JP2011216666A - Method for manufacturing rare-earth sintered magnet - Google Patents

Method for manufacturing rare-earth sintered magnet Download PDF

Info

Publication number
JP2011216666A
JP2011216666A JP2010083428A JP2010083428A JP2011216666A JP 2011216666 A JP2011216666 A JP 2011216666A JP 2010083428 A JP2010083428 A JP 2010083428A JP 2010083428 A JP2010083428 A JP 2010083428A JP 2011216666 A JP2011216666 A JP 2011216666A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
sintered magnet
earth sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010083428A
Other languages
Japanese (ja)
Other versions
JP5501826B2 (en
Inventor
Izumi Ozeki
出光 尾関
Katsuya Kume
克也 久米
Keisuke Hirano
敬祐 平野
Tomohiro Omure
智弘 大牟礼
Keisuke Futoshiro
啓介 太白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2010083428A priority Critical patent/JP5501826B2/en
Publication of JP2011216666A publication Critical patent/JP2011216666A/en
Application granted granted Critical
Publication of JP5501826B2 publication Critical patent/JP5501826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth sintered magnet which prevents oxidation of a molded body and absorption of humidity and has high magnetic characteristics by improving its storability, and to provide a method for manufacturing the magnet.SOLUTION: A fine powder of a pulverized neodymium magnet is recovered into an organic solvent containing an organic metal compound represented by a structural formula M-(OR)(wherein M contains at least one kind of rare earth elements Nd, Pr, Dy and Tb, R is an arbitrary one among 2-6 C alkyl groups and may be a straight chain or a branched chain, and x is an arnitrary integer) to generate a slurry 42, and after that, a pressure is applied to the slurry 42 injected into a cavity 54 in a state where a magnetic field is applied to mold the slurry in a molding machine 50, and then, the organic solvent is evaporated to obtain a molded body. Next, the molded body is subjected to temporary baking in hydrogen of a hydrogen atmosphere, and is baked at 800-1,180°C, thereby a permanent magnet is manufactured.

Description

本発明は、R−Fe−B系希土類焼結磁石の製造方法に関する。   The present invention relates to a method for producing an R—Fe—B rare earth sintered magnet.

希土類焼結磁石は、原料金属を溶解し、鋳型に注湯して得られたインゴットを粉砕、成形、焼結、熱処理、加工の粉末冶金技術を用いて製造されるが、その中でR−Fe−B系希土類焼結磁石(RはYを含む希土類元素のうち一種または二種以上)は、高性能磁石として注目されている。しかし、インゴットを粉砕して得られた希土類焼結磁石用合金粉末は、化学的に非常に活性であるため、大気中において極めて急激に酸化し、磁気特性の劣化を招いてしまう。   Rare earth sintered magnets are manufactured using powder metallurgy technology of pulverizing, forming, sintering, heat treatment and processing of ingots obtained by melting raw metal and pouring into a mold. Fe-B rare earth sintered magnets (R is one or more of rare earth elements including Y) are attracting attention as high performance magnets. However, the rare earth sintered magnet alloy powder obtained by pulverizing the ingot is chemically very active, and therefore oxidizes very rapidly in the atmosphere, resulting in deterioration of magnetic properties.

また、希土類焼結 磁石用合金粉末は、急激な酸化により発熱するだけでなく甚だしい場合は、発火してしまうため安全性の面でも問題があった。従来は、このような急激な酸化を防止する方法として、窒素、アルゴン等の不活性ガス中に長時間放置し表面を安定化する処理が行われていたが、処理に長時間を要するため量産性に問題があった。更に、希土類焼結磁石用合金粉末は吸湿性があり、大気中に放置すると大気中の水分を吸着し、製造された希土類焼結磁石の特性を劣化させるという問題点があった。   In addition, the rare earth sintered magnet alloy powder not only generates heat due to rapid oxidation, but also ignites in severe cases, so there is a problem in terms of safety. Conventionally, as a method for preventing such rapid oxidation, a process of stabilizing the surface by leaving it in an inert gas such as nitrogen or argon for a long time has been performed. There was a problem with sex. Further, the alloy powder for rare earth sintered magnets has a hygroscopic property, and when left in the atmosphere, there is a problem that moisture in the atmosphere is adsorbed and the characteristics of the manufactured rare earth sintered magnet are deteriorated.

この問題に関し、特開昭61−114505号公報では、R−Fe−B系(RはYを含む希土類元素のうち一種または二種以上)合金粉末と有機溶媒との混合物を作成し、この混合物を磁場中にて圧縮し、有機溶媒をろ過して得た成形体を乾燥、焼結および熱処理する永久磁石の製造方法が提案されている。この製造方法によれば、湿式で成形するため酸化、水分の吸着の問題が解決される。   With respect to this problem, Japanese Patent Application Laid-Open No. 61-114505 discloses a mixture of an R—Fe—B based (R is one or more of rare earth elements including Y) alloy powder and an organic solvent. A method for producing a permanent magnet has been proposed in which a molded body obtained by compressing an organic solvent in a magnetic field and filtering an organic solvent is dried, sintered and heat-treated. According to this manufacturing method, the problem of oxidation and moisture adsorption is solved because the molding is performed by a wet process.

特開昭61−114505号公報JP 61-114505 A

しかしながら、上記特許文献1に記載の技術では、確かに含有酸素量の低下はなされるものの、トルエン、アルコールといった有機溶媒を用いると1週間程度の比較的短時間の内に溶媒に浸漬した微粉あるいは成形体の酸素量が増加し、得られる焼結体の特性が劣化し易いという問題点があることが判明した。   However, in the technique described in Patent Document 1, although the oxygen content is surely reduced, when an organic solvent such as toluene or alcohol is used, fine powder or molded material immersed in the solvent within a relatively short time of about one week. It has been found that there is a problem that the amount of oxygen in the body increases and the characteristics of the obtained sintered body tend to deteriorate.

そこで、本発明は微粉および成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石、およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a rare earth sintered magnet having high magnetic properties by preventing oxidation and moisture adsorption of fine powders and molded products, and having high magnetic properties, and a method for producing the same.

前記目的を達成するため本願の請求項1に係る希土類焼結磁石の製造方法は、R−Fe−B系(RはYを含む希土類元素のうち一種または二種以上)希土類焼結磁石用原料体を乾式で微粉砕し、微粉砕粉末を以下の構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒中に回収し、粉末と前記有機溶媒との混合物を得、これに配向磁場を印加して粉末を配向させたまま湿式成形し、得られた成形体を焼結することを特徴とする。 In order to achieve the above object, a method for producing a rare earth sintered magnet according to claim 1 of the present application is an R-Fe-B type (R is one or more of rare earth elements including Y). The body is pulverized dry, and the pulverized powder is represented by the following structural formula M- (OR) x (wherein M includes at least one of the rare earth elements Nd, Pr, Dy, Tb. R is carbon. Any of alkyl groups of 2 to 6, which may be linear or branched, x is an arbitrary integer), and recovered in an organic solvent containing an organometallic compound represented by And a wet molding with the powder oriented while applying an orientation magnetic field thereto, and sintering the obtained compact.

また、請求項2に係る希土類焼結磁石の製造方法は、請求項1に記載の希土類焼結磁石の製造方法であって、前記成形体を水素雰囲気で仮焼して仮焼体を得、得られた仮焼体を焼結することを特徴とする。   Moreover, the manufacturing method of the rare earth sintered magnet according to claim 2 is the manufacturing method of the rare earth sintered magnet according to claim 1, wherein the green body is calcined in a hydrogen atmosphere to obtain a calcined body, The obtained calcined body is sintered.

また、請求項3に係る希土類焼結磁石の製造方法は、請求項2に記載の希土類焼結磁石の製造方法であって、前記成形体を仮焼するまで前記有機溶媒で湿潤状態に保持することを特徴とする。   Moreover, the manufacturing method of the rare earth sintered magnet which concerns on Claim 3 is a manufacturing method of the rare earth sintered magnet of Claim 2, Comprising: It keeps in the wet state with the said organic solvent until the molded object is calcined. It is characterized by that.

また、請求項4に係る希土類焼結磁石の製造方法は、請求項2に記載の希土類焼結磁石の製造方法であって、前記成形体を仮焼するまで非酸化性又は還元性雰囲気中で保持することを特徴とする。   A method for producing a rare earth sintered magnet according to claim 4 is the method for producing a rare earth sintered magnet according to claim 2, wherein the green compact is calcined in a non-oxidizing or reducing atmosphere until calcined. It is characterized by holding.

更に、請求項5に係る希土類焼結磁石の製造方法は、請求項1乃至請求項4のいずれかに記載の希土類焼結磁石の製造方法であって、希土類焼結磁石用原料粉末と前記有機溶媒との混合物の成形キャビティ内への充填を加圧しつつ行うことを特徴とする。   Furthermore, the manufacturing method of the rare earth sintered magnet which concerns on Claim 5 is a manufacturing method of the rare earth sintered magnet in any one of Claim 1 thru | or 4, Comprising: The raw material powder for rare earth sintered magnets, and the said organic The filling of the mixture with the solvent into the molding cavity is performed while applying pressure.

前記構成を有する請求項1に記載の希土類焼結磁石の製造方法によれば、磁石粉末を粉砕し、粉砕された磁石粉末を構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒中に回収し、その混合物に配向磁場を印加して粉末を配向させたまま湿式成形し、得られた成形体を焼結するので、成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石を得ることができる。 According to the method of manufacturing a rare earth sintered magnet according to claim 1, having the above-described configuration, the magnet powder is pulverized, and the pulverized magnet powder is represented by a structural formula M- (OR) x (wherein M is a rare earth element). At least one of Nd, Pr, Dy, and Tb is included, R is an alkyl group having 2 to 6 carbon atoms, which may be linear or branched, and x is an arbitrary integer. It is recovered in an organic solvent containing the indicated organometallic compound, and an orientation magnetic field is applied to the mixture to wet-form the powder while it is oriented, and the resulting shaped body is sintered. The rare earth sintered magnet having high magnetic properties can be obtained by preventing the adsorption of the magnet and improving the storage stability.

また、請求項2に記載の希土類焼結磁石の製造方法によれば、有機溶媒が混入された磁石粉末の成形体を、焼結前に水素雰囲気で仮焼することにより、磁石粒子の含有する炭素量を予め低減させることができる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。   Further, according to the method for producing a rare earth sintered magnet according to claim 2, the magnet powder containing the organic solvent is calcined in a hydrogen atmosphere before sintering, thereby containing the magnet particles. The amount of carbon can be reduced in advance. As a result, it is possible to sinter the entire magnet densely without generating voids between the main phase and the grain boundary phase of the sintered magnet, and to prevent the coercive force from being lowered. .

また、請求項3に記載の希土類焼結磁石の製造方法によれば、成形体を仮焼するまで有機溶媒で湿潤状態に保持するので、成形体の酸化をより確実に防止することが可能となる。   Further, according to the method for producing a rare earth sintered magnet according to claim 3, since the molded body is kept in a wet state with an organic solvent until calcined, it is possible to more reliably prevent the molded body from being oxidized. Become.

また、請求項4に記載の希土類焼結磁石の製造方法によれば、成形体を仮焼するまで非酸化性又は還元性雰囲気中で保持するので、成形体の酸化をより確実に防止することが可能となる。   In addition, according to the method for producing a rare earth sintered magnet according to claim 4, since the molded body is held in a non-oxidizing or reducing atmosphere until calcination, the molded body is more reliably prevented from being oxidized. Is possible.

更に、請求項5に記載の希土類焼結磁石の製造方法によれば、残留磁束密度を向上させ、高い磁気特性を有する希土類焼結磁石を得ることができる。   Furthermore, according to the method for manufacturing a rare earth sintered magnet according to claim 5, it is possible to improve the residual magnetic flux density and obtain a rare earth sintered magnet having high magnetic characteristics.

本発明に係る永久磁石を示した全体図である。1 is an overall view showing a permanent magnet according to the present invention. 本発明に係る永久磁石の粒界付近を拡大して示した模式図である。It is the schematic diagram which expanded and showed the vicinity of the grain boundary of the permanent magnet which concerns on this invention. 本発明に係る永久磁石の第1の製造方法における製造工程を示した説明図である。It is explanatory drawing which showed the manufacturing process in the 1st manufacturing method of the permanent magnet which concerns on this invention. 本発明に係る永久磁石の第2の製造方法における製造工程を示した説明図である。It is explanatory drawing which showed the manufacturing process in the 2nd manufacturing method of the permanent magnet which concerns on this invention.

以下、本発明に係る永久磁石及び永久磁石の製造方法について具体化した実施形態について以下に図面を参照しつつ詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of a permanent magnet and a method for producing a permanent magnet according to the present invention will be described in detail with reference to the drawings.

[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は円柱形状を備えるが、永久磁石1の形状は成形に用いるキャビティの形状によって変化する。
本発明に係る永久磁石1としては例えばNd−Fe−B系磁石を用いる。また、図2に示すように、永久磁石1は磁化作用に寄与する磁性相である主相11と、非磁性で希土類元素の濃縮した低融点のMリッチ相12(Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。)とが共存する合金である。図2は永久磁石1を構成するNd磁石粒子を拡大して示した図である。
[Configuration of permanent magnet]
First, the configuration of the permanent magnet 1 according to the present invention will be described. FIG. 1 is an overall view showing a permanent magnet 1 according to the present invention. 1 has a cylindrical shape, the shape of the permanent magnet 1 varies depending on the shape of the cavity used for molding.
As the permanent magnet 1 according to the present invention, for example, an Nd—Fe—B magnet is used. Further, as shown in FIG. 2, the permanent magnet 1 includes a main phase 11 that is a magnetic phase that contributes to the magnetization action, and a low melting point M-rich phase 12 that is enriched with rare earth elements (M is Nd, which is a rare earth element). , Pr, Dy, and Tb). FIG. 2 is an enlarged view showing Nd magnet particles constituting the permanent magnet 1.

ここで、主相11は化学量論組成であるNdFe14B金属間化合物相(Feは部分的にCoで置換しても良い)が高い体積割合を占めた状態となる。一方、Mリッチ相12は同じく化学量論組成であるMFe14B(Feは部分的にCoで置換しても良い)よりMの組成比率が多い金属間化合物相(例えば、M2.0〜3.0Fe14B金属間化合物相)からなる。また、Mリッチ相12には磁気特性向上の為、Co、Cu、Al、Si等の他元素を少量含んでも良い。 Here, the main phase 11 is in a state in which the Nd 2 Fe 14 B intermetallic compound phase having a stoichiometric composition (Fe may be partially substituted with Co) occupies a high volume ratio. On the other hand, M-rich phase 12 is also a stoichiometric composition M 2 Fe 14 B (Fe partially substituted may be at Co) composition ratio than M is large intermetallic phase (e.g., M 2. 0-3.0 Fe 14 B intermetallic compound phase). Further, the M-rich phase 12 may contain a small amount of other elements such as Co, Cu, Al, and Si in order to improve magnetic characteristics.

そして、永久磁石1において、Mリッチ相12は、以下のような役割を担っている。
(1)融点が低く(約600℃)、焼結時に液相となり、磁石の高密度化、即ち磁化の向上に寄与する。(2)粒界の凹凸を無くし、逆磁区のニュークリエーションサイトを減少させ保磁力を高める。(3)主相を磁気的に絶縁し保磁力を増加する。
従って、焼結後の永久磁石1中におけるMリッチ相12の分散状態が悪いと、局部的な焼結不良、磁性の低下をまねくため、焼結後の永久磁石1中にはMリッチ相12が均一に分散していることが重要となる。
In the permanent magnet 1, the M rich phase 12 plays the following role.
(1) The melting point is low (about 600 ° C.), it becomes a liquid phase during sintering, and contributes to increasing the density of the magnet, that is, improving the magnetization. (2) Eliminate grain boundary irregularities, reduce reverse domain nucleation sites and increase coercivity. (3) The main phase is magnetically insulated to increase the coercive force.
Accordingly, if the dispersion state of the M-rich phase 12 in the sintered permanent magnet 1 is poor, local sintering failure and a decrease in magnetism may occur. It is important that is uniformly dispersed.

また、Nd−Fe−B系磁石の製造において生じる問題として、焼結された合金中にα−Feが生成することが挙げられる。原因としては、化学量論組成に基づく含有量からなる磁石原料合金を用いて永久磁石を製造した場合に、製造過程で希土類元素が酸素と結び付き、化学量論組成に対して希土類元素が不足する状態となることが挙げられる。さらに、α−Feが、焼結後も磁石中に残存すれば、磁石の磁気特性の低下をもたらす。   Further, a problem that occurs in the production of Nd—Fe—B magnets is that α-Fe is produced in the sintered alloy. The cause is that when a permanent magnet is manufactured using a magnet raw material alloy having a content based on the stoichiometric composition, the rare earth element is combined with oxygen during the manufacturing process, and the rare earth element is insufficient with respect to the stoichiometric composition. It becomes a state. Furthermore, if α-Fe remains in the magnet after sintering, the magnetic properties of the magnet are lowered.

そして、上述した永久磁石1におけるNdやMを含む全希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)よりも0.1wt%〜10.0wt%、より好ましくは0.1wt%〜5.0wt%多い範囲内であることが望ましい。具体的には、各成分の含有量はNd:25〜37wt%、M:0.1〜10.0wt%、B:1〜2wt%、Fe(電解鉄):60〜75wt%とする。永久磁石1中の希土類元素の含有量を上記範囲とすることによって、焼結後の永久磁石1中にMリッチ相12を均一に分散することが可能となる。また、製造過程で希土類元素が酸素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石1中にα−Feが生成されることを抑制することが可能となる。   The content of all rare earth elements including Nd and M in the permanent magnet 1 is preferably 0.1 wt% to 10.0 wt%, more preferably the content based on the stoichiometric composition (26.7 wt%). Is preferably in the range of more than 0.1 wt% to 5.0 wt%. Specifically, the content of each component is Nd: 25 to 37 wt%, M: 0.1 to 10.0 wt%, B: 1 to 2 wt%, and Fe (electrolytic iron): 60 to 75 wt%. By setting the content of the rare earth element in the permanent magnet 1 within the above range, the M-rich phase 12 can be uniformly dispersed in the sintered permanent magnet 1. Moreover, even if the rare earth element is combined with oxygen in the manufacturing process, the rare earth element is not insufficient with respect to the stoichiometric composition, and generation of α-Fe in the sintered permanent magnet 1 is suppressed. It becomes possible.

尚、永久磁石1中の希土類元素の含有量が上記範囲よりも少ない場合には、Mリッチ相12が形成され難くなる。また、α−Feの生成を十分に抑制することができない。一方、永久磁石1中の希土類元素の組成が上記範囲より多い場合には、保磁力の増加が鈍化し、かつ残留磁束密度が低下してしまい、実用的ではない。   Note that when the content of the rare earth element in the permanent magnet 1 is less than the above range, the M-rich phase 12 is hardly formed. Moreover, the production | generation of (alpha) -Fe cannot fully be suppressed. On the other hand, when the composition of the rare earth element in the permanent magnet 1 is larger than the above range, the increase in coercive force is slowed and the residual magnetic flux density is lowered, which is not practical.

また、本発明では、粉砕時の磁石粉末中におけるNdやMを含む全希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)である。そして、後述のようにM−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるMを含む有機金属化合物(例えば、ネオジウムエトキシド、ジスプロシウムプロポキシド、テルビウムプロポキシドなど)を有機溶媒に添加し、湿式状態で粉砕後の磁石粉末に添加する。その結果、有機金属化合物添加後の磁石粉末に含まれる希土類元素の含有量は、上記化学量論組成に基づく含有量(26.7wt%)よりも0.1wt%〜10.0wt%、より好ましくは0.1wt%〜5.0wt%多い範囲内となる。また、有機溶媒を用いて添加することによって、Mを含む有機金属化合物を有機溶媒中で分散させ、Nd磁石粒子の粒子表面にMを含む有機金属化合物を均一付着することが可能となり、焼結後の永久磁石1においてMリッチ相12を均一に分散することが可能となる。 In the present invention, the content of all rare earth elements including Nd and M in the magnet powder at the time of pulverization is a content (26.7 wt%) based on the above stoichiometric composition. And, as will be described later, M- (OR) x (wherein M includes at least one of Nd, Pr, Dy, and Tb, which are rare earth elements. R is any one of alkyl groups having 2 to 6 carbon atoms. An organic metal compound containing M represented by (for example, neodymium ethoxide, dysprosium propoxide, terbium propoxide) is added to an organic solvent. And added to the magnet powder after pulverization in a wet state. As a result, the rare earth element content in the magnet powder after addition of the organometallic compound is more preferably 0.1 wt% to 10.0 wt%, more preferably the content based on the stoichiometric composition (26.7 wt%). Is within the range of 0.1 wt% to 5.0 wt%. Further, by adding using an organic solvent, it becomes possible to disperse the organometallic compound containing M in the organic solvent, and to uniformly adhere the organometallic compound containing M to the particle surface of the Nd magnet particle, and sintering. The M-rich phase 12 can be uniformly dispersed in the later permanent magnet 1.

ここで、上記M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)の構造式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドとは、一般式M(OR)(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、Nd、Pr、Dy、Tb、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、希土類元素であるNd、Pr、Dy、Tbを用いる。 Here, M- (OR) x (wherein M includes at least one of Nd, Pr, Dy, and Tb, which are rare earth elements. R is any one of alkyl groups having 2 to 6 carbon atoms. A metal alkoxide is an organometallic compound that satisfies the structural formula: x may be linear or branched, and x is an arbitrary integer. The metal alkoxide is represented by a general formula M (OR) n (M: metal element, R: organic group, n: valence of metal or metalloid). Further, as the metal or semimetal forming the metal alkoxide, Nd, Pr, Dy, Tb, W, Mo, V, Nb, Ta, Ti, Zr, Ir, Fe, Co, Ni, Cu, Zn, Cd, Al, Ga, In, Ge, Sb, Y, lanthanide, etc. are mentioned. However, in the present invention, particularly rare earth elements Nd, Pr, Dy, and Tb are used.

また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であるので、特に炭素数が2〜6のアルコキシドであるエトキシド、メトキシド、イソプロポキシド、プロポキシド、ブトキシドなどを用いることが好ましい。   The type of alkoxide is not particularly limited, and examples thereof include methoxide, ethoxide, propoxide, isopropoxide, butoxide, alkoxide having 4 or more carbon atoms, and the like. However, in the present invention, those having a low molecular weight are used for the purpose of suppressing residual coal by low-temperature decomposition as described later. Further, since methoxide having 1 carbon is easily decomposed and difficult to handle, it is particularly preferable to use ethoxide, methoxide, isopropoxide, propoxide, butoxide, etc., which are alkoxides having 2 to 6 carbon atoms.

以上のように本発明では、有機金属化合物を粉砕後の磁石粉末に対して添加することによって希土類元素の含有量を増加させる。この方法では、粉砕前に磁石原料に含まれる希土類元素の含有量を予め化学量論組成に基づく含有量よりも多くする方法と比較して、粉砕前後で磁石組成が大きく変動しない利点がある。従って、粉砕後に磁石組成を変更する必要がない。   As described above, in the present invention, the content of the rare earth element is increased by adding the organometallic compound to the pulverized magnet powder. This method has an advantage that the magnet composition does not vary greatly before and after pulverization, as compared with a method in which the content of rare earth elements contained in the magnet raw material before pulverization is made higher than the content based on the stoichiometric composition in advance. Therefore, it is not necessary to change the magnet composition after pulverization.

また、圧粉成形により成形された成形体を適切な焼成条件で焼成すれば、Mが主相11内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Mを添加したとしてもMによる置換領域を外殻部分のみとすることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNdFe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。 Moreover, if the molded object shape | molded by compaction shaping | molding is baked on suitable baking conditions, it can prevent that M carries out a diffusion | penetration penetration (solid solution) in the main phase 11. FIG. Thereby, in the present invention, even if M is added, the substitution region by M can be made only the outer shell portion. As a result, as a whole crystal grain (that is, as a whole sintered magnet), the core Nd 2 Fe 14 B intermetallic compound phase occupies a high volume ratio. Thereby, the fall of the residual magnetic flux density (magnetic flux density when the intensity of an external magnetic field is set to 0) of the magnet can be suppressed.

また、有機金属化合物を有機溶媒に混入して磁石粉末に湿式添加すると、後に真空乾燥等を行うことによって有機溶媒を揮発させたとしても有機金属化合物や有機溶媒等の有機化合物が磁石内に残留することとなる。そして、Ndと炭素との反応性が非常に高いため、焼結工程において高温までC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって焼結後の磁石の主相と粒界相(Ndリッチ相)との間に空隙が生じ、磁石全体を緻密に焼結できずに磁気性能が著しく低下する問題がある。しかしながら、本発明では焼結前に後述の水素仮焼処理を行うことによって、磁石粒子の含有する炭素量を予め低減させることができる。   In addition, when an organic metal compound is mixed in an organic solvent and wet-added to the magnet powder, an organic compound such as an organic metal compound or an organic solvent remains in the magnet even if the organic solvent is volatilized later by vacuum drying or the like. Will be. And since the reactivity of Nd and carbon is very high, if a C content remains up to a high temperature in the sintering process, carbide is formed. As a result, voids are formed between the main phase of the magnet after sintering and the grain boundary phase (Nd-rich phase) due to the formed carbide, and the entire magnet cannot be sintered densely, resulting in a significant decrease in magnetic performance. There is. However, in the present invention, the amount of carbon contained in the magnet particles can be reduced in advance by performing a hydrogen calcining process described later before sintering.

また、主相11の結晶粒径は0.1μm〜5.0μmとすることが望ましい。尚、主相11とMリッチ相12の構成は、例えばSEMやTEMや3次元アトムプローブ法により確認することができる。   The crystal grain size of the main phase 11 is preferably 0.1 μm to 5.0 μm. The configurations of the main phase 11 and the M-rich phase 12 can be confirmed by, for example, SEM, TEM, or a three-dimensional atom probe method.

また、MとしてDy又はTbを用いれば、磁石粒子の粒界にDy又はTbを偏在化することが可能となる。そして、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。また、DyやTbの添加量が従来に比べて少なくすることができ、残留磁束密度の低下を抑制することができる。   If Dy or Tb is used as M, Dy or Tb can be unevenly distributed at the grain boundaries of the magnet particles. Then, Dy and Tb unevenly distributed at the grain boundaries suppress the generation of reverse magnetic domains at the grain boundaries, so that the coercive force can be improved. In addition, the amount of Dy or Tb added can be reduced as compared with the conventional case, and a decrease in residual magnetic flux density can be suppressed.

[永久磁石の製造方法1]
次に、本発明に係る永久磁石1の第1の製造方法について図3を用いて説明する。図3は本発明に係る永久磁石1の第1の製造方法における製造工程を示した説明図である。
[Permanent magnet manufacturing method 1]
Next, the 1st manufacturing method of the permanent magnet 1 which concerns on this invention is demonstrated using FIG. FIG. 3 is an explanatory view showing a manufacturing process in the first manufacturing method of the permanent magnet 1 according to the present invention.

先ず、所定分率のNd−Fe−B(例えばNd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。   First, an ingot made of a predetermined fraction of Nd—Fe—B (for example, Nd: 26.7 wt%, Fe (electrolytic iron): 72.3 wt%, B: 1.0 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 μm by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing.

次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル41により微粉砕し、所定サイズ以下(例えば0.1μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。   Subsequently, the coarsely pulverized magnet powder is either (a) in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas having substantially 0% oxygen content, or (b) having an oxygen content of 0.0001. Finely pulverized by a jet mill 41 in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, and He gas of ˜0.5%, and an average particle size of a predetermined size or less (for example, 0.1 μm to 5.0 μm) It is set as the fine powder which has. The oxygen concentration of substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but may contain oxygen in such an amount that a very small amount of oxide film is formed on the surface of the fine powder. Means good.

一方で、ジェットミル41で微粉砕された微粉末に添加する有機金属化合物溶液を作製する。ここで、有機金属化合物溶液には予め希土類元素を含む有機金属化合物を添加し、溶解させる。尚、溶解させる有機金属化合物としては、M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ネオジウムエトキシド、ジスプロシウムプロポキシド、テルビウムプロポキシドなど)を用いる。また、溶解させる希土類元素を含む有機金属化合物の量は特に制限されないが、前記したように永久磁石に含まれる希土類元素の含有量が化学量論組成に基づく含有量(26.7wt%)よりも0.1wt%〜10.0wt%、より好ましくは0.1wt%〜5.0wt%多くなる範囲とするのが好ましい。 Meanwhile, an organometallic compound solution to be added to the fine powder finely pulverized by the jet mill 41 is prepared. Here, an organometallic compound containing a rare earth element is added in advance to the organometallic compound solution and dissolved. The organometallic compound to be dissolved is M- (OR) x (wherein M includes at least one of the rare earth elements Nd, Pr, Dy, and Tb. R is an alkyl having 2 to 6 carbon atoms. An organometallic compound (for example, neodymium ethoxide, dysprosium propoxide, terbium propoxide, etc.) corresponding to any of the groups, which may be linear or branched, and x is an arbitrary integer. Further, the amount of the organometallic compound containing the rare earth element to be dissolved is not particularly limited, but as described above, the content of the rare earth element contained in the permanent magnet is more than the content based on the stoichiometric composition (26.7 wt%). It is preferable that the range be 0.1 wt% to 10.0 wt%, more preferably 0.1 wt% to 5.0 wt%.

続いて、ジェットミル41で微粉砕された微粉末に対して上記有機金属化合物溶液を添加する。それによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成する。尚、ジェットミル41で微粉砕された微粉末を上記有機金属化合物溶液中に回収することによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成しても良い。尚、有機金属化合物溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。   Subsequently, the organometallic compound solution is added to the fine powder finely pulverized by the jet mill 41. Thereby, the slurry 42 in which the fine powder of the magnet raw material and the organometallic compound solution are mixed is generated. Incidentally, by collecting the fine powder finely pulverized by the jet mill 41 in the organometallic compound solution, a slurry 42 in which the fine powder of the magnet raw material and the organometallic compound solution are mixed may be generated. The addition of the organometallic compound solution is performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.

その後、生成したスラリー42を、成形装置50において形成されたキャビティ54に対して注入する。図3に示すように、成形装置50は、円筒状のモールド51と、モールド51に対して上下方向に摺動する下パンチ52と、同じくモールド51に対して上下方向に摺動する上パンチ53とを有し、これらに囲まれた空間がキャビティ54を構成する。また、成形装置50には一対の磁界発生コイル55、56がキャビティ54の上下位置に配置されており、磁力線をキャビティ54に充填されたスラリー42に印加する。印加させる磁場は例えば1MA/mとする。   Thereafter, the generated slurry 42 is injected into the cavity 54 formed in the molding apparatus 50. As shown in FIG. 3, the molding apparatus 50 includes a cylindrical mold 51, a lower punch 52 that slides up and down with respect to the mold 51, and an upper punch 53 that also slides up and down with respect to the mold 51. And a space surrounded by them constitutes the cavity 54. In addition, a pair of magnetic field generating coils 55 and 56 are disposed in the molding apparatus 50 at the upper and lower positions of the cavity 54, and the lines of magnetic force are applied to the slurry 42 filled in the cavity 54. The applied magnetic field is, for example, 1 MA / m.

そして、圧粉成形を行う際には、スラリー42をキャビティ54に注入する前から、磁界発生コイル55、56によってキャビティ54に対して磁場が印加された状態とする。その状態で、先ず、キャビティ54に対して磁場が印加された状態でスラリー42をキャビティ54に注入する。その後、下パンチ52及び上パンチ53を駆動し、キャビティ54に充填されたスラリー42に対して矢印61方向に圧力を加え、成形する。それによって、加圧と同時にキャビティ54に充填されたスラリー42に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加する。その結果、所望の方向に磁場を配向させる。尚、磁場を配向させる方向は、スラリー42から成形される永久磁石1に求められる磁場方向を考慮して決定する必要がある。また、成形装置50はスラリー42をキャビティ54に充填しつつ、加圧することが望ましい。それによって、残留磁束密度や最大エネルギ−積を高い値とすることが可能となる。   When compacting, the magnetic field is applied to the cavity 54 by the magnetic field generating coils 55 and 56 before the slurry 42 is injected into the cavity 54. In this state, first, the slurry 42 is injected into the cavity 54 with a magnetic field applied to the cavity 54. Thereafter, the lower punch 52 and the upper punch 53 are driven, and pressure is applied in the direction of the arrow 61 to the slurry 42 filled in the cavity 54 to form the slurry. Thereby, a pulse magnetic field is applied to the slurry 42 filled in the cavity 54 simultaneously with the pressurization by the magnetic field generating coils 55 and 56 in the direction of the arrow 62 parallel to the pressurization direction. As a result, the magnetic field is oriented in a desired direction. The direction in which the magnetic field is oriented needs to be determined in consideration of the magnetic field direction required for the permanent magnet 1 formed from the slurry 42. Further, it is desirable that the molding apparatus 50 pressurizes the slurry 42 while filling the cavity 54. Thereby, the residual magnetic flux density and the maximum energy product can be increased.

尚、上記成形工程では、キャビティ54にスラリー42を注入した後に、磁界発生コイル55、56によってキャビティ54内のスラリー42に対して磁場を印加する構成としても良い。そのような構成としても、加圧と同時にキャビティ54に充填されたスラリー42に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加することが可能となる。また、加圧方向に対して印加方向が垂直となるように磁界発生コイル55、56を配置しても良い。   In the molding step, a magnetic field may be applied to the slurry 42 in the cavity 54 by the magnetic field generating coils 55 and 56 after the slurry 42 is injected into the cavity 54. Even in such a configuration, it is possible to apply a pulsed magnetic field to the slurry 42 filled in the cavity 54 simultaneously with pressurization by the magnetic field generating coils 55 and 56 in the direction of the arrow 62 parallel to the pressurization direction. . Further, the magnetic field generating coils 55 and 56 may be arranged so that the application direction is perpendicular to the pressing direction.

次に、成形装置50により湿式状態で圧粉成形することにより形成された成形体71を焼結炉に挿入し、水素雰囲気において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。尚、成形体71は、焼結炉に挿入するまでは、有機溶媒による湿潤状態で、且つ非酸化性または還元性雰囲気のガス中で保存することが望ましい。尚、仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が1000ppm以下、より好ましくは500ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。   Next, the compact 71 formed by compacting in a wet state with the molding apparatus 50 is inserted into a sintering furnace, and is 200 ° C. to 900 ° C., more preferably 400 ° C. to 900 ° C. (for example, 600 ° C.) in a hydrogen atmosphere. ℃)) for several hours (e.g., 5 hours) to perform calcination treatment in hydrogen. In addition, it is desirable to preserve | save the molded object 71 in the gas of the non-oxidizing or reducing atmosphere in the wet state by an organic solvent until it inserts in a sintering furnace. In addition, the supply amount of hydrogen during calcination is 5 L / min. In the calcination treatment in hydrogen, so-called decarbonization is performed in which the organometallic compound is thermally decomposed to reduce the amount of carbon in the calcined body. Further, the calcination treatment in hydrogen is performed under the condition that the carbon content in the calcined body is 1000 ppm or less, more preferably 500 ppm or less. Accordingly, the entire permanent magnet 1 can be densely sintered by the subsequent sintering process, and the residual magnetic flux density and coercive force are not reduced.

続いて、水素中仮焼処理によって仮焼された成形体71を焼結する焼結処理を行う。焼結処理では、所定の昇温速度で800℃〜1180℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては10−4Torr以下とすることが好ましい。その後冷却し、再び600℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。 Then, the sintering process which sinters the molded object 71 calcined by the calcination process in hydrogen is performed. In the sintering process, the temperature is raised to about 800 ° C. to 1180 ° C. at a predetermined rate of temperature rise and held for about 2 hours. During this time, vacuum firing is performed, but the degree of vacuum is preferably 10 −4 Torr or less. Thereafter, it is cooled and heat-treated again at 600 ° C. for 2 hours. And the permanent magnet 1 is manufactured as a result of sintering.

[永久磁石の製造方法2]
次に、本発明に係る永久磁石1の他の製造方法である第2の製造方法について図4を用いて説明する。図4は本発明に係る永久磁石1の第2の製造方法における製造工程を示した説明図である。
[Permanent magnet manufacturing method 2]
Next, the 2nd manufacturing method which is another manufacturing method of the permanent magnet 1 which concerns on this invention is demonstrated using FIG. FIG. 4 is an explanatory view showing a manufacturing process in the second manufacturing method of the permanent magnet 1 according to the present invention.

先ず、所定分率のNd−Fe−B(Nd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末81を得る。   First, an ingot made of a predetermined fraction of Nd—Fe—B (Nd: 26.7 wt%, Fe (electrolytic iron): 72.3 wt%, B: 1.0 wt%) is manufactured. Thereafter, the ingot is roughly pulverized to a size of about 200 μm by a stamp mill or a crusher. Alternatively, the ingot is melted, flakes are produced by strip casting, and coarsely pulverized by hydrogen crushing. Thereby, coarsely pulverized magnet powder 81 is obtained.

次いで、粗粉砕磁石粉末81をビーズミルによる湿式法で所定範囲の粒径(例えば0.1μm〜5.0μm)に微粉砕するとともに溶媒中に磁石粉末を分散させ、スラリー82を作製する。尚、湿式粉砕は磁石粉末0.5kgに対してトルエン4kgを溶媒として用いる。また、湿式粉砕中に磁石粉末に対して、希土類元素を含む有機金属化合物を添加する。それにより、希土類元素を含む有機金属化合物を磁石粉末と共に溶媒中で分散させる。尚、溶解させる有機金属化合物としては、M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ネオジウムエトキシド、ジスプロシウムプロポキシド、テルビウムプロポキシドなど)を用いる。また、添加する希土類元素を含む有機金属化合物の量は特に制限されないが、前記したように永久磁石に含まれる希土類元素の含有量が化学量論組成に基づく含有量(26.7wt%)よりも0.1wt%〜10.0wt%、より好ましくは0.1wt%〜5.0wt%多くなる範囲とするのが好ましい。
尚、詳細な分散条件は以下の通りである。
・分散装置:ビーズミル
・分散メディア:ジルコニアビーズ
Next, the coarsely pulverized magnet powder 81 is finely pulverized into a predetermined range of particle size (for example, 0.1 μm to 5.0 μm) by a wet method using a bead mill, and the magnet powder is dispersed in a solvent to prepare a slurry 82. In the wet pulverization, 4 kg of toluene is used as a solvent for 0.5 kg of magnet powder. In addition, an organometallic compound containing a rare earth element is added to the magnet powder during wet grinding. Thereby, the organometallic compound containing the rare earth element is dispersed in the solvent together with the magnet powder. The organometallic compound to be dissolved is M- (OR) x (wherein M includes at least one of the rare earth elements Nd, Pr, Dy, and Tb. R is an alkyl having 2 to 6 carbon atoms. An organometallic compound (for example, neodymium ethoxide, dysprosium propoxide, terbium propoxide, etc.) corresponding to any of the groups, which may be linear or branched, and x is an arbitrary integer. Further, the amount of the organometallic compound containing the rare earth element to be added is not particularly limited. However, as described above, the content of the rare earth element contained in the permanent magnet is more than the content based on the stoichiometric composition (26.7 wt%). It is preferable that the range be 0.1 wt% to 10.0 wt%, more preferably 0.1 wt% to 5.0 wt%.
Detailed dispersion conditions are as follows.
・ Dispersion equipment: Bead mill ・ Dispersion media: Zirconia beads

また、粉砕に用いる溶媒は有機溶媒であるが、溶媒の種類に特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できる。   The solvent used for pulverization is an organic solvent, but the type of solvent is not particularly limited, and alcohols such as isopropyl alcohol, ethanol and methanol, lower hydrocarbons such as pentane and hexane, aromatic substances such as benzene, toluene and xylene. Groups, ketones, mixtures thereof and the like can be used.

その後、生成したスラリー82を、成形装置50において形成されたキャビティ54に対して注入し、湿式成形を行う。尚、以降の成形工程、水素仮焼工程及び焼結工程は図3を用いて既に説明した第1の製造方法における製造工程と同様であるので説明は省略する。   Thereafter, the generated slurry 82 is injected into the cavity 54 formed in the molding apparatus 50 to perform wet molding. The subsequent molding process, hydrogen calcining process, and sintering process are the same as the manufacturing process in the first manufacturing method already described with reference to FIG.

以上説明したように、本実施形態に係る永久磁石1の第1の製造方法では、磁石粉末と構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒との混合物に配向磁場を印加して粉末を配向させたまま湿式成形し、得られた成形体を焼結するので、成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石を得ることができる。
また、永久磁石1の第1の製造方法では、磁石粉末を粉砕し、粉砕された磁石粉末を構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒中に回収し、その混合物に配向磁場を印加して粉末を配向させたまま湿式成形し、得られた成形体を焼結するので、成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石を得ることができる。
また、永久磁石1の第2の製造方法では、磁石原料を構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を用いて湿式粉砕し、その混合物に配向磁場を印加して粉末を配向させたまま湿式成形し、得られた成形体を焼結するので、成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石を得ることができる。
また、有機金属化合物を含む有機溶媒が添加された磁石を、焼結前に水素雰囲気で仮焼することにより、有機金属化合物を熱分解させて磁石粒子中に含有する炭素を予め焼失(炭素量を低減)させることができ、焼結工程でカーバイドがほとんど形成されることがない。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが析出することなく、磁石特性を大きく低下させることがない。
また、成形装置50により湿式成形された成形体を、仮焼するまで、有機溶媒による湿潤状態で、且つ非酸化性又は還元性雰囲気中で保持するので、成形体の酸化をより確実に防止することが可能となる。
As described above, in the first manufacturing method of the permanent magnet 1 according to this embodiment, the magnet powder and the structural formula M- (OR) x (wherein M is a rare earth element, Nd, Pr, Dy, Tb). R is any one of alkyl groups having 2 to 6 carbon atoms, which may be linear or branched, and x is an arbitrary integer. Applying an orientation magnetic field to the mixture with the solvent to wet-form the powder while it is oriented and sinter the resulting molded body, preventing the molded body from oxidizing and adsorbing moisture, and improving its storage stability Thus, a rare earth sintered magnet having high magnetic properties can be obtained.
Further, in the first manufacturing method of the permanent magnet 1, the magnet powder is pulverized, and the pulverized magnet powder is converted into a structural formula M- (OR) x (wherein M is a rare earth element Nd, Pr, Dy, Tb). R is any one of alkyl groups having 2 to 6 carbon atoms, which may be linear or branched, and x is an arbitrary integer. Recovered in a solvent, applied an orientation magnetic field to the mixture and wet-molded with the powder oriented, and sintered the resulting molded body, preventing oxidation and moisture adsorption of the molded body, A rare earth sintered magnet having improved magnetic properties and high magnetic properties can be obtained.
Further, in the second manufacturing method of the permanent magnet 1, the magnet raw material is structural formula M- (OR) x (wherein M includes at least one of the rare earth elements Nd, Pr, Dy, and Tb). Is an alkyl group having 2 to 6 carbon atoms, which may be linear or branched. X is an arbitrary integer.) Wet pulverization using an organic solvent containing an organometallic compound represented by Applying an orientation magnetic field to the mixture and wet-molding while the powder is oriented, and sintering the resulting molded body prevents oxidation of the molded body and moisture adsorption, and improves its storage stability and high A rare earth sintered magnet having magnetic properties can be obtained.
In addition, a magnet to which an organic solvent containing an organometallic compound is added is calcined in a hydrogen atmosphere before sintering, so that the organometallic compound is thermally decomposed and the carbon contained in the magnet particles is previously burned out (carbon amount) Can be reduced), and carbide is hardly formed in the sintering process. As a result, it is possible to sinter the entire magnet densely without generating voids between the main phase and the grain boundary phase of the sintered magnet, and to prevent the coercive force from being lowered. . Further, αFe is not precipitated in the main phase of the magnet after sintering, and the magnet characteristics are not greatly deteriorated.
Moreover, since the molded body wet-molded by the molding apparatus 50 is kept in a wet state with an organic solvent and in a non-oxidizing or reducing atmosphere until calcination, oxidation of the molded body is more reliably prevented. It becomes possible.

尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
また、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件などは上記実施例に記載した条件に限られるものではない。
また、水素仮焼工程については省略しても良い。
In addition, this invention is not limited to the said Example, Of course, various improvement and deformation | transformation are possible within the range which does not deviate from the summary of this invention.
Moreover, the pulverization conditions, kneading conditions, calcination conditions, sintering conditions, etc. of the magnet powder are not limited to the conditions described in the above examples.
Further, the hydrogen calcination step may be omitted.

1 永久磁石
11 主相
12 Mリッチ相
1 Permanent magnet 11 Main phase 12 M rich phase

Claims (5)

R−Fe−B系(RはYを含む希土類元素のうち一種または二種以上)希土類焼結磁石用原料体を乾式で微粉砕し、微粉砕粉末を以下の構造式
M−(OR)
(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)
で示される有機金属化合物を含む有機溶媒中に回収し、粉末と前記有機溶媒との混合物を得、これに配向磁場を印加して粉末を配向させたまま湿式成形し、得られた成形体を焼結することを特徴とする希土類焼結磁石の製造方法。
R-Fe-B type (R is one or more of rare earth elements including Y) Rare earth sintered magnet raw material is finely pulverized by dry process, and the finely pulverized powder is represented by the following structural formula M- (OR) x
(In the formula, M includes at least one of Nd, Pr, Dy, and Tb, which are rare earth elements. R is an alkyl group having 2 to 6 carbon atoms, and may be linear or branched. Is an arbitrary integer.)
To obtain a mixture of the powder and the organic solvent, wet-molded while applying the orientation magnetic field to the powder and orienting the powder, A method for producing a rare earth sintered magnet, comprising sintering.
前記成形体を水素雰囲気で仮焼して仮焼体を得、得られた仮焼体を焼結することを特徴とする請求項1に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the formed body is calcined in a hydrogen atmosphere to obtain a calcined body, and the obtained calcined body is sintered. 前記成形体を仮焼するまで前記有機溶媒で湿潤状態に保持することを特徴とする請求項2に記載の希土類焼結磁石の製造方法。   3. The method for producing a rare earth sintered magnet according to claim 2, wherein the compact is kept wet with the organic solvent until calcined. 前記成形体を仮焼するまで非酸化性又は還元性雰囲気中で保持することを特徴とする請求項2に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 2, wherein the compact is held in a non-oxidizing or reducing atmosphere until calcined. 希土類焼結磁石用原料粉末と前記有機溶媒との混合物の成形キャビティ内への充填を加圧しつつ行うことを特徴とする請求項1乃至請求項4のいずれかに記載の希土類焼結磁石の製造方法。   The rare earth sintered magnet production according to any one of claims 1 to 4, wherein the filling of the mixture of the raw material powder for rare earth sintered magnet and the organic solvent into the molding cavity is performed under pressure. Method.
JP2010083428A 2010-03-31 2010-03-31 Manufacturing method of rare earth sintered magnet Expired - Fee Related JP5501826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083428A JP5501826B2 (en) 2010-03-31 2010-03-31 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083428A JP5501826B2 (en) 2010-03-31 2010-03-31 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2011216666A true JP2011216666A (en) 2011-10-27
JP5501826B2 JP5501826B2 (en) 2014-05-28

Family

ID=44946112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083428A Expired - Fee Related JP5501826B2 (en) 2010-03-31 2010-03-31 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP5501826B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191606A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
KR20170135131A (en) * 2016-05-30 2017-12-08 성림첨단산업(주) Manufacturing method of rare earth magnet
CN107799254A (en) * 2017-11-14 2018-03-13 北京科技大学 A kind of method that wet pressing shaping prepares high-orientation knot Nd-Fe-B permanent magnet material
KR20180038746A (en) * 2016-10-07 2018-04-17 성림첨단산업(주) Manufacturing method of high performance rare earth magnet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176413A (en) * 1993-12-17 1995-07-14 Hitachi Metals Ltd Manufacture of rare earth element magnet
JPH10241981A (en) * 1997-02-28 1998-09-11 Hitachi Metals Ltd Manufacture of rare earth metal permanent magnet and rare earth metal permanent magnet
JPH11214216A (en) * 1998-01-27 1999-08-06 Hitachi Metals Ltd Rare earth permanent magnet and manufacture thereof
JP2004250781A (en) * 2002-10-08 2004-09-09 Neomax Co Ltd Sintered type permanent magnet, and production method therefor
JP2009259956A (en) * 2008-04-15 2009-11-05 Nitto Denko Corp Permanent magnet and process for producing permanent magnet
JP2009283568A (en) * 2008-05-20 2009-12-03 Nissan Motor Co Ltd Magnet molded body and its method for manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176413A (en) * 1993-12-17 1995-07-14 Hitachi Metals Ltd Manufacture of rare earth element magnet
JPH10241981A (en) * 1997-02-28 1998-09-11 Hitachi Metals Ltd Manufacture of rare earth metal permanent magnet and rare earth metal permanent magnet
JPH11214216A (en) * 1998-01-27 1999-08-06 Hitachi Metals Ltd Rare earth permanent magnet and manufacture thereof
JP2004250781A (en) * 2002-10-08 2004-09-09 Neomax Co Ltd Sintered type permanent magnet, and production method therefor
JP2009259956A (en) * 2008-04-15 2009-11-05 Nitto Denko Corp Permanent magnet and process for producing permanent magnet
JP2009283568A (en) * 2008-05-20 2009-12-03 Nissan Motor Co Ltd Magnet molded body and its method for manufacturing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191606A (en) * 2012-03-12 2013-09-26 Nitto Denko Corp Rare earth permanent magnet and method for manufacturing rare earth permanent magnet
KR20170135131A (en) * 2016-05-30 2017-12-08 성림첨단산업(주) Manufacturing method of rare earth magnet
KR101995542B1 (en) * 2016-05-30 2019-07-03 성림첨단산업(주) Manufacturing method of rare earth magnet
KR20180038746A (en) * 2016-10-07 2018-04-17 성림첨단산업(주) Manufacturing method of high performance rare earth magnet
KR101995536B1 (en) * 2016-10-07 2019-07-03 성림첨단산업(주) Manufacturing method of high performance rare earth magnet
CN107799254A (en) * 2017-11-14 2018-03-13 北京科技大学 A kind of method that wet pressing shaping prepares high-orientation knot Nd-Fe-B permanent magnet material

Also Published As

Publication number Publication date
JP5501826B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP4923163B1 (en) Permanent magnet and method for manufacturing permanent magnet
JP4865100B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4865919B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4865098B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4865097B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4923147B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP4923151B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP2011228656A (en) Permanent magnet, and method for manufacturing permanent magnet
JP4865099B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5501826B2 (en) Manufacturing method of rare earth sintered magnet
US8480818B2 (en) Permanent magnet and manufacturing method thereof
JP5908247B2 (en) Method for manufacturing permanent magnet
JP4923150B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5501824B2 (en) R-Fe-B permanent magnet
JP5501835B2 (en) Rare earth permanent magnet
JP5453154B2 (en) Permanent magnet and method for manufacturing permanent magnet
JP5501836B2 (en) R-Fe-B permanent magnet
JP2011216732A (en) Permanent magnet and method for manufacturing the same
JP2011216618A (en) High-coercive force anisotropic magnet and method for manufacturing the same
JP2011216724A (en) Permanent magnet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5501826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees