受波には、圧電体の縦振動あるいは厚み振動の共振が用いられ、その共振周波数frは、トランスデューサの構造や媒質への押し当てにもよるが、主に圧電体の物性と寸法とで決まる。したがって、本明細書では圧電体の寸法や性質以外で共振周波数を変化させる要因を除外する。   Here, in the piezoelectric body constituting the ultrasonic transducer, the simplest mechanical boundary condition is a case where one end is a fixed end and the other end is a free end. Theoretically, the acoustic impedance Z (unit is MRayl.) Of the contacting object and the boundary condition have a relation that Z = 0 is a free end and Z = ∞ is a fixed end. It is not strict, and with the exception of the adhesive layer and electrode layer, the impedance Z of the piezoelectric material is regarded as a fixed end when the impedance Z is small or equivalent, and a free end when it is large. In addition, the resonance of the longitudinal vibration or the thickness vibration of the piezoelectric body is used for the transmission and reception of the ultrasonic transducer, and the resonance frequency fr depends mainly on the structure of the transducer and the pressing to the medium. It is determined by the physical properties and dimensions of the piezoelectric body. Therefore, in the present specification, factors that change the resonance frequency other than the dimensions and properties of the piezoelectric body are excluded.

先ず、圧電体のd33モードやe33モードにおける共振周波数frは、圧電体の音速vと高さ(厚み)hとから、
fr=v/4h …(1)
となる。これは一般にλ/4共振と言われる。λは圧電体内の波長を意味する。このほかに両端を自由としたλ/2共振がある。その共振周波数は、λ/4共振の1/2となる。
First, the resonance frequency fr in the d 33 mode and e 33 mode of the piezoelectric body is determined from the sound velocity v and the height (thickness) h of the piezoelectric body.
fr = v / 4h (1)
It becomes. This is generally referred to as λ / 4 resonance. λ means the wavelength in the piezoelectric body. In addition, there is a λ / 2 resonance in which both ends are free. The resonance frequency is ½ of λ / 4 resonance.

一方、前記圧電体の音速vは、柱状振動子の縦振動では、
v=(1/sρ)1/2 …(2)
となり、板状の厚み振動子の厚み振動では、
v=(c/ρ)1/2 …(3)
となる。ここで、sは弾性コンプライアンス、cは弾性スティフネス、ρは密度である。
On the other hand, the sound velocity v of the piezoelectric body is the longitudinal vibration of the columnar vibrator.
v = (1 / sρ) 1/2 (2)
In the thickness vibration of the plate-shaped thickness vibrator,
v = (c / ρ) 1/2 (3)
It becomes. Here, s is elastic compliance, c is elastic stiffness, and ρ is density.

こうして、トランスデューサの送波および受波周波数は、主に圧電体の高さ(厚み)h、弾性率sおよび密度ρによって決定されることが、上式(1)〜(3)より理解される。   Thus, it is understood from the above formulas (1) to (3) that the transmission and reception frequencies of the transducer are mainly determined by the height (thickness) h, the elastic modulus s, and the density ρ of the piezoelectric body. .

医療分野や建築分野など、超音波による非破壊画像検査の分野では、より高分解能な画像を得るためトランスデューサの高周波数化や送受波性能の向上が求められている。圧電体を用いた超音波トランスデューサにおいて、送受波性能を向上するには、トランスデューサと電気処理回路との間の電気インピーダンス整合は、電気信号を高S/N比で伝送するための重要な因子である。また、高周波化では、送受波周波数が圧電体の厚みで決まるので、圧電体をより薄くする必要がある。圧電体の薄膜化は、電気インピーダンスを下げる方向に働くので、電気回路とのインピーダンス整合には有利に働くが、下げ幅はせいぜい厚み比の逆数分に過ぎない。また、圧電体の薄膜化は、膜厚制御や取り扱いなど製造プロセスを困難とする。   In the field of non-destructive image inspection using ultrasonic waves, such as the medical field and the architectural field, it is required to increase the frequency of the transducer and improve the transmission / reception performance in order to obtain a higher resolution image. In an ultrasonic transducer using a piezoelectric body, electrical impedance matching between the transducer and the electrical processing circuit is an important factor for transmitting an electrical signal at a high S / N ratio in order to improve transmission / reception performance. is there. In addition, when the frequency is increased, since the transmission / reception frequency is determined by the thickness of the piezoelectric body, it is necessary to make the piezoelectric body thinner. Since the piezoelectric thin film works in the direction of lowering the electrical impedance, it works favorably for impedance matching with the electric circuit, but the lowering width is at most the reciprocal of the thickness ratio. In addition, the thinning of the piezoelectric body makes the manufacturing process such as film thickness control and handling difficult.

そこで、従来技術では、高周波信号を得る目的として、従来のλ/4共振トランスデューサの送受波信号における高調波成分が用いられている。しかしながら、高調波成分は基本波成分に比べて感度が弱く、かつ圧電体や周辺材料のダンピングによって減衰し易いので、高S/N比の信号は得られにくいという問題がある。そこで、高調波を使った超音波の送受波の一例として、図1を参照して、e33厚み伸縮モードについて説明する。この図1および以下の説明は、非特許文献1に示されたものである。この図1の等価回路を構成する素子の定数は、
=p …(4)
L=1/ωp1 …(5)
=(1/n)(8/π),n=2m−1 …(6)
である。ここで、Cは各素子のキャパシタンス、Lはインダクタンス、kは厚み伸縮モードの電気機械結合係数、ωp1は共振周波数である。
Therefore, in the prior art, the harmonic component in the transmission / reception signal of the conventional λ / 4 resonant transducer is used for the purpose of obtaining a high-frequency signal. However, the harmonic component has a sensitivity lower than that of the fundamental wave component, and is easily attenuated by the damping of the piezoelectric body and the surrounding material, so that there is a problem that it is difficult to obtain a signal with a high S / N ratio. Therefore, as an example of transmitting and receiving ultrasonic waves using the harmonic, with reference to FIG. 1, described e 33 thickness stretching mode. This FIG. 1 and the following description are shown in Non-Patent Document 1. The constants of the elements constituting the equivalent circuit of FIG.
C n = p n k t 2 C 0 (4)
L = 1 / ω p1 2 C 1 (5)
p n = (1 / n 2 ) (8 / π 2 ), n = 2m−1 (6)
It is. Here, C n is the capacitance of the elements, L is the inductance, k t is the electromechanical coupling coefficient of thickness stretching mode, the omega p1 is the resonant frequency.

上記式(6)において、p≒1/nと近似すれば、式(4)は、
/C=k /n …(7)
となる。式(7)はn次高調波における電気機械結合係数の実効値が1/nに減少することを示す。そして、1次モードの場合、n=1なので、式(7)は、
n=1/C=k …(8)
となる。この式は、この1次モードにおけるkと誘電率との関係式
ε/ε=1+k …(9)
において、ε=C+C,ε=Cとおいた式と一致する。εは束縛条件の誘電率、、εは自由条件の誘電率、CとCとは電気容量である。d33モードに対しては、上式(4)を、
=p(k33 /1−k33 )C …(10)
に置き換えれば、同様の結果が得られる。
In the above equation (6), if approximated as p n ≈1 / n 2 , equation (4) becomes
C n / C 0 = k t 2 / n 2 ... (7)
It becomes. Equation (7) shows that the effective value of the electromechanical coupling coefficient at the nth harmonic is reduced to 1 / n. In the case of the primary mode, since n = 1, equation (7) is
C n = 1 / C 0 = k t 2 ... (8)
It becomes. This equation, relation between k t and a dielectric constant in the first order mode ε T / ε S = 1 + k t 2 ... (9)
Therefore, ε T = C 0 + C n , ε S = C 0 , which is in agreement with the above equation. The epsilon S dielectric constant of the dielectric constant ,, epsilon T free conditions constraints, and C 0 and C n is the capacitance. For the d 33 mode, the above equation (4) is
C n = p n (k 33 2 / 1−k 33 2 ) C 0 (10)
The same result can be obtained by replacing.

そして、3次高調波を送受波するときの電気機械結合係数の実効値は、式(7)より、n=3のときに与えられ、見かけの結合係数をk’とおけば、k’=k/n=k/3となる。この結果は、3次高調波を送受波する際に、見かけ結合係数が1/3に減衰することを意味する。 The effective value of the electromechanical coupling coefficient when transmitting and receiving the third harmonic is given by n = 3 from Equation (7). If the apparent coupling coefficient is k t ′, k t '= K t / n = k t / 3. This result means that the apparent coupling coefficient is attenuated to 1/3 when transmitting and receiving the third harmonic.

図2は、1MHzに厚み共振の1次モードを示す圧電体の複素誘電率の周波数特性(計算値)を示すグラフである。ただし、kt=0.3,h/2v=2.485×10−7(s),tanδ=0.04である。 FIG. 2 is a graph showing the frequency characteristic (calculated value) of the complex dielectric constant of a piezoelectric body exhibiting a primary mode of thickness resonance at 1 MHz. However, kt = 0.3, h / 2v = 2.485 × 10 −7 (s), tan δ m = 0.04.

1MHzに見られる実部(参照符号α1で示す)の極大・極小と、虚部(参照符号α2で示す)の極大とは、厚み共振の1次モードによるものである。以後、3MHzに3次高調波成分、5MHzに5次高調波成分が見られる。一方、図3に示すように、図2に示す3次高調波成分について、3MHzを1次モードとする圧電体モデルで当てはめたところ、結合係数と圧電体の厚みが1/3とした場合に一致した。これらの結果は上記の解釈と一致する。図3は、厚み共振を示す圧電体の複素誘電率の周波数特性(計算値)を示すグラフである。ただし、破線は、前記のとおり、kt=0.3,h/2v=2.485×10−7(s),tanδ=0.04である。一方、実線は、kt=0.1,h/2v=8.300×10−7(s),tanδ=0.04である。 The maximum / minimum of the real part (indicated by reference numeral α1) and the maximum of the imaginary part (indicated by reference numeral α2) seen at 1 MHz are due to the primary mode of thickness resonance. Thereafter, a third harmonic component is observed at 3 MHz and a fifth harmonic component is observed at 5 MHz. On the other hand, as shown in FIG. 3, when the third harmonic component shown in FIG. 2 is applied with a piezoelectric model having 3 MHz as the primary mode, the coupling coefficient and the thickness of the piezoelectric body are set to 1/3. Matched. These results are consistent with the above interpretation. FIG. 3 is a graph showing the frequency characteristic (calculated value) of the complex dielectric constant of a piezoelectric body exhibiting thickness resonance. However, the broken lines are kt = 0.3, h / 2v = 2.485 × 10 −7 (s), tan δ m = 0.04 as described above. On the other hand, the solid lines are kt = 0.1, h / 2v = 8.300 × 10 −7 (s), tan δ m = 0.04.

以上のように、従来技術の問題点は、高調波を検出する際に、見掛けの電気機械結合係数が1/nにまで減少してしまうことおよび電気インピーダンスが圧電体の寸法により一義的に決まってしまうことにある。   As described above, the problems of the prior art are that, when detecting harmonics, the apparent electromechanical coupling coefficient is reduced to 1 / n and the electrical impedance is uniquely determined by the size of the piezoelectric body. There is to be.

一方、医療用超音波診断装置において、高調波信号を用いた組織ハーモニックイメージング(THI)診断は、従来のBモード診断では得られない鮮明な診断像が得られることから、標準的な診断モダリティとなりつつある。このハーモニックイメージングのように使用する周波数が高くなると、サイドローブレベルが小さくなり、S/Nが良く、コントラスト分解能が良くなり、またビーム幅が細く横方向分解能が良くなり、さらに近距離では音圧が小さく、また音圧の変動が少ないので多重反射が起こらない等の多くの利点を有している。   On the other hand, in a medical ultrasonic diagnostic apparatus, tissue harmonic imaging (THI) diagnosis using harmonic signals is a standard diagnostic modality because a clear diagnostic image that cannot be obtained by conventional B-mode diagnosis is obtained. It's getting on. If the frequency used is higher as in this harmonic imaging, the sidelobe level will be lower, the S / N will be better, the contrast resolution will be better, the beam width will be narrower and the lateral resolution will be better. Is small, and since there is little variation in sound pressure, it has many advantages such as no multiple reflection.

そこで、特許文献1では、超音波トランスデューサの各圧電素子で受信された信号が整相加算回路で加算された後、基本波帯域のフィルタと高調波帯域のフィルタとに共通に入力され、それらの出力に、被検体の診断領域の深さにそれぞれ応じたゲインで重み付けされた後、合成されることで、深い診断領域での高調波成分の減衰を基本波で補間するようにした超音波診断装置が提案されている。すなわち、高調波の受信にあたって、前記電気機械結合係数の低下をフィルタとアンプとを用いて補償している。   Therefore, in Patent Document 1, the signals received by the piezoelectric elements of the ultrasonic transducer are added by the phasing addition circuit, and then input to the fundamental band filter and the harmonic band filter in common. Ultrasound diagnosis in which the output is weighted with a gain corresponding to the depth of the diagnostic region of the subject and then combined to interpolate the attenuation of harmonic components in the deep diagnostic region with the fundamental wave A device has been proposed. That is, when receiving harmonics, the decrease in the electromechanical coupling coefficient is compensated by using a filter and an amplifier.

同様に、特許文献2では、基本波用の圧電素子に高調波用の圧電素子を積層し、基本波用の圧電素子から送信超音波を放射し、該基本波用の圧電素子で受信した基本波の信号成分に、高調波用の圧電素子で受信された複数の高調波成分をそれぞれ帯域通過フィルタを通過させて所望の成分を抽出した後、個別にゲイン調整して加算することで、診断領域の深度に応じた信号を得るようにした超音波診断装置が提案されている。   Similarly, in Patent Document 2, a fundamental piezoelectric element is formed by laminating a harmonic piezoelectric element on a fundamental wave piezoelectric element, radiating a transmission ultrasonic wave from the fundamental wave piezoelectric element, and receiving it by the fundamental wave piezoelectric element. Diagnose the signal component of the wave by passing the multiple harmonic components received by the piezoelectric element for harmonics through the band-pass filter and extracting the desired component, then adjusting the gain individually and adding them. There has been proposed an ultrasonic diagnostic apparatus that obtains a signal corresponding to the depth of a region.

特開2002−11004号公報JP 2002-11004 A 特許第4192598号公報Japanese Patent No. 4192598

圧電材料学の基礎 石田拓郎著 オーム社Basics of Piezoelectric Materials by Takuro Ishida Ohmsha

しかしながら、上述の従来技術では、多数の圧電素子からの信号経路にフィルタやアンプを挿入する必要がある。   However, in the above-described conventional technology, it is necessary to insert filters and amplifiers in signal paths from a large number of piezoelectric elements.

また、高い周波数の信号の受信には、PZT等の無機の材料に比べて、PVDFなどの有機の材料を用いることが好ましい。しかしながら、無機の材料は誘電率が高く、このためキャパシタンスが大きく、電気インピーダンスが低いので、後段回路とのマッチングが比較的容易であるのに対して、有機の材料では、前記誘電率が低く、このためキャパシタンスが低く、前記電気インピーダンスが高いので、後段回路とのマッチングが難しいという問題もある。   In addition, it is preferable to use an organic material such as PVDF for receiving a signal having a high frequency as compared with an inorganic material such as PZT. However, an inorganic material has a high dielectric constant, and therefore has a large capacitance and a low electrical impedance, so matching with a subsequent circuit is relatively easy, whereas an organic material has a low dielectric constant, For this reason, since the capacitance is low and the electrical impedance is high, there is a problem that matching with a subsequent circuit is difficult.

本発明の目的は、所望高調波成分の送波時の出力音圧あるいは受波時の出力電圧が1次モードのそれらよりも大きくなるようにすることができるとともに、電気インピーダンスを低下することができる積層型圧電体およびこれを用いた超音波トランスデューサならびに積層型圧電体の作成方法を提供することである。   An object of the present invention is to make it possible to make the output sound pressure at the time of transmitting a desired harmonic component or the output voltage at the time of receiving a wave higher than those in the primary mode, and to reduce the electrical impedance. Another object of the present invention is to provide a multilayer piezoelectric body that can be produced, an ultrasonic transducer using the same, and a method for producing the multilayer piezoelectric body.

本発明の積層型圧電体は、相互に厚みの等しい複数の圧電体を積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体であって、前記圧電体は3層積層されて、その層間および両端の圧電体の表面に電極を有し、互いに隣り合う圧電体における離反側の電極を連結することで、前記各圧電体を相互に並列接続する2組の連絡配線を備え、前記各圧電体は、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸を、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3段目の圧電体では逆方向となるように配列されていることを特徴とする。   The multilayer piezoelectric body of the present invention is formed by laminating a plurality of piezoelectric bodies having the same thickness, and transmits and receives ultrasonic waves of the third harmonic component due to 3λ / 4 resonance generated by the thickness expansion and contraction of the piezoelectric body. The piezoelectric body is laminated in three layers, and has electrodes on the surface of the piezoelectric body between the layers and at both ends, and by connecting the electrodes on the separation side in the piezoelectric bodies adjacent to each other, The piezoelectric body includes two sets of interconnecting wires that connect the piezoelectric bodies in parallel to each other, and each piezoelectric body has an electric displacement due to a piezoelectric positive effect or a remanent polarization direction or a crystal axis related to a sign of an electric field, and a first end on the fixed end side. With reference to the axis of the piezoelectric element at the stage, the second stage piezoelectric element in contact therewith is arranged in the same direction, and the third stage piezoelectric element above it is arranged in the opposite direction. To do.

また、本発明の積層型圧電体の作成方法は、相互に厚みの等しい圧電体を複数積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体の作成方法であって、前記圧電体を3層積層し、各圧電体の層間および両端の圧電体の表面に形成される電極において、互いに隣り合う圧電体における離反側の電極を連絡配線によって連結することで、前記各圧電体を相互に並列接続し、前記各圧電体を、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸が、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3段目の圧電体では逆方向となるように配列することを特徴とする。   The method for producing a laminated piezoelectric material according to the present invention is formed by laminating a plurality of piezoelectric materials having the same thickness, and the ultrasonic wave of the third harmonic component due to the 3λ / 4 resonance generated by the thickness expansion and contraction of the piezoelectric material. A method for producing a laminated piezoelectric material for transmitting and receiving waves, wherein three layers of the piezoelectric material are laminated, and electrodes formed on the surface of the piezoelectric material between layers and at both ends of each piezoelectric material are separated from each other in a piezoelectric material adjacent to each other. By connecting the electrodes of each of them with a connection wiring, the piezoelectric bodies are connected in parallel to each other, and the direction of the remanent polarization or the crystal axis related to the electrical displacement or the sign of the electric field due to the piezoelectric positive effect, Using the axis of the first-stage piezoelectric body on the fixed end side as a reference, the second-stage piezoelectric body in contact therewith is arranged in the same direction, and the third-stage piezoelectric body above it is arranged in the opposite direction. It is characterized by that.

上記の構成によれば、超音波診断装置の超音波トランスデューサなどとして用いられ、相互に厚みの等しい複数の圧電体を積層して成り、該圧電体の厚み伸縮により超音波の送波および受波の少なくとも一方を行う積層型圧電体およびその作成方法において、本願発明では、3λ/4共振による3次高調波成分の超音波を送受波する場合に、圧電体の積層枚数を3枚として各圧電体を並列接続し、かつ予め定める態様で(ある決まりに従い)、一部の圧電体について、その表裏を反転して積層する。   According to the above configuration, it is used as an ultrasonic transducer of an ultrasonic diagnostic apparatus, and is formed by stacking a plurality of piezoelectric bodies having the same thickness, and transmitting and receiving ultrasonic waves by expanding and contracting the thickness of the piezoelectric bodies. In the multilayer piezoelectric body and the method for producing the multilayer piezoelectric body that perform at least one of the above, in the present invention, when transmitting and receiving the ultrasonic wave of the third harmonic component due to 3λ / 4 resonance, the number of piezoelectric bodies stacked is three and each piezoelectric element is stacked. The bodies are connected in parallel, and in a predetermined manner (according to a certain rule), some of the piezoelectric bodies are laminated with their front and back reversed.

具体的には、先ず、前記のように厚み方向に3層積層される各圧電体の層間および両端の圧電体の表面に形成される電極の内、互いに隣り合う圧電体における離反側の電極を2組の連絡配線で連結することで、各圧電体を電気的に並列結合とする。   Specifically, first, among the electrodes formed on the surface of the piezoelectric material between the layers and at both ends of each piezoelectric material laminated in the thickness direction as described above, the electrodes on the separation side of the piezoelectric materials adjacent to each other are arranged. Each piezoelectric body is electrically connected in parallel by being connected by two sets of connecting wires.

次に、前記積層枚数を3枚とすることで、圧電体内を伝搬する弾性波の節と腹とを、該圧電体の境界面と一致させることができ、このときの該積層型圧電体内における前記3次高調波成分の歪み分布に着目すると、各圧電体の歪みが、絶対値が変わることなく位相が180度反転し、各圧電体が上記のように並列接続の場合、例えば基端(背後層)側の圧電体の歪みを+とすれば、「+,+,−」となる。そこで、前記予め定める態様として、各圧電体の残留分極、あるいは結晶のC軸やA軸の向き(d33,e33,d11,e11の符号を決める軸)を、前記歪み分布における電気変位や電場の符号と一致するように、不一致の箇所(「−」の符号に該当する)の圧電体について、その表裏を反転して積層する。上記の場合、固定端側の(背後層に接する)第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3段目の圧電体では逆方向に配列する。 Next, by setting the number of stacked layers to 3, the nodes and antinodes of the elastic waves propagating in the piezoelectric body can be made to coincide with the boundary surface of the piezoelectric body, and the laminated piezoelectric body at this time Paying attention to the distortion distribution of the third harmonic component, the distortion of each piezoelectric body is reversed in phase by 180 degrees without changing the absolute value, and when the piezoelectric bodies are connected in parallel as described above, for example, the base end (rear side) If the distortion of the piezoelectric material on the (layer) side is +, “+, +, −” is obtained. Therefore, as the predetermined mode, the residual polarization of each piezoelectric body or the orientation of the C-axis or A-axis of the crystal (the axes that determine the signs of d 33 , e 33 , d 11 , e 11 ) The piezoelectric body at the mismatched portion (corresponding to the sign of “−”) is reversed and laminated so as to match the sign of displacement and electric field. In the above case, with respect to the axis of the first-stage piezoelectric body (in contact with the back layer) on the fixed end side, the second-stage piezoelectric body in contact with the axis is in the same direction, and the third-stage piezoelectric body thereon The body arranges in the opposite direction.

これによって、積層型圧電体における各圧電体を、圧電正効果による電気変位や電場の符号に一致させ、フィルタやアンプなどを用いることなく、λ/4共振の場合に比べて前記3次高調波成分の送波時の出力音圧あるいは受波時の出力電圧を大きくすることができるとともに、1次モードの信号を減衰させることができる。また、圧電体の電気インピーダンスを、並列数、すなわち1/3に下げることができ、有機圧電体などの誘電率が低く、キャパシタンスの小さい圧電体に有利である。   Thereby, each piezoelectric body in the laminated piezoelectric body is made to coincide with the electric displacement due to the piezoelectric positive effect and the sign of the electric field, and the third harmonic is compared with the case of λ / 4 resonance without using a filter or an amplifier. The output sound pressure at the time of component transmission or the output voltage at the time of wave reception can be increased, and the signal of the primary mode can be attenuated. In addition, the electrical impedance of the piezoelectric body can be reduced to the parallel number, that is, 1/3, which is advantageous for a piezoelectric body having a low dielectric constant and a small capacitance such as an organic piezoelectric body.

さらにまた、本発明の積層型圧電体は、相互に厚みの等しい圧電体を2層積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体であって、前記各圧電体は、その層間および各外表面に電極を有し、前記外表面の電極を連結することで、前記各圧電体を相互に並列接続する連絡配線を備え、前記両圧電体は、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸を、互いに同方向となるように配列されていることを特徴とする。   Furthermore, the laminated piezoelectric material of the present invention is formed by laminating two layers of piezoelectric materials having the same thickness, and transmitting and receiving ultrasonic waves of the third harmonic component due to 3λ / 4 resonance generated by the thickness expansion and contraction of the piezoelectric material. A laminated piezoelectric body that swells, and each piezoelectric body has electrodes on its interlayer and each outer surface, and the electrodes on the outer surface are connected to each other to connect the piezoelectric bodies in parallel with each other. The piezoelectric elements are provided with wirings, and the two piezoelectric bodies are arranged so that the directions of remanent polarization or crystal axes related to the electric displacement due to the piezoelectric positive effect or the sign of the electric field are in the same direction.

また、本発明の積層型圧電体の作成方法では、相互に厚みの等しい圧電体を2層積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体の作成方法であって、前記各圧電体の層間および各外表面に形成される電極において、前記外表面の電極を連絡配線によって連結することで、前記各圧電体を相互に並列接続し、前記両圧電体を、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸が、互いに同方向となるように配列することを特徴とする。   In the method for producing a laminated piezoelectric material according to the present invention, two layers of piezoelectric materials having the same thickness are laminated, and the ultrasonic wave of the third harmonic component due to 3λ / 4 resonance generated by the thickness expansion and contraction of the piezoelectric material. A method for producing a laminated piezoelectric body that transmits and receives a wave, wherein the electrodes on the outer surface of each piezoelectric body are connected to each other by connecting wirings. Are connected in parallel to each other, and the two piezoelectric bodies are arranged so that the directions of remanent polarization or crystal axes related to the electric displacement due to the piezoelectric positive effect or the sign of the electric field are in the same direction.

上記の構成によれば、超音波診断装置の超音波トランスデューサなどとして用いられ、相互に厚みの等しい圧電体を2層積層して成り、該圧電体の厚み伸縮により超音波の送波および受波の少なくとも一方を行う積層型圧電体およびその作成方法において、本願発明では、3λ/4共振による3次高調波成分の超音波を送受波する場合に、前記2層の圧電体を並列接続し、かつ2層の圧電体について、残留分極の向きあるいは結晶軸を、互いに並行に積層する。   According to the above configuration, it is used as an ultrasonic transducer of an ultrasonic diagnostic apparatus, and is formed by laminating two layers of piezoelectric bodies having the same thickness, and transmitting and receiving ultrasonic waves by expanding and contracting the thickness of the piezoelectric bodies. In the laminated piezoelectric material that performs at least one of the above and a manufacturing method thereof, in the present invention, when transmitting and receiving an ultrasonic wave of the third harmonic component due to 3λ / 4 resonance, the two piezoelectric layers are connected in parallel, In addition, with respect to the two layers of piezoelectric bodies, the directions of remanent polarization or crystal axes are stacked in parallel with each other.

具体的には、先ず、前記のように厚み方向に2層積層される圧電体の層間および外表面に形成される電極の内、外表面の電極を連絡配線で連結することで、2層の圧電体を電気的に並列結合とする。   Specifically, first, the electrodes on the outer surface among the electrodes formed on the interlayer and the outer surface of the piezoelectric body laminated in two layers in the thickness direction as described above are connected by connection wiring, thereby forming two layers. The piezoelectric body is electrically connected in parallel.

次に、前記2層の圧電体を3λ/4共振させると、該2層の圧電体内を伝搬する弾性波の節と腹とが、該2層の圧電体の境界面と一致せず、このためこのときの該積層型圧電体内における前記3次高調波成分の歪み分布に着目すると、該2層の圧電体の歪みの絶対値に差が生じるとともに、位相が180度反転し、基端(背後層)側の圧電体の歪みを+とすれば「+,−」となる。しかしながら、並列接続でそれらの歪みの加算を取ると、3λ/4、すなわち3次高調波については、極性が反転して大きなゲインを得ることができるものの、基本波については、減衰させることができる。   Next, when the two-layer piezoelectric body is caused to resonate at 3λ / 4, the nodes and antinodes of the elastic waves propagating in the two-layer piezoelectric body do not coincide with the boundary surface of the two-layer piezoelectric body. When attention is paid to the strain distribution of the third-order harmonic component in the multilayer piezoelectric body at this time, a difference occurs in the absolute value of the strain of the piezoelectric material of the two layers, and the phase is inverted by 180 degrees, so that the base end (rear side) If the distortion of the piezoelectric material on the (layer) side is +, “+, −” is obtained. However, if the distortions are added in parallel connection, the polarity of 3λ / 4, that is, the third harmonic can be reversed and a large gain can be obtained, but the fundamental wave can be attenuated. .

したがって、前記2層の圧電体の残留分極、あるいは結晶のC軸やA軸の向き(d33,e33,d11,e11の符号を決める軸)が、前記のように互いに同方向となるように配列することで、フィルタやアンプなどを用いることなく、λ/4共振の場合に比べて前記3λ/4共振による3次高調波成分の送波時の出力音圧あるいは受波時の出力電圧を大きくすることができるとともに、1次モードの信号を減衰させることができる。また、圧電体の並列数、すなわち積層枚数が2であるので、電気インピーダンスを1/2に下げることができ、有機圧電体などの誘電率が低く、キャパシタンスの小さい圧電体に有利である。 Therefore, the remanent polarization of the two layers of piezoelectric materials or the directions of the C-axis and A-axis of the crystal (the axes that determine the signs of d 33 , e 33 , d 11 , e 11 ) are in the same direction as described above. By arranging in such a manner, the output sound pressure at the time of transmission of the third harmonic component by the 3λ / 4 resonance or at the time of reception can be compared with the case of λ / 4 resonance without using a filter or an amplifier. The output voltage can be increased and the primary mode signal can be attenuated. Further, since the number of parallel piezoelectric elements, that is, the number of stacked layers is 2, the electrical impedance can be reduced to ½, which is advantageous for a piezoelectric body having a low dielectric constant and a small capacitance such as an organic piezoelectric body.

さらにまた、本発明の積層型圧電体は、相互に厚みの等しい圧電体を4層以上に積層して成り、該圧電体の層間および両端の表面に電極を有し、互いに隣り合う圧電体における離反側の電極を連結することで、前記積層の圧電体を相互に並列接続する2組の連絡配線を備え、前記各圧電体は、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸を、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3および第4段目の圧電体では逆方向となる周期性を持つように配列されていることを特徴とする。   Furthermore, the laminated piezoelectric material of the present invention is formed by laminating four or more layers of piezoelectric materials having the same thickness, and has electrodes on the surfaces of the layers and at both ends of the piezoelectric material. By connecting the electrodes on the separation side, two sets of connecting wirings that connect the stacked piezoelectric bodies in parallel with each other are provided, and each of the piezoelectric bodies has a residual polarization related to an electric displacement due to a piezoelectric positive effect or a sign of an electric field. The direction or crystal axis of the second-stage piezoelectric body in contact with the first-stage piezoelectric body on the fixed end side is the same direction, and the third and fourth-stage piezoelectric elements on the same direction. The body is arranged so as to have periodicity in the opposite direction.

また、本発明の積層型圧電体の作成方法は、相互に厚みの等しい圧電体を4層以上に積層して成る積層型圧電体の作成方法であって、積層された各圧電体の層間および両端の圧電体の表面に形成される電極において、互いに隣り合う圧電体における離反側の電極を連絡配線によって連結することで、前記複数の圧電体を相互に並列接続し、前記各圧電体を、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸が、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3および第4段目の圧電体では逆方向となる周期性を持つように配列することを特徴とする。   The method for producing a laminated piezoelectric material according to the present invention is a method for producing a laminated piezoelectric material comprising four or more layers of piezoelectric materials having the same thickness. In the electrodes formed on the surfaces of the piezoelectric bodies at both ends, the plurality of piezoelectric bodies are connected to each other in parallel by connecting the electrodes on the separation side of the piezoelectric bodies adjacent to each other by a connection wiring. The direction of remanent polarization or the crystal axis related to the electrical displacement due to the positive piezoelectric effect or the sign of the electric field is the same for the second-stage piezoelectric body in contact with the axis of the first-stage piezoelectric body on the fixed end side. The piezoelectric elements in the third direction and the fourth stage above the direction are arranged so as to have periodicity in the opposite direction.

上記の構成によれば、超音波診断装置の超音波トランスデューサなどとして用いられ、相互に厚みの等しい複数の圧電体を積層して成り、該圧電体の厚み伸縮により超音波の送波および受波の少なくとも一方を行う積層型圧電体およびその作成方法において、本願発明では、3次以上の共振モードで超音波を送受波する場合に、圧電体を4層以上積層して各圧電体を並列接続し、かつ予め定める態様で(ある決まりに従い)、一部の圧電体について、その表裏を反転して積層する。   According to the above configuration, it is used as an ultrasonic transducer of an ultrasonic diagnostic apparatus, and is formed by stacking a plurality of piezoelectric bodies having the same thickness, and transmitting and receiving ultrasonic waves by expanding and contracting the thickness of the piezoelectric bodies. According to the present invention, when transmitting and receiving ultrasonic waves in the third and higher resonance modes, four or more layers of piezoelectric bodies are stacked and the piezoelectric bodies are connected in parallel. In a predetermined manner (according to a certain rule), some piezoelectric bodies are laminated with the front and back reversed.

具体的には、先ず、前記のように厚み方向に複数積層される各圧電体の層間および両端の圧電体の表面に形成される電極の内、互いに隣り合う圧電体における離反側の電極を2組の連絡配線で連結することで、各圧電体を電気的に並列結合とする。   Specifically, first, among the electrodes formed on the surface of the piezoelectric material between the layers and at both ends of each piezoelectric material laminated in the thickness direction as described above, two electrodes on the separation side in the piezoelectric materials adjacent to each other are provided. Each piezoelectric body is electrically connected in parallel by being connected by a set of connecting wires.

次に、前記積層枚数を前記共振モードの次数枚またはその整数倍とした場合、圧電体内を伝搬する弾性波の節と腹とを、該圧電体の境界面と一致させることができ、このときの該積層型圧電体内における前記所望高調波成分の歪み分布に着目すると、各圧電体の歪みが、絶対値が変わることなく位相が180度反転し、各圧電体が上記のように並列接続の場合、例えば基端(背後層)側の圧電体の歪みを+とすれば、「+,+,−,−」の周期性を4層おきに繰返す。そこで、前記予め定める態様として、各圧電体の残留分極、あるいは結晶のC軸やA軸の向き(d33,e33,d11,e11の符号を決める軸)を、前記歪み分布における電気変位や電場の符号と一致するように、不一致の箇所(「−」の符号に該当する)の圧電体について、その表裏を反転して積層する。上記の場合、固定端側の(背後層に接する)第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3および第4段目の圧電体では逆方向に配列する。そして、圧電体が前記次数の整数倍積層される場合は、それ以後4層の圧電体毎に、同方向、同方向、逆方向、逆方向の周期性を持つように配列する。 Next, when the number of stacked layers is the order number of the resonance mode or an integer multiple thereof, the nodes and antinodes of the elastic wave propagating in the piezoelectric body can be made to coincide with the boundary surface of the piezoelectric body. Focusing on the strain distribution of the desired harmonic component in the multilayer piezoelectric body, the phase of the distortion of each piezoelectric body is inverted 180 degrees without changing the absolute value, and the piezoelectric bodies are connected in parallel as described above. For example, if the distortion of the piezoelectric material on the base end (back layer) side is set to +, the periodicity of “+, +, −, −” is repeated every four layers. Therefore, as the predetermined mode, the residual polarization of each piezoelectric body or the orientation of the C-axis or A-axis of the crystal (the axes that determine the signs of d 33 , e 33 , d 11 , e 11 ) The piezoelectric body at the mismatched portion (corresponding to the sign of “−”) is reversed and laminated so as to match the sign of displacement and electric field. In the above case, with respect to the axis of the first-stage piezoelectric body on the fixed end side (in contact with the back layer), the second-stage piezoelectric body in contact therewith is in the same direction, and the third and fourth stages thereon In the piezoelectric body of the eye, they are arranged in the opposite direction. When the piezoelectric bodies are stacked by an integral multiple of the order, the piezoelectric bodies are arranged so as to have periodicity in the same direction, the same direction, the reverse direction, and the reverse direction thereafter for every four layers of piezoelectric bodies.

これによって、積層型圧電体における各圧電体を、圧電正効果による電気変位や電場の符号に一致させ、フィルタやアンプなどを用いることなく、λ/4共振の場合に比べて、たとえば5λ/4共振周波数成分の送波時の出力音圧あるいは受波時の出力電圧を大きくすることができるとともに、1次モードの信号を減衰させることができる。また、圧電体の並列数、すなわち積層枚数をnとするとき、電気インピーダンスを1/nに下げることができ、有機圧電体などの誘電率が低く、キャパシタンスの小さい圧電体に有利である。   Thereby, each piezoelectric body in the laminated piezoelectric body is made to coincide with the electric displacement or the sign of the electric field due to the piezoelectric positive effect, and, for example, 5λ / 4, compared to the case of λ / 4 resonance without using a filter or an amplifier. The output sound pressure at the time of transmission of the resonance frequency component or the output voltage at the time of reception can be increased, and the signal of the primary mode can be attenuated. Further, when the number of piezoelectric bodies in parallel, that is, the number of stacked layers is n, the electrical impedance can be reduced to 1 / n, which is advantageous for a piezoelectric body having a low dielectric constant such as an organic piezoelectric body and a small capacitance.

さらにまた、本発明の積層型圧電体では、前記各圧電体は、さらに厚み方向に2枚に分割されて、それらが互いに並列に接続されたものが1組として積層され、前記分割された圧電体のそれぞれについて、前記残留分極の向きあるいは結晶軸が、該積層型圧電体内の歪み分布における電気変位または電場の符号と一致するように、その表裏が反転されていることを特徴とする。   Furthermore, in the laminated piezoelectric material of the present invention, each of the piezoelectric materials is further divided into two pieces in the thickness direction, and those obtained by connecting them in parallel to each other are laminated as a set, and the divided piezoelectric material is divided. With respect to each of the bodies, the direction of the remanent polarization or the crystal axis is inverted so that the sign of the electric displacement or electric field in the strain distribution in the multilayer piezoelectric body coincides.

また、本発明の積層型圧電体の作成方法では、前記各圧電体は、さらに厚み方向に2枚に分割されて、それらが互いに並列に接続されたものが1組として積層され、前記分割された圧電体のそれぞれについて、前記残留分極の向きあるいは結晶軸が、該積層型圧電体内の歪み分布における電気変位または電場の符号と一致するように、その表裏を反転することを特徴とする。   Further, in the method for producing a laminated piezoelectric material according to the present invention, each piezoelectric material is further divided into two pieces in the thickness direction, and those obtained by connecting them in parallel with each other are laminated as a set and divided. For each of the piezoelectric bodies, the direction of the remanent polarization or the crystal axis thereof is reversed so that the sign of the electric displacement or electric field in the strain distribution in the multilayer piezoelectric body coincides.

上記の構成によれば、前記の振動の節や腹間の厚さとなる各圧電体を2枚に分割され、互いに並列に接続されたものを1組として扱う。   According to said structure, each piezoelectric material used as the thickness of the said vibration node or abdomen is divided | segmented into 2 sheets, and what was mutually connected in parallel is handled as 1 set.

したがって、電気インピーダンスをさらに半減することができるとともに、両端の電極が同電位となって該積層圧電体全体を電気的にシールドすることもできる。   Therefore, the electrical impedance can be further halved, and the electrodes at both ends can be at the same potential, and the entire laminated piezoelectric body can be electrically shielded.

さらにまた、本発明の超音波トランスデューサは、前記の積層型圧電体を用いることを特徴とする。   Furthermore, the ultrasonic transducer of the present invention is characterized by using the laminated piezoelectric material.

上記の構成によれば、フィルタやアンプなどを用いることなく、λ/4共振の場合に比べて、高調波成分の送波時の出力音圧あるいは受波時の出力電圧を大きくすることができるとともに、1次モードの信号を減衰させることができ、さらにまた電気インピーダンスを低下することができる超音波トランスデューサを実現することができる。   According to the above configuration, it is possible to increase the output sound pressure at the time of transmitting a harmonic component or the output voltage at the time of reception, compared to the case of λ / 4 resonance, without using a filter or an amplifier. At the same time, it is possible to realize an ultrasonic transducer that can attenuate the signal in the first-order mode and further reduce the electrical impedance.

本発明の積層型圧電体およびこれを用いた超音波トランスデューサならびに積層型圧電体の作成方法は、以上のように、所望の高調波成分の超音波を送受波するにあたって、厚み方向に伸縮を行う複数の圧電体を厚み方向に積層して積層型圧電超音波トランスデューサを構成し、前記各圧電体を並列接続するにあたって、該積層型圧電体内における前記高調波成分の歪み分布に着目して、各圧電体の残留分極あるいは結晶のC軸やA軸の向きを、一部を逆方向に配置する。   As described above, the multilayer piezoelectric body, the ultrasonic transducer using the multilayer piezoelectric body, and the method for producing the multilayer piezoelectric body of the present invention perform expansion and contraction in the thickness direction when transmitting and receiving ultrasonic waves of a desired harmonic component. A multilayer piezoelectric ultrasonic transducer is formed by laminating a plurality of piezoelectric bodies in the thickness direction, and when the piezoelectric bodies are connected in parallel, paying attention to the distortion distribution of the harmonic component in the multilayer piezoelectric body, A part of the remanent polarization of the piezoelectric body or the direction of the C-axis or A-axis of the crystal is arranged in the reverse direction.

それゆえ、フィルタやアンプなどを用いることなく、λ/4共振の場合に比べて、所望高調波成分の送波時の出力音圧あるいは受波時の出力電圧を大きくすることができるとともに、1次モードの信号を減衰させることができる。また、圧電体の並列数nに応じて、電気インピーダンスを1/nに下げることができる。   Therefore, it is possible to increase the output sound pressure at the time of transmitting a desired harmonic component or the output voltage at the time of reception without using a filter or an amplifier, as compared with the case of λ / 4 resonance. The next mode signal can be attenuated. Further, the electrical impedance can be reduced to 1 / n according to the number n of parallel piezoelectric bodies.

圧電体の厚み伸縮モードでの等価回路図である。It is an equivalent circuit diagram in the thickness expansion and contraction mode of the piezoelectric body. 1MHzに厚み共振の1次モードを示す圧電体の複素誘電率の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the complex dielectric constant of the piezoelectric material which shows the primary mode of thickness resonance at 1 MHz. 前記図2に示す圧電体における3次高調波成分と、3MHzに厚み共振の1次モードを示す圧電体との複素誘電率の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the complex dielectric constant of the 3rd harmonic component in the piezoelectric material shown in the said FIG. 2, and the piezoelectric material which shows the 1st mode of thickness resonance in 3 MHz. 3層圧電体トランスデューサにおけるλ/4共振状態の模式的な断面図である。FIG. 3 is a schematic cross-sectional view of a λ / 4 resonance state in a three-layer piezoelectric transducer. 図4で示す3層圧電体トランスデューサにおける3λ/4共振状態の模式的な断面図である。FIG. 5 is a schematic cross-sectional view of a 3λ / 4 resonance state in the three-layer piezoelectric transducer shown in FIG. 4. n層圧電体トランスデューサの模式的な断面図である。It is a typical sectional view of an n layer piezoelectric transducer. 図6に示したn層圧電体トランスデューサでn次高調波を励振あるいは検出する際の変位と歪みとを模式的に示す図である。It is a figure which shows typically the displacement and distortion at the time of exciting or detecting an nth-order harmonic with the n layer piezoelectric transducer shown in FIG. 図7に示す積層圧電体で、n次高調波を検出する際の各々の圧電体の残留分極、あるいは結晶のC軸やA軸の向きと、圧電正効果による電気変位との関係を示す図である。FIG. 7 is a diagram showing the relationship between the residual polarization of each piezoelectric body when detecting nth-order harmonics or the orientation of the C-axis and A-axis of the crystal and the electrical displacement due to the piezoelectric positive effect in the multilayered piezoelectric body shown in FIG. It is. n次高調波を検出するための2n層圧電体トランスデューサの構造を模式的に示す図である。It is a figure which shows typically the structure of the 2n layer piezoelectric transducer for detecting an nth-order harmonic. 図8で示す本発明の考え方に従う詳細な実施例の一例であり、2層圧電体トランスデューサの構造を模式的に示す断面図である。FIG. 9 is an example of a detailed embodiment according to the concept of the present invention shown in FIG. 8, and is a cross-sectional view schematically showing the structure of a two-layer piezoelectric transducer. 図10で示す2層圧電体トランスデューサにおける高調波送受波時の変位と歪みとを説明するための図である。It is a figure for demonstrating the displacement and distortion at the time of the harmonic transmission / reception in the two-layer piezoelectric transducer shown in FIG. 図10および図11に示す積層圧電体で、3次高調波を検出する際の各々の圧電体の残留分極の向きと、圧電正効果による電気変位との関係を示す図である。12 is a diagram illustrating the relationship between the direction of remanent polarization of each piezoelectric body and the electrical displacement due to the piezoelectric positive effect when detecting the third harmonic in the multilayered piezoelectric body shown in FIGS. 10 and 11. FIG. 図10に示す2層圧電体およびその比較例による超音波の送受波特性について、実験データおよびシミュレーション結果を示すグラフである。It is a graph which shows an experimental data and a simulation result about the transmission / reception characteristic of the ultrasonic wave by the two-layer piezoelectric material shown in FIG. 10, and its comparative example. 図8および図5で示す本発明の考え方に従う詳細な実施例の他の例であり、3層圧電体トランスデューサの構造を模式的に示す断面図である。FIG. 8 is another example of the detailed embodiment according to the concept of the present invention shown in FIGS. 8 and 5 and is a cross-sectional view schematically showing the structure of a three-layer piezoelectric transducer. 図14で示す3層圧電体トランスデューサにおける高調波送受波時の変位と歪みとを説明するための図である。It is a figure for demonstrating the displacement and distortion at the time of harmonic transmission / reception in the three-layer piezoelectric transducer shown in FIG. 図14および図15に示す積層圧電体で、3次高調波を検出する際の各々の圧電体の残留分極の向きと、圧電正効果による電気変位との関係を示す図である。FIG. 16 is a diagram illustrating the relationship between the direction of remanent polarization of each piezoelectric body and the electrical displacement due to the piezoelectric positive effect when the third harmonic is detected in the multilayered piezoelectric body shown in FIGS. 14 and 15. 図16に示す3層圧電体による超音波の送受波特性について、実験データおよびシミュレーション結果を示すグラフである。It is a graph which shows an experimental data and a simulation result about the transmission / reception characteristic of the ultrasonic wave by the 3 layer piezoelectric material shown in FIG. 図16に示す3層圧電体の比較例による超音波の送受波特性について、実験データおよびシミュレーション結果を示すグラフである。It is a graph which shows an experimental data and a simulation result about the ultrasonic wave transmission / reception characteristic by the comparative example of the three-layer piezoelectric material shown in FIG. 図8で示す本発明の考え方に従う詳細な実施例のさらに他の例であり、6層圧電体トランスデューサの構造を模式的に示す断面図である。FIG. 10 is still another example of the detailed embodiment according to the concept of the present invention shown in FIG. 8, and is a cross-sectional view schematically showing the structure of a six-layer piezoelectric transducer. 図19に示す積層圧電体で、3次高調波を検出する際の各々の圧電体の残留分極の向きと、圧電正効果による電気変位との関係を示す図である。It is a figure which shows the relationship between the direction of the remanent polarization of each piezoelectric material at the time of detecting a 3rd harmonic in the laminated piezoelectric material shown in FIG. 19, and the electric displacement by a piezoelectric positive effect. 図20に示す6層圧電体による超音波の送受波特性について、シミュレーション結果を示すグラフである。It is a graph which shows a simulation result about the transmission / reception characteristic of the ultrasonic wave by the 6 layer piezoelectric material shown in FIG.

先ず、本発明の詳細な実施の形態を説明する前に、本発明の考え方を説明する。本発明は、同じ厚みの圧電体をある決まりに従い積層することによって、3次以上の高調波を効率良く送受波することができるという本件発明者の知見によるものである。圧電体を積層する手法はこれまで多く報告されているが、本発明は、高調波を送受波する際に圧電体内に歪み分布があることに着目したものである。   First, before explaining detailed embodiments of the present invention, the concept of the present invention will be described. The present invention is based on the knowledge of the inventor that the third and higher harmonics can be efficiently transmitted and received by laminating piezoelectric bodies having the same thickness according to a certain rule. Many methods for laminating piezoelectric materials have been reported so far, but the present invention focuses on the fact that there is a strain distribution in the piezoelectric material when harmonics are transmitted and received.

一例として、最も理解し易いと思われる図4に示す3枚の圧電体A1,A2,A3を積層したλ/4振動子について説明する。この、λ/4振動子のλ/4での励振状態では、前記3枚の圧電体A1,A2,A3が同期して伸縮を行い、全体で最大ΔZの伸縮を行うものとする。そして、固定端、すなわち前記の40MRayl.より小さいものの、充分大きい音響インピーダンスを有する背後層に接する1層目の圧電体A1の裏面の座標をzとすると、前記伸縮に伴うその位置の変位は、z=ΔZSsin0°=0である。これに対して、1層目の圧電体A1の表面の座標zの変位は、z=ΔZSsin30°=0.5ΔZとなり、2層目の圧電体A2の表面の座標zの変位は、z=ΔZSsin60°=0.85ΔZとなり、自由端、すなわち前記の0より大きいものの、充分小さい音響インピーダンスを有する空間と接する3層目の圧電体A3の表面の座標zの変位は、z=ΔZSsin90°=1.0ΔZとなる。ここで、圧電体A1,A2,A3の表裏は、該圧電体を厚み方向に加圧して、+の電圧が発生する方を表、−の電圧が発生する方を裏とする。 As an example, a λ / 4 vibrator in which three piezoelectric bodies A1, A2, and A3 shown in FIG. In this excited state at λ / 4 of the λ / 4 vibrator, the three piezoelectric bodies A1, A2, A3 are expanded and contracted synchronously, and the expansion and contraction of the maximum ΔZ is performed as a whole. If the coordinate of the back surface of the first layer of piezoelectric material A1 that is smaller than the fixed end, ie, 40 MRayl. But is in contact with the back layer having a sufficiently large acoustic impedance, is z 0 , the displacement of the position accompanying the expansion and contraction is , Z 0 = ΔZSsin0 ° = 0. On the other hand, the displacement of the coordinate z 1 on the surface of the piezoelectric material A1 of the first layer is z 1 = ΔZSsin30 ° = 0.5ΔZ, and the displacement of the coordinate z 2 on the surface of the piezoelectric material A2 of the second layer is z 2 = ΔZSsin 60 ° = 0.85ΔZ, and the displacement of the coordinate z 3 on the surface of the piezoelectric layer A3 of the third layer in contact with the free end, that is, the space having a sufficiently small acoustic impedance although it is larger than 0 is z 3 = ΔZSsin90 ° = 1.0ΔZ. Here, the front and back sides of the piezoelectric bodies A1, A2, and A3 are formed by pressing the piezoelectric bodies in the thickness direction to generate a positive voltage, and the reverse side is generating a negative voltage.

すなわち、図4の3層の圧電体A1,A2,A3の場合、全体の伸縮ΔZの内、固定端側の圧電体A1は、0.5ΔZの伸縮を受け持ち、2層目の圧電体A2は、0.35ΔZの伸縮を受け持ち、3層目の圧電体A3は、0.15ΔZしか伸縮しないことになる。このように積層型圧電体は、基本波のλ/4共振では、各圧電体A1,A2,A3は同期して(同じ方向に)伸縮を行うものの、各圧電体A1,A2,A3が一様に伸縮するのではなく、不均一な歪み分布を有する。   That is, in the case of the three-layer piezoelectric bodies A1, A2 and A3 in FIG. 4, the piezoelectric body A1 on the fixed end side of the entire expansion and contraction ΔZ is subjected to the expansion and contraction of 0.5ΔZ, and the second-layer piezoelectric body A2 is , 0.35ΔZ, and the third-layer piezoelectric body A3 expands and contracts only 0.15ΔZ. As described above, in the multilayer piezoelectric body, at the fundamental wave λ / 4 resonance, each piezoelectric body A1, A2, A3 expands and contracts synchronously (in the same direction), but each piezoelectric body A1, A2, A3 has one. It does not expand and contract in a similar manner, but has a non-uniform strain distribution.

一方、同様の積層圧電体を3λ/4共振させると、図5で示すようになる。すなわち、1層目の圧電体A1の裏面の座標zは、z=ΔZsin0°=0であり、1層目の圧電体A1の表面の座標zの変位は、z=ΔZsin90°=ΔZとなり、2層目の圧電体A2の表面の座標zの変位は、z=ΔZsin180°=0となり、3層目の圧電体A3の表面の座標zの変位は、z=ΔZsin270°=−ΔZとなる。したがって、1層目の圧電体A1はΔZの伸びを行っているのに対して2層目および3層目の圧電体A2,A3は、ΔZの縮みとなっている。 On the other hand, when a similar multilayer piezoelectric body is caused to resonate at 3λ / 4, the result is as shown in FIG. That is, the coordinate z 0 of the back surface of the first-layer piezoelectric body A1 is z 0 = ΔZ sin 0 ° = 0, and the displacement of the surface coordinate z 1 of the first-layer piezoelectric body A 1 is z 1 = ΔZ sin 90 ° = The displacement of the coordinate z 2 on the surface of the piezoelectric material A2 of the second layer is z 2 = ΔZ sin 180 ° = 0, and the displacement of the coordinate z 3 of the surface of the piezoelectric material A3 of the third layer is z 3 = ΔZ sin 270. ° = −ΔZ. Accordingly, the first-layer piezoelectric body A1 extends by ΔZ, while the second-layer and third-layer piezoelectric bodies A2 and A3 have a contraction of ΔZ.

そこで本件発明者は、このような不均一な歪み分布に着目し、各圧電体の残留分極(PZT,PVDFなどの強誘電体)、あるいは結晶(水晶など)のC軸やA軸の向き(d33,e33,d11,e11の符号を決める軸)を、高調波送受信時の歪み分布における電気変位や電場の符号と一致するように、不一致の箇所(「−」の符号に該当する)の圧電体について、その表裏を反転して積層するようにした。図4および図5の場合には、その左側の矢印で示すように、2層目および3層目の圧電体A2,A3を、1層目の圧電体Aとは前記残留分極の向きあるいは結晶軸が逆方向となるように積層する。これによって、基本波λの成分が、0.5・ΔZ+0.35・(−ΔZ)+0.15・(−ΔZ)=0となって除去されると同時に、3次高調波3λの成分は、1・ΔZ+(−1)・(−ΔZ)+(−1)・(−ΔZ)=3ΔZとなって抽出することが可能となる。 Therefore, the present inventor pays attention to such non-uniform strain distribution, and remanent polarization (ferroelectric material such as PZT and PVDF) of each piezoelectric material, or the orientation of the C-axis and A-axis of a crystal (such as quartz) ( d 33 , e 33 , d 11 , the axis that determines the sign of e 11 ) corresponds to the location of the mismatch (sign of “−” so that the electrical displacement and the sign of the electric field in the distortion distribution at the time of harmonic transmission and reception match. The piezoelectric body was laminated with the front and back reversed. In the case of FIGS. 4 and 5, as shown by the arrows on the left side, the second and third layer piezoelectric bodies A2 and A3 are different from the first layer piezoelectric body A in the direction of remanent polarization or crystals. Laminate so that the axis is in the opposite direction. Thereby, the component of the fundamental wave λ is removed as 0.5 · ΔZ + 0.35 · (−ΔZ) + 0.15 · (−ΔZ) = 0, and at the same time, the component of the third harmonic 3λ is 1 · ΔZ + (− 1) · (−ΔZ) + (− 1) · (−ΔZ) = 3ΔZ can be extracted.

一方、図6を用いて、n枚(nは4以上の整数)の圧電体を積層したλ/4振動子において、n次高調波を送受波する場合を説明する。モデルを単純化するため、積層膜の一端を基盤に固定し、もう一端を自由端とした。インピーダンス整合層や背後(バッキング)層など、さらに接着層の厚み等による影響は除くものとする。   On the other hand, with reference to FIG. 6, a case where an nth-order harmonic is transmitted and received in a λ / 4 vibrator in which n (n is an integer of 4 or more) piezoelectric bodies are stacked will be described. In order to simplify the model, one end of the laminated film was fixed to the base and the other end was a free end. The influence of the thickness of the adhesive layer, such as the impedance matching layer and the back (backing) layer, is excluded.

図7は、図6に示したn層圧電体トランスデューサで、n次高調波を励振あるいは検出する際の変位と歪みとを模式的に示す図である。(a)は積層状況、(b)はある瞬間での各層の変位、(c)は歪の極性である。前述の図4や図5と同様に、基盤とそれに接する圧電体との境界面を原点zとして、素子の高さ(厚み)方向の座標をz,z,z,・・・,zとする。積層圧電体内で、各圧電体層の変位は、背後層と第1段目の圧電体1の境界とを原点z0とした正弦波を形成する。 FIG. 7 is a diagram schematically showing displacement and distortion when the n-th order harmonic is excited or detected by the n-layer piezoelectric transducer shown in FIG. (A) is the state of lamination, (b) is the displacement of each layer at a certain moment, and (c) is the strain polarity. Similar to FIGS. 4 and 5, the boundary surface between the base and the piezoelectric body in contact with the base is the origin z 0 , and the coordinates in the height (thickness) direction of the element are z 1 , z 2 , z 3 ,. , Z n . In the laminated piezoelectric body, the displacement of each piezoelectric layer forms a sine wave having the origin z0 at the boundary between the back layer and the first-stage piezoelectric body 1.

一般に、厚み方向にn倍波(n≧1)が励振された場合、高さzにおける変位ξ(z)は、
ξ(z,t)=ξsin(nπ/2・z/h)(cosnωt+θ)…(11)
となることが知られている(基礎物理学選書8 振動・波動 有山正孝著 裳華房)。ここで、ωは積層圧電体の共振周波数2πf,θは、電圧あるいは音波を受ける際の応力と変位との位相差である。係数ξsin(nπ/2・z/h)は、高さzにおける変位の振幅を意味する。以下、時間項は省略する。
In general, when an n-th harmonic (n ≧ 1) is excited in the thickness direction, the displacement ξ (z) at the height z is
ξ (z, t) = ξ 0 sin (nπ / 2 · z / h) (cosnω r t + θ) (11)
(Fundamental physics selection book 8: vibration and vibration by Masataka Ariyama 裳 華 房). Here, ω r is the resonance frequency 2πf r , θ of the laminated piezoelectric material, and θ is a phase difference between stress and displacement when receiving voltage or sound wave. The coefficient ξ 0 sin (nπ / 2 · z / h) means the amplitude of the displacement at the height z. Hereinafter, the time term is omitted.

この場合、座標zでの変位ξ(z)は、
ξ(z)=ξsin(nπ/2・z/h) …(12)
である。ここで、変位ξ(z)と歪みSとの関係は、
dS=dξ/dz …(13)
なので、第m層の圧電体の歪みSは、
=[ξ(z)−ξ(zm−1)]/(z−zm−1) …(14)
と書ける。ただし、m=1〜n、z=0である。
In this case, the displacement ξ (z 1 ) at the coordinate z 1 is
ξ (z 1 ) = ξ 0 sin (nπ / 2 · z / h) (12)
It is. Here, the relationship between the displacement ξ (z) and the strain S is
dS = dξ / dz (13)
Therefore, the strain S m of the piezoelectric material of the m-th layer is
S m = [ξ (z m ) −ξ (z m−1 )] / (z m −z m−1 ) (14)
Can be written. However, m = 1 to n and z 0 = 0.

したがって、圧電体1の歪みSは、
=Δh/h=ξsin(nπ/2・h/h)/h …(15)
となる。ここで、Δhは圧電体1の厚み変化で、ξ(z)−ξ(z=0),hは圧電体1の厚みである。圧電体2についても同様に、歪みSは、
=Δh/h
=ξ{sin(nπ/2・(h+h)/h)
−sin(nπ/2・h/h)}/h …(16)
となる。第m層の圧電体の歪みSは、
=Δh/h
=ξ{sin(nπ/2・z/h)−sin(nπ/2・zm−1/h)}/h
…(17)
となる。
Therefore, the strain S 1 of the piezoelectric body 1 is
S 1 = Δh 1 / h 1 = ξ 0 sin (nπ / 2 · h 1 / h) / h 1 (15)
It becomes. Here, Δh 1 is a change in thickness of the piezoelectric body 1, and ξ (z 1 ) −ξ (z = 0), h 1 is a thickness of the piezoelectric body 1. Similarly for the piezoelectric body 2, the strain S 2 is
S 2 = Δh 2 / h 2
= Ξ 0 {sin (nπ / 2 · (h 1 + h 2 ) / h)
-Sin (nπ / 2 · h 1 / h)} / h 2 (16)
It becomes. The strain S m of the piezoelectric material of the m-th layer is
S m = Δh m / h m
= Ξ 0 {sin (nπ / 2 · z m / h) −sin (nπ / 2 · z m−1 / h)} / h m
... (17)
It becomes.

上式(17)は、第m層にある圧電体の歪みが、sin(np/2・z/h)−sin(np/2・zm−1/h)で決まり、前述のように一様に伸縮しないことを意味する。したがって、その項の符号が正になる圧電体と負になる圧電体とで、圧電体の表裏を反転させれば、圧電正効果による電気変位あるいは電場の符号を一致させることができ、圧電素子のn次高調波の電気信号を効率良く得られることが理解される。 In the above equation (17), the strain of the piezoelectric body in the m-th layer is determined by sin (np / 2 · z m / h) −sin (np / 2 · z m−1 / h). It means that it does not stretch uniformly. Therefore, if the front and back of the piezoelectric body are reversed between a piezoelectric body whose sign of the term is positive and a piezoelectric body which is negative, the sign of the electric displacement or electric field due to the piezoelectric positive effect can be made to coincide. It is understood that an n-order harmonic electrical signal can be obtained efficiently.

さらに、各圧電体の厚みを等しくすれば、
=(m/n)h,zm−1=(m−1/n)h,h=h/m …(18)
と単純化できる。これを式(17)に代入すると、
=mξ{sin(mπ/2)−sin[(m−1)π/2]}/h …(19)
となる。
Furthermore, if the thickness of each piezoelectric body is made equal,
z m = (m / n) h, z m−1 = (m−1 / n) h, h m = h / m (18)
And can be simplified. Substituting this into equation (17) gives
S m = mξ 0 {sin (mπ / 2) −sin [(m−1) π / 2]} / h (19)
It becomes.

次に、電気系について考える。第m層の圧電体が圧電正効果によって生じる電気変位(単位電極面積当りの電荷)Dは、
=e33またはD=d33=d33sT …(20)
である。ここで、sは圧電体の弾性コンプライアンスである。各々の圧電体を電気的に並列に結合すれば、積層圧電体が出力する正味の電気変位DTotalは、

Figure 2011217159
となる。したがって、各圧電体の電気容量をCとすれば、積層圧電体の容量はnCとなり、電気インピーダンスは圧電体1層の1/nに減少する。 Next, consider the electrical system. The electrical displacement (charge per unit electrode area) D m generated by the piezoelectric material of the m-th layer is as follows:
D m = e 33 S m or D m = d 33 S m = d 33 sT m (20)
It is. Here, s is the elastic compliance of the piezoelectric body. If each piezoelectric body is electrically connected in parallel, the net electric displacement D Total output from the laminated piezoelectric body is:
Figure 2011217159
It becomes. Therefore, if the electric capacity of each piezoelectric material is C, the capacity of the laminated piezoelectric material is nC, and the electric impedance is reduced to 1 / n of one piezoelectric material layer.

本願発明者は、上式(19),(21)から、単純な並列結合の実現と積層圧電体が出力する正味の電気変位が最大となる残留分極あるいは結晶C軸やA軸の配列の規則性を見出した。また、前記積層数nが4以上で、該積層数nと高調波の次数とを一致させれば、圧電体内を伝搬する弾性波の節と腹とを圧電体の境界面と一致させることができ、このとき各圧電体の歪みが絶対値が変わることなく位相が180度反転し、例えば各圧電体が直列の図7の場合、圧電体1の歪みを+とすれば「+,−,−,+」の周期性を4層おきに見出すことができ、n次高調波の検出をより効率良く行うことができることを見出した。このことを理論説明すると以下のようになる。   From the above formulas (19) and (21), the inventor of the present application realizes the simple parallel coupling and the remanent polarization that maximizes the net electric displacement output from the laminated piezoelectric material, or the rules for the arrangement of the crystal C axis and A axis. I found sex. Further, if the number n of layers is 4 or more and the number n of layers is matched with the harmonic order, the nodes and antinodes of the elastic waves propagating in the piezoelectric body can be made to coincide with the boundary surface of the piezoelectric body. At this time, the distortion of each piezoelectric body is reversed by 180 degrees without changing the absolute value. For example, in the case of FIG. 7 where each piezoelectric body is in series, if the distortion of the piezoelectric body 1 is +, “+, −, − , + "Periodicity can be found every four layers, and it has been found that the detection of n-order harmonics can be performed more efficiently. A theoretical explanation of this is as follows.

図8に、本発明における、n層圧電体で、n次高調波を検出する際の各々の圧電体の残留分極あるいは結晶のC軸やA軸の向きと、圧電正効果による電気変位D(C/m)との関係の一例を示す。各圧電体の層間および両端の圧電体の表面には電極が設けられており、互いに隣り合う圧電体における離反側の電極を連絡配線によって連結し、各圧電体を並列接続している。また、残留分極(それを持たない圧電体の場合は結晶のC軸(水晶の場合はA軸))は、z軸方向に配向されている。図中では便宜上、圧電体1の残留分極あるいは結晶のC軸やA軸の方向を+Pと表記している。これは他の圧電体の残留分極あるいは結晶のC軸やA軸が圧電体1のそれと同方行か逆方行かを識別するためであり、圧電体1の分極方向を制限するものではない。 FIG. 8 shows the residual polarization of each piezoelectric body or the orientation of the C-axis and A-axis of the piezoelectric body when detecting n-order harmonics in the n-layer piezoelectric body according to the present invention, and the electric displacement D ( An example of the relationship with C / m 2 ) is shown. Electrodes are provided on the surfaces of the piezoelectric bodies between the layers and at both ends of each piezoelectric body, and the electrodes on the far side of the adjacent piezoelectric bodies are connected by a connection wiring, and the piezoelectric bodies are connected in parallel. Further, the remanent polarization (C-axis of the crystal in the case of a piezoelectric body not having it (A-axis in the case of quartz)) is oriented in the z-axis direction. In the drawing, for the sake of convenience, the remanent polarization of the piezoelectric body 1 or the direction of the C-axis or A-axis of the crystal is represented as + P. This is to identify the residual polarization of another piezoelectric material or whether the C-axis or A-axis of the crystal is in the same direction or in the opposite direction to that of the piezoelectric material 1, and does not limit the polarization direction of the piezoelectric material 1.

前述の図7(c)に示したように、各圧電体の歪みには、周期性がある(図7(c)の場合、前述のように各圧電体は直列)。そのため、残留分極あるいは結晶のC軸やA軸の向きを平行とした場合、本発明の目的である高電荷出力あるいは高電位出力を達成するためには、各々の電極を電気的に絶縁し、独立して配線しなければならなく、構造上かつ製造上のリスクは極めて高い。   As shown in FIG. 7C, the distortion of each piezoelectric body has periodicity (in the case of FIG. 7C, each piezoelectric body is in series as described above). Therefore, in order to achieve high charge output or high potential output, which is the object of the present invention, when remanent polarization or crystal C-axis or A-axis direction is parallel, each electrode is electrically insulated, It must be wired independently, and the structural and manufacturing risks are extremely high.

しかしながら本発明によれば、図8に示す並列接続の場合に、4層毎の圧電体の残留分極あるいは結晶のC軸やA軸に、「+P,+P,−P,−P」の周期性を与えた、すなわち背後層に接する第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方行、さらにその上の第3および第4段目の圧電体では逆方行とし、それ以後4層の圧電体毎に、同方向、同方行、逆方行、逆方行の周期性を持つように配列すれば、電気インピーダンスを1層の圧電体の1/nに下げられるだけでなく、容易に両端子間の電荷感度をn倍に増幅することができる。   However, according to the present invention, in the case of the parallel connection shown in FIG. 8, the periodic polarization of “+ P, + P, −P, −P” is applied to the residual polarization of the piezoelectric material for every four layers or to the C-axis and A-axis of the crystal. In other words, the second-stage piezoelectric body in contact with the axis of the first-stage piezoelectric body in contact with the back layer is the same direction, and the third and fourth-stage piezoelectric bodies are If the piezoelectric elements are arranged in the reverse direction and the piezoelectric elements of the four layers are arranged so as to have periodicity in the same direction, the same direction, the reverse direction, and the reverse direction thereafter, the electric impedance is 1 / of that of the piezoelectric material of one layer. In addition to being reduced to n, the charge sensitivity between both terminals can be easily amplified n times.

上述ではn次高調波を検出する場合を例として挙げたが、逆にn次高調波を送波する場合についても、図8において端子間に発振器を接続することで、従来よりも効率が向上する。送波の場合、歪みSと印加電場Eとの関係は、
S=dEあるいはS=(e/c)E …(22)
である。図8に示す積層圧電体の両端子間に電圧発生器を繋げ、n次高調波に相当する周波数の電圧を印加すれば、図8に示す歪みおよび図7(b)に示す変位を生じ、超音波を媒質中に励振させることができる。そして、先に述べた電気インピーダンスの関係から、本願発明の構造では、低電圧高電流駆動となる。
In the above description, the case where the nth harmonic is detected has been described as an example. However, in the case where the nth harmonic is transmitted, the efficiency is improved compared to the conventional case by connecting an oscillator between the terminals in FIG. To do. In the case of transmission, the relationship between the strain S and the applied electric field E is
S = dE or S = (e / c) E (22)
It is. If a voltage generator is connected between both terminals of the laminated piezoelectric material shown in FIG. 8 and a voltage having a frequency corresponding to the nth harmonic is applied, the distortion shown in FIG. 8 and the displacement shown in FIG. Ultrasound can be excited in the medium. And from the relationship of the electrical impedance described above, the structure of the present invention provides low voltage and high current driving.

一方、図9は、n次高調波を検出するための2n層圧電体トランスデューサの構造を模式的に示す図である。(a)は積層状況、(b)はある瞬間での各層の変位、(c)および(d)はそれぞれ歪みおよび電気変位の係数である。0.3および0.7の前記係数は、歪みおよび電気変位それぞれの相対比を表しており、絶対値を示すものではない。なお、1/21/2=0.7と近似した。各圧電体は層間および両端面に電極が設けられ、互いに隣り合う圧電体における離反側の電極同士を連絡し、並列結合とした。この場合、先に述べたn層圧電体トランスデューサと比べて、圧電正効果による電気変位は同じであるが、電気容量が2倍となり、電気インピーダンスは半減する。残留分極あるいはC軸やA軸の配列は背後層に接する圧電体を基準として、8層毎に、「+P,−P,−P,+P,−P,+P,+P,−P」の繰り返しとなる。 On the other hand, FIG. 9 is a diagram schematically showing the structure of a 2n-layer piezoelectric transducer for detecting n-order harmonics. (A) is the stacking condition, (b) is the displacement of each layer at a certain moment, and (c) and (d) are the coefficients of strain and electrical displacement, respectively. The coefficients of 0.3 and 0.7 represent the relative ratios of strain and electric displacement, respectively, and do not indicate absolute values. It was approximated as 1/2 1/2 = 0.7. Each piezoelectric body was provided with electrodes on the interlayer and both end faces, and the electrodes on the separation side of the piezoelectric bodies adjacent to each other were connected to form a parallel coupling. In this case, the electric displacement due to the piezoelectric positive effect is the same as that of the n-layer piezoelectric transducer described above, but the electric capacity is doubled and the electric impedance is halved. Residual polarization or the arrangement of the C-axis and A-axis is repeated for “+ P, −P, −P, + P, −P, + P, + P, −P” every 8 layers with reference to the piezoelectric body in contact with the back layer. Become.

各圧電体の歪みSmnωは、次式で与えられる。 The strain Sm of each piezoelectric body is given by the following equation.

Smnω
=2nξ nω{sin[m(π/4)]−sin[(m−1)(π/4)]}/h,m
=1,2,…,2n …(23)
Sm
= 2nξ 0 {sin [m (π / 4)] − sin [(m−1) (π / 4)]} / h, m
= 1, 2,..., 2n (23)

以下に、上述の考え方に従う本発明の詳細な実施例を説明する。先ず第1の実施例として、図10に示す2層圧電体トランスデューサによる3λ/4高調波の検出について述べる。2層圧電体トランスデューサは積層圧電体の中でも最もシンプルな構造である。この場合、送受波に用いる高調波の次数と積層枚数とは一致しない。しかしながら、本発明を以下のように適用することにより、送受波の効率を上げることができる。   Below, the detailed Example of this invention according to the above-mentioned view is described. First, detection of 3λ / 4 harmonics by the two-layer piezoelectric transducer shown in FIG. 10 will be described as a first embodiment. A two-layer piezoelectric transducer has the simplest structure among laminated piezoelectric materials. In this case, the order of harmonics used for transmission / reception does not match the number of stacked layers. However, by applying the present invention as follows, the efficiency of transmission and reception can be increased.

すなわち、図10の圧電体1および圧電体2の歪みS,Sは、
=Δh/h=ξsin(nπ/2・h/h)/h …(24)
=Δh/h
=ξ{sin(nπ/2)−sin(nπ/2・h/h)}/h…(25)
となる。ここでhは積層圧電体の高さ、hとhとは各圧電体の高さで、h=h=h/2である。
That is, the strains S 1 and S 2 of the piezoelectric body 1 and the piezoelectric body 2 in FIG.
S 1 = Δh 1 / h 1 = ξ 0 sin (nπ / 2 · h 1 / h) / h 1 (24)
S 2 = Δh 2 / h 2
= Ξ 0 {sin (nπ / 2) −sin (nπ / 2 · h 1 / h)} / h 2 (25)
It becomes. Here, h is the height of the laminated piezoelectric material, h 1 and h 2 are the height of each piezoelectric material, and h 1 = h 2 = h / 2.

3λ/4共振倍波に対する応答は、n=3で与えられる。その場合の歪みS 3ω,S 3ωは、
3ω
=2ξ 3ωsin(3π/4)/h=2(ξ 3ω/21/2)/h …(26)
3ω
=2ξ 3ω{sin(3π/2)−sin(3π/4)}/h
=−2ξ 3ω(1+1/21/2)/h …(27)
となる。添字3ωは、3倍波における変位を示す。ここで、1/21/2≒0.7と近似すると、これらの式は、3倍波では圧電体2の歪みと圧電体1の歪みとでは振幅比が−1.7:+0.7となることを示す。
The response to the 3λ / 4 resonant harmonic is given by n = 3. In this case, the distortions S 1 and S 2 are
S 1
= 2ξ 0 sin (3π / 4) / h = 2 (ξ 0 / 2 1/2 ) / h (26)
S 2
= 2ξ 0 {sin (3π / 2) −sin (3π / 4)} / h
= -2ξ 0 (1 + 1/2 1/2 ) / h (27)
It becomes. The subscript 3ω indicates the displacement at the third harmonic. Here, when approximated as 1/2 1/2 ≈0.7, these equations indicate that the amplitude ratio between the distortion of the piezoelectric body 2 and the distortion of the piezoelectric body 1 is −1.7: +0.7 at the third harmonic wave. Indicates that

そのような各圧電体の変位と歪みの符号とを図11に示す。(a)は変位であり、(b)は歪みである。圧電体1と圧電体2との歪み比は、(b)に示すとおりである。各圧電体の歪みの絶対値が一致しないのは、前述のように各圧電体の境界と変位の節と腹とが一致しないためである。   FIG. 11 shows such displacement and distortion codes of each piezoelectric body. (A) is displacement and (b) is distortion. The strain ratio between the piezoelectric body 1 and the piezoelectric body 2 is as shown in FIG. The reason why the absolute values of the strains of the piezoelectric bodies do not match is that the boundaries of the piezoelectric bodies, the nodes of displacement, and the antinodes do not match as described above.

そこで図12に示すように互いに隣り合う圧電体の離反面の電極同士を連絡して並列結合とすれば、積層圧電体の電気インピーダンスは1つの圧電体のインピーダンスの1/2となり、さらに圧電正効果による電気変位D1,−1 3ωは、圧電体1の残留分極の向きあるいは結晶のC軸やA軸の向きと圧電体2のそれらの向きを同方行とすれば、並列接続で一方の極性が反転して足し合わされ、
1,−1 3ω=2(1+21/2)eξ 3ω/h …(28)
となる。
Therefore, as shown in FIG. 12, if the electrodes on the separation surfaces of adjacent piezoelectric materials are connected in parallel to form a parallel coupling, the electrical impedance of the laminated piezoelectric material becomes ½ of the impedance of one piezoelectric material, and the piezoelectric positive The electrical displacement D 1, −1 due to the effect can be obtained by parallel connection if the direction of remanent polarization of the piezoelectric body 1 or the direction of the C-axis or A-axis of the crystal and those directions of the piezoelectric body 2 are the same direction. Polarity is reversed and added together,
D 1, -1 = 2 (1 + 2 1/2 ) eξ 0 / h (28)
It becomes.

一方、基本波に対する応答は、式(24)および(25)でn=1の場合に理解できる。すなわち歪みS ωとS ωとは、
ω=2ξ ωsin(π/4)/h=2(ξ ω/21/2)/h …(29)
ω=2ξ ω{sin(π/2)−sin(π/4)}/h
=2ξ ω{1−1/21/2}/h …(30)
となる。
On the other hand, the response to the fundamental wave can be understood when n = 1 in equations (24) and (25). That is, the strains S 1 ω and S 2 ω are
S 1 ω = 2ξ 0 ω sin (π / 4) / h = 2 (ξ 0 ω / 2 1/2 ) / h (29)
S 2 ω = 2ξ 0 ω {sin (π / 2) −sin (π / 4)} / h
= 2ξ 0 ω {1-1 / 2 1/2 } / h (30)
It becomes.

ここで図12に示すような並列結合を行い、残留分極あるいは結晶のC軸やA軸の向きを同方行とした場合、電気変位D1,1 ωは、
1,1 ω=2eξ ω(21/2−1)/h …(31)
となる。ここで、添え字の1は、各圧電体の残留分極あるいは結晶のC軸やA軸の向きに対応し、左から圧電体1、圧電体2の残留分極あるいは結晶のC軸やA軸の向きを示している。
Here, when parallel coupling as shown in FIG. 12 is performed and the remanent polarization or the direction of the C-axis or A-axis of the crystal is the same direction, the electric displacement D 1,1 ω is
D 1,1 ω = 2eξ 0 ω (2 1/2 -1) / h (31)
It becomes. Here, the subscript 1 corresponds to the remanent polarization of each piezoelectric body or the direction of the C-axis or A-axis of the crystal, and from the left, the remanent polarization of the piezoelectric body 1 or 2 or the C-axis or A-axis of the crystal. Indicates the direction.

以上の結果から、各圧電体の歪みを考慮し、並列接続の場合、残留分極あるいは結晶のC軸やA軸方向を同方向とすることで、3λ/4波に対しては2.4倍感度を増幅することができ、同時にλ/4波に対しては0.4倍に感度を落とすことができる。したがって、2層圧電体から成る超音波トランスデューサへ本発明を適用すれば、3λ/4共振による信号を高S/N比で送受波することが可能となる。   From the above results, in consideration of the distortion of each piezoelectric body, in the case of parallel connection, the residual polarization or the C-axis and A-axis directions of the crystal are set in the same direction, so that 2.4 times for 3λ / 4 waves. The sensitivity can be amplified, and at the same time, the sensitivity can be reduced by a factor of 0.4 for λ / 4 waves. Therefore, if the present invention is applied to an ultrasonic transducer composed of a two-layer piezoelectric body, it is possible to transmit / receive a signal due to 3λ / 4 resonance at a high S / N ratio.

図13は、P(VDF/TrFE)を用いた2層圧電体からなる超音波トランスデューサの送受波感度特性の実験結果ならびにシミュレーション結果である。実線は実験結果、破線はシミュレーション結果である。いずれも互いに隣り合う圧電体の離反面、すなわち外側の表面に形成された電極面を連絡し、並列結合としており、しかもλ/4共振周波数は7MHz、3λ/4共振周波数はおよそ20MHzである。(a)は本発明に基づき分極方向を同方行とした場合、(b)は参考に逆方行とした場合の結果である。(a)に示すように、本発明に基づく分極方向と配線手法とを組み合わせると、20MHzに見られる3λ/4共振ピークが、7MHzにみられるλ/4共振ピークよりも大きく、(b)に示す結果と比較すると、3λ/4共振ピークは20dB増加している。このように2層圧電体に対しても本発明の手法に基づき、分極方向と配線手法とを組み合わせることで、3次高調波成分を増加させると同時に、基本波成分を減衰させることができる。   FIG. 13 shows experimental results and simulation results of the transmission / reception sensitivity characteristics of an ultrasonic transducer composed of a two-layer piezoelectric material using P (VDF / TrFE). Solid lines are experimental results, and broken lines are simulation results. In both cases, the separated surfaces of the piezoelectric bodies adjacent to each other, that is, the electrode surfaces formed on the outer surface are connected to each other and connected in parallel, and the λ / 4 resonance frequency is 7 MHz and the 3λ / 4 resonance frequency is about 20 MHz. (A) is a result when the polarization direction is the same direction according to the present invention, and (b) is a result when the reverse direction is set for reference. As shown in (a), when the polarization direction based on the present invention and the wiring method are combined, the 3λ / 4 resonance peak seen at 20 MHz is larger than the λ / 4 resonance peak seen at 7 MHz, and (b) Compared to the results shown, the 3λ / 4 resonance peak is increased by 20 dB. As described above, by combining the polarization direction and the wiring method based on the method of the present invention for the two-layer piezoelectric body, the third harmonic component can be increased and the fundamental wave component can be attenuated at the same time.

続いて、3層圧電体トランスデューサによる3次高調波の検出について述べる。図14に模式構造図を示す。このトランスデューサも、積層圧電体の一端を基盤に固定し、もう一端を自由端としたλ/4振動子としている。   Next, detection of the third harmonic by the three-layer piezoelectric transducer will be described. FIG. 14 shows a schematic structure diagram. This transducer is also a λ / 4 vibrator in which one end of the laminated piezoelectric body is fixed to the base and the other end is a free end.

先ず、本発明に基づく設計プロセスを述べる。前述と同様に基盤と圧電体1との境界を原点として、素子の高さ(厚み)方向の座標をzとする。次に、各々の圧電体が生じる歪みSについて考える。基盤側から順に圧電体1、圧電体2、圧電体3とする。座標zは、基盤と圧電体1との境界ではz=0、圧電体1と圧電体2との境界ではz、圧電体2と圧電体3との境界ではz、圧電体3の端部をzとする。また、圧電体1の厚みをh、圧電体2の厚みをh、圧電体3の厚みをhとし、積層圧電体の高さをhとする。 First, the design process according to the present invention will be described. In the same manner as described above, the boundary between the substrate and the piezoelectric body 1 is the origin, and the coordinate in the height (thickness) direction of the element is z. Next, the strain S generated by each piezoelectric body will be considered. The piezoelectric body 1, the piezoelectric body 2, and the piezoelectric body 3 are formed in this order from the substrate side. Coordinate z is, z = 0 at the boundary between the base and the piezoelectric element 1, z 1 at the boundary between the piezoelectric body 1 and the piezoelectric body 2, z 2 at the boundary between the piezoelectric body 2 and the piezoelectric element 3, the end of the piezoelectric element 3 the part and z 3. The thickness of the piezoelectric body 1 is h 1 , the thickness of the piezoelectric body 2 is h 2 , the thickness of the piezoelectric body 3 is h 3, and the height of the laminated piezoelectric body is h.

すると、座標zにおける変位ξ(z)は、
ξ(z)=ξsin(nπ/2・z/h) …(32)
なので、圧電体1の歪みSは、
=Δh/h=ξsin(nπ/2・h/h)/h …(33)
となる。同様に、圧電体2および3については、
=Δh/h
=ξ{sin(nπ/2・(h+h)/h)−sin(nπ/2・h/h)}/h
…(34)
=Δh/h
=ξ{sin(nπ/2)−sin(nπ/2・(h+h)/h)}/h
…(35)
となる。
Then, the displacement ξ (z 1 ) at the coordinate z 1 is
ξ (z 1 ) = ξ 0 sin (nπ / 2 · z 1 / h) (32)
Therefore, the strain S 1 of the piezoelectric body 1 is
S 1 = Δh 1 / h 1 = ξ 0 sin (nπ / 2 · h 1 / h) / h 1 (33)
It becomes. Similarly, for piezoelectric bodies 2 and 3,
S 2 = Δh 2 / h 2
= Ξ 0 {sin (nπ / 2 · (h 1 + h 2 ) / h) −sin (nπ / 2 · h 1 / h)} / h 2
... (34)
S 3 = Δh 3 / h 3
= Ξ 0 {sin (nπ / 2) −sin (nπ / 2 · (h 1 + h 2 ) / h)} / h 3
... (35)
It becomes.

そして、3λ/4共振時の各圧電体の歪みは、上式(33)〜(35)においてn=3で与えられる。各圧電体の厚みが等しく、すなわち上式でh=h=h=h/3の場合、各圧電体の歪みS 3ω,S 3ω,S 3ωは、
3ω=Δh 3ω/h=3ξ 3ωsin(π/2)/h)
=3ξ 3ω/h …(36)
3ω=Δh 3ω/h
=3ξ 3ω{sin(π)−sin(π/2)}/h
=−3ξ 3ω/h …(37)
3ω=Δh 3ω/h
=3ξ 3ω{sin(3π/2)−sin(π)}/h
=−3ξ 3ω/h …(38)
となる。ここで、添え字3ωは3次高調波における応答を意味する。これらの式から3λ/4共振では圧電体2および圧電体3の歪みと、圧電体1の歪みとが逆位相であることを示す。
The distortion of each piezoelectric body at the time of 3λ / 4 resonance is given by n = 3 in the above equations (33) to (35). When the thickness of each piezoelectric body is equal, that is, when h 1 = h 2 = h 3 = h / 3 in the above equation, the strains S 1 , S 2 , and S 3 of each piezoelectric body are
S 1 = Δh 1 / h 1 = 3ξ 0 sin (π / 2) / h)
= 3ξ 0 / h (36)
S 2 = Δh 2 / h 2
= 3ξ 0 {sin (π) −sin (π / 2)} / h
= -3ξ 0 / h (37)
S 3 = Δh 3 / h 3
= 3ξ 0 {sin (3π / 2) −sin (π)} / h
= -3ξ 0 / h (38)
It becomes. Here, the subscript 3ω means a response at the third harmonic. From these equations, the 3λ / 4 resonance indicates that the distortion of the piezoelectric body 2 and the piezoelectric body 3 and the distortion of the piezoelectric body 1 are in opposite phases.

各圧電体の変位と歪みの符号とを図15に示す。(a)は変位であり、(b)は歪みである。本実施例は、3次高調波の送受で、圧電体が3枚積層であるので、(a)および前述の図5で示すように、変位の節と腹とは、各圧電体の境界と一致する。このとき各圧電体の歪みは、圧電体1の歪みを+とすると、(b)および前述の図5で示すように、圧電体2および3の歪みを−として符号化することができる。   FIG. 15 shows the displacement and distortion sign of each piezoelectric body. (A) is displacement and (b) is distortion. In the present embodiment, transmission and reception of the third harmonic and three piezoelectric bodies are laminated. Therefore, as shown in FIG. 5A and FIG. 5 described above, the displacement nodes and antinodes coincide with the boundaries of each piezoelectric body. To do. At this time, the distortion of each piezoelectric body can be encoded with the distortion of the piezoelectric bodies 2 and 3 as-, as shown in FIG. 5B and FIG.

以上の力学系の振る舞いに基づき、電気系の最適構造を導く。図16に示すように、互いに隣り合う圧電体の離反側の面の電極同士を連絡し、そこから配線を引き出し結合すれば、容易に各圧電体を電気的に並列結合することができる。このとき、積層圧電体の電気インピーダンスは1枚の圧電体の1/3に減少する。また、圧電体1の残留分極の向きあるいは結晶のC軸やA軸の向きを基準(+P)として、圧電体2の残留分極あるいは結晶のC軸やA軸の向きを同方行(+P)とし、圧電体3で逆方行(−P)とすれば、配線に誘起される電荷は、圧電正効果により生じた電荷の総和となる。このとき両端子間に誘起される電気変位D1,1,−1 3ωは、
1,1,−1 3ω=eS−e(S+S)=9eξ 3ω/h …(39)
となる。ここで、添え字の1および−1は、各圧電体の残留分極あるいは結晶のC軸やA軸の向きに対応し、左から圧電体1、圧電体2そして圧電体3の残留分極あるいは結晶のC軸やA軸の向きを示している。
Based on the above behavior of the dynamic system, the optimum structure of the electrical system is derived. As shown in FIG. 16, if the electrodes on the surfaces on the separated side of the piezoelectric bodies adjacent to each other are connected to each other and the wiring is drawn out from the electrodes, the piezoelectric bodies can be easily electrically connected in parallel. At this time, the electrical impedance of the laminated piezoelectric material is reduced to 1/3 of one piezoelectric material. Further, the direction of remanent polarization of the piezoelectric body 1 or the direction of the C-axis or A-axis of the crystal is set as a reference (+ P), and the direction of remanent polarization of the piezoelectric body 2 or the crystal C-axis or A-axis is set in the same direction (+ P). If the piezoelectric body 3 is reverse (−P), the charge induced in the wiring is the sum of the charges generated by the piezoelectric positive effect. At this time, the electric displacement D 1,1, -1 induced between both terminals is
D 1,1, −1 = eS 1 −e (S 2 + S 3 ) = 9 eξ 0 / h (39)
It becomes. Here, the subscripts 1 and -1 correspond to the residual polarization of each piezoelectric body or the direction of the C-axis or A-axis of the crystal, and the residual polarization or crystal of the piezoelectric body 1, the piezoelectric body 2 and the piezoelectric body 3 from the left. The direction of the C axis and the A axis is shown.

そして、λ/4共振に対する応答は、n=1で与えられ、各圧電体の歪みS,S,Sは、
=Δh/h=3ξsin(π/6)/h …(40)
=Δh/h
=3ξ{sin(π/3)−sin(π/6)}/h …(41)
=Δh/h
=3ξ{sin(π/2)−sin(π/3)}/h …(42)
すなわち、
=S+S …(43)
となる。
The response to the λ / 4 resonance is given by n = 1, and the strains S 1 , S 2 , S 3 of each piezoelectric body are
S 1 = Δh 1 / h 1 = 3ξ 0 sin (π / 6) / h (40)
S 2 = Δh 2 / h 2
= 3ξ 0 {sin (π / 3) −sin (π / 6)} / h (41)
S 3 = Δh 3 / h 3
= 3ξ 0 {sin (π / 2) −sin (π / 3)} / h (42)
That is,
S 1 = S 2 + S 3 (43)
It becomes.

一方、図16に示す並列接続で、λ/4共振に対する電気変位D1,1,−1 ωは、
1,1,−1 ω=e(S+S+S)=0 ・・・(44)
であり、本実施例の3層圧電体から成るトランスデューサでは、λ/4共振に基づく感度が打ち消されることを示す。
On the other hand, in the parallel connection shown in FIG. 16, the electrical displacement D 1,1, -1 ω with respect to the λ / 4 resonance is
D 1,1, -1 ω = e (S 1 + S 2 + S 3 ) = 0 (44)
In the transducer composed of the three-layer piezoelectric material of the present example, the sensitivity based on λ / 4 resonance is canceled out.

比較として、単に残留分極あるいは結晶のC軸やA軸を平行とした3層圧電体による3次高調波の送受波について述べる。3λ/4共振において積層圧電体が圧電正効果により生じる電気変位D1,1,1 3ωは、
1,1,1 3ω=e(S+S+S)=−3eξ 3ω/h …(45)
となる。したがって、本実施例では、上式(45)に示すとおり、並列接続において端子間の電気変位を、3倍(約10dB)向上できることが理解される。
As a comparison, the transmission and reception of the third harmonic by simply using the residual polarization or the three-layer piezoelectric body in which the C-axis and A-axis of the crystal are parallel will be described. The electrical displacement D 1,1,1 produced by the piezoelectric positive effect in the laminated piezoelectric body at 3λ / 4 resonance is
D 1,1,1 = e (S 1 + S 2 + S 3 ) = − 30 / h (45)
It becomes. Therefore, in this embodiment, as shown in the above equation (45), it is understood that the electrical displacement between the terminals can be improved three times (about 10 dB) in the parallel connection.

以下、図16に示した3層圧電体による超音波の送受波特性について、実験データおよびシミュレーション結果を図17に示す。実験では代表的な強誘電性ポリマーであるフッ化ビニリデンと三フッ化エチレンの共重合体(P(VDF/TrFE))を用いた。超音波トランスデューサの構造模式図を図17の右図に示す。本発明に基づき3層圧電体を電気的に並列結合し、さらに分極の向きを図16に示したものと同じとした。3層圧電体の高さはおよそ120μmで、λ/4共振周波数は4.5MHzである。左図の一点鎖線は実験結果、破線はシミュレーション結果である。   FIG. 17 shows experimental data and simulation results for the ultrasonic wave transmission / reception characteristics of the three-layer piezoelectric material shown in FIG. In the experiment, a copolymer (P (VDF / TrFE)) of vinylidene fluoride and ethylene trifluoride, which is a typical ferroelectric polymer, was used. The structural schematic diagram of the ultrasonic transducer is shown in the right figure of FIG. In accordance with the present invention, three-layer piezoelectric bodies are electrically connected in parallel, and the direction of polarization is the same as that shown in FIG. The height of the three-layer piezoelectric body is approximately 120 μm, and the λ / 4 resonance frequency is 4.5 MHz. The one-dot chain line on the left is the experimental result, and the broken line is the simulation result.

図17から、20MHz以下では、それぞれ共振周波数に対応する4.5MHz付近にピークを示さず、λ/4共振ピークが消失している一方、本実施例のトランスデューサにおける第1のピークは、それの3λ/4共振である13.5MHzとなっていることが理解される。   From FIG. 17, at 20 MHz or less, no peak is shown in the vicinity of 4.5 MHz corresponding to the resonance frequency, and the λ / 4 resonance peak disappears, while the first peak in the transducer of this example is It is understood that the frequency is 13.5 MHz, which is 3λ / 4 resonance.

比較例として、図18に圧電体2と3の残留分極の向きを図17とは反対にした積層圧電体の特性を示す。左図に示すように、この3層圧電体は、λ/4共振である4.5MHzと、その3次高調波成分である13.5MHzとに共にピークを示し、しかも3次高調波成分の感度は、−50〜−60dB程度であり、図17に示した本実施例の結果に比べて、10〜20dB程度小さいことが理解される。これらの実験結果からも、本発明の手法に基づき分極方向と配線手法とを組み合わせることで、3次高調波成分を増加させると同時に基本波成分を減衰させることが可能であることが理解される。   As a comparative example, FIG. 18 shows characteristics of a laminated piezoelectric material in which the directions of remanent polarization of the piezoelectric materials 2 and 3 are opposite to those in FIG. As shown in the left figure, this three-layer piezoelectric body has peaks at both 4.5 MHz, which is λ / 4 resonance, and 13.5 MHz, which is the third harmonic component, and the third harmonic component. It is understood that the sensitivity is about −50 to −60 dB, which is about 10 to 20 dB smaller than the result of the present embodiment shown in FIG. From these experimental results, it is understood that by combining the polarization direction and the wiring method based on the method of the present invention, it is possible to increase the third harmonic component and simultaneously attenuate the fundamental wave component. .

以上のように、第2の実施例では、3層圧電体を用いて3次高調波を送受波する手法を述べたが、ここでは積層圧電体の高調波の次数と積層枚数とを一致させることにより、(i)圧電体の境界面を圧電体の弾性波の節と腹とに一致させて各圧電体の振動様式を符号化して理解でき、その符号と配線手法とに基づき、(ii)各圧電体の残留分極あるいは結晶のC軸やA軸の向きを適宜同方行または逆方行とすることで、各圧電体の残留分極あるいは結晶のC軸やA軸の向きを単純に同方行にした場合と比べ、3λ/4波の送受波時に感度を3倍(約10dB)以上増加することができるだけでなく、λ/4波を打ち消すフィルタとしての機能も有することができる。また、電気的に並列結合とするので、電気インピーダンスを1/3に減少させることができる。以上のように3λ/4波を選択的にかつ高S/N比で送受波する場合、本発明は極めて有効である。これによって、受波の場合には帯域分離フィルタやアンプを削減することができる。あるいは、削減まで至らなくても、フィルタの場合は次数を削減して損失を抑え、アンプの場合はゲインを小さくすることができる。   As described above, in the second embodiment, the method of transmitting and receiving the third harmonic using a three-layer piezoelectric material has been described. Here, the harmonic order of the laminated piezoelectric material is matched with the number of laminated layers. Thus, (i) the vibration mode of each piezoelectric body can be encoded and understood by matching the boundary surface of the piezoelectric body with the elastic wave nodes and antinodes of the piezoelectric body, and based on the sign and wiring method, (ii) The remanent polarization of each piezoelectric material or the direction of the C-axis or A-axis of the crystal is set in the same or opposite direction as appropriate, so that the remanent polarization of each piezoelectric material or the orientation of the C-axis or A-axis of the crystal is simply anisotropic Compared with the case of 3), it is possible not only to increase the sensitivity 3 times (about 10 dB) or more when transmitting / receiving 3λ / 4 waves, but also to have a function as a filter that cancels λ / 4 waves. Moreover, since it is electrically connected in parallel, the electrical impedance can be reduced to 1/3. As described above, when the 3λ / 4 wave is selectively transmitted and received at a high S / N ratio, the present invention is extremely effective. Thereby, in the case of reception, the band separation filter and the amplifier can be reduced. Or even if it does not lead to reduction, in the case of a filter, a loss can be suppressed by reducing the order, and in the case of an amplifier, the gain can be reduced.

第3の実施例は、同じ厚さの圧電体を6層積層したトランスデューサによる3次高調波の送受である。本実施例は、第1の実施例で示した3層圧電体において各圧電体を2つの圧電体に分割したもので、並列結合とした場合に電気インピーダンスがさらに半分になるだけでなく、上端電極と下端電極とが連絡されるので、積層圧電体全体を電気的にシールドすることができる。   The third embodiment is transmission and reception of the third harmonic by a transducer in which six layers of piezoelectric bodies having the same thickness are laminated. In this embodiment, each piezoelectric body is divided into two piezoelectric bodies in the three-layer piezoelectric body shown in the first embodiment, and not only the electric impedance is further halved when parallel-coupled, but also the upper end. Since the electrode and the lower end electrode are communicated with each other, the entire laminated piezoelectric body can be electrically shielded.

図19は、その6層圧電体の構造を示し、3次高調波を送受波する際の変位および歪みを模式的に示す断面図である。図9と同様に、(a)は積層状況、(b)はある瞬間での各層の変位、(c)は歪みの係数である。   FIG. 19 is a cross-sectional view showing the structure of the six-layer piezoelectric body and schematically showing displacement and distortion when transmitting and receiving third-order harmonics. Like FIG. 9, (a) is a lamination | stacking condition, (b) is the displacement of each layer in a certain moment, (c) is a coefficient of distortion.

各圧電体の歪みS,S,S,S,S,Sは、
=6ξsin(π/4)/h=6ξ(1/21/2) …(46)
=6ξ{sin(π/2)−sin(π/4)}/h
=6ξ(1−1/21/2) …(47)
=6ξ{sin(3π/4)−sin(π/2)}/h
=6ξ(1/21/2−1) …(48)
=6ξ{sin(π)−sin(3π/4)}/h
=6ξ(−1/21/2) …(49)
=6ξ{sin(5π/4)−sin(π)}
=6ξ(−1/21/2) …(50)
=6ξ{sin(3π/2)−sin(5π/4)}
=6ξ(1/21/2−1) …(51)
となる。1/21/2≒0.7に近似すると、各圧電体の歪みの比は、図20の模式図に示すとおりとなる。
The distortion S 1 , S 2 , S 3 , S 4 , S 5 , S 6 of each piezoelectric body is
S 1 = 6ξ 0 sin (π / 4) / h = 6ξ 0 (1/2 1/2 ) (46)
S 2 = 6ξ 0 {sin (π / 2) −sin (π / 4)} / h
= 6ξ 0 (1-1 / 2 1/2 ) (47)
S 3 = 6ξ 0 {sin (3π / 4) −sin (π / 2)} / h
= 6ξ 0 (1/2 1/2 −1) (48)
S 4 = 6ξ 0 {sin (π) −sin (3π / 4)} / h
= 6ξ 0 (−1/2 1/2 ) (49)
S 5 = 6ξ 0 {sin (5π / 4) −sin (π)}
= 6ξ 0 (−1/2 1/2 ) (50)
S 6 = 6ξ 0 {sin (3π / 2) −sin (5π / 4)}
= 6ξ 0 (1/2 1/2 −1) (51)
It becomes. When approximated to 1/2 1/2 ≈0.7, the distortion ratio of each piezoelectric body is as shown in the schematic diagram of FIG.

そして、互いに隣り合う圧電体における離反側の電極を連絡し、電気的並列結合をした場合の残留分極あるいは結晶のC軸またはA軸の好ましい配列を、図20に示す。このように構成することで、総電荷量は、図16で示す3枚積層時と変わらないけれども、電気インピーダンスはそれの1/2に下げることができる。   FIG. 20 shows a preferred arrangement of remanent polarization or crystal C-axis or A-axis when the electrodes on the separation side in adjacent piezoelectric bodies are connected and electrically connected in parallel. With this configuration, the total charge amount is the same as that in the case of stacking three sheets shown in FIG. 16, but the electrical impedance can be reduced to ½ of that.

図21は、図20に示すように分極配列と配線とを組み合わせた6層圧電体における感度の周波数特性をシミュレーションした結果である。この6層圧電体のλ/4共振周波数は5MHzである。しかしながら、右図にあるように、本発明に基づく分極配列ならびに配線を組み合わせることで、左図に示すようにλ/4共振による感度は減衰し、3λ/4共振による感度が最大となる。   FIG. 21 shows the result of simulating the frequency characteristics of sensitivity in a six-layer piezoelectric body in which a polarization arrangement and wiring are combined as shown in FIG. The 6-layer piezoelectric body has a λ / 4 resonance frequency of 5 MHz. However, as shown in the right figure, by combining the polarization arrangement and the wiring based on the present invention, the sensitivity due to λ / 4 resonance is attenuated and the sensitivity due to 3λ / 4 resonance is maximized as shown in the left figure.

本発明の積層型圧電体は、超音波診断装置における超音波トランスデューサに限らず用いることができ、たとえば魚群探知機などにも適用することができ、また送受信信号は超音波帯域に限らず、たとえば低周波のストレスを加えて発電を行うような構成にも適用することができる。   The multilayer piezoelectric body of the present invention can be used not only for an ultrasonic transducer in an ultrasonic diagnostic apparatus, but also applicable to, for example, a fish detector, and transmission / reception signals are not limited to an ultrasonic band. The present invention can also be applied to a configuration that generates power by applying low-frequency stress.

A1〜A3 圧電体 A1 to A3 Piezoelectric material

Claims (10)

相互に厚みの等しい複数の圧電体を積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体であって、
前記圧電体は3層積層されて、その層間および両端の圧電体の表面に電極を有し、
互いに隣り合う圧電体における離反側の電極を連結することで、前記各圧電体を相互に並列接続する2組の連絡配線を備え、
前記各圧電体は、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸を、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3段目の圧電体では逆方向となるように配列されていることを特徴とする積層型圧電体。
A laminated piezoelectric material that is formed by laminating a plurality of piezoelectric materials having the same thickness, and that transmits and receives ultrasonic waves of the third harmonic component due to 3λ / 4 resonance generated by thickness expansion and contraction of the piezoelectric material,
The piezoelectric body is laminated in three layers, and has electrodes on the surface of the piezoelectric body between the layers and at both ends,
By connecting the electrodes on the separation side of the piezoelectric bodies adjacent to each other, it has two sets of connecting wirings that connect the piezoelectric bodies in parallel with each other,
Each piezoelectric body has a second stage in contact with the direction of remanent polarization or crystal axis related to the electric displacement due to the positive piezoelectric effect or the sign of the electric field with respect to the axis of the first stage piezoelectric body on the fixed end side. A laminated piezoelectric material, wherein the piezoelectric material is arranged in the same direction in the piezoelectric body of the eye, and in the opposite direction in the piezoelectric material of the third stage above.
相互に厚みの等しい圧電体を2層積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体であって、
前記各圧電体は、その層間および各外表面に電極を有し、前記外表面の電極を連結することで、前記各圧電体を相互に並列接続する連絡配線を備え、
前記両圧電体は、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸を、互いに同方向となるように配列されていることを特徴とする積層型圧電体。
A laminated piezoelectric material that is formed by laminating two layers of piezoelectric materials having the same thickness, and that transmits and receives ultrasonic waves of the third harmonic component due to 3λ / 4 resonance generated by thickness expansion and contraction of the piezoelectric material,
Each piezoelectric body has electrodes on its interlayer and on each outer surface, and is provided with a connection wiring for connecting each piezoelectric body in parallel by connecting the electrodes on the outer surface,
Both piezoelectric bodies are arranged so that the direction of remanent polarization or crystal axes related to the electrical displacement or the sign of the electric field due to the positive piezoelectric effect are in the same direction.
相互に厚みの等しい圧電体を4層以上に積層して成り、該圧電体の層間および両端の表面に電極を有し、
互いに隣り合う圧電体における離反側の電極を連結することで、前記積層の圧電体を相互に並列接続する2組の連絡配線を備え、
前記各圧電体は、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸を、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3および第4段目の圧電体では逆方向となる周期性を持つように配列されていることを特徴とする積層型圧電体。
It is formed by stacking four or more layers of piezoelectric bodies having the same thickness, and has electrodes on the surfaces of the layers and at both ends of the piezoelectric body,
By connecting the electrodes on the separation side of the piezoelectric bodies adjacent to each other, it is provided with two sets of connecting wirings that connect the stacked piezoelectric bodies in parallel with each other,
Each piezoelectric body has a second stage in contact with the direction of remanent polarization or crystal axis related to the electric displacement due to the positive piezoelectric effect or the sign of the electric field with respect to the axis of the first stage piezoelectric body on the fixed end side. A laminated piezoelectric material, wherein the piezoelectric materials are arranged so as to have periodicity in the same direction in the piezoelectric body of the eye, and in opposite directions in the third and fourth stage piezoelectric bodies above the piezoelectric body.
前記圧電体の厚み伸縮により3次以上の共振モードの超音波を送受波することを特徴とする請求項3記載の積層型圧電体。   4. The multilayer piezoelectric body according to claim 3, wherein ultrasonic waves in a resonance mode of the third order or higher are transmitted and received by the thickness expansion and contraction of the piezoelectric body. 前記各圧電体は、さらに厚み方向に2枚に分割されて、それらが互いに並列に接続されたものが1組として積層され、
前記分割された圧電体のそれぞれについて、前記残留分極の向きあるいは結晶軸が、該積層型圧電体内の歪み分布における電気変位または電場の符号と一致するように、その表裏が反転されていることを特徴とする請求項1,3または4記載の積層型圧電体。
Each of the piezoelectric bodies is further divided into two pieces in the thickness direction, and those that are connected in parallel to each other are laminated as a set,
For each of the divided piezoelectric bodies, the direction of the remanent polarization or the crystal axis is inverted so that the sign of the electric displacement or electric field in the strain distribution in the multilayer piezoelectric body matches. The multilayer piezoelectric body according to claim 1, 3 or 4, characterized by the above.
前記請求項1〜5のいずれか1項に記載の積層型圧電体を用いることを特徴とする超音波トランスデューサ。   An ultrasonic transducer using the laminated piezoelectric material according to any one of claims 1 to 5. 相互に厚みの等しい圧電体を複数積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体の作成方法であって、
前記圧電体を3層積層し、
各圧電体の層間および両端の圧電体の表面に形成される電極において、互いに隣り合う圧電体における離反側の電極を連絡配線によって連結することで、前記各圧電体を相互に並列接続し、
前記各圧電体を、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸が、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3段目の圧電体では逆方向となるように配列することを特徴とする積層型圧電体の作成方法。
A method for producing a laminated piezoelectric material comprising a plurality of piezoelectric materials having mutually equal thicknesses, and transmitting and receiving ultrasonic waves of a third harmonic component due to 3λ / 4 resonance generated by thickness expansion and contraction of the piezoelectric materials,
Three layers of the piezoelectric bodies are laminated,
In the electrodes formed on the surfaces of the piezoelectric bodies between the layers and at both ends of each piezoelectric body, the piezoelectric bodies adjacent to each other are connected to each other by a connection wiring, thereby connecting the piezoelectric bodies in parallel with each other,
The second stage in which each piezoelectric body is in contact with the direction of remanent polarization or the crystal axis related to the electric displacement due to the positive piezoelectric effect or the sign of the electric field with respect to the axis of the first stage piezoelectric body on the fixed end side. A method for producing a laminated piezoelectric material, wherein the piezoelectric material is arranged in the same direction in the piezoelectric body of the eye and in the reverse direction in the piezoelectric material in the third stage above.
相互に厚みの等しい圧電体を2層積層して成り、該圧電体の厚み伸縮によって生じる3λ/4共振による3次高調波成分の超音波を送受波する積層型圧電体の作成方法であって、
前記各圧電体の層間および各外表面に形成される電極において、前記外表面の電極を連絡配線によって連結することで、前記各圧電体を相互に並列接続し、
前記両圧電体を、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸が、互いに同方向となるように配列することを特徴とする積層型圧電体の作成方法。
A method for producing a laminated piezoelectric material comprising two layers of piezoelectric materials having the same thickness, and transmitting and receiving ultrasonic waves of a third harmonic component due to 3λ / 4 resonance generated by thickness expansion and contraction of the piezoelectric material. ,
In the electrodes formed between the layers of each piezoelectric body and on each outer surface, the electrodes on the outer surface are connected by a connection wiring to connect the piezoelectric bodies to each other in parallel.
A method for producing a laminated piezoelectric material, characterized in that the two piezoelectric materials are arranged so that the direction of remanent polarization or crystal axes related to the electrical displacement or the electric field sign due to the piezoelectric positive effect are in the same direction.
相互に厚みの等しい圧電体を4層以上に積層して成る積層型圧電体の作成方法であって、
積層された各圧電体の層間および両端の圧電体の表面に形成される電極において、互いに隣り合う圧電体における離反側の電極を連絡配線によって連結することで、前記複数の圧電体を相互に並列接続し、
前記各圧電体を、圧電正効果による電気変位または電場の符号と関係する残留分極の向きあるいは結晶軸が、固定端側の第1段目の圧電体の軸を基準として、それに接する第2段目の圧電体では同方向、さらにその上の第3および第4段目の圧電体では逆方向となる周期性を持つように配列することを特徴とする積層型圧電体の作成方法。
A method for producing a laminated piezoelectric material comprising four or more layers of piezoelectric materials having equal thicknesses,
In the electrodes formed between the layers of the piezoelectric bodies and the surfaces of the piezoelectric bodies at both ends, the plurality of piezoelectric bodies are connected in parallel by connecting the electrodes on the separated side of the piezoelectric bodies adjacent to each other by connecting wires. connection,
The second stage in which each piezoelectric body is in contact with the direction of remanent polarization or the crystal axis related to the electric displacement due to the positive piezoelectric effect or the sign of the electric field with respect to the axis of the first stage piezoelectric body on the fixed end side. A method for producing a laminated piezoelectric material, wherein the piezoelectric materials are arranged so as to have periodicity in the same direction in the piezoelectric body of the eye, and in the reverse direction in the third and fourth stage piezoelectric bodies thereabove.
前記各圧電体は、さらに厚み方向に2枚に分割され、互いに並列に接続されたものが1組として積層され、
前記分割された圧電体のそれぞれについて、前記残留分極の向きあるいは結晶軸が、該積層型圧電体内の歪み分布における電気変位または電場の符号と一致するように、その表裏を反転することを特徴とする請求項7または9記載の積層型圧電体の作成方法。
Each of the piezoelectric bodies is further divided into two pieces in the thickness direction, and the ones connected in parallel to each other are laminated as one set,
With respect to each of the divided piezoelectric bodies, the reversal polarization direction or crystal axis is inverted so that the sign of the electric displacement or electric field in the strain distribution in the multilayer piezoelectric body is coincident. A method for producing a laminated piezoelectric material according to claim 7 or 9.
JP2010084018A 2010-03-31 2010-03-31 Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body Pending JP2011217159A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010084018A JP2011217159A (en) 2010-03-31 2010-03-31 Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body
PCT/JP2011/001033 WO2011121882A1 (en) 2010-03-31 2011-02-23 Laminated piezoelectric body and manufacturing method of same, ultrasonic transducer using same and ultrasonic diagnostic device
US13/637,850 US9375754B2 (en) 2010-03-31 2011-02-23 Laminated piezoelectric body, laminated piezoelectric body manufacturing method, and ultrasound transducer and ultrasound diagnostic device using laminated piezoelectric body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084018A JP2011217159A (en) 2010-03-31 2010-03-31 Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body

Publications (1)

Publication Number Publication Date
JP2011217159A true JP2011217159A (en) 2011-10-27

Family

ID=44946440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084018A Pending JP2011217159A (en) 2010-03-31 2010-03-31 Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body

Country Status (1)

Country Link
JP (1) JP2011217159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128174A (en) * 2011-12-16 2013-06-27 Konica Minolta Inc Piezoelectric cell, piezoelectric element, ultrasonic probe, and ultrasonic diagnostic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128174A (en) * 2011-12-16 2013-06-27 Konica Minolta Inc Piezoelectric cell, piezoelectric element, ultrasonic probe, and ultrasonic diagnostic device

Similar Documents

Publication Publication Date Title
JP5644729B2 (en) Ultrasonic transducer, ultrasonic probe, and ultrasonic diagnostic imaging apparatus
Rathod A review of acoustic impedance matching techniques for piezoelectric sensors and transducers
JP4758634B2 (en) Manufacturing method of multilayer ceramic acoustic transducer
WO2011121882A1 (en) Laminated piezoelectric body and manufacturing method of same, ultrasonic transducer using same and ultrasonic diagnostic device
JP5282309B2 (en) Ultrasonic probe, manufacturing method thereof, and ultrasonic diagnostic apparatus
JP2009296055A (en) Ultrasonic probe and ultrasonic diagnostic apparatus using the same
CN111146327A (en) Single crystal piezoelectric structure, method for manufacturing same, and electronic device having single crystal piezoelectric laminated structure
US7876027B2 (en) Multilayer piezoelectric and polymer ultrawideband ultrasonic transducer
Hillenbrand et al. DC-Biased piezoelectret film transducers for airborne ultrasound
US7791253B2 (en) Multi-layer gas matrix piezoelectric composite transducer
JP2011217159A (en) Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body
JP2011217160A (en) Laminated piezoelectric body and ultrasonic transducer using the same, and method of manufacturing laminated piezoelectric body
Cheng et al. Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer
JP5423540B2 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
JP2011212336A5 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus
JP4911000B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
Decharat et al. Evaluation of the acoustical properties of adhesive-free dual layer piezoelectric PVDF copolymer transducer
Nakamoto et al. Multilayer Pb (Zr, Ti) O3 thin films for ultrasonic transducer
Manh et al. Dual frequency hybrid ultrasonic transducers-design and simulations
Wang et al. Optimize multilayer matching layer design for tone-burst underwater acoustic transducers
Abrar et al. Mathematical optimization of multilayer piezoelectric devices with nonuniform layers by simulated annealing
JP2007288396A (en) Ultrasonic probe
KR20130087478A (en) Ultrasound probe
Ahmad et al. D33 mode based piezoelectric micromachined ultrasonic transducers
Zhang et al. CMUTs with interlaced high-and low-frequency elements