JP2011215119A - Evaluation method of aggregate structure of multilayer carbon nanotube - Google Patents

Evaluation method of aggregate structure of multilayer carbon nanotube Download PDF

Info

Publication number
JP2011215119A
JP2011215119A JP2010094102A JP2010094102A JP2011215119A JP 2011215119 A JP2011215119 A JP 2011215119A JP 2010094102 A JP2010094102 A JP 2010094102A JP 2010094102 A JP2010094102 A JP 2010094102A JP 2011215119 A JP2011215119 A JP 2011215119A
Authority
JP
Japan
Prior art keywords
aggregate structure
ray
rays
ray intensity
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094102A
Other languages
Japanese (ja)
Other versions
JP5580102B2 (en
Inventor
Takashi Hirao
孝 平尾
Mamoru Furuta
守 古田
Hiroshi Furuta
寛 古田
Toshiyuki Kawaharamura
敏幸 川原村
Takuji Komukai
拓治 小向
Atsushi Shimomoto
温 下元
Kumiko Yoshihara
久美子 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Kochi University of Technology
Original Assignee
Nitta Corp
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp, Kochi University of Technology filed Critical Nitta Corp
Priority to JP2010094102A priority Critical patent/JP5580102B2/en
Publication of JP2011215119A publication Critical patent/JP2011215119A/en
Application granted granted Critical
Publication of JP5580102B2 publication Critical patent/JP5580102B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate the whole aggregate structure of a multilayer CNT.SOLUTION: The evaluation method includes a step of making X-rays enter the aggregate structure of the multilayer CNT at a predetermined incidence angle, a step of scanning and changing, around the aggregate structure, the detection position of diffracted X-rays emitted from the aggregate structure, and measuring the diffracted X-ray intensity at each detection position, a step of scanning and changing the X-ray incident position of the aggregate structure in the height direction and measuring the intensity of transmitted X-rays at each scanning position, a step of calculating the peak area from the measuring data of the diffracted X-ray intensity and calculating the attenuation from the measuring data of the transmitted X-ray intensity, and a step of analyzing the orientation of the aggregate structure based on the peak area and attenuation.

Description

本発明は、円筒状のグラフェンシートの2層以上からなる多層カーボンナノチューブ(以下、多層CNTと称する)の集合構造に対する評価方法に関するものである。   The present invention relates to an evaluation method for an aggregate structure of multi-walled carbon nanotubes (hereinafter referred to as multi-walled CNTs) composed of two or more layers of a cylindrical graphene sheet.

多層CNTは、2層以上の円筒状グラフェンシートが同軸管状になって構成されるものである。グラフェンシートは、炭素によって作られる六員環ネットワーク(六角網目状ネットワーク)であり、このような構造を有する多層CNTは、周知されるように、電子放出能と耐久性に優れ、大画面フィールドエミッションディスプレイ用の電子放出材料等に有用視され、また、多層CNTは耐食性が高いため、燃料電池の触媒電極層等の耐食性が要求される用途にも適するなど、各種用途が期待される物質である。   Multi-walled CNTs are formed by coaxial cylindrical tubes of two or more cylindrical graphene sheets. The graphene sheet is a six-membered ring network (hexagonal network) made of carbon, and as is well known, multi-walled CNTs having such a structure are excellent in electron emission ability and durability, and have a large screen field emission. It is a substance that is expected to be useful as an electron-emitting material for displays and the like, and because multilayer CNTs have high corrosion resistance, they are also expected to be used in various applications such as those that require corrosion resistance such as catalyst electrode layers of fuel cells. .

そして、多層CNTを基板上に成長させる製造方法としてCVD法における基板法がある。この基板法では、基板上に触媒膜を成膜し、熱処理して触媒膜を複数の触媒微粒子からなる触媒構造とすると共に、この触媒構造上の触媒微粒子にカーボンを含むガスを作用させて触媒微粒子を成長起点として多層CNTを成長させるようになっている。   As a manufacturing method for growing multilayer CNTs on a substrate, there is a substrate method in the CVD method. In this substrate method, a catalyst film is formed on a substrate and heat-treated to make the catalyst film a catalyst structure composed of a plurality of catalyst fine particles, and a gas containing carbon is allowed to act on the catalyst fine particles on the catalyst structure. Multi-walled CNTs are grown starting from fine particles.

上記触媒構造を用いて多層CNTを製造した場合には、その断面構造は、個々の多層CNTが複雑に絡み合い、ランダム配向の構造や、螺旋や波状を描いたような曲線状の多層CNTの集合構造からなっている。   When multi-walled CNTs are manufactured using the above catalyst structure, the cross-sectional structure of each multi-walled CNT is intricately entangled, a randomly oriented structure, or a set of curved multi-walled CNTs drawn in a spiral or wavy shape It consists of a structure.

このような集合構造となるのは、個々の多層CNTがチューブ直径の不均一性、全体が曲線形状をなしていることにその原因が存在すると考えられる。   Such an aggregate structure is considered to be caused by the fact that individual multi-walled CNTs have non-uniform tube diameters, and the whole has a curved shape.

近年では、そうした螺旋や波状を描いたような曲線状の多層CNTの集合体ではなく、直径の均一性、全体的な直線性を有し、その配向、密集した構造をそのまま応用したり、あるいは多層CNTをほぐして容易に使用できるような、絡み合いが少ない集合構造が要求されてきている。   In recent years, it is not an assembly of curved multi-walled CNTs that draws such spirals and waves, but has a uniform diameter and overall linearity, and its orientation and dense structure are applied as they are, or There has been a demand for an aggregate structure with little entanglement that can be easily used by loosening multi-walled CNTs.

そこで本発明者らは、チューブ直径が全体的に均一でかつ直線性を有して個々の多層CNTが絡み合うことが少ない多層CNT集合体を開発するべく鋭意研究を重ね、特開2008−120658に開示されているような多層CNTの集合構造を開発できるに至った。   Accordingly, the present inventors have conducted extensive research to develop a multi-walled CNT aggregate in which the tube diameter is generally uniform and linear, and the multi-walled CNTs are less entangled. Japanese Patent Application Laid-Open No. 2008-120658 It has become possible to develop a multilayered CNT aggregate structure as disclosed.

このような開発にかかる多層CNTの集合構造に対し、それを構成する多層CNT個々の直径均一性、曲線性、直線性等の評価は、微小区間での評価でしかなく、集合構造全体での構造評価はできなかった。   In contrast to the aggregate structure of multi-walled CNTs related to such development, evaluation of the diameter uniformity, curvilinearity, linearity, etc. of each multi-walled CNT constituting the multi-walled CNTs is only an evaluation in a minute section, The structure could not be evaluated.

特開2008−120658号公報JP 2008-120658 A

本発明により解決すべき課題は、基板上に触媒微粒子の作用で成長した複数の多層CNTからなる集合構造に対して微小区間での評価ではなく、集合構造全体に対する評価方法を提供することである。   A problem to be solved by the present invention is to provide an evaluation method for an entire aggregate structure, not an evaluation in a minute section, for an aggregate structure composed of a plurality of multi-walled CNTs grown by the action of catalyst fine particles on a substrate. .

本発明は、基板上に触媒微粒子の作用で成長した複数の多層CNTの集合構造を評価する方法であって、上記集合構造の任意側面にX線を入射するステップと、上記集合構造の別側面回りの複数の検出位置で当該集合構造から出射されるX線強度を測定するステップと、上記各検出位置でのX線強度からX線強度のピーク面積を演算するステップと、を含むことを特徴とする。   The present invention is a method for evaluating an aggregate structure of a plurality of multi-walled CNTs grown by the action of catalyst fine particles on a substrate, the step of making X-rays incident on an arbitrary side of the aggregate structure, and another aspect of the aggregate structure Measuring X-ray intensity emitted from the collective structure at a plurality of surrounding detection positions, and calculating a peak area of the X-ray intensity from the X-ray intensity at each of the detection positions. And

好ましくは、X線を集合構造の高さ方向に走査し、各走査位置で当該集合構造から出射されるX線強度を測定するステップと、測定したX線強度から当該X線強度減衰量を演算するステップとを含み、上記演算したピーク面積と、上記ステップで演算した減衰量とから上記集合構造内多層CNTの配向性を解析する。   Preferably, scanning the X-rays in the height direction of the collective structure, measuring the X-ray intensity emitted from the collective structure at each scanning position, and calculating the X-ray intensity attenuation from the measured X-ray intensity And analyzing the orientation of the multilayer CNT in the aggregate structure from the calculated peak area and the attenuation calculated in the step.

好ましくは、多層CNTのc面間隔に対応して、上記演算したピーク面積内のX線強度ピーク値からの半値幅を演算するステップを含み、上記c面間隔に対する半値幅の対応関係から多層CNTの直線性を評価する。   Preferably, the method includes a step of calculating a half-value width from an X-ray intensity peak value within the calculated peak area corresponding to the c-plane interval of the multi-layer CNT, and the multi-layer CNT from the correspondence of the half-value width to the c-plane interval Evaluate the linearity of

なお、上記集合構造は、平面視円形に限定されず、入射X線が入射し、回折X線として出射するまでの集合構造内の平面視方向のX線通過面積が略一定であれば例えば部分円弧形状等でもよい。   The aggregate structure is not limited to a circular shape in plan view. For example, if the X-ray passage area in the planar view direction in the aggregate structure until incident X-rays enter and exit as diffracted X-rays is substantially constant, An arc shape or the like may be used.

本発明によれば、多層CNTの集合構造全体での構造評価をすることができる。 According to the present invention, it is possible to evaluate the structure of the entire multilayer CNT aggregate structure.

図1はX線の回折現象を説明するための図である。FIG. 1 is a diagram for explaining the X-ray diffraction phenomenon. 図2は多層CNTに対するX線の回折現象を説明するための図である。FIG. 2 is a diagram for explaining the X-ray diffraction phenomenon for multilayer CNTs. 図3は本発明の実施形態にかかる多層CNT集合構造の評価方法の実施に用いる評価装置の平面構成を示す図である。FIG. 3 is a diagram showing a planar configuration of an evaluation apparatus used for carrying out an evaluation method for a multilayer CNT aggregate structure according to an embodiment of the present invention. 図4は図3の側面構成を示す図である。FIG. 4 is a diagram showing a side configuration of FIG. 図5は多層CNTのc面においてブラッグ条件を説明するための図である。FIG. 5 is a diagram for explaining the Bragg condition on the c-plane of the multilayer CNT. 図6は多層CNT集合構造を回転させつつ入射X線を照射した場合の透過X線と回折X線とを示す図である。FIG. 6 is a diagram showing transmitted X-rays and diffracted X-rays when incident X-rays are irradiated while rotating the multilayer CNT aggregate structure. 図7は多層CNT集合構造からの出射X線の検出位置に対して該出射X線の強度波形を示す図である。FIG. 7 is a diagram showing the intensity waveform of the emitted X-ray with respect to the detection position of the emitted X-ray from the multilayer CNT aggregate structure. 図8は多層CNT集合構造に対して高さ方向に入射X線を走査する状態を示す図である。FIG. 8 is a diagram illustrating a state in which incident X-rays are scanned in the height direction with respect to the multilayer CNT aggregate structure. 図9は図8の入射X線の入射高さに対する出射X線の強度波形を示す図である。FIG. 9 is a diagram showing an intensity waveform of the outgoing X-ray with respect to the incident height of the incident X-ray shown in FIG. 図10は多層CNT集合構造(サンプル1,2,3)のSEM写真を示す図である。FIG. 10 is a view showing an SEM photograph of a multilayer CNT aggregate structure (samples 1, 2, and 3). 図11は図10の各サンプル1,2,3に対して各X線検出位置における回折X線強度を示す図である。FIG. 11 is a diagram showing the diffracted X-ray intensity at each X-ray detection position for each sample 1, 2, and 3 in FIG. 図12は図10の各サンプル1,2,3それぞれのc面間隔に対応した半値幅を示す図である。FIG. 12 is a diagram showing the half-value width corresponding to the c-plane spacing of each of samples 1, 2, and 3 in FIG. 図13は図10の各サンプル1,2,3それぞれの高さ方向複数点におけるX線検出位置での回折X線強度を示す図である。FIG. 13 is a diagram showing the diffracted X-ray intensities at the X-ray detection positions at a plurality of points in the height direction of the samples 1, 2, and 3 in FIG. 図14は図10の各サンプル1,2,3それぞれの高さ方向複数点におけるc面間隔に対応した半値幅を示す図である。FIG. 14 is a diagram showing the half-value width corresponding to the c-plane interval at a plurality of points in the height direction of each of the samples 1, 2, and 3 in FIG.

以下、添付した図面を参照して、本発明の実施形態に係る多層CNTの集合構造に対する評価方法を説明する。本実施形態においては、上記集合構造の評価をX線の回折現象を利用するので、まず、図1を参照してX線の回折現象を説明する。X線は波長0.001nmから数10nmの電磁波である。X線は一般にX線管内でフィラメントから出る熱電子を高電圧で加速し、金属ターゲットに衝突させることで発生する。実施形態では金属ターゲットとして例えばCuを用いる。   Hereinafter, an evaluation method for an aggregate structure of multilayer CNTs according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the present embodiment, since the X-ray diffraction phenomenon is used for the evaluation of the aggregate structure, first, the X-ray diffraction phenomenon will be described with reference to FIG. X-rays are electromagnetic waves having a wavelength of 0.001 nm to several tens of nm. X-rays are generally generated by accelerating thermionic electrons emitted from a filament in an X-ray tube at a high voltage and colliding with a metal target. In the embodiment, for example, Cu is used as the metal target.

この場合のX線波長は1.5418Åである。図1において、1a,1b,1cは、Cuを構成する原子2の配列線を示す。各線1a,1b,1cの間隔をdとし、かつ、入射X線3の入射角度をθとすると、入射X線3に対して回折X線4の光路差(A−O−A´)は2d×sinθとなる。上記光路差が、X線波長λの整数倍nであればブラッグ条件を満たし、原子2で散乱されたX線は互いに強め合って回折X線4となる。これを式で表すと、2d×sinθ=nλである。   In this case, the X-ray wavelength is 1.5418 mm. In FIG. 1, 1a, 1b, and 1c show the arrangement line of the atom 2 which comprises Cu. If the distance between the lines 1a, 1b, and 1c is d and the incident angle of the incident X-ray 3 is θ, the optical path difference (A−O−A ′) of the diffracted X-ray 4 with respect to the incident X-ray 3 is 2d. × sin θ. If the optical path difference is an integer multiple n of the X-ray wavelength λ, the Bragg condition is satisfied, and the X-rays scattered by the atoms 2 strengthen each other and become diffracted X-rays 4. This is expressed by an equation: 2d × sin θ = nλ.

以上から入射したX線は出射するとき、入射X線と出射X線との間の光路差が上記ブラッグ条件を満たすと、回折X線4の強度が強くなる。   As described above, when the incident X-rays are emitted, if the optical path difference between the incident X-rays and the emitted X-rays satisfies the Bragg condition, the intensity of the diffracted X-rays 4 increases.

そして、このようなブラッグ条件に関して、図2を参照して多層CNT7に対するX線の回折現象を説明する。図2で示す多層CNT7は、その断面構成で模式的に示されている。この多層CNT7は、複数のグラフェンシート7a,7b,…が同軸管状となっていて、そのグラフェンシート面がc面となり、グラフェンシートのc面間隔が上記ブラッグ条件における間隔dに相当する。なお、グラフェンシートの詳細は周知なので説明を略する。   Then, regarding such a Bragg condition, an X-ray diffraction phenomenon with respect to the multilayer CNT 7 will be described with reference to FIG. The multilayer CNT 7 shown in FIG. 2 is schematically shown in its cross-sectional configuration. In this multi-layer CNT7, a plurality of graphene sheets 7a, 7b,... Are coaxially tubular, the graphene sheet surface is a c-plane, and the c-plane interval of the graphene sheets corresponds to the interval d in the Bragg condition. The details of the graphene sheet are well known and will not be described.

上記グラフェンシート面の接線9に対して所定の入射角度(θ±δφ)でX線5が入射すると共に、その入射したX線5はグラフェンシート面の接線9に対して所定の出射角度(θ±δφ)で回折して、回折X線8として出射する。このような回折においてブラッグ条件を満たしてX線回折を起こすことができる体積要素はわずかな角度(±δφ)内の結晶により与えられる。   X-rays 5 are incident on the tangent 9 on the graphene sheet surface at a predetermined incident angle (θ ± δφ), and the incident X-rays 5 are incident on the tangent 9 on the graphene sheet surface at a predetermined emission angle (θ Diffracted by ± δφ) and emitted as diffracted X-rays 8. In such diffraction, the volume element capable of satisfying the Bragg condition and causing X-ray diffraction is given by a crystal within a slight angle (± δφ).

図3ないし図5を参照して本発明の実施形態にかかる多層CNT集合構造の評価方法の実施に用いる評価装置の構成を説明する。図3に評価装置におけるX線発生装置と多層CNT集合構造の平面構成を示し、図4に同X線発生装置と多層CNT集合構造の側面構成を示す。また、図5に多層CNT集合構造内の多層CNTに対する入射X線と回折X線とを示す。X線発生装置は金属ターゲットが例えばCuのX線発生装置である。   With reference to FIG. 3 to FIG. 5, the configuration of the evaluation apparatus used to implement the multilayer CNT aggregate structure evaluation method according to the embodiment of the present invention will be described. FIG. 3 shows a planar configuration of the X-ray generator and multilayer CNT aggregate structure in the evaluation apparatus, and FIG. 4 shows a side configuration of the X-ray generator and multilayer CNT aggregate structure. FIG. 5 shows incident X-rays and diffracted X-rays with respect to the multilayer CNT in the multilayer CNT aggregate structure. The X-ray generator is an X-ray generator in which the metal target is, for example, Cu.

多層CNT19の集合構造14に対してX線入射側にスリット10−12が配置され、X線出射側にスリット13が配置される。入射側スリット10−12のうち、スリット10,11は所定間隔を隔てて対向配置されたX線幅制限スリットであり、スリット12は、両スリット10,11間に配置された散乱制限スリットである。これらスリット10−12は、入射X線15を半径方向線幅L1に、高さ方向線幅をL2以下に制限する。線幅L1は、集合構造14の直径D以下であり、線幅L2は、集合構造14の基板17上からの高さH以下である。ただし、上記線幅L1,L2は多層CNTの構造評価に関して本発明を限定するものではない。   A slit 10-12 is arranged on the X-ray incident side with respect to the aggregate structure 14 of the multilayer CNT 19, and a slit 13 is arranged on the X-ray emission side. Of the incident side slits 10-12, the slits 10 and 11 are X-ray width limiting slits arranged to face each other at a predetermined interval, and the slit 12 is a scattering limiting slit arranged between both the slits 10 and 11. . These slits 10-12 limit the incident X-ray 15 to the radial line width L1 and the height direction line width to L2 or less. The line width L1 is equal to or less than the diameter D of the aggregate structure 14, and the line width L2 is equal to or less than the height H of the aggregate structure 14 from the substrate 17. However, the line widths L1 and L2 do not limit the present invention with respect to the structural evaluation of the multilayer CNT.

多層CNT集合構造14は、複数の多層CNT19が密集集合してなるものであり、その平面視における側面の外形形状は円形形状となっている。ただし、多層CNT集合構造14は、平面視円形形状に限定されるものではない。すなわち、多層CNT集合構造14は、入射X線が入射し、回折X線として出射するまでの集合構造内の平面視方向のX線通
過面積が略一定であればその平面視形状は特に限定されない。
The multilayer CNT aggregate structure 14 is formed by densely gathering a plurality of multilayer CNTs 19, and the outer shape of the side surface in a plan view is a circular shape. However, the multilayer CNT aggregate structure 14 is not limited to a circular shape in plan view. That is, the multi-walled CNT aggregate structure 14 is not particularly limited in its planar view shape as long as the X-ray passage area in the planar view direction in the aggregate structure until incident X-rays enter and exit as diffracted X-rays is substantially constant. .

多層CNT19は基板17上に触媒微粒子の作用で成長したものである。多層CNT集合構造14を配置した基板17は、回転台18上で図中の矢印A方向に自転駆動されるようになっている。なお、多層CNT集合構造14を回転させることは多層CNTの評価の平均化を図るものであり、必ずしも、回転させることが多層CNT集合構造の評価を行ううえで必須とはならない。   The multilayer CNT 19 is grown on the substrate 17 by the action of catalyst fine particles. The substrate 17 on which the multilayered CNT aggregate structure 14 is arranged is driven to rotate in the direction of arrow A in the figure on the turntable 18. It should be noted that rotating the multilayer CNT aggregate structure 14 is intended to average the evaluation of the multilayer CNT, and it is not necessarily essential to rotate the multilayer CNT aggregate structure.

以上において、入射X線15はスリット10−12により線幅L1,L2に制御されてから多層CNT集合構造14に一方側面14aから入射し、回折角度2θχで回折X線16として他方側面14bから出射する。   In the above, the incident X-ray 15 is controlled to the line widths L1 and L2 by the slit 10-12, and then enters the multilayer CNT aggregate structure 14 from one side surface 14a, and exits from the other side surface 14b as a diffracted X-ray 16 at a diffraction angle 2θχ. To do.

多層CNT集合構造14に入射したX線15は当該集合構造14を透過X線20として透過したり、回折X線16として回折したりして出射するX線の強度を測定できるようにX線検出器21が配置されている。X線検出器21は、多層CNT集合構造14の中心回りを図中矢印B方向に走査することができると共に各走査位置を検出位置としている。入射X線15が回折せず透過X線20(図6参照)として出射する際に、その出射方向におけるX線検出器21の検出位置はP0で、また、入射X線15が回折し、回折X線16(図3−図6参照)として出射する際に、その出射方向におけるX線検出器21の検出位置はP1で表している。   X-ray detection is performed so that X-rays 15 incident on the multilayer CNT aggregate structure 14 can be transmitted through the aggregate structure 14 as transmitted X-rays 20 or diffracted as diffracted X-rays 16 to measure the intensity of the emitted X-rays. A vessel 21 is arranged. The X-ray detector 21 can scan around the center of the multilayer CNT aggregate structure 14 in the direction of arrow B in the figure, and each scanning position is a detection position. When the incident X-ray 15 is not diffracted and is emitted as transmitted X-ray 20 (see FIG. 6), the detection position of the X-ray detector 21 in the emission direction is P0, and the incident X-ray 15 is diffracted and diffracted. When the X-ray 16 (see FIGS. 3 to 6) is emitted, the detection position of the X-ray detector 21 in the emission direction is represented by P1.

多数の多層CNT19が集合してなる多層CNT集合構造14全体に入射したX線15の挙動と、単一の多層CNT19に入射したX線15の挙動は同等と考えられ、図3では入射X線15は回折して回折X線16として集合構造14全体から出射された状態で示され、図5では入射X線15は回折して回折X線16として単一の多層CNT19から出射された状態で示される。この場合、図5で示す多層CNT19は、集合構造14を構成する個々の多層CNTであり、入射X線15は、例えば、その最表層19aのグラフェンシート面と、最表層内側の内層19bのグラフェンシート面とに入射する。そして、これら両グラフェンシート面での光路差により回折して回折X線16として出射される。そして、これら個々の多層CNT19が集合構造14として全体的に回折X線16として出射する。   The behavior of the X-rays 15 incident on the entire multilayer CNT aggregate structure 14 formed by the aggregation of a large number of multilayer CNTs 19 and the behavior of the X-rays 15 incident on the single multilayer CNTs 19 are considered to be equivalent. In FIG. 15 is shown as being diffracted and emitted as a diffracted X-ray 16 from the entire assembly structure 14, and in FIG. 5, the incident X-ray 15 is diffracted and emitted as a diffracted X-ray 16 from a single multilayer CNT 19. Indicated. In this case, the multilayer CNT 19 shown in FIG. 5 is an individual multilayer CNT constituting the aggregate structure 14, and the incident X-ray 15 is obtained by, for example, graphene sheet surface of the outermost layer 19a and graphene of the inner layer 19b inside the outermost layer. Incident on the sheet surface. Then, it is diffracted by the optical path difference between both the graphene sheet surfaces and emitted as diffracted X-rays 16. These individual multilayer CNTs 19 are emitted as diffracted X-rays 16 as a whole as an aggregate structure 14.

図6ないし図9を参照して実施形態の多層CNT集合構造14の評価方法を説明する。図6は、図3に対応するものであり、多層CNT19の集合構造14は、基板17上で多層CNT19が多数集合したものであり、その集合構造14の外側面14aは平面視円形形状の一部分である円弧形状になっている。この多層CNT集合構造14の側面14aに入射X線15が入射すると共に多層CNT集合構造14の上記円形形状の別部分の円弧形状をなす側面14b,14cから出射する。この出射されたX線のうち、側面14bから出射したX線は回折X線16として、また、側面14cから出射したX線は透過X線20としてX線検出器21の各検出位置で検出される。   A method for evaluating the multilayer CNT aggregate structure 14 of the embodiment will be described with reference to FIGS. FIG. 6 corresponds to FIG. 3, and the aggregate structure 14 of the multilayer CNT 19 is an aggregate of a large number of multilayer CNTs 19 on the substrate 17, and the outer surface 14 a of the aggregate structure 14 is a part of a circular shape in plan view. It has an arc shape. Incident X-rays 15 are incident on the side surface 14 a of the multilayer CNT aggregate structure 14 and are emitted from the side surfaces 14 b and 14 c forming the arc shape of another part of the circular CNT aggregate structure 14. Among the emitted X-rays, X-rays emitted from the side surface 14b are detected as diffracted X-rays 16 and X-rays emitted from the side surface 14c are detected as transmitted X-rays 20 at each detection position of the X-ray detector 21. The

図7に、回折X線16の強度を縦軸に、また、X線検出器21の検出位置2θχを横軸にとって、検出位置ごとの回折X線強度をラインL1,L2,L3で示す。これらラインL1,L2,L3のうちL1は検出位置0−A間でのX線強度を示し、X線強度がほぼ一定に変化するベースラインを構成する。L2は検出位置A−C間においてX線強度がピーク状に変化するピークラインを構成する。L3は、検出位置C以降でX線強度がほぼ一定に変化するベースラインを構成する。   In FIG. 7, the intensity of the diffracted X-ray 16 is plotted on the vertical axis, the detected position 2θχ of the X-ray detector 21 is plotted on the horizontal axis, and the diffracted X-ray intensity at each detected position is indicated by lines L1, L2, and L3. Of these lines L1, L2, and L3, L1 indicates the X-ray intensity between the detection positions 0-A, and constitutes a base line in which the X-ray intensity changes substantially constant. L2 constitutes a peak line in which the X-ray intensity changes in a peak shape between the detection positions A and C. L3 constitutes a baseline in which the X-ray intensity changes substantially after the detection position C.

ピークラインL2領域では、検出位置Aではピーク最小とし該検出位置AからX線強度がピークへ向けて強くなる方向に変化し、検出位置BでX線強度がピーク最大となり、検
出位置Bから検出位置Cへ向けてX線強度が弱くなる方向に変化し、検出位置Cでピーク最小となる。そして検出位置A−C間でピークラインL2に対してピークがない場合には、X線強度はベースラインL1、L3と共にベースラインL4(破線ライン)を構成する。そして、検出位置A−C間においてベースラインL4とピークラインL2とで囲む面積をピーク面積と定義することができる。ここでベースラインL4は、ベースラインL1の検出位置方向終端とベースラインL3の検出位置方向始端とを略直線で結ぶラインである。このピーク面積からは、集合構造14における多層CNT19の配向性と集合密度とが判る。
In the peak line L2 region, the detection position A has a minimum peak, and the X-ray intensity changes from the detection position A in a direction in which the X-ray intensity increases toward the peak. The X-ray intensity changes toward the position C in the direction of weakening, and the peak is minimized at the detection position C. When there is no peak with respect to the peak line L2 between the detection positions A and C, the X-ray intensity forms a base line L4 (broken line) together with the base lines L1 and L3. An area surrounded by the base line L4 and the peak line L2 between the detection positions A and C can be defined as a peak area. Here, the base line L4 is a line that connects the detection position direction end of the base line L1 and the detection position direction start end of the base line L3 with a substantially straight line. From this peak area, the orientation and aggregate density of the multi-walled CNT 19 in the aggregate structure 14 can be seen.

図8で示すように、入射X線15を多層CNT集合構造14の高さ方向ZにおいてZ1−Z2の範囲で走査し、この走査において入射X線15に対する、透過X線20の強度を測定すると、図9における横軸が集合構造22の高さ位置Z、縦軸が透過X線20の強度とする波形図から各高さ位置での透過X線20の強度が判る。この場合、ΔAで示す部分が透過X線20の強度の減衰量となる。図8でZ1、図9で−Z1は、集合構造14の最高位置、図8でZ2、図9で−Z2は集合構造14の最低位置を示す。図9では多層CNT集合構造14の高さ位置−Z1と−Z2それぞれでの透過X線強度の差、すなわち、図9で示すΔAは入射X線が集合構造14に入射してから出射X線として出射するまでの当該X線強度に対して、入射X線の入射高さでのX線強度減衰量を表している。このX線強度減衰量は多層CNT集合構造14の多層CNT19の高さ方向における集合密度を示す。   As shown in FIG. 8, when the incident X-ray 15 is scanned in the range of Z1-Z2 in the height direction Z of the multilayer CNT aggregate structure 14, the intensity of the transmitted X-ray 20 with respect to the incident X-ray 15 is measured in this scanning. 9, the intensity of the transmitted X-ray 20 at each height position can be seen from a waveform diagram in which the horizontal axis in FIG. 9 is the height position Z of the aggregate structure 22 and the vertical axis is the intensity of the transmitted X-ray 20. In this case, the portion indicated by ΔA is the attenuation amount of the transmitted X-ray 20 intensity. In FIG. 8, Z <b> 1 and −Z <b> 1 in FIG. 9 indicate the highest position of the aggregate structure 14, Z <b> 2 in FIG. 8, and −Z <b> 2 in FIG. In FIG. 9, the difference in transmitted X-ray intensity at the height positions −Z1 and −Z2 of the multilayer CNT aggregate structure 14, that is, ΔA shown in FIG. 9 is the output X-ray after the incident X-ray enters the aggregate structure 14. Represents the X-ray intensity attenuation at the incident height of the incident X-ray with respect to the X-ray intensity until it is emitted. This X-ray intensity attenuation amount indicates the aggregate density in the height direction of the multilayer CNT 19 of the multilayer CNT aggregate structure 14.

具体的には、入射X線の入射高さが−Z1より高いときの透過X線強度を示すラインをベースラインL5とし、入射X線の入射高さが−Z1ないし−Z2の範囲のときの透過X線強度を示すラインを減衰量ラインL6とし、入射X線の入射高さが−Z2より低いときの透過X線強度を示すラインをベースラインL7とした場合、X線強度減衰量は、ベースラインL5のX線強度と減衰量ラインL6のX線強度との差である。   Specifically, the line indicating the transmitted X-ray intensity when the incident height of incident X-rays is higher than −Z1 is defined as a base line L5, and the incident height of incident X-rays is in the range of −Z1 to −Z2. When the line indicating the transmitted X-ray intensity is the attenuation line L6 and the line indicating the transmitted X-ray intensity when the incident height of the incident X-ray is lower than −Z2 is the base line L7, the X-ray intensity attenuation is This is the difference between the X-ray intensity of the base line L5 and the X-ray intensity of the attenuation line L6.

したがって、これら図7のピーク面積と図9のX線強度減衰量とからピーク面積/減衰量の式を演算することで、多層CNT集合構造14を構成する多層CNT19の配向性が判る。これはピーク面積は多層CNT19の配向性と密度、減衰量は密度の情報を示すので、上記式から配向性が判る。   Accordingly, the orientation of the multilayer CNT 19 constituting the multilayer CNT aggregate structure 14 can be determined by calculating the peak area / attenuation expression from the peak area of FIG. 7 and the X-ray intensity attenuation of FIG. Since the peak area indicates the orientation and density of the multilayer CNT 19 and the attenuation amount indicates the density information, the orientation can be determined from the above formula.

次に、図10、図11、および図12を参照して多層CNT集合構造14を構成する多層CNT19の直線性を説明する。   Next, the linearity of the multilayer CNT 19 constituting the multilayer CNT aggregate structure 14 will be described with reference to FIG. 10, FIG. 11, and FIG.

図10には多層CNT集合構造においてそれを構成する多層CNTそれぞれの直線性が相違する3つのサンプル1,2,3に対してその高さ方向中央部分における同倍率SEM写真を示す。SEM写真から明らかであるように、3つのサンプル1,2,3のうちサンプル1における多層CNTの直線性が最も低く、サンプル2における多層CNTは直線性が中程度であり、サンプル3における多層CNTは直線性が最も高いことが明らかである。   FIG. 10 shows SEM photographs at the same magnification at the center in the height direction for three samples 1, 2, and 3 having different linearities in the multilayer CNTs constituting the multilayer CNT aggregate structure. As is clear from the SEM photograph, the multi-wall CNT in sample 1 has the lowest linearity among the three samples 1, 2, and 3, and the multi-wall CNT in sample 2 has a medium linearity. Is clearly the most linear.

図11には各サンプル1,2,3それぞれに対して各検出位置における回折X線強度の波形(図7に対応する波形)を示す。ただし、図解のため、図11で縦軸方向は回折X線強度を示すが、各サンプル1,2,3の回折X線強度を示すのではないから、縦軸の表記を省略している。図11で示すように、各サンプル1,2,3それぞれの回折X線のピーク位置およびピーク高さ、ピーク波形形状、等が相違している。直線性が低いサンプルよりも直線性が最も高いサンプルでその回折X線強度のピークが明瞭に現れていることが判り、このことから、多層CNT集合構造の構造評価を行うことができる。すなわち、サンプル1では回折X線強度の振幅が検出位置変化に対して大きく変化し、ピークが不明瞭で
ある。また、サンプル2では回折X線強度の振幅が各検出位置に対してサンプル1よりも小さく変化し、ピークが比較的明瞭に現れている。そして、サンプル3では回折X線強度の振幅が各検出位置変化に対して最も小さく変化し、かつ、特定の検出位置でのピーク高さがきわめて明瞭に現れている。このことから、上記回折X線強度波形からでも相対的にサンプル内の多層CNTの直線性を評価することができる。
FIG. 11 shows diffracted X-ray intensity waveforms (corresponding to FIG. 7) at the respective detection positions for the samples 1, 2, and 3, respectively. However, for the sake of illustration, the vertical axis direction in FIG. 11 indicates the diffracted X-ray intensity, but the vertical axis is omitted because it does not indicate the diffracted X-ray intensity of each sample 1, 2, 3. As shown in FIG. 11, the peak positions and heights of the diffraction X-rays of the samples 1, 2, and 3 are different from each other. It can be seen that the peak of the diffraction X-ray intensity clearly appears in the sample having the highest linearity than the sample having the lower linearity, and from this, the structure of the multilayer CNT aggregate structure can be evaluated. That is, in sample 1, the amplitude of the diffracted X-ray intensity greatly changes with respect to the detection position change, and the peak is unclear. In sample 2, the amplitude of the diffracted X-ray intensity changes smaller than that in sample 1 at each detection position, and the peak appears relatively clearly. In sample 3, the amplitude of the diffracted X-ray intensity changes the smallest with respect to each detection position change, and the peak height at a specific detection position appears very clearly. From this, the linearity of the multilayer CNT in the sample can be relatively evaluated even from the diffraction X-ray intensity waveform.

図12に、図11で示す回折X線強度波形において、ピーク面積を構成するピーク波形において、c面間隔(d002)に対する各サンプル1,2,3それぞれの半値幅(d002FWHM)を示す。図12で示すように、サンプル1,2,3のうち、直線性が低いサンプル1ではc面間隔と半値幅とが共に大きく、直線性が中のサンプル2ではc面間隔と半値幅とが共に中であり、直線性が高いサンプル1ではc面間隔と半値幅とが共に小さい。このことから、多層CNT集合構造における多層CNTの直線性を判定評価することができる。   FIG. 12 shows the full width at half maximum (d002FWHM) of each sample 1, 2, and 3 with respect to the c-plane interval (d002) in the peak waveform constituting the peak area in the diffraction X-ray intensity waveform shown in FIG. As shown in FIG. 12, among samples 1, 2 and 3, sample 1 with low linearity has a large c-plane spacing and half-width, and sample 2 with medium linearity has a c-plane spacing and half-width. In Sample 1 which is both in the middle and has high linearity, both the c-plane spacing and the half-value width are small. From this, the linearity of the multilayer CNT in the multilayer CNT aggregate structure can be judged and evaluated.

図10ないし図12はサンプル1,2,3の多層CNT集合構造それぞれの高さ方向中央検出位置でのX線強度波形から、c面間隔と半値幅の関係を求め、多層CNT集合構造高さ方向中央部分での直線性の評価をしたものであり、多層CNT集合構造高さ方向全体ではない。そこで、図13、図14を参照して多層CNT集合構造高さ方向全体での直線性評価を説明する。   10 to 12 show the relationship between the c-plane spacing and the half-value width based on the X-ray intensity waveform at the center detection position in the height direction of each of the multilayer CNT aggregate structures of Samples 1, 2, and 3. This is an evaluation of the linearity at the central portion in the direction, and is not the entire multilayer CNT aggregate structure height direction. Therefore, with reference to FIGS. 13 and 14, the linearity evaluation in the entire height direction of the multilayer CNT aggregate structure will be described.

図13に、サンプル1,2,3の多層CNT集合構造それぞれの高さ方向複数検出位置でのX線強度波形を示す。サンプル1,2,3それぞれの各検出位置でのX線強度波形は図解のため高さ方向離して示している。   FIG. 13 shows X-ray intensity waveforms at a plurality of detection positions in the height direction of each of the multilayer CNT aggregate structures of Samples 1, 2, and 3. The X-ray intensity waveforms at the detection positions of Samples 1, 2, and 3 are shown separated in the height direction for illustration.

サンプル1の場合、その高さ方向複数位置でのX線強度におけるピーク高さが低い。このことから高さ方向複数位置でのX線強度におけるピーク高さが低い多層CNT集合構造は直線性が低い多層CNTが集合した構造であることが判る。   In the case of sample 1, the peak height in the X-ray intensity at a plurality of positions in the height direction is low. From this, it can be seen that the multilayer CNT aggregate structure having a low peak height in X-ray intensity at a plurality of positions in the height direction is a structure in which multilayer CNTs having low linearity are aggregated.

サンプル2の場合、高さ方向複数位置でのX線強度におけるピーク高さはサンプル1より高い。このことから高さ方向複数位置でのX線強度におけるピーク高さが中程度の多層CNT集合構造は、直線性が中程度の多層CNTが集合した構造であることが判る。   In the case of sample 2, the peak height in the X-ray intensity at a plurality of positions in the height direction is higher than that of sample 1. From this, it can be seen that the multilayer CNT aggregate structure having a medium peak height in the X-ray intensity at a plurality of positions in the height direction is a structure in which multilayer CNTs having medium linearity are aggregated.

サンプル3の場合、高さ方向複数位置でのX線強度におけるピーク高さは最も高い。このことから高さ方向複数位置でのX線強度におけるピーク高さが高い多層CNT集合構造は、直線性が高い多層CNTが集合した構造であることが判る。   In the case of sample 3, the peak height in the X-ray intensity at the plurality of positions in the height direction is the highest. From this, it can be seen that the multilayer CNT aggregate structure having a high peak height in the X-ray intensity at a plurality of positions in the height direction is a structure in which multilayer CNTs having high linearity are aggregated.

図14に、図13で示すサンプル1,2,3それぞれのX線強度波形において、c面間隔(d002)に対するサンプル1,2,3それぞれの半値幅を示す。各サンプル1,2,3それぞれでは高さ方向複数の検出に対応して四角形(□)、三角形(△)、円形(○)で示す。図14で示すように直線性が低いサンプル1ではc面間隔と半値幅それぞれの値が共に大きい領域に集中し、直線性が中程度のサンプル2ではc面間隔と半値幅それぞれの値が共に中の領域に集中し、直線性が高いサンプル3ではc面間隔と半値幅とが共に小さい領域に集中している。   FIG. 14 shows the half-value widths of samples 1, 2, and 3 with respect to the c-plane interval (d002) in the X-ray intensity waveforms of samples 1, 2, and 3 shown in FIG. Each sample 1, 2 and 3 is indicated by a square (□), a triangle (Δ) and a circle (◯) corresponding to a plurality of detections in the height direction. As shown in FIG. 14, sample 1 with low linearity concentrates in a region where both the c-plane spacing and half-value width are large, and sample 2 with medium linearity has both c-plane spacing and half-width values. In Sample 3, which is concentrated in the middle region and has high linearity, both the c-plane spacing and the half width are concentrated in a small region.

このことからX線強度波形において、c面間隔(d002)に対する半値幅の関係から多層CNT集合構造における多層CNTの直線性を判定評価することができる。   From this, in the X-ray intensity waveform, the linearity of the multilayer CNTs in the multilayer CNT aggregate structure can be determined and evaluated from the relationship between the half width with respect to the c-plane interval (d002).

特に、図13、図14は多層CNT集合構造を構成する多層CNTを高さ方向にその直線性を評価することができるものであり、微小区間での直線性の評価ではなく、多層CNT集合構造全体での直線性を評価することができるようになる。   In particular, FIGS. 13 and 14 can evaluate the linearity of the multi-walled CNTs constituting the multi-walled CNT aggregate structure in the height direction. The overall linearity can be evaluated.

以上説明したように、本実施形態では、基板上に触媒微粒子の作用で成長した複数の多層CNTの集合構造を評価する方法であって、上記集合構造の任意側面にX線を入射するステップと、上記集合構造の別側面回りにX線検出器を走査し、各走査位置でのX線検出器出力から上記集合構造側面回りに出射される回折X線の強度を測定すると共に、上記測定した回折X線の強度からピーク面積を演算するステップとを含み、この演算したピーク面積から、多層CNTの配向性および集合密度に関する情報を得ることができる。   As described above, in the present embodiment, there is a method for evaluating an aggregate structure of a plurality of multi-walled CNTs grown by the action of catalyst fine particles on a substrate, the step of making X-rays incident on an arbitrary side of the aggregate structure; The X-ray detector is scanned around another side surface of the aggregate structure, and the intensity of the diffracted X-rays emitted around the aggregate structure side surface is measured from the X-ray detector output at each scanning position, and the measurement is performed. And calculating a peak area from the intensity of the diffracted X-ray, and information on the orientation and aggregate density of the multilayer CNT can be obtained from the calculated peak area.

また、上記入射X線を集合構造の高さ方向に走査し、各走査位置でのX線検出器出力から上記集合構造を透過する透過X線の強度を測定すると共に、上記測定した透過X線の強度から減衰量を演算するステップを含む場合は、上記演算したピーク面積と減衰量とから上記集合構造の配向性を解析することができる。   The incident X-ray is scanned in the height direction of the collective structure, the intensity of the transmitted X-ray transmitted through the collective structure is measured from the X-ray detector output at each scanning position, and the measured transmitted X-ray is measured. When the step of calculating the amount of attenuation from the intensity of is included, the orientation of the aggregate structure can be analyzed from the calculated peak area and amount of attenuation.

さらに、ピーク面積を構成する回折X線強度波形ラインにおけるグラフェンシートのc面間隔とピーク面積半値幅とを演算するステップを含む場合は、そのc面間隔とピーク面積半値幅から多層CNT集合構造内の多層CNTの直線性を評価することができる。   Further, in the case of including a step of calculating the c-plane interval and the peak area half-width of the graphene sheet in the diffraction X-ray intensity waveform line constituting the peak area, the multi-wall CNT aggregate structure is calculated from the c-plane interval and the peak area half-width. The linearity of the multilayer CNT can be evaluated.

10−13 スリット
14 多層CNT集合構造
15 入射X線
16 回折X線
17 基板
18 回転台
19 多層CNT
20 透過X線
10-13 Slit 14 Multilayer CNT aggregate structure 15 Incident X-ray 16 Diffracted X-ray 17 Substrate 18 Turntable 19 Multilayer CNT
20 Transmitted X-ray

Claims (3)

基板上に配置した複数の多層CNTの集合構造を評価する方法であって、
上記集合構造の任意側面にX線を入射するステップと、上記集合構造の別側の複数の検出位置で当該集合構造から出射されるX線強度を測定するステップと、上記各検出位置でのX線強度からX線強度のピーク面積を演算するステップと、を含むことを特徴とする多層CNT集合構造の評価方法。
A method for evaluating an aggregate structure of a plurality of multilayer CNTs arranged on a substrate,
Incident X-rays on an arbitrary side of the aggregate structure; measuring X-ray intensity emitted from the aggregate structure at a plurality of detection positions on another side of the aggregate structure; and X at each detection position And a step of calculating a peak area of the X-ray intensity from the line intensity.
X線を集合構造の高さ方向に走査し、各走査位置で当該集合構造から出射されるX線強度を測定するステップと、測定したX線強度から当該X線強度減衰量を演算するステップとを含み、請求項1で演算したピーク面積と、上記ステップで演算した減衰量とから上記集合構造内多層CNTの配向性を解析する、ことを特徴とする請求項1に記載の方法。   Scanning X-rays in the height direction of the collective structure, measuring the X-ray intensity emitted from the collective structure at each scanning position, and calculating the X-ray intensity attenuation from the measured X-ray intensity; The orientation of the multilayer CNT in the aggregate structure is analyzed from the peak area calculated in claim 1 and the attenuation calculated in the step. 多層CNTのc面間隔に対応して、請求項1で演算したピーク面積内のX線強度ピーク値からの半値幅を演算するステップを含み、上記c面間隔に対する半値幅の対応関係から多層CNTの直線性を評価する、請求項1または2に記載の方法。   A step of calculating a half-value width from an X-ray intensity peak value within the peak area calculated in claim 1 corresponding to the c-plane interval of the multi-wall CNT, and from the correspondence relationship of the half-value width to the c-plane interval The method according to claim 1, wherein the linearity of is evaluated.
JP2010094102A 2010-03-18 2010-04-15 Method for evaluating aggregate structure of multi-walled carbon nanotubes Expired - Fee Related JP5580102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094102A JP5580102B2 (en) 2010-03-18 2010-04-15 Method for evaluating aggregate structure of multi-walled carbon nanotubes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010061933 2010-03-18
JP2010061933 2010-03-18
JP2010094102A JP5580102B2 (en) 2010-03-18 2010-04-15 Method for evaluating aggregate structure of multi-walled carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2011215119A true JP2011215119A (en) 2011-10-27
JP5580102B2 JP5580102B2 (en) 2014-08-27

Family

ID=44944982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094102A Expired - Fee Related JP5580102B2 (en) 2010-03-18 2010-04-15 Method for evaluating aggregate structure of multi-walled carbon nanotubes

Country Status (1)

Country Link
JP (1) JP5580102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230210A (en) * 2014-06-04 2015-12-21 富士通株式会社 Evaluation method, growth method, evaluation device, and growth device
JP2018115964A (en) * 2017-01-19 2018-07-26 本田技研工業株式会社 X-ray diffraction measurement method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257725A (en) * 1996-03-21 1997-10-03 Rigaku Corp Method and device for measuring x-ray diffraction
JP2001153822A (en) * 1999-11-30 2001-06-08 Canon Inc Method and device for structure inspection on long- period regular structure and long-period regular structural body
JP2005214712A (en) * 2004-01-28 2005-08-11 Rigaku Corp Film thickness measuring method and apparatus
JP2010024134A (en) * 2008-06-20 2010-02-04 Osaka Gas Co Ltd Porous titanium oxide-coated carbon material composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257725A (en) * 1996-03-21 1997-10-03 Rigaku Corp Method and device for measuring x-ray diffraction
JP2001153822A (en) * 1999-11-30 2001-06-08 Canon Inc Method and device for structure inspection on long- period regular structure and long-period regular structural body
JP2005214712A (en) * 2004-01-28 2005-08-11 Rigaku Corp Film thickness measuring method and apparatus
JP2010024134A (en) * 2008-06-20 2010-02-04 Osaka Gas Co Ltd Porous titanium oxide-coated carbon material composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013057528; CAO A,外: 'X-ray diffraction characterization on the alignment degree of carbon nanotubes' Chem Phys Lett Vol.344,No.1/2, 20010906, P.13-17 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230210A (en) * 2014-06-04 2015-12-21 富士通株式会社 Evaluation method, growth method, evaluation device, and growth device
JP2018115964A (en) * 2017-01-19 2018-07-26 本田技研工業株式会社 X-ray diffraction measurement method and device

Also Published As

Publication number Publication date
JP5580102B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
EP0724150B1 (en) Device for obtaining an image of an object using a stream of neutral or charged particles and a lens for converting the said stream of neutral or charged particles
Flygare et al. Quantifying crystallinity in carbon nanotubes and its influence on mechanical behaviour
US20210223099A1 (en) Method and device for measuring light radiation pressure
Bellucci Nanotubes for particle channeling, radiation and electron sources
Celik-Aktas et al. Double-helix structure in multiwall boron nitride nanotubes
Gupta et al. Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience
JP6403964B2 (en) X-ray analysis system for X-ray scattering analysis
WO2012121317A1 (en) Carbon nanostructures, capacitor, method for processing carbon nanostructures, and production process
JP5580102B2 (en) Method for evaluating aggregate structure of multi-walled carbon nanotubes
JP5429864B2 (en) Strain measurement pattern
Pierret et al. Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes
JP5940241B2 (en) Multi-layer CNT assembly structure
JP2015155368A (en) Multi-layer cnt assembly structure
JP7064218B1 (en) Secondary electron probe, secondary electron detector and scanning electron microscope detector
JP7061295B1 (en) Electron beam detector and electron beam detection method
JP5152615B2 (en) Disturbance detection measurement method for arrangement of minute regular patterns
DE102014226048A1 (en) Field emission cathode
Mangler et al. Using electron beams to investigate carbonaceous materials
US8729465B2 (en) Vacuum measurement device with ion source mounted
Casciardi et al. The Analytical Transmission Electron Microscopy: A Powerful Tool for the Investigation of Low‐Dimensional Carbon Nanomaterials
Domínguez-Gutiérrez et al. Molecular dynamics simulations for hydrogen adsorption in low energy collisions with carbon and boron-nitride nanotubes
TWI755251B (en) Electron beam detection device and detection method
CN114644335B (en) Electron black body cavity and secondary electron detection device
JP6358045B2 (en) X-ray analysis method for surface-coated fine particles and X-ray analyzer for surface-coated fine particles
WO2024111660A1 (en) Carbon nanotube wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140710

R150 Certificate of patent or registration of utility model

Ref document number: 5580102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees