JP2011214998A - Achieved temperature evaluation method in heat treatment - Google Patents

Achieved temperature evaluation method in heat treatment Download PDF

Info

Publication number
JP2011214998A
JP2011214998A JP2010083340A JP2010083340A JP2011214998A JP 2011214998 A JP2011214998 A JP 2011214998A JP 2010083340 A JP2010083340 A JP 2010083340A JP 2010083340 A JP2010083340 A JP 2010083340A JP 2011214998 A JP2011214998 A JP 2011214998A
Authority
JP
Japan
Prior art keywords
glass powder
heat treatment
members
temperature
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010083340A
Other languages
Japanese (ja)
Inventor
Naoto Takeyama
直人 竹山
Takashi Morita
孝士 守田
Nobuhisa Nakamori
宣尚 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KMEW Co Ltd
Original Assignee
KMEW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KMEW Co Ltd filed Critical KMEW Co Ltd
Priority to JP2010083340A priority Critical patent/JP2011214998A/en
Publication of JP2011214998A publication Critical patent/JP2011214998A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an achieved temperature evaluation method in heat treatment which can accurately and easily evaluate achieved temperatures of members when applying the heat treatment on the members while overlapping a plurality of the members.SOLUTION: The members 1 undergoes heat treatment while overlapping the plurality of the members 1. Glass powder 2 is interposed between the mutually overlapped members 1. The existence of fusion of the glass powder 2 after the heat treatment serves as an index of the achieved temperature of the member in the heat treatment at a position where the glass powder 2 is arranged.

Description

本発明は、複数の部材が積み重ねられた状態で、この部材に加熱処理が施される場合に、加熱処理時の部材の到達温度を評価する方法に関する。   The present invention relates to a method for evaluating the ultimate temperature of a member during heat treatment when the member is subjected to heat treatment in a state where a plurality of members are stacked.

石綿スレートや石綿セメント板などの、アスベスト(石綿)を含有する部材の廃棄にあたっては、アスベストの無害化が必要とされる。これらの部材におけるアスベストの無害化のためには、主として加熱処理が採用されている。すなわち、これらの部材が加熱されることで、この部材中のアスベストが熱変性し、無害化する。アスベストは針状結晶を有することで障害を引き起こすものであるが、アスベストが一定温度以上まで加熱されると結晶性が変性して無害化することが知られている(特許文献1,2等参照)。   When asbestos slate, asbestos cement board, and other materials containing asbestos (asbestos) are discarded, it is necessary to make asbestos harmless. In order to make asbestos harmless in these members, heat treatment is mainly employed. That is, as these members are heated, asbestos in the members is thermally denatured and rendered harmless. Asbestos has a needle-like crystal that causes damage, but it is known that when asbestos is heated to a certain temperature or higher, its crystallinity is denatured and detoxified (see Patent Documents 1 and 2). ).

石綿スレートや石綿セメント板などの部材に加熱処理が施される場合には、処理効率向上の観点から、複数の部材が積み重ねられた状態で加熱処理が施されることが一般的である。   When heat treatment is performed on a member such as asbestos slate or asbestos cement board, the heat treatment is generally performed in a state in which a plurality of members are stacked from the viewpoint of improving processing efficiency.

特開平3−60789号公報Japanese Patent Laid-Open No. 3-60789 特開平7−171536号公報Japanese Patent Laid-Open No. 7-171536

複数の部材が積み重ねられる場合、これらの部材が加熱されても、部材内の温度が均一化することは難しい。特にアスベストを含有する部材では、アスベスト自体が高い断熱性を有し、しかもこの部材がセメント硬化物である場合には部材に含まれているセメントや充填材なども熱伝導性が低い材料であるため、温度の不均一が生じやすい。加熱処理中の部材に、その温度がアスベストの変性温度よりも低くなる箇所が生じると、その箇所におけるアスベストが無害化されなくなってしまう。このため、部材の加熱処理時の到達温度の確認が重要となる。   When a plurality of members are stacked, it is difficult to make the temperature in the members uniform even if these members are heated. Particularly in a member containing asbestos, the asbestos itself has a high heat insulating property, and when this member is a cement hardened material, the cement and filler contained in the member are also materials having low thermal conductivity. Therefore, temperature non-uniformity tends to occur. If a portion where the temperature is lower than the denaturation temperature of asbestos occurs in the member being heat-treated, the asbestos at that portion will not be rendered harmless. For this reason, confirmation of the ultimate temperature at the time of the heat processing of a member becomes important.

加熱処理時の到達温度の評価にあたっては、積み重ねられている部材同士の間の位置で部材の温度を評価する必要がある。このような位置では、熱が充分に伝達されず、到達温度が低くなる可能性が高い。また、マイクロ波発振により部材の内部を充分に加熱することも考えられるが、この場合も実際の部材の内部の温度を評価する必要がある。   In evaluating the ultimate temperature during the heat treatment, it is necessary to evaluate the temperature of the member at a position between the stacked members. In such a position, heat is not sufficiently transmitted, and it is likely that the ultimate temperature is lowered. In addition, it is conceivable to sufficiently heat the inside of the member by microwave oscillation, but in this case also, it is necessary to evaluate the temperature inside the actual member.

温度の評価方法としては、高温加熱処理時の温度評価にしばしば採用されているリファサーモ、ゼーゲルコーン、シース熱電対等を使用した方法が、まず考えられる。   As a temperature evaluation method, a method using a reference thermometer, a Zeger cone, a sheath thermocouple, etc., which are often employed for temperature evaluation during high-temperature heat treatment, can be considered first.

しかし、リファサーモは、相当の時間加熱がされなければ温度の評価が困難であること、並びに部材との間で反応が生じるおそれがあるためリファサーモと部材との間にアルミナ板等を介在させるなどの必要が生じることから、非常に使い勝手が悪い。   However, it is difficult to evaluate the temperature of the reference thermostat if it is not heated for a considerable period of time, and there is a risk of reaction between the member and an alumina plate or the like is interposed between the reference thermother and the member. Because it is necessary, it is very inconvenient.

ゼーゲルコーンは、その形状のため、部材同士の間には配置することは困難である。   It is difficult to arrange the Segel cone between members because of its shape.

シース熱電対は、ローラハースキルンなどの移動式トンネル炉での高温加熱処理においては、部材と共に移動させることが困難である。また、マイクロ波発振によって部材が加熱される場合にはマイクロ波対策が必要となるため、常時計測は困難である。   It is difficult to move the sheath thermocouple together with the member in high-temperature heat treatment in a mobile tunnel furnace such as a roller hearth kiln. In addition, when a member is heated by microwave oscillation, countermeasures against microwaves are necessary, so that constant measurement is difficult.

また、放射温度計を使用した温度測定も考えられる。放射温度計には、接触式の放射温度計と、非接触式の放射温度計とがある。   Temperature measurement using a radiation thermometer is also conceivable. The radiation thermometer includes a contact type radiation thermometer and a non-contact type radiation thermometer.

しかし、接触式の放射温度計は、シース熱電対の場合と同様に、部材と共に移動させることが困難である。また、非接触式の放射温度計では、測定可能な箇所が制限されるため、積み重ねられている部材の内部の温度を測定することはできない。   However, the contact-type radiation thermometer is difficult to move with the member, as in the case of a sheathed thermocouple. Moreover, in the non-contact type radiation thermometer, since the measurable location is restricted, the temperature inside the stacked members cannot be measured.

このように既存の温度測定方法による部材の到達温度の評価には、大きな制約が伴ってしまう。   As described above, the evaluation of the reached temperature of the member by the existing temperature measuring method is accompanied by a great restriction.

本発明は上記事由に鑑みてなされたものであり、複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、部材の到達温度を正確且つ容易に評価することができる加熱処理時の到達温度評価方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned reasons, and when the heat treatment is performed on the member in a state where a plurality of members are stacked, the arrival temperature at the time of the heat treatment can be evaluated accurately and easily. An object is to provide a temperature evaluation method.

本発明に係る加熱処理時の到達温度評価方法では、複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、互いに重なり合う前記部材の間にガラス粉体を介在させ、加熱処理後の前記ガラス粉体の溶着の有無を、ガラス粉体が配置されている位置における加熱処理時の部材の到達温度の指標とする。   In the ultimate temperature evaluation method during heat treatment according to the present invention, when performing heat treatment on this member in a state where a plurality of members are stacked, glass powder is interposed between the members overlapping each other, The presence or absence of glass powder welding is used as an indicator of the temperature reached by the member during the heat treatment at the position where the glass powder is disposed.

本発明においては、互いに重なり合う前記部材の間に、互いに軟化温度の異なる複数種の前記ガラス粉体を介在させてもよい。   In the present invention, a plurality of types of glass powders having different softening temperatures may be interposed between the overlapping members.

本発明においては、前記ガラス粉体の平均粒径が1〜1000μmの範囲であってもよい。   In the present invention, the glass powder may have an average particle size in the range of 1 to 1000 μm.

本発明によれば、複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、部材の到達温度を正確且つ容易に評価することができる。   According to the present invention, when the heat treatment is performed on a member in a state where a plurality of members are stacked, the temperature reached by the member can be accurately and easily evaluated.

本発明の実施の形態の一例を示す図であり、(a)は複数の部材から構成される積載物を示す正面図、(b)は部材の加熱処理工程を示す概略図である。It is a figure which shows an example of embodiment of this invention, (a) is a front view which shows the load which consists of a some member, (b) is the schematic which shows the heat processing process of a member. 実施例における試験方法を説明する図であり、(a)は試験用の積載物の正面図、(b)は(a)に示される試験用の積載物から部材を1枚除いた状態を示す平面図である。It is a figure explaining the test method in an Example, (a) is a front view of the test load, (b) shows the state which removed one piece from the test load shown in (a). It is a top view.

部材1としては、アスベストを含有する部材1が挙げられるが、これに限定されるものではない。アスベストを含有する部材1の具体例としては、建築資材である石綿スレート、石綿セメント板、石綿セメントサイディングなどが挙げられる。   Examples of the member 1 include, but are not limited to, the member 1 containing asbestos. Specific examples of the member 1 containing asbestos include building materials such as asbestos slate, asbestos cement board, asbestos cement siding, and the like.

加熱処理の前に、図1(a)に示されるように、複数の部材1が積み重ねられる。以下、この積み上げられた複数の部材1からなる集合を、積載物3とよぶ。一つの積載物3を構成する部材1の数は、加熱炉4の能力や処理効率等を考慮して適宜決定されるものであって、特に制限されない。   Prior to the heat treatment, a plurality of members 1 are stacked as shown in FIG. Hereinafter, the set of the plurality of stacked members 1 is referred to as a load 3. The number of members 1 constituting one load 3 is appropriately determined in consideration of the capacity of the heating furnace 4, processing efficiency, and the like, and is not particularly limited.

加熱処理の前に、この積載物3における、互いに重なり合う部材1同士の間に、ガラス粉体2を介在させる。積載物3を構成する部材1の数が三以上である場合には、互いに重なり合う全ての部材1同士の間にガラス粉体2が介在しても、適宜選択される任意の部材1同士の間のみにガラス粉体2が介在してもよい。更に、ガラス粉体2が配置されている部材1同士の間では、ガラス粉体2が一箇所のみに配置されていてもよく、複数箇所に配置されていてもよい。積載物3におけるガラス粉体2が配置される箇所としては、積載物3における到達温度の確認がされるべき位置が、適宜選択される。   Before the heat treatment, glass powder 2 is interposed between the members 1 that overlap each other in the load 3. When the number of members 1 constituting the load 3 is three or more, even if the glass powder 2 is interposed between all the members 1 that overlap each other, between any members 1 that are appropriately selected The glass powder 2 may intervene only. Furthermore, between the members 1 in which the glass powder 2 is disposed, the glass powder 2 may be disposed in only one place, or may be disposed in a plurality of places. As a place where the glass powder 2 is arranged in the load 3, a position where the ultimate temperature in the load 3 is to be confirmed is appropriately selected.

部材1同士の間には、まとまった量のガラス粉体2が密集した状態で配置されていることが好ましい。一箇所に配置されるガラス粉体2の量は0.5〜5.0gの範囲であることが好ましい。   It is preferable that a large amount of glass powder 2 is disposed between the members 1 in a dense state. The amount of the glass powder 2 disposed at one place is preferably in the range of 0.5 to 5.0 g.

このようにガラス粉体2が配置された積載物3に加熱処理が施されると、軟化点以上に加熱されたガラス粉体2は溶融後に固化し、ガラス粉体2中の粒子同士が溶着する。一方、軟化点まで加熱されなかったガラス粉体2の粒子には溶着が認められることはない。このため、加熱処理後の積載物3におけるガラス粉体2の粒子同士の溶着の有無が確認されれば、このガラス粉体2が配置されていた箇所の到達温度が、ガラス粉体2の軟化点以上であるか否かが、容易に確認される。すなわち、ガラス粉体2の溶着の有無が、ガラス粉体2が配置されている位置における加熱処理時の部材1の到達温度の指標となる。   When heat treatment is applied to the load 3 on which the glass powder 2 is arranged in this way, the glass powder 2 heated to the softening point or more is solidified after melting, and the particles in the glass powder 2 are welded together. To do. On the other hand, no welding is observed on the particles of the glass powder 2 that have not been heated to the softening point. For this reason, if the presence or absence of the welding of the particles of the glass powder 2 in the load 3 after the heat treatment is confirmed, the ultimate temperature at the place where the glass powder 2 is disposed is softened. It is easily confirmed whether or not the number is above the point. That is, whether or not the glass powder 2 is welded is an index of the temperature reached by the member 1 during the heat treatment at the position where the glass powder 2 is disposed.

ガラス粉体2の平均粒径は、1〜1000μmの範囲であることが好ましい。この範囲において、ガラス粉体2の溶着の有無の判別が容易になる。尚、この平均粒径は、レーザ回折・散乱法により測定されるメディアン径である。ガラス粉体2の粒径が大きすぎると、粒子間の接触が少なくなるなどして、粒子間の溶着の確認が難しくなることがある。一方、ガラス粉体2の粒径が小さすぎると、ガラス粉体2が部材1からの荷重によって固められてしまうことで、粒子間の溶着の確認が難しくなることがある。   The average particle diameter of the glass powder 2 is preferably in the range of 1 to 1000 μm. In this range, it is easy to determine whether or not the glass powder 2 is welded. The average particle diameter is a median diameter measured by a laser diffraction / scattering method. If the particle size of the glass powder 2 is too large, it may be difficult to confirm the adhesion between the particles, for example, the contact between the particles is reduced. On the other hand, if the particle size of the glass powder 2 is too small, the glass powder 2 may be hardened due to the load from the member 1, which may make it difficult to confirm the adhesion between the particles.

一つの積載物3中に、互いに軟化点が異なる複数種類のガラス粉体2が配置されてもよい。この場合において、加熱処理後に溶着が認められるガラス粉体2と溶着が認められないガラス粉体2とが存在すれば、到達温度は、溶着が認められるガラス粉体2の軟化点以上であり、且つ溶着が認められないガラス粉体2の軟化点未満であると、評価される。溶着が認められるガラス粉体2が配置されている箇所と、溶着が認められないガラス粉体2が配置されている箇所とは一致し得ないが、これらのガラス粉体2が、積載物3中において加熱処理時の到達温度が同程度であると予測される箇所にそれぞれ配置されていれば、正確な到達温度の評価が可能となる。   A plurality of types of glass powders 2 having different softening points may be arranged in one load 3. In this case, if there is a glass powder 2 in which welding is observed after the heat treatment and a glass powder 2 in which welding is not observed, the ultimate temperature is equal to or higher than the softening point of the glass powder 2 in which welding is observed, And it is evaluated that it is less than the softening point of the glass powder 2 in which welding is not recognized. Although the location where the glass powder 2 where welding is observed is arranged and the location where the glass powder 2 where welding is not allowed cannot be arranged, these glass powders 2 are not loaded 3 If it is arranged at each of the locations where the temperature reached during the heat treatment is predicted to be approximately the same, accurate evaluation of the temperature reached is possible.

本実施形態による積載物3中における到達温度の評価は、例えば部材1の加熱処理条件を決定するための予備試験において適用される。すなわち、例えば予備試験において部材1の加熱処理条件が種々変更される共に各条件において積載物3中における到達温度が評価されることで、その結果に基づいて適当な加熱条件が決定される。   The evaluation of the reached temperature in the load 3 according to the present embodiment is applied, for example, in a preliminary test for determining the heat treatment condition of the member 1. That is, for example, in the preliminary test, the heat treatment conditions of the member 1 are variously changed, and the ultimate temperature in the load 3 is evaluated under each condition, and appropriate heating conditions are determined based on the results.

加熱処理条件が決定された後にも、部材1の加熱処理時において、本実施形態による積載物3中における到達温度の評価が適用され得る。この場合、加熱処理後の部材1に、必要とされる条件で加熱処理が施されたか否かが容易に確認される。   Even after the heat treatment conditions are determined, the evaluation of the reached temperature in the load 3 according to the present embodiment can be applied during the heat treatment of the member 1. In this case, it is easily confirmed whether or not the heat-treated member 1 has been heat-treated under the required conditions.

本実施形態による加熱処理時の到達温度評価方法における部材1の種類は、上記のとおり特に制限されないが、本方法は特にアスベストを含有する部材1に無害化のための加熱処理が施される場合において、好適に適用される。本実施形態では積載物3内の任意の位置の到達温度が一定温度以上であるか否かが容易に評価されるため、部材1の無害化のため加熱処理のように部材1全体が一定以上の温度に加熱される必要があり、且つ簡便で効率のよい処理が求められる場合に好適である。更に、ガラス粉体2の軟化点は650〜1000℃の範囲で調整可能であり、本実施形態による到達温度の評価方法は、このような温度範囲における到達温度の評価に好適である。この温度範囲は、アスベストの結晶性が変性する温度と重なるため、この点からも、本実施形態は、アスベストの確実な無害化のための部材1の到達温度の評価に好適である。更に、ガラス粉体2の組成の変更によりガラス粉体2の軟化点が調製されたり、軟化点の異なる複数種のガラス粉体2が用いられたりすることで、到達温度の精密な評価が可能となる。   The type of the member 1 in the ultimate temperature evaluation method during the heat treatment according to the present embodiment is not particularly limited as described above, but this method is particularly applicable when the heat treatment for detoxification is performed on the member 1 containing asbestos. In, it is applied suitably. In this embodiment, since it is easily evaluated whether or not the reached temperature at an arbitrary position in the load 3 is equal to or higher than a certain temperature, the entire member 1 is equal to or larger than a certain temperature as in heat treatment for detoxifying the member 1. This is suitable when a simple and efficient treatment is required. Furthermore, the softening point of the glass powder 2 can be adjusted in the range of 650 to 1000 ° C., and the ultimate temperature evaluation method according to the present embodiment is suitable for evaluation of the ultimate temperature in such a temperature range. Since this temperature range overlaps with the temperature at which the crystallinity of asbestos is denatured, this embodiment is also suitable for evaluating the ultimate temperature of the member 1 for surely detoxifying asbestos. Furthermore, the softening point of the glass powder 2 can be adjusted by changing the composition of the glass powder 2, or multiple types of glass powders 2 having different softening points can be used, so that the ultimate temperature can be accurately evaluated. It becomes.

図1(b)は、アスベストを含有する部材1の無害化のための加熱処理に使用される加熱炉4の一例を、概略的に示す。本実施形態による加熱処理時の到達温度評価方法は、例えばこのように加熱炉4によって部材1に加熱処理が施される場合に、適用される。   FIG.1 (b) shows roughly an example of the heating furnace 4 used for the heat processing for detoxifying the member 1 containing asbestos. The ultimate temperature evaluation method during the heat treatment according to the present embodiment is applied, for example, when the member 1 is subjected to the heat treatment by the heating furnace 4 as described above.

この加熱炉4は、一端に入口41、他端に出口42をそれぞれ備える、細長いトンネル炉である。   The heating furnace 4 is an elongated tunnel furnace provided with an inlet 41 at one end and an outlet 42 at the other end.

この加熱炉4による加熱処理の前に、既述のとおり複数の部材1は予め積み重ねられることで積載物3とされると共に、この積載物3において、互いに重なり合う部材1同士の間に、ガラス粉体2が配置される。加熱処理時には、積載物3が入口41から加熱炉4内に導入され、コンベアなどの搬送装置の上で一定速度で送られ、加熱炉4内を通過した後に、出口42から加熱炉4外へ送り出される。   Prior to the heat treatment by the heating furnace 4, as described above, the plurality of members 1 are stacked in advance to form a load 3, and in the load 3, glass powder is placed between the members 1 that overlap each other. The body 2 is arranged. At the time of heat treatment, the load 3 is introduced into the heating furnace 4 from the inlet 41, sent at a constant speed on a conveying device such as a conveyor, passes through the heating furnace 4, and then exits the heating furnace 4 from the outlet 42. Sent out.

加熱炉4内は、入口41側から順に、第1加熱ゾーン43、第2加熱ゾーン44、第3加熱ゾーン45、及び冷却ゾーン46に区切られている。各ゾーン間は、カーテンなどで仕切られてもよく、或いは仕切られていなくてもよい。   The inside of the heating furnace 4 is divided into a first heating zone 43, a second heating zone 44, a third heating zone 45, and a cooling zone 46 in order from the inlet 41 side. Each zone may be partitioned by a curtain or the like, or may not be partitioned.

第1乃至第3の加熱ゾーン43,44,45内にはそれぞれ、外部加熱手段と内部加熱手段が設けられている。外部加熱手段は、それ自体が熱を放出することによって、部材1に外側から熱を加えて、部材1を外部から加熱させる手段であり、その具体としては電気ヒータなどのヒータが挙げられる。内部加熱手段は、それ自体が熱を放出することはなく、部材1を内部から加熱させる手段であり、その具体例としてマイクロ波発振器が挙げられる。マイクロ波発振器が使用されると、マイクロ波(高周波)による高周波誘電加熱によって部材1自体が発熱し、部材1が内部から加熱される。マイクロ波の周波数としては、日本の電波法で許可されている915MHz帯、及び2.45GHz帯が挙げられる。   External heating means and internal heating means are provided in the first to third heating zones 43, 44, 45, respectively. The external heating means is a means for heating the member 1 from the outside by applying heat to the member 1 from the outside by releasing the heat, and specific examples thereof include a heater such as an electric heater. The internal heating means is a means for heating the member 1 from the inside without releasing heat by itself, and a specific example thereof is a microwave oscillator. When a microwave oscillator is used, the member 1 itself generates heat by high-frequency dielectric heating using microwaves (high frequency), and the member 1 is heated from the inside. Examples of the microwave frequency include a 915 MHz band and a 2.45 GHz band permitted by the Japanese Radio Law.

部材1の加熱処理にあたっては、積載物3が入口41から加熱炉4内に導入され、第1加熱ゾーン43、第2加熱ゾーン44、第3加熱ゾーン45で、順次加熱された後、冷却ゾーン46で冷却され、更に出口42から外部を送り出される。   In the heat treatment of the member 1, the load 3 is introduced into the heating furnace 4 through the inlet 41, and is sequentially heated in the first heating zone 43, the second heating zone 44, and the third heating zone 45, and then the cooling zone. After cooling at 46, the outside is further sent out from the outlet 42.

例えば第1加熱ゾーンでは、部材1が加熱されることにより、部材1中の自由水及び結晶水が飛散する。第1加熱ゾーン43では内部加熱手段が比較的小さな出力で作動すると、部材1の内部での昇温速度が緩やかになり、このため部材1から自由水や結晶水が徐々に蒸発するようになる。自由水とは、部材1に取り込まれている、結露水、気中水分、雨水等や、水硬反応により部材1が作製される場合の反応の余剰水などを指す。これにより部材1の内部での自由水及び結晶水の急激な蒸発が抑制され、このような急激な水の蒸発による部材1の爆裂が抑制される。   For example, in the first heating zone, when the member 1 is heated, free water and crystal water in the member 1 are scattered. In the first heating zone 43, when the internal heating means is operated with a relatively small output, the rate of temperature rise inside the member 1 becomes gradual, so that free water and crystal water gradually evaporate from the member 1. . Free water refers to condensed water, atmospheric moisture, rainwater, etc. taken into the member 1, surplus water for reaction when the member 1 is produced by a hydraulic reaction, and the like. As a result, rapid evaporation of free water and crystal water inside the member 1 is suppressed, and explosion of the member 1 due to such rapid evaporation of water is suppressed.

第2加熱ゾーンで部材1が更に加熱される。第2加熱ゾーンでは例えば内部加熱手段の出力が第1加熱ゾーンよりも高くされることで、部材1の内部の温度上昇が大きくなり、部材1の内部と表面の温度とが近づけられる。   The member 1 is further heated in the second heating zone. In the second heating zone, for example, when the output of the internal heating means is made higher than that in the first heating zone, the temperature rise inside the member 1 is increased, and the temperature inside the member 1 and the surface temperature are brought closer.

第3加熱ゾーンでは、部材1がアスベストの結晶性が変性する温度まで加熱される。これにより、部材1の無害化がなされる。   In the third heating zone, the member 1 is heated to a temperature at which the asbestos crystallinity is modified. As a result, the member 1 is rendered harmless.

尚、図1(b)に示される加熱炉4は、内部が複数の加熱ゾーンに区切られているが、加熱炉4は複数の加熱ゾーンに区切られていなくてもよい。また、加熱炉4が加熱手段として外部加熱手段と内部加熱手段のうち、外部加熱手段のみを備えていてもよく、内部加熱手段のみを備えていてもよい。   In addition, although the inside of the heating furnace 4 shown by FIG.1 (b) is divided | segmented into the some heating zone, the heating furnace 4 does not need to be divided into the some heating zone. Moreover, the heating furnace 4 may be provided with only an external heating means among an external heating means and an internal heating means as a heating means, and may be provided with only an internal heating means.

以下に、本実施形態による到達温度の評価方法の有用性を明らかにするための実施例を示す。尚、以下の実施例は、本実施形態による到達温度の評価方法の具体的な適用例を示すものではない。   Below, the Example for clarifying the usefulness of the evaluation method of the ultimate temperature by this embodiment is shown. The following examples do not show specific application examples of the reached temperature evaluation method according to the present embodiment.

[試験例1]
部材として、アスベストを含有する化粧スレート(カラーベスト(登録商標)の従来品)の廃材を用意した。
[Test Example 1]
As a member, a waste material of cosmetic slate containing asbestos (conventional product of color vest (registered trademark)) was prepared.

ガラス粉体2として、次の三種類を用意した。尚、軟化点は、示差熱分析装置(DTA)により測定した値である。
ガラス粉体A:奥野製薬工業株式会社製の試作G3−3545、軟化点770℃、平均粒径3μm。
ガラス粉体B:奥野製薬工業株式会社製、品番GF5770、軟化点740℃、平均粒径3μm。
ガラス粉体C:奥野製薬工業株式会社製の試作G3−3855、軟化点669℃、平均粒径3μm。
The following three types of glass powder 2 were prepared. The softening point is a value measured by a differential thermal analyzer (DTA).
Glass powder A: Prototype G3-3545 manufactured by Okuno Pharmaceutical Co., Ltd., softening point 770 ° C., average particle size 3 μm.
Glass powder B: manufactured by Okuno Pharmaceutical Co., Ltd., product number GF5770, softening point 740 ° C., average particle size 3 μm.
Glass powder C: Prototype G3-3855 manufactured by Okuno Pharmaceutical Co., Ltd., softening point 669 ° C., average particle size 3 μm.

図2に示すように、三つの部材11,12,13を積み重ねて積載物3を構成した。積載物中の下から二段目の部材12は、その中心線で切断して二つの部分121,122に分割し、この二つの部分121,122の間にはシース熱電対5を配置した。二段目の部材12の上には、ガラス粉体2(ガラス粉体A、ガラス粉体B及びガラス粉体C)を、それぞれ1.5〜2.0gの範囲に収まるように配置した。各ガラス粉体2は、図2(b)に示されるように、二段目の部材の上のそれぞれ別々の位置に、密集させて配置した。この各ガラス粉体2を間に介在させて、図2(a)に示されるように二段目の部材12の上に三段目の部材13を重ねた。   As shown in FIG. 2, the load 3 is configured by stacking three members 11, 12, and 13. The member 12 at the second stage from the bottom in the load was cut at the center line and divided into two parts 121 and 122, and the sheath thermocouple 5 was disposed between the two parts 121 and 122. On the second-stage member 12, the glass powder 2 (glass powder A, glass powder B, and glass powder C) was disposed so as to be in the range of 1.5 to 2.0 g. As shown in FIG. 2B, the glass powders 2 were densely arranged at different positions on the second stage member. Each glass powder 2 was interposed, and a third-stage member 13 was stacked on the second-stage member 12 as shown in FIG.

この積載物3を、図2(a)に示すようにるつぼ6で支持して電気炉内に配置し、シース熱電対5による温度が目標温度に達するまで加熱した。目標温度は、650℃、700℃、750℃、及び800℃及び850℃とした。   The load 3 was supported by a crucible 6 as shown in FIG. 2A and placed in an electric furnace, and heated until the temperature of the sheath thermocouple 5 reached the target temperature. The target temperatures were 650 ° C, 700 ° C, 750 ° C, 800 ° C and 850 ° C.

加熱処理後の積載物3を電気炉から取り出し、三種類の各ガラス粉体2の外観を目視で観察し、粒子同士の溶着が認められる場合を「溶着あり」、粒子同士の溶着が認められない場合を「溶着なし」と評価した。その結果を、下記表1に示す。   The load 3 after the heat treatment is taken out from the electric furnace, the appearance of each of the three types of glass powder 2 is visually observed, and when the particles are observed to be welded, “there is welding”, the particles are welded. The case where there was no welding was evaluated as “no welding”. The results are shown in Table 1 below.

Figure 2011214998
Figure 2011214998

表1に示されるように、ガラス粉体2における溶着の有無、及びこのガラス粉体2の軟化点は、設定温度の値とよく相関している。これにより、本実施形態による到達温度の評価方法によって、積載物3中の部材1の到達温度が正確に評価可能なことが、確認できた。   As shown in Table 1, the presence or absence of welding in the glass powder 2 and the softening point of the glass powder 2 correlate well with the set temperature value. Thereby, it has confirmed that the ultimate temperature of the member 1 in the load 3 can be accurately evaluated by the ultimate temperature evaluation method according to the present embodiment.

[試験例2]
下記の八種類のガラス粉体2を用意した。
ガラス粉体D:奥野製薬工業株式会社製の試作品、軟化点863℃、平均粒径10μm。
ガラス粉体E:日硝マテリアル株式会社製、品番E200、軟化点847℃、平均粒径20μm。
ガラス粉体F:奥野製薬工業株式会社製の試作品、軟化点853℃、平均粒径30μm。
ガラス粉体G:奥野製薬工業株式会社製の試作品、軟化点884℃、平均粒径50μm。
ガラス粉体H:奥野製薬工業株式会社製の試作品、軟化点847℃、平均粒径70μm。
ガラス粉体I:日硝マテリアル株式会社製、品番E−48−80、軟化点847℃、平均粒径270μm。
ガラス粉体J:日硝マテリアル株式会社製、品番E22−80、軟化点847℃、平均粒径420μm。
ガラス粉体K:日硝マテリアル株式会社製、品番E16−18、軟化点847℃℃、平均粒径1230μm。
[Test Example 2]
The following eight types of glass powder 2 were prepared.
Glass powder D: Prototype manufactured by Okuno Pharmaceutical Co., Ltd., softening point 863 ° C., average particle size 10 μm.
Glass powder E: manufactured by Nissho Material Co., Ltd., product number E200, softening point 847 ° C., average particle size 20 μm.
Glass powder F: prototype manufactured by Okuno Pharmaceutical Co., Ltd., softening point 853 ° C., average particle size 30 μm.
Glass powder G: prototype manufactured by Okuno Pharmaceutical Co., Ltd., softening point 884 ° C., average particle size 50 μm.
Glass powder H: Prototype manufactured by Okuno Pharmaceutical Co., Ltd., softening point 847 ° C., average particle size 70 μm.
Glass powder I: manufactured by Nissho Material Co., Ltd., product number E-48-80, softening point 847 ° C., average particle size 270 μm.
Glass powder J: manufactured by Nissho Material Co., Ltd., product number E22-80, softening point 847 ° C., average particle size 420 μm.
Glass powder K: manufactured by Nissho Material Co., Ltd., product number E16-18, softening point 847 ° C., average particle size 1230 μm.

各ガラス粉体2を用い、試験例1と同じ手法により、部材1に加熱処理を施した。但し、加熱処理時のシース熱電対5による設定温度は950℃とした。   Using each glass powder 2, the member 1 was heat-treated by the same method as in Test Example 1. However, the set temperature by the sheath thermocouple 5 during the heat treatment was 950 ° C.

加熱処理後の積載物3を電気炉から取り出し、各ガラス粉体2の外観を目視で観察した。その結果、ガラス粉体D〜Jでは、粒子同士の溶着が速やかに確認できた。一方、平均粒径が1000μmより大きいガラス粉体Kの場合では、粒子同士が溶着していたが、それを確認するために、ガラス粉体D〜Jの場合よりも長い時間を要した。   The load 3 after the heat treatment was taken out of the electric furnace, and the appearance of each glass powder 2 was visually observed. As a result, in the glass powders D to J, it was possible to quickly confirm the welding of the particles. On the other hand, in the case of the glass powder K having an average particle size of more than 1000 μm, the particles were welded to each other. However, in order to confirm this, a longer time was required than in the case of the glass powders D to J.

1 部材
2 ガラス粉体
1 member 2 glass powder

Claims (3)

複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、互いに重なり合う前記部材の間にガラス粉体を介在させ、加熱処理後の前記ガラス粉体の溶着の有無を、ガラス粉体が配置されている位置における加熱処理時の部材の到達温度の指標とする、加熱処理時の到達温度評価方法。   When heat-treating this member in a state where a plurality of members are stacked, glass powder is disposed between the members that overlap each other, and the glass powder is arranged to indicate whether or not the glass powder is welded after the heat-treatment. An reached temperature evaluation method during heat treatment, which is used as an index of the temperature reached by a member during heat treatment at a position where the heat treatment is performed. 互いに重なり合う前記部材の間に、互いに軟化温度の異なる複数種の前記ガラス粉体を介在させる請求項1に記載の加熱処理時の到達温度評価方法。   The reached temperature evaluation method during heat treatment according to claim 1, wherein a plurality of types of glass powders having different softening temperatures are interposed between the overlapping members. 前記ガラス粉体の平均粒径が1〜1000μmの範囲である請求項1又は2に記載の加熱処理時の到達温度評価方法。   3. The method for evaluating an achieved temperature during heat treatment according to claim 1, wherein the glass powder has an average particle size in a range of 1 to 1000 μm.
JP2010083340A 2010-03-31 2010-03-31 Achieved temperature evaluation method in heat treatment Pending JP2011214998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083340A JP2011214998A (en) 2010-03-31 2010-03-31 Achieved temperature evaluation method in heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083340A JP2011214998A (en) 2010-03-31 2010-03-31 Achieved temperature evaluation method in heat treatment

Publications (1)

Publication Number Publication Date
JP2011214998A true JP2011214998A (en) 2011-10-27

Family

ID=44944892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083340A Pending JP2011214998A (en) 2010-03-31 2010-03-31 Achieved temperature evaluation method in heat treatment

Country Status (1)

Country Link
JP (1) JP2011214998A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304981A (en) * 2000-04-26 2001-10-31 Showa Electric Wire & Cable Co Ltd Monitor for measuring temperature in sealed container
JP2002062055A (en) * 2000-08-18 2002-02-28 Aida Kagaku Kogyo Kk Temperature sensing method, method for manufacturing precious metal sintered product and method for manufacturing cloisonne ware
JP2005091045A (en) * 2003-09-12 2005-04-07 Yamari Sangyo Kk Thin film resistance thermometer sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304981A (en) * 2000-04-26 2001-10-31 Showa Electric Wire & Cable Co Ltd Monitor for measuring temperature in sealed container
JP2002062055A (en) * 2000-08-18 2002-02-28 Aida Kagaku Kogyo Kk Temperature sensing method, method for manufacturing precious metal sintered product and method for manufacturing cloisonne ware
JP2005091045A (en) * 2003-09-12 2005-04-07 Yamari Sangyo Kk Thin film resistance thermometer sheet

Similar Documents

Publication Publication Date Title
Zuo et al. Microwave versus conventional sintering: estimate of the apparent activation energy for densification of α-alumina and zinc oxide
US8431878B2 (en) High temperature furnace using microwave energy
CA2912922C (en) Transporting device for hot and thin-walled steel parts
Santos et al. Microwave processing of porcelain tableware using a multiple generator configuration
US6712298B2 (en) Method and device for crushing glass bodies by means of microwave heating
Santos et al. Microwave versus conventional porcelain firing: Temperature measurement
Triantafyllidis et al. Crack-free densification of ceramics by laser surface treatment
Macaigne et al. Microwave sintering of pure and TiO2 doped MgAl2O4 ceramic using calibrated, contactless in-situ dilatometry
JP2011214998A (en) Achieved temperature evaluation method in heat treatment
JP2015129617A (en) Microwave dryer and microwave drying method
Renato de Castro et al. Carbothermal reduction of iron ore applying microwave energy
CN108088241A (en) A kind of microwave high-temperature revolution calcining kiln of high power tube application
JP2003268465A (en) Method for manufacturing copper-based sintered bearing material
JP5729277B2 (en) Solid reduction furnace
JP5086986B2 (en) Asbestos detoxification treatment method
Kogut et al. The research of ceramic materials for applications in the glass industry including microwave heating techniques
CN104198525B (en) A kind of method --- method of comparison for measuring metallurgical insulation material heat insulation effect
Santos et al. Using microwave radiation for porcelain tableware sintering
Thomser et al. Thermal shock testing of refractory materials using an electron beam materials test facility
CN106082164B (en) A kind of carbon film and its production method and production equipment
CN214333354U (en) Box-type electric furnace for workpiece processing
JP6311420B2 (en) Method for producing reduced iron and solid reduction furnace
Savu Microwave differential thermal analysis technique of the Fe2O3+ BaCo3 homogeneous mixture
JP2013112876A (en) Heating reducing device of agglomerate
Constantinescu et al. Elements for the modeling of the thermal process in heating furnaces for steel forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212