JP2011214441A - Exhaust gas treatment device for diesel engine - Google Patents

Exhaust gas treatment device for diesel engine Download PDF

Info

Publication number
JP2011214441A
JP2011214441A JP2010081112A JP2010081112A JP2011214441A JP 2011214441 A JP2011214441 A JP 2011214441A JP 2010081112 A JP2010081112 A JP 2010081112A JP 2010081112 A JP2010081112 A JP 2010081112A JP 2011214441 A JP2011214441 A JP 2011214441A
Authority
JP
Japan
Prior art keywords
combustible gas
exhaust
air
liquid fuel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010081112A
Other languages
Japanese (ja)
Other versions
JP5470136B2 (en
Inventor
Takayuki Onishi
崇之 大西
Keita Naito
慶太 内藤
Norikazu Takemoto
能和 竹本
Toshio Nakahira
敏夫 中平
Kozo Yoshida
鉱三 吉田
Mitsugi Okuda
貢 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2010081112A priority Critical patent/JP5470136B2/en
Publication of JP2011214441A publication Critical patent/JP2011214441A/en
Application granted granted Critical
Publication of JP5470136B2 publication Critical patent/JP5470136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment device for a diesel engine, capable of improving the regenerating efficiency of a DPF (Diesel Particulate Filter).SOLUTION: Combustible gas 4 is formed by a combustible gas former 1, released from a combustible gas outlet 6 upstream of the DPF 5 to an exhaust passage 7, and combusted with oxygen in exhaust gas 8. The combustion heat raises the temperature of the exhaust gas 8, and the heat of the exhaust gas 8 burns PM (Particulate Matter) to be removed from the DPF 5. A combustible gas forming catalyst chamber 11 is provided in the combustible gas former 1, and a combustible gas forming catalyst 13 is stored in the combustible gas forming catalyst chamber 11. Air 3 and liquid fuel 2 are supplied to the combustible gas former 1 to form the combustible gas 4 with the combustible gas forming catalyst 13. The combustible gas 4 is supplied to a DOC (Diesel Oxidation Catalyst) 100 arranged upstream of the DPF 5. In accordance with the temperature of exhaust gas upstream of the DOC 100, the amount of the air 3 and the liquid fuel 2 to be supplied to the combustible gas former 1 is computed.

Description

本発明は、ディーゼルエンジンの排気処理装置に関し、詳しくは、DPFの再生効率を高めることができるディーゼルエンジンの排気処理装置に関する。
この明細書及び特許請求の範囲の用語中、DPFはディーゼル・パティキュレート・フィルタ、PMは排気中の粒子状物質、DOCはディーゼル酸化触媒を意味する。
The present invention relates to an exhaust treatment device for a diesel engine, and more particularly to an exhaust treatment device for a diesel engine that can increase the regeneration efficiency of a DPF.
In this specification and claims, DPF means a diesel particulate filter, PM means particulate matter in exhaust gas, and DOC means a diesel oxidation catalyst.

従来、ディーゼルエンジンの排気処理装置として、可燃性ガス生成器で可燃性ガスを生成させ、この可燃性ガスをDPFの上流で可燃性ガス放出口から排気通路に放出し、この可燃性ガスを排気中の酸素で燃焼させ、その燃焼熱で排気を昇温させ、排気の熱でDPFに溜まったPMを燃焼除去することができるようにし、可燃性ガス生成器に空気と液体燃料とを供給することにより、可燃性ガス生成触媒で可燃性ガスを生成させ、この可燃性ガスをDPFの上流に配置したDOCに供給するようにしたものがある(例えば、特許文献1参照)。
この種の排気処理装置によれば、排気の温度が低い場合にも、可燃性ガスをDOCで酸化燃焼させて、排気を昇温させ、DPFに溜まったPMを燃焼除去させることができる利点がある。
しかし、この従来技術では、DOCの下流側排気温度に基づいて、可燃性ガス生成器への空気と液体燃料の供給量を演算するようにしているため、問題がある。
Conventionally, as an exhaust treatment device for a diesel engine, a combustible gas is generated by a combustible gas generator, and the combustible gas is discharged from the combustible gas discharge port to the exhaust passage upstream of the DPF, and the combustible gas is exhausted. It burns with the oxygen in it, raises the temperature of the exhaust gas with the combustion heat, makes it possible to burn and remove PM accumulated in the DPF with the heat of the exhaust gas, and supplies air and liquid fuel to the combustible gas generator Thus, there is one in which a combustible gas is generated by a combustible gas generating catalyst, and this combustible gas is supplied to a DOC disposed upstream of the DPF (for example, see Patent Document 1).
According to this type of exhaust treatment apparatus, even when the temperature of the exhaust gas is low, the combustible gas can be oxidized and burned with DOC, the temperature of the exhaust gas can be raised, and the PM accumulated in the DPF can be burned and removed. is there.
However, this conventional technique has a problem because the supply amount of air and liquid fuel to the combustible gas generator is calculated based on the downstream exhaust temperature of the DOC.

特開2005−256769号公報(図1参照)Japanese Patent Laying-Open No. 2005-256769 (see FIG. 1)

《問題》 DPFの再生効率が低い。
この従来技術では、DOCの下流側排気温度に基づいて、可燃性ガス生成器への空気と液体燃料の供給量を演算するようにしているため、負荷変動や回転変動によるDOCの上流側排気温度の変化が、DOCの蓄熱作用によって緩和され、DOCの下流側排気温度は鈍い変化となり、可燃性ガス生成器への空気と液体燃料の供給量の演算値が排気の温度変化に迅速に対応したものになっておらず、可燃性ガスの生成量に過不足が生じ、DPFの再生効率が低い。
<< Problem >> DPF regeneration efficiency is low.
In this prior art, since the supply amount of air and liquid fuel to the combustible gas generator is calculated based on the downstream exhaust temperature of the DOC, the upstream exhaust temperature of the DOC due to load fluctuations and rotation fluctuations. Of the DOC is moderated by the heat storage action of the DOC, the exhaust temperature on the downstream side of the DOC becomes a dull change, and the calculated value of the supply amount of air and liquid fuel to the combustible gas generator quickly corresponds to the temperature change of the exhaust The amount of combustible gas produced is excessive and insufficient, and the DPF regeneration efficiency is low.

本発明の課題は、DPFの再生効率を高めることができるディーゼルエンジンの排気処理装置を提供することにある。   The subject of this invention is providing the exhaust-gas-treatment apparatus of the diesel engine which can improve the regeneration efficiency of DPF.

請求項1に係る発明の発明特定事項は、次の通りである。
図1に例示するように、可燃性ガス生成器(1)で可燃性ガス(4)を生成させ、この可燃性ガス(4)をDPF(5)の上流で可燃性ガス放出口(6)から排気通路(7)に放出し、この可燃性ガス(4)を排気(8)中の酸素で燃焼させ、その燃焼熱で排気(8)を昇温させ、排気(8)の熱でDPF(5)に溜まったPMを燃焼除去することができるようにし、
可燃性ガス生成器(1)に可燃性ガス生成触媒室(11)を設け、この可燃性ガス生成触媒室(11)に可燃性ガス生成触媒(13)を収容し、可燃性ガス生成器(1)に空気(3)と液体燃料(2)とを供給することにより、可燃性ガス生成触媒(13)で可燃性ガス(4)を生成させ、この可燃性ガス(4)をDPF(5)の上流に配置したDOC(100)に供給する、ディーゼルエンジンの排気処理装置において、
DOC(100)の上流側排気温度(例えば、DOCの入口排気温度)に基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算するようにした、ことを特徴とするディーゼルエンジンの排気処理装置。
Invention specific matters of the invention according to claim 1 are as follows.
As illustrated in FIG. 1, a combustible gas generator (1) generates a combustible gas (4), and the combustible gas (4) is generated upstream of the DPF (5) by a combustible gas discharge port (6). The exhaust gas is discharged from the exhaust passage (7), the combustible gas (4) is burned with oxygen in the exhaust (8), the temperature of the exhaust (8) is raised by the heat of combustion, and the DPF is heated by the heat of the exhaust (8). The PM accumulated in (5) can be burned and removed,
The combustible gas generator (1) is provided with a combustible gas generating catalyst chamber (11), the combustible gas generating catalyst (13) is accommodated in the combustible gas generating catalyst chamber (11), and a combustible gas generator ( By supplying air (3) and liquid fuel (2) to 1), a combustible gas (4) is generated by the combustible gas generating catalyst (13), and this combustible gas (4) is converted into DPF (5 In an exhaust treatment device for a diesel engine, which is supplied to a DOC (100) arranged upstream of
Based on the upstream exhaust temperature of the DOC (100) (for example, the DOC inlet exhaust temperature), the supply amount of the air (3) and the liquid fuel (2) to the combustible gas generator (1) is calculated. An exhaust treatment device for a diesel engine, characterized by that.

(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 DPFの再生効率を高めることができる。
図1に例示するように、DOC(100)の上流側排気温度に基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算するようにしたので、負荷変動や回転変動によるDOC(100)の上流側排気温度の変化が、DOC(100)の蓄熱作用の影響を受ける前に、そのまま可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量の演算に反映され、その演算値が排気の温度変化に迅速に対応したものになっていることから、可燃性ガス(4)の生成量が適正になり、DPF(5)の再生効率を高めることができる。
(Invention of Claim 1)
The invention according to claim 1 has the following effects.
<Effect> The regeneration efficiency of the DPF can be increased.
As illustrated in FIG. 1, the supply amount of air (3) and liquid fuel (2) to the combustible gas generator (1) is calculated based on the upstream exhaust temperature of the DOC (100). Therefore, before the change in the exhaust temperature on the upstream side of the DOC (100) due to load fluctuation or rotation fluctuation is affected by the heat storage action of the DOC (100), the air (3) directly enters the combustible gas generator (1). Is reflected in the calculation of the supply amount of liquid fuel (2), and the calculated value corresponds to the temperature change of the exhaust gas quickly, so that the amount of combustible gas (4) generated becomes appropriate, The regeneration efficiency of DPF (5) can be increased.

(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 この排気処理装置を機械カム式燃料噴射ポンプを備えたディーゼルエンジン等にも用いることができる。
DOC(100)の上流側排気温度とエンジン回転数とに基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算することにより、この演算に当たり、燃料噴射弁から燃焼室への燃料噴射量や吸気量の検出を不要にしたので、この排気処理装置を機械カム式燃料噴射ポンプを備えたディーゼルエンジンやエアフローセンサを備えていないディーゼルエンジンにも用いることができる。
(Invention of Claim 2)
The invention according to claim 2 has the following effect in addition to the effect of the invention according to claim 1.
<Effect> This exhaust treatment device can be used for a diesel engine equipped with a mechanical cam type fuel injection pump.
Based on the upstream exhaust temperature of the DOC (100) and the engine speed, the amount of air (3) and liquid fuel (2) supplied to the combustible gas generator (1) is calculated. Since it is no longer necessary to detect the amount of fuel injected from the fuel injection valve into the combustion chamber and the amount of intake air, this exhaust treatment device can be applied to diesel engines equipped with mechanical cam fuel injection pumps and diesel engines not equipped with air flow sensors. Can be used.

本発明の実施形態に係るディーゼルエンジンの排気処理装置の模式図である。1 is a schematic diagram of an exhaust treatment device for a diesel engine according to an embodiment of the present invention. 図1に示す装置の可燃性ガス発生器を備えた排気管の縦断面図である。It is a longitudinal cross-sectional view of the exhaust pipe provided with the combustible gas generator of the apparatus shown in FIG. 図2に示す可燃性ガス発生器の組み付け構造を説明する図で、図3(A)は図2のIIIA矢視部分の拡大図、図3(B)は第1変形例の図3(A)相当図である。FIGS. 3A and 3B are diagrams illustrating the assembly structure of the combustible gas generator shown in FIG. 2, FIG. 3A is an enlarged view of a portion taken along the line IIIA in FIG. ) Equivalent figure. 可燃性ガス発生器の組み付け構造の他の変形例を説明する図で、図4(A)は第2変形例の図3(A)相当図、図4(B)は第3変形例の図3(A)相当図である。FIG. 4A is a diagram for explaining another modified example of the assembly structure of the combustible gas generator, FIG. 4A is a diagram corresponding to FIG. 3A of the second modified example, and FIG. 3 is a diagram corresponding to (A). 図2に示す可燃性ガス発生器の空燃混合室への液体燃料等の供給構造を説明する図で、図5(A)は図2のVA−VA線断面図、図5(B)は図5(A)のB−B線断面図である。5A and 5B are views for explaining a supply structure of liquid fuel or the like to the air-fuel mixing chamber of the combustible gas generator shown in FIG. 2, FIG. 5A is a sectional view taken along the line VA-VA in FIG. 2, and FIG. FIG. 6 is a sectional view taken along line BB in FIG. 図5に示す空燃混合室への液体燃料等の供給構造で用いる部品の説明図で、図6(A)は芯材を内嵌させた環状壁の平面図、図6(B)は下側のガスケットの平面図、図6(C)は上側のガスケットの平面図である。FIG. 6A is a plan view of an annular wall in which a core member is fitted, and FIG. 6B is a bottom view. FIG. 6C is a plan view of the upper gasket, and FIG. 6C is a plan view of the upper gasket. 図5に示す空燃混合室への液体燃料等の供給構造の第1変形例を説明する図3(A)相当図である。FIG. 6 is a view corresponding to FIG. 3A for explaining a first modification of the structure for supplying liquid fuel or the like to the air-fuel mixing chamber shown in FIG. 5. 図5に示す空燃混合室への液体燃料等の供給構造の変形例を説明する図で、図8(A)は第1変形例の図5(A)相当図、図8(B)は図8(A)のB−B線断面図、図8(C)は第2変形例の図8(B)相当図、図8(D)は図8(C)の第2変形例を他の個所で縦断した縦断面図である。FIG. 8A is a diagram for explaining a modification of the structure for supplying liquid fuel or the like to the air-fuel mixing chamber shown in FIG. 5. FIG. 8A is a diagram corresponding to FIG. 5A of the first modification, and FIG. FIG. 8A is a cross-sectional view taken along line BB in FIG. 8A, FIG. 8C is a view corresponding to FIG. 8B of the second modification, and FIG. 8D is the second modification of FIG. It is the longitudinal cross-sectional view longitudinally cut in the part. 図2に示す可燃性ガス発生器の二次空気混合室の区画構造を説明する図で、図9(A)は図2のIXA−IXA線断面図、図9(B)は変形例の図9(A)相当図である。9A and 9B are diagrams for explaining a partition structure of a secondary air mixing chamber of the combustible gas generator shown in FIG. 2, FIG. 9A is a cross-sectional view taken along the line IXA-IXA in FIG. 2, and FIG. FIG. 図2に示す排気管の燃焼触媒の固定構造を説明する図で、図10(A)は図2の要部拡大図、図10(B)は図10(A)のB−B線断面図、図10(C)は第1変形例の図10(A)相当図、図10(D)は第2変形例の図10(A)相当図、図10(E)は第3変形例の図10(A)相当図、図10(F)は第4変形例の図10(A)相当図である。FIGS. 10A and 10B are diagrams for explaining a structure for fixing a combustion catalyst for an exhaust pipe shown in FIG. 2, FIG. 10A is an enlarged view of a main part of FIG. 10C is a diagram corresponding to FIG. 10A of the first modification, FIG. 10D is a diagram corresponding to FIG. 10A of the second modification, and FIG. 10E is a diagram of the third modification. FIG. 10A is a view corresponding to FIG. 10A, and FIG. 10F is a view corresponding to FIG. 図1に示す排気処理装置を備えたディーゼルエンジンの要部側面図である。It is a principal part side view of the diesel engine provided with the exhaust processing apparatus shown in FIG. 図1に示す排気処理装置を備えたディーゼルエンジンの要部平面図である。It is a principal part top view of the diesel engine provided with the exhaust-gas processing apparatus shown in FIG. 図1に示す排気処理装置を備えたディーゼルエンジンの要部正面図である。It is a principal part front view of the diesel engine provided with the exhaust-gas processing apparatus shown in FIG. 図1に示す排気処理装置を備えたディーゼルエンジンのDPF再生処理のフローチャートである。It is a flowchart of the DPF regeneration process of the diesel engine provided with the exhaust processing apparatus shown in FIG. 図14のフローチャートの続きである。It is a continuation of the flowchart of FIG.

図1〜図15は本発明の実施形態に係るディーゼルエンジンの排気処理装置を説明する図であり、この実施形態では、立形多気筒ディーゼルエンジンの排気処理装置について説明する。   1 to 15 are diagrams for explaining an exhaust treatment device for a diesel engine according to an embodiment of the present invention. In this embodiment, an exhaust treatment device for a vertical multi-cylinder diesel engine will be explained.

排気処理装置の概要は、次の通りである。
図11〜図13に示すように、シリンダヘッド(112)の横側に排気マニホルド(113)を取り付け、この排気マニホルド(113)の上部に過給機(75)を取り付け、この過給機(75)の排気タービン(76)に排気管(66)を介してDPFケース(67)を接続している。排気管(66)には可燃性ガス生成器(1)を取り付けている。
The outline of the exhaust treatment device is as follows.
As shown in FIGS. 11 to 13, an exhaust manifold (113) is attached to the side of the cylinder head (112), and a supercharger (75) is attached to the upper portion of the exhaust manifold (113). A DPF case (67) is connected to an exhaust turbine (76) of 75) via an exhaust pipe (66). A combustible gas generator (1) is attached to the exhaust pipe (66).

図1に示すように、可燃性ガス生成器(1)で可燃性ガス(4)を生成させ、この可燃性ガス(4)をDPF(5)上流で可燃性ガス放出口(6)から排気通路(7)に放出し、この可燃性ガス(4)を排気(8)中の酸素で燃焼させ、その燃焼熱で排気(8)を昇温させ、排気(8)の熱でDPF(5)に溜まったPMを燃焼除去することができるようにしている。   As shown in FIG. 1, the combustible gas generator (1) generates a combustible gas (4), and the combustible gas (4) is exhausted from the combustible gas discharge port (6) upstream of the DPF (5). The combustible gas (4) is discharged into the passage (7) and burned with oxygen in the exhaust (8). The temperature of the exhaust (8) is increased by the combustion heat, and the DPF (5 ) Can be removed by combustion.

図1に示すように、DPFケース(67)には上流側にDOC(100)を、下流側にDPF(5)を収容している。DOCはディーゼル酸化触媒の略称である。
DPF(5)は、セラミックのハニカム担体で、隣合うセル(5a)の端部を交互に目封じたウォールフローモノリスである。セル(5a)の内部とセル(5a)の壁(5b)を排気が通過し、セル(5a)の壁(5b)でPMを捕捉する。
DOC(100)は、セラミックのハニカム担体で、酸化触媒を担持させ、セル(100a)の両端を開口したフロースルー構造で、セル(100a)の内部を排気(8)が通過するようになっている。可燃性ガス(4)は排気(8)とともにDOC(100)を通過する際、DOC(100)により可燃性ガス(4)が排気(8)中の酸素で触媒燃焼され、排気(8)が昇温され、排気(8)の熱でDPF(5)に溜まったPMが燃焼除去される。
As shown in FIG. 1, the DPF case (67) accommodates the DOC (100) on the upstream side and the DPF (5) on the downstream side. DOC is an abbreviation for diesel oxidation catalyst.
The DPF (5) is a wall flow monolith which is a ceramic honeycomb carrier and in which the ends of adjacent cells (5a) are alternately plugged. The exhaust gas passes through the inside of the cell (5a) and the wall (5b) of the cell (5a), and traps PM at the wall (5b) of the cell (5a).
The DOC (100) is a ceramic honeycomb carrier that supports an oxidation catalyst and has a flow-through structure in which both ends of the cell (100a) are opened. The exhaust (8) passes through the cell (100a). Yes. When the combustible gas (4) passes through the DOC (100) together with the exhaust (8), the combustible gas (4) is catalytically combusted by oxygen in the exhaust (8) by the DOC (100), and the exhaust (8) is The temperature is raised and PM accumulated in the DPF (5) is burned and removed by the heat of the exhaust (8).

可燃性ガス生成器の構成は、次の通りである。
図1、図2に示すように、可燃性ガス生成器(1)に可燃性ガス生成触媒室(11)を設け、この可燃性ガス生成触媒室(11)に可燃性ガス生成触媒(13)を収容し、可燃性ガス生成触媒室(11)の始端部(上端部)に環状壁(14)を配置し、この環状壁(14)の内側に空燃混合室(12)を形成し、この空燃混合室(12)に空気(3)と液体燃料(2)とを供給することにより、空燃混合室(12)で空燃混合ガス(23)を形成し、この空燃混合ガス(23)を可燃性ガス生成触媒(13)に供給し、可燃性ガス生成触媒(13)で可燃性ガス(4)を生成させる。
The configuration of the combustible gas generator is as follows.
As shown in FIGS. 1 and 2, the combustible gas generator (1) is provided with a combustible gas generating catalyst chamber (11), and the combustible gas generating catalyst chamber (11) is provided with a combustible gas generating catalyst (13). An annular wall (14) is disposed at the start end (upper end) of the combustible gas generation catalyst chamber (11), and an air / fuel mixing chamber (12) is formed inside the annular wall (14), By supplying air (3) and liquid fuel (2) to the air-fuel mixing chamber (12), an air-fuel mixed gas (23) is formed in the air-fuel mixing chamber (12). (23) is supplied to the combustible gas generating catalyst (13), and the combustible gas generating catalyst (13) generates the combustible gas (4).

液体燃料(2)はディーゼル燃料である軽油であり、液体燃料供給源(22)から供給され、空気(3)は空気供給源(21)から供給される。液体燃料供給源(22)は燃料タンク、空気供給源(21)はエアクリーナである。
可燃性ガス生成触媒(13)は、セラミックの担体に酸化触媒成分を担持させたもので、液体燃料(2)を酸化することにより、液体燃料(2)の一部を酸化させ、その発熱により液体燃料(2)を気化させた可燃性ガス(4)を生成する。
可燃性ガス生成触媒(13)は、立体網目構造の金属線材の担体を用いてもよく、部分酸化触媒成分を担持させたものであってもよい。
The liquid fuel (2) is light oil which is a diesel fuel, and is supplied from the liquid fuel supply source (22), and the air (3) is supplied from the air supply source (21). The liquid fuel supply source (22) is a fuel tank, and the air supply source (21) is an air cleaner.
The combustible gas generating catalyst (13) is a ceramic carrier on which an oxidation catalyst component is supported. By oxidizing the liquid fuel (2), a part of the liquid fuel (2) is oxidized and the heat is generated. A combustible gas (4) is generated by vaporizing the liquid fuel (2).
The combustible gas generating catalyst (13) may be a three-dimensionally structured metal wire carrier, or may carry a partial oxidation catalyst component.

図2に示すように、環状壁(14)の中心部に芯材(15)を内嵌させ、環状壁(14)の内周面(16)と芯材(15)の外周面(18)との間に空燃混合室(12)を形成し、空燃混合室(12)の空燃混合ガス(23)が空燃混合室(12)の終端部(下端部)から可燃性ガス生成触媒(13)の中心寄り部に供給されるようにしている。
これにより、熱が逃げ難く、高温状態が維持され、高い触媒活性が得られる可燃性ガス生成触媒(13)の中心寄り部で可燃性ガス(4)の生成を効率よく行うことができる。
As shown in FIG. 2, a core member (15) is fitted into the center of the annular wall (14), and the inner peripheral surface (16) of the annular wall (14) and the outer peripheral surface (18) of the core member (15). The air-fuel mixing chamber (12) is formed between the air-fuel mixing chamber (12) and the air-fuel mixing gas (23) in the air-fuel mixing chamber (12) is generated from the end (lower end) of the air-fuel mixing chamber (12). The catalyst (13) is supplied to the central portion.
As a result, it is possible to efficiently generate the combustible gas (4) at a portion near the center of the combustible gas generating catalyst (13) in which heat is difficult to escape, a high temperature state is maintained, and high catalytic activity is obtained.

図2に示すように、芯材(15)にヒータ(25)を用い、ヒータ(25)の放熱外周面(26)を空燃混合室(12)に露出させ、可燃性ガス(4)の生成開始時には、ヒータ(25)の放熱外周面(26)から空燃混合室(12)に直接に放熱を行うようにしている。
これにより、ヒータ(25)の熱が空燃混合室(12)に速やかに伝わり、空燃混合ガス(23)が速やかに形成され、可燃性ガス(4)の生成をスムーズに開始することができる。また、ヒータ(25)と空燃混合室(12)との間に介在物がなく、可燃性ガス生成器(1)を小型化することができる。
ヒータ(25)は、可燃性ガス(4)の生成開始時に加熱を行うための電熱ヒータで、金属パイプ内に電熱線を収容したシーズヒータが用いられている。
As shown in FIG. 2, a heater (25) is used as the core material (15), and the heat radiating outer peripheral surface (26) of the heater (25) is exposed to the air-fuel mixing chamber (12), so that the combustible gas (4) At the start of generation, heat is radiated directly from the heat radiating outer peripheral surface (26) of the heater (25) to the air / fuel mixing chamber (12).
Thereby, the heat of the heater (25) is quickly transmitted to the air / fuel mixing chamber (12), the air / fuel mixed gas (23) is rapidly formed, and the generation of the combustible gas (4) can be started smoothly. it can. In addition, there is no inclusion between the heater (25) and the air-fuel mixing chamber (12), and the combustible gas generator (1) can be downsized.
The heater (25) is an electric heater for heating at the start of generation of the combustible gas (4), and a sheathed heater containing a heating wire in a metal pipe is used.

図2に示すように、環形の可燃性ガス生成触媒(13)の内周に空燃混合ガス入口面(27)を設け、この空燃混合ガス入口面(27)に液体燃料保持材(28)を沿わせ、液体燃料保持材(28)の中心部に芯材(15)を内嵌させ、空燃混合室(12)の空燃混合ガス(23)が空燃混合室(12)の終端部から液体燃料保持材(28)を介して可燃性ガス生成触媒(13)の中心寄りの空燃混合ガス入口面(27)に導入されるようにしている。
これにより、熱が逃げ難く、高温状態が維持され、高い触媒活性が得られる可燃性ガス生成触媒(13)の中心寄りの空燃混合ガス入口面(27)で可燃性ガス(4)の生成を効率よく行うことができる。
また、液体燃料保持材(28)の消炎機能により、空燃混合ガス(23)の火炎燃焼の発生が抑制され、可燃性ガス生成触媒(13)や環状壁(14)の熱損傷を防止することができる。
液体燃料保持材(28)はグラスウールで構成され、その空隙率を可燃性ガス生成触媒(13)よりも大きくし、可燃性ガス生成触媒(13)よりも液体燃料(2)が保持されやすい構造になっている。液体燃料保持材(28)は立体網目構造の金属線材や多孔質のセラミックで形成してもよい。
液体燃料保持材(28)は空燃混合ガス入口面(27)の全部に沿って形成しているが、その一部に沿って形成してもよい。
As shown in FIG. 2, an air-fuel mixture gas inlet surface (27) is provided on the inner periphery of the annular combustible gas generation catalyst (13), and a liquid fuel holding material (28) is provided on the air-fuel mixture gas inlet surface (27). ), The core material (15) is fitted into the center of the liquid fuel holding material (28), and the air / fuel mixture gas (23) in the air / fuel mixing chamber (12) is added to the air / fuel mixing chamber (12). It is introduced into the air-fuel mixture gas inlet surface (27) near the center of the combustible gas generating catalyst (13) through the liquid fuel holding material (28) from the end portion.
As a result, it is difficult for heat to escape, the high-temperature state is maintained, and high catalytic activity is obtained. The generation of the combustible gas (4) at the air-fuel mixture inlet surface (27) near the center of the combustible gas generating catalyst (13) is obtained. Can be performed efficiently.
In addition, the flame extinguishing function of the liquid fuel holding material (28) suppresses the occurrence of flame combustion of the air-fuel mixture gas (23) and prevents thermal damage to the combustible gas generating catalyst (13) and the annular wall (14). be able to.
The liquid fuel holding material (28) is made of glass wool, has a void ratio larger than that of the combustible gas generating catalyst (13), and the liquid fuel (2) is more easily held than the combustible gas generating catalyst (13). It has become. The liquid fuel holding member (28) may be formed of a metal wire having a three-dimensional network structure or a porous ceramic.
The liquid fuel holding member (28) is formed along the entire air-fuel mixture gas inlet surface (27), but may be formed along a part thereof.

図2に示すように、芯材(15)に用いたヒータ(25)の放熱外周面(26)を液体燃料保持材(28)に向けて露出させ、可燃性ガス(4)の生成開始時には、ヒータ(25)の放熱外周面(26)から液体燃料保持材(28)に直接に放熱を行うようにしている。
これにより、ヒータ(25)の熱が液体燃料保持材(28)に保持された液体燃料(2)に集中的に伝わり、可燃性ガス(4)の生成をスムーズに開始することができる。
また、ヒータ(25)と液体燃料保持材(28)との間に介在物がなく、可燃性ガス生成器(1)を小型化することができる。
As shown in FIG. 2, the heat radiating outer peripheral surface (26) of the heater (25) used for the core material (15) is exposed toward the liquid fuel holding material (28), and when the generation of the combustible gas (4) is started. Further, heat is radiated directly from the heat radiation outer peripheral surface (26) of the heater (25) to the liquid fuel holding material (28).
Thereby, the heat of the heater (25) is intensively transmitted to the liquid fuel (2) held by the liquid fuel holding material (28), and the generation of the combustible gas (4) can be started smoothly.
In addition, there is no inclusion between the heater (25) and the liquid fuel holding material (28), and the combustible gas generator (1) can be downsized.

図3(A)に示すように、環状壁(14)の内周面(16)の終端部(下端部)に空燃混合ガス供給絞り部(17)を設け、この空燃混合ガス供給絞り部(17)と芯材(15)の外周面(18)との間に空燃混合ガス供給絞り隙間(20)を形成している。
これにより、空燃混合ガス供給絞り隙間(20)の消炎機能で空燃混合ガス(23)の火炎燃焼の発生が抑制され、可燃性ガス生成触媒(13)や環状壁(14)の熱損傷を防止することができる。
As shown in FIG. 3 (A), an air-fuel mixture gas supply throttle portion (17) is provided at the end portion (lower end portion) of the inner peripheral surface (16) of the annular wall (14). An air / fuel mixed gas supply throttle gap (20) is formed between the portion (17) and the outer peripheral surface (18) of the core member (15).
As a result, the occurrence of flame combustion of the air-fuel mixture gas (23) is suppressed by the flame extinguishing function of the air-fuel mixture gas supply throttle gap (20), and thermal damage of the combustible gas generating catalyst (13) and the annular wall (14) is suppressed. Can be prevented.

図3(A)に示すように、環状壁(14)の内周面(16)にスペーサ突起(29)を設け、芯材(15)の外周面(18)にスペーサ突起(29)を当接させることにより、スペーサ突起(29)を介して環状壁(14)の内周面(16)及び空燃混合ガス供給絞り部(17)と芯材(15)の外周面(18)とが相互に位置合わせされるようにしている。
これにより、これらの位置合わせは治具等を用いることなく正確に行うことができ、可燃性ガス生成器(1)の組み立てを容易にすることができる。
環状壁(14)とスペーサ突起(29)とは金属の一体成型品である。
芯材(15)の外周面(18)にスペーサ突起(29)を設け、環状壁(14)の内周面(16)にスペーサ突起(29)を当接させてもよい。
As shown in FIG. 3A, spacer protrusions (29) are provided on the inner peripheral surface (16) of the annular wall (14), and the spacer protrusions (29) are applied to the outer peripheral surface (18) of the core member (15). By contacting, the inner peripheral surface (16) of the annular wall (14) and the air / fuel mixture gas supply throttle portion (17) and the outer peripheral surface (18) of the core member (15) through the spacer protrusion (29). They are aligned with each other.
Thereby, these alignment can be performed correctly, without using a jig | tool etc., and the assembly of a combustible gas generator (1) can be made easy.
The annular wall (14) and the spacer protrusion (29) are an integrally molded product of metal.
Spacer protrusions (29) may be provided on the outer peripheral surface (18) of the core member (15), and the spacer protrusions (29) may be brought into contact with the inner peripheral surface (16) of the annular wall (14).

図3(A)に示すように、可燃性ガス生成触媒室(11)に環形の可燃性ガス生成触媒(13)を内嵌させ、環状壁(14)の終端部にインロー突部(30)を設け、このインロー突部(30)を可燃性ガス生成触媒室(11)の周壁(10)の始端部(上端部)に内嵌させることにより、可燃性ガス生成触媒室(11)の周壁(10)と環状壁(14)とスペーサ突起(29)とを介して、可燃性ガス生成触媒(13)の空燃混合ガス入口面(27)に沿わせた空燃混合ガス導入隙間(28)と芯材(15)の外周面(18)とが相互に位置合わせされる。
これにより、これらの位置合わせは治具等を用いることなく正確に行うことができ、可燃性ガス生成器(1)の組み立てを容易にすることができる。
As shown in FIG. 3 (A), an annular flammable gas generating catalyst (13) is fitted in the flammable gas generating catalyst chamber (11), and an inlay protrusion (30) is formed at the end of the annular wall (14). And the inlay projection (30) is fitted into the start end (upper end) of the peripheral wall (10) of the combustible gas generating catalyst chamber (11), thereby the peripheral wall of the combustible gas generating catalyst chamber (11). The air / fuel mixed gas introduction gap (28) along the air / fuel mixed gas inlet surface (27) of the combustible gas generating catalyst (13) through the (10), the annular wall (14), and the spacer protrusion (29). ) And the outer peripheral surface (18) of the core member (15) are aligned with each other.
Thereby, these alignment can be performed correctly, without using a jig | tool etc., and the assembly of a combustible gas generator (1) can be made easy.

図3(A)に示すように、可燃性ガス生成触媒室(11)の周壁(10)の始端部(上端部)に環状の載置面(31)を設け、環状壁(14)の終端部(下端部)に被載置面(32)を設け、載置面(31)に環状壁(14)の被載置面(32)を載置固定するに当たり、環状壁(14)の終端部(下端部)に被載置面(32)よりも内側に位置するインロー突部(30)を設け、可燃性ガス生成触媒室(11)の周壁(10)の始端部(上端部)にインロー突部(30)を内嵌させている。
これにより、可燃性ガス生成触媒室(11)の始端部(上端部)からの空燃混合ガス(23)や可燃性ガス(4)の漏れが、インロー突部(30)の嵌合によって阻止され、載置面(31)と環状壁(14)の被載置面との間からのガス漏れを抑制することができる。
As shown in FIG. 3 (A), an annular mounting surface (31) is provided at the start end (upper end) of the peripheral wall (10) of the combustible gas generation catalyst chamber (11), and the end of the annular wall (14) is provided. When the mounting surface (32) is provided on the mounting portion (lower end portion) and the mounting surface (32) of the annular wall (14) is mounted and fixed on the mounting surface (31), the end of the annular wall (14) An inlay protrusion (30) located on the inner side of the mounting surface (32) is provided at the portion (lower end), and is provided at the start end (upper end) of the peripheral wall (10) of the combustible gas generation catalyst chamber (11). An inlay projection (30) is fitted inside.
As a result, leakage of the air-fuel mixture gas (23) and the combustible gas (4) from the start end (upper end) of the combustible gas generation catalyst chamber (11) is prevented by the fitting of the spigot projection (30). Thus, gas leakage from between the placement surface (31) and the placement surface of the annular wall (14) can be suppressed.

図3(A)に示すように、可燃性ガス生成触媒室(11)の載置面(31)にガスケット(19)を介して環状壁(14)の被載置面(32)を載置し、環状壁(14)の載置面(38)にガスケット(40)を介して蓋(37)を載置し、これらを取り付けボルト(33)で共締めしている。   As shown in FIG. 3A, the mounting surface (32) of the annular wall (14) is mounted on the mounting surface (31) of the combustible gas generation catalyst chamber (11) via the gasket (19). Then, the lid (37) is placed on the placing surface (38) of the annular wall (14) via the gasket (40), and these are fastened together with the mounting bolt (33).

図3(B)は可燃性ガス生成器の組み付け構造の第1変形例で、可燃性ガス生成触媒(13)の周面と可燃性ガス生成触媒室(11)の周壁(10)との間、触媒(13)の始端面とインロー突部(30)との間、触媒(13)の終端面と後述する仕切り板(52)との間に断熱性クッション材(9)を介在させ、可燃性ガス生成触媒室(11)での可燃性ガス生成触媒(13)の固定と断熱を図っている。
断熱性クッション材(9)にはグラスウールのマットを用いている。
FIG. 3 (B) is a first modification of the assembly structure of the combustible gas generator. Between the peripheral surface of the combustible gas generating catalyst (13) and the peripheral wall (10) of the combustible gas generating catalyst chamber (11). The heat insulating cushioning material (9) is interposed between the starting end surface of the catalyst (13) and the spigot projection (30), and between the end surface of the catalyst (13) and a partition plate (52) described later, and is combustible. The combustible gas generating catalyst (13) is fixed and insulated in the combustible gas generating catalyst chamber (11).
A glass wool mat is used for the heat insulating cushion material (9).

図4(A)は第2変形例で、取り付けボルト(33)の締結力で、可燃性ガス生成触媒室(11)の載置面(31)に環状壁(14)の被載置面(32)を載置固定し、インロー突部(30)の内側に可燃性ガス生成触媒(13)を収容するに当たり、可燃性ガス生成触媒(13)と取り付けボルト(33)との間で、インロー突部(30)に断熱空間(34)を設けている。
これにより、可燃性ガス生成触媒(13)で発生した熱の伝達が断熱空間(34)で阻止され、取り付けボルト(33)の熱膨張が抑制され、これに起因する取り付けボルト(33)の軸力低下を抑制することができる。
FIG. 4 (A) shows a second modified example in which the mounting surface (31) of the annular wall (14) is placed on the mounting surface (31) of the combustible gas generating catalyst chamber (11) by the fastening force of the mounting bolt (33). 32) is placed and fixed, and when the combustible gas generating catalyst (13) is accommodated inside the inlay projection (30), the inlay is formed between the combustible gas generating catalyst (13) and the mounting bolt (33). The protrusion (30) is provided with a heat insulating space (34).
As a result, the transfer of heat generated in the combustible gas generating catalyst (13) is blocked by the heat insulating space (34), the thermal expansion of the mounting bolt (33) is suppressed, and the shaft of the mounting bolt (33) due to this is suppressed. The force drop can be suppressed.

図4(B)は第3変形例で、図4(A)の第2変形例で、断熱空間(34)をインロー突部(30)の外周面に凹設し、断熱空間(34)内にシール材(35)を配置し、このシール材(35)で可燃性ガス生成触媒室(11)の周壁(10)とインロー突部(30)との間を密封することにより、可燃性ガス生成触媒室(11)の載置面(31)と環状壁(14)の被載置面(32)との間のガスケット(19)を不要にしたものである。
これにより、ガスケット(19)の弾性力低下に起因する取り付けボルト(33)の軸力低下を抑制することができる。
これら図3(B)、図4(A)(B)に示す第1〜第3変形例の他の構造は、図3(A)に示す実施形態と同一であり、図中、同一の要素には同一の符号を付しておく。
FIG. 4 (B) is a third modified example, and in the second modified example of FIG. 4 (A), the heat insulating space (34) is recessed in the outer peripheral surface of the spigot projection (30), and the heat insulating space (34) A sealing material (35) is disposed on the inner wall, and the sealing material (35) is used to seal the space between the peripheral wall (10) of the combustible gas generation catalyst chamber (11) and the spigot projection (30). The gasket (19) between the mounting surface (31) of the production catalyst chamber (11) and the mounting surface (32) of the annular wall (14) is unnecessary.
Thereby, the axial-force fall of the attachment bolt (33) resulting from the elastic-force fall of a gasket (19) can be suppressed.
Other structures of the first to third modifications shown in FIGS. 3B and 4A and 4B are the same as those of the embodiment shown in FIG. Are given the same reference numerals.

空燃混合室への液体燃料と空気の供給構造は、次の通りである。
図5(A)(B)に示すように、環状壁(14)の始端部(上端部)に蓋(37)を配置し、環状壁(14)の始端部(上端部)に環状の蓋載置面(38)を設け、蓋(37)の終端部(下端部)に被載置面(39)を設け、環状壁(14)の蓋載置面(38)に環状のガスケット(40)を介して蓋(37)の被載置面(39)を載置固定している。
ガスケット(40)は重ね合わせた下側のガスケット(40a)と上側のガスケット(40b)の二枚組となっている。
下側のガスケット(40a)にその周方向に所定間隔を保持して複数の液体燃料入口(42)と液体燃料出口(36)とを設け、液体燃料出口(36)は各液体燃料入口(42)からガスケット(40)の内側に向けて導出し、環状壁(14)の蓋載置面(38)にその周方向に沿う液体燃料ガイド溝(41)を凹設し、この液体燃料ガイド溝(41)の開口に各液体燃料入口(42)を連通させ、液体燃料ガイド溝(41)に供給された液体燃料(2)が各液体燃料入口(42)を介して液体燃料出口(36)から空燃混合室(12)に流出するようにしている。
これにより、環状壁(14)内に液体燃料ガイド通路や液体燃料出口を形成する場合に比べ環状壁(14)の加工を容易にすることができる。
図6(B)に示すように、液体燃料入口(42)と液体燃料出口(36)と後述する空気入口(42a)とは、金属製の下側のガスケット(40a)に打ち抜き状に形成されている。
液体燃料ガイド溝(41)は、蓋(37)の被載置面(39)に設けてもよい。
The structure for supplying liquid fuel and air to the air-fuel mixing chamber is as follows.
As shown in FIGS. 5 (A) and 5 (B), a lid (37) is disposed at the starting end (upper end) of the annular wall (14), and the annular lid is disposed at the starting end (upper end) of the annular wall (14). A placement surface (38) is provided, a placement surface (39) is provided at the terminal end (lower end) of the lid (37), and an annular gasket (40) is provided on the lid placement surface (38) of the annular wall (14). The mounting surface (39) of the lid (37) is placed and fixed via
The gasket (40) is a two-piece set of a stacked lower gasket (40a) and upper gasket (40b).
The lower gasket (40a) is provided with a plurality of liquid fuel inlets (42) and liquid fuel outlets (36) while maintaining a predetermined interval in the circumferential direction, and the liquid fuel outlet (36) is provided for each liquid fuel inlet (42). The liquid fuel guide groove (41) is led out toward the inside of the gasket (40), and is provided in the lid mounting surface (38) of the annular wall (14) along the circumferential direction. Each liquid fuel inlet (42) communicates with the opening of (41), and the liquid fuel (2) supplied to the liquid fuel guide groove (41) passes through each liquid fuel inlet (42), and the liquid fuel outlet (36). To the air-fuel mixing chamber (12).
Thereby, the processing of the annular wall (14) can be facilitated as compared with the case where the liquid fuel guide passage and the liquid fuel outlet are formed in the annular wall (14).
As shown in FIG. 6 (B), the liquid fuel inlet (42), the liquid fuel outlet (36), and an air inlet (42a) described later are formed in a punched shape in a metal lower gasket (40a). ing.
The liquid fuel guide groove (41) may be provided on the placement surface (39) of the lid (37).

図5(A)(B)に示すように、上側のガスケット(40b)にその周方向に所定間隔を保持して複数の空気入口(42b)と空気出口(36b)とを設け、空気出口(36b)は各空気入口(42b)からガスケット(40)の内側に向けて導出し、環状壁(14)の蓋載置面(38)その周方向に沿う空気ガイド溝(41b)を凹設し、この空気ガイド溝(41b)の開口に各空気入口(42b)を連通させ、空気ガイド溝(41b)に供給された空気(3)が各空気入口(42b)を介して空気出口(36b)から空燃混合室(12)に流出するようにしている。
各空気入口(42b)は、下側のガスケット(40a)の空気入口(42a)を介して空気ガイド溝(41b)の開口と連通している。
これにより、環状壁(14)内に空気ガイド通路や空気出口を形成する場合に比べ環状壁(14)の加工を容易にすることができる。
図6(C)に示すように、各空気入口(42b)と空気出口(36b)とは、金属製の上側のガスケット(40b)に打ち抜き状に形成されている。
空気ガイド溝(41b)は、蓋(37)の被載置面(39)に設けてもよい。
図6の(A)〜(C)に、環状壁(14)と下側のガスケット(40a)と上側のガスケット(40b)の各平面図を示す。
As shown in FIGS. 5A and 5B, the upper gasket (40b) is provided with a plurality of air inlets (42b) and air outlets (36b) at predetermined intervals in the circumferential direction thereof. 36b) are led out from the respective air inlets (42b) toward the inside of the gasket (40), and are provided with an air guide groove (41b) along the circumferential direction of the lid mounting surface (38) of the annular wall (14). The air inlets (42b) communicate with the openings of the air guide grooves (41b), and the air (3) supplied to the air guide grooves (41b) passes through the air inlets (42b). To the air-fuel mixing chamber (12).
Each air inlet (42b) communicates with the opening of the air guide groove (41b) via the air inlet (42a) of the lower gasket (40a).
Thereby, the processing of the annular wall (14) can be facilitated as compared with the case where the air guide passage and the air outlet are formed in the annular wall (14).
As shown in FIG. 6C, the air inlets (42b) and the air outlets (36b) are formed in a punched shape on the metal upper gasket (40b).
The air guide groove (41b) may be provided on the placement surface (39) of the lid (37).
6A to 6C are plan views of the annular wall 14, the lower gasket 40 a, and the upper gasket 40 b.

図7と図8は、空燃混合室への液体燃料等の供給構造の変形例を説明する図である。
図7と図8(A)(B)は第1変形例で、ガスケット(40)は一枚のみで、このガスケット(40)にその周方向に所定間隔を保持して複数の液体燃料入口(42)と液体燃料出口(36)とを設け、液体燃料出口(36)は各液体燃料入口(42)からガスケット(40)の内側に向けて導出し、環状壁(14)の蓋載置面(38)にその周方向に沿う液体燃料ガイド溝(41)を凹設し、この液体燃料ガイド溝(41)の開口に各液体燃料入口(42)を連通させ、液体燃料ガイド溝(41)に供給された液体燃料(2)が各液体燃料入口(42)を介して液体燃料出口(36)から空燃混合室(12)に流出するようにしている。
図8(A)に示すように、液体燃料入口(42)と液体燃料出口(36)とは、ガスケット(40)に打ち抜き状に形成されている。
環状壁(14)に空気噴出口(24)を設け、空気(3)は空気噴出口(24)から空燃混合室(12)に接線方向に噴出され、環状壁(14)の内周面(16)に沿って空燃混合室(12)内を旋回する。
7 and 8 are diagrams for explaining a modification of the structure for supplying liquid fuel or the like to the air-fuel mixing chamber.
7 and 8 (A) and (B) show a first modified example in which only one gasket (40) is provided, and a plurality of liquid fuel inlets (with a predetermined interval in the circumferential direction) are held in the gasket (40). 42) and a liquid fuel outlet (36), and the liquid fuel outlet (36) is led out from each liquid fuel inlet (42) toward the inside of the gasket (40), and the lid mounting surface of the annular wall (14) The liquid fuel guide groove (41) along the circumferential direction is recessed in (38), and each liquid fuel inlet (42) is communicated with the opening of the liquid fuel guide groove (41), thereby the liquid fuel guide groove (41). The liquid fuel (2) supplied to the gas flows out from the liquid fuel outlet (36) to the air-fuel mixing chamber (12) through each liquid fuel inlet (42).
As shown in FIG. 8A, the liquid fuel inlet (42) and the liquid fuel outlet (36) are formed in a punched shape in the gasket (40).
An air outlet (24) is provided in the annular wall (14), and the air (3) is ejected tangentially from the air outlet (24) to the air-fuel mixing chamber (12), and the inner peripheral surface of the annular wall (14). It turns in the air-fuel mixing chamber (12) along (16).

図8(C)(D)は第2変形例で、液体燃料ガイド溝(41)を、蓋(37)の被載置面(39)に設けている。
図8(C)に示すように、液体燃料(2)は、液体燃料供給口(64)からこれに連通する所定の液体燃料入口(42)に流入し、この所定の液体燃料入口(42)から導出された液体燃料出口(36)から空燃混合室(12)に流出するとともに、この所定の液体燃料入口(42)を介して液体燃料ガイド溝(41)に流入し、図8(D)に示すように、この液体燃料ガイド溝(41)から他の液体燃料入口(42)に分配され、これらから導出された各液体燃料出口(36)から空燃混合室(12)に流出する。
この第2変更例では、DPF(5)の再生が終了し、液体燃料ガイド溝(41)への液体燃料(2)の供給を停止すると、液体燃料ガイド溝(41)から液体燃料(2)が自重で液体燃料入口(42)と液体燃料出口(36)とを介して空燃混合室(12)に流出するため、液体燃料ガイド溝(41)に液体燃料(2)が残留せず、液体燃料(2)の炭化による液体燃料ガイド溝(41)等の詰まりを抑制することができる。
FIGS. 8C and 8D show a second modification, in which a liquid fuel guide groove (41) is provided on the mounting surface (39) of the lid (37).
As shown in FIG. 8C, the liquid fuel (2) flows from the liquid fuel supply port (64) into a predetermined liquid fuel inlet (42) communicating therewith, and this predetermined liquid fuel inlet (42). 8 flows out from the liquid fuel outlet (36) led out to the air-fuel mixing chamber (12), and flows into the liquid fuel guide groove (41) through the predetermined liquid fuel inlet (42), and FIG. ), The liquid fuel is distributed from the liquid fuel guide groove (41) to the other liquid fuel inlets (42), and flows out from the liquid fuel outlets (36) derived therefrom to the air-fuel mixing chamber (12). .
In the second modified example, when the regeneration of the DPF (5) is completed and the supply of the liquid fuel (2) to the liquid fuel guide groove (41) is stopped, the liquid fuel (2) is supplied from the liquid fuel guide groove (41). Flows out into the air-fuel mixing chamber (12) through the liquid fuel inlet (42) and the liquid fuel outlet (36) under its own weight, so that the liquid fuel (2) does not remain in the liquid fuel guide groove (41), Clogging of the liquid fuel guide groove (41) and the like due to carbonization of the liquid fuel (2) can be suppressed.

この液体燃料(2)の供給に関する第1変形例と第2変形例を空気(3)の供給に応用し、図6(C)に示すガスケット(40b)を一枚だけ用いて、空気(3)のみをガスケット(40b)から空燃混合室(12)に流出させ、液体燃料(2)はガスケット以外の個所から空燃混合室(12)に流出させてもよい。
これら図7、図8(A)〜(D)に示す第1〜第2変形例の他の構造は、図5、図6に示す実施形態と同一であり、図中、同一の要素には同一の符号を付しておく。
The first and second modifications relating to the supply of the liquid fuel (2) are applied to the supply of air (3), and only one gasket (40b) shown in FIG. ) May be allowed to flow out from the gasket (40b) to the air / fuel mixing chamber (12), and the liquid fuel (2) may be allowed to flow out from locations other than the gasket to the air / fuel mixing chamber (12).
The other structures of the first and second modified examples shown in FIGS. 7 and 8A to 8D are the same as those of the embodiment shown in FIGS. The same reference numerals are given.

図3(A)(B)、図4(A)(B)、図7に示すように、環状壁(14)の内周面(16)は下方の終端部に向かって縮径するテーパ形状とし、環状壁(14)の内周面(16)の上縁部に沿ってその周方向に所定間間隔を保持した複数の液体燃料出口(36)を設け、各液体燃料出口(36)から流出させた液体燃料(2)が環状壁(14)の内周面(16)に沿って自重で流れ落ちるようにしている。
これにより、環状壁(14)の内周面(16)に沿って流れ落ちる液体燃料(2)の複数の流れが空気(3)と接触して空燃混合ガス(23)となり、空燃混合ガス(23)の濃度分布が均一化され、可燃性ガス(4)の生成を促進することができる。
また、可燃性ガス生成器(1)が傾いても、液体燃料(2)が自重で環状壁(14)の内周面(16)に沿って流れ落ち、空燃混合ガス(23)を支障なく形成できる。
As shown in FIGS. 3A, 3B, 4A, 4B, and 7, the inner peripheral surface 16 of the annular wall 14 is tapered toward the lower end portion. A plurality of liquid fuel outlets (36) are provided along the upper edge of the inner peripheral surface (16) of the annular wall (14) in the circumferential direction so as to maintain a predetermined interval, and each liquid fuel outlet (36) The liquid fuel (2) that has flowed out flows down by its own weight along the inner peripheral surface (16) of the annular wall (14).
As a result, the plurality of flows of the liquid fuel (2) flowing down along the inner peripheral surface (16) of the annular wall (14) come into contact with the air (3) to become the air-fuel mixture gas (23), and the air-fuel mixture gas The concentration distribution of (23) is made uniform, and the generation of the combustible gas (4) can be promoted.
Further, even if the combustible gas generator (1) is inclined, the liquid fuel (2) flows down along the inner peripheral surface (16) of the annular wall (14) by its own weight, and the air-fuel mixture gas (23) can be prevented without any problem. Can be formed.

可燃性ガスの排気への供給構造は、次の通りである。
図2に示すように、可燃性ガス生成触媒室(11)に二次空気混合室(44)を連通させ、二次空気混合室(44)に二次空気混合ガス出口(61)を介して燃焼触媒室(45)を連通させ、燃焼触媒室(45)に燃焼触媒(46)を収容し、この燃焼触媒室(45)に前記可燃性ガス放出口(6)を連通させ、可燃性ガス生成触媒室(11)と二次空気供給源(47)から二次空気混合室(44)に可燃性ガス(4)と二次空気(48)とを供給することにより、二次空気混合室(44)で可燃性ガス(4)と二次空気(48)とが混合して二次空気混合ガス(49)となり、この二次空気混合ガス(49)が燃焼触媒(46)を通過する際、可燃性ガス(4)の一部が二次空気(48)で触媒燃焼され、その燃焼熱で、燃焼触媒(46)を通過した可燃性ガス(4)の残部が昇温され、昇温された可燃性ガス(4)が可燃性ガス放出口(6)から排気通路(7)に放出されるようにしている。
これにより、排気(8)の温度が低い場合でも、可燃性ガス(4)が着火し、排気(8)中の酸素で可燃性ガス(4)を燃焼させることができる。
燃焼触媒(46)は酸化触媒である。二次空気供給源(47)は、空気供給源(47)と同様、エアクリーナである。
The structure for supplying the combustible gas to the exhaust is as follows.
As shown in FIG. 2, the secondary air mixing chamber (44) is connected to the combustible gas generating catalyst chamber (11), and the secondary air mixing chamber (44) is connected to the secondary air mixing gas outlet (61). The combustion catalyst chamber (45) is communicated, the combustion catalyst chamber (45) is accommodated with the combustion catalyst (46), and the combustion catalyst chamber (45) is communicated with the combustible gas discharge port (6) to combustible gas. By supplying the combustible gas (4) and the secondary air (48) from the production catalyst chamber (11) and the secondary air supply source (47) to the secondary air mixing chamber (44), the secondary air mixing chamber In (44), the combustible gas (4) and the secondary air (48) are mixed to form a secondary air mixed gas (49), and this secondary air mixed gas (49) passes through the combustion catalyst (46). At this time, a part of the combustible gas (4) is catalytically combusted by the secondary air (48), and the combustion heat causes the remainder of the combustible gas (4) passing through the combustion catalyst (46) to rise in temperature and rise. Warm combustible gas ( 4) is discharged from the combustible gas discharge port (6) to the exhaust passage (7).
Thereby, even when the temperature of the exhaust (8) is low, the combustible gas (4) is ignited, and the combustible gas (4) can be burned with oxygen in the exhaust (8).
The combustion catalyst (46) is an oxidation catalyst. Similar to the air supply source (47), the secondary air supply source (47) is an air cleaner.

可燃性ガス発生器の二次空気混合室の区画構造は、次の通りである。
図9(A)に示すように、可燃性ガス生成触媒室(11)の終端部(下端部)に仕切り板載置面(50)(51)を設け、この仕切り板載置面(50)(51)に仕切り板(52)を載置固定し、仕切り板(52)で可燃性ガス生成触媒室(11)の終端側(下端部)に二次空気混合室(44)を区画形成し、仕切り板(52)の周縁部(53)にその周方向に所定間隔を保持した複数の可燃性ガス出口孔(54)をあけ、可燃性ガス生成触媒(13)で生成された可燃性ガス(4)が可燃性ガス出口孔(54)を介して二次空気混合室(44)に供給されるようにしている。
これにより、二次空気混合室(44)を簡易に形成することができる。
また、空燃混合ガス供給絞り隙間(20)を介して可燃性ガス生成触媒(13)の中心部に導入された空燃混合ガス(23)は、可燃性ガス生成触媒室(11)の終端部にある仕切り板(52)の周縁部(53)にある複数の可燃性ガス出口孔(54)に向かって可燃性ガス生成触媒(13)内を偏りなく通過し、可燃性ガス(4)を効率的に生成することができる。
2個所の仕切り板載置面(50)(51)のうち、一方の仕切り板載置面(50)は後述する環状区画壁(57)の上端面であり、他方の仕切り板載置面(51)は二次空気混合室(44)の室壁(55)の内周に沿って形成されている。
The partition structure of the secondary air mixing chamber of the combustible gas generator is as follows.
As shown in FIG. 9A, a partition plate placement surface (50) (51) is provided at the terminal end (lower end) of the combustible gas generation catalyst chamber (11), and this partition plate placement surface (50). A partition plate (52) is placed and fixed on (51), and a secondary air mixing chamber (44) is partitioned and formed on the end side (lower end) of the combustible gas generation catalyst chamber (11) with the partition plate (52). A plurality of combustible gas outlet holes (54) are formed in the peripheral portion (53) of the partition plate (52) at predetermined intervals in the circumferential direction, and the combustible gas generated by the combustible gas generating catalyst (13) is formed. (4) is supplied to the secondary air mixing chamber (44) through the combustible gas outlet hole (54).
Thereby, a secondary air mixing chamber (44) can be formed easily.
The air-fuel mixture gas (23) introduced into the center of the combustible gas generation catalyst (13) through the air-fuel mixture gas supply throttle gap (20) is the end of the combustible gas generation catalyst chamber (11). Passing evenly through the combustible gas generating catalyst (13) toward the plurality of combustible gas outlet holes (54) in the peripheral portion (53) of the partition plate (52) in the portion, the combustible gas (4) Can be generated efficiently.
Of the two partition plate placement surfaces (50) and (51), one partition plate placement surface (50) is an upper end surface of an annular partition wall (57) described later, and the other partition plate placement surface ( 51) is formed along the inner periphery of the chamber wall (55) of the secondary air mixing chamber (44).

図9(B)は二次空気混合室の区画構造の変形例であり、仕切り板(52)の周縁部(53)と二次空気混合室(44)の室壁(55)との間に、仕切り板(52)の周縁部(53)に沿う可燃性ガス出口隙間(56)を設け、可燃性ガス生成触媒(13)で生成された可燃性ガス(4)が可燃性ガス出口隙間(56)を介して二次空気混合室(44)に供給されるようにしている。
仕切り板(52)は放射方向に突出した3個所の突起(73)を備え、その先端が二次空気混合室(44)の室壁(55)に接当して、仕切り板(52)の径方向の移動が阻止されている。
FIG. 9B is a modification of the partition structure of the secondary air mixing chamber, between the peripheral edge portion (53) of the partition plate (52) and the chamber wall (55) of the secondary air mixing chamber (44). A flammable gas outlet gap (56) is provided along the peripheral edge (53) of the partition plate (52), and the flammable gas (4) generated by the flammable gas generating catalyst (13) is transferred to the flammable gas outlet gap ( 56) to the secondary air mixing chamber (44).
The partition plate (52) is provided with three projections (73) projecting in the radial direction, the tips of which are in contact with the chamber wall (55) of the secondary air mixing chamber (44), and the partition plate (52) Radial movement is prevented.

図9(A)(B)に示すように、二次空気混合室(44)の中央部に環状区画壁(57)を設け、この環状区画壁(57)で環状区画壁(57)の周囲の二次空気合流室(58)と、環状区画壁(57)の内側の二次空気混合ガス膨張室(59)(59)とを区画し、二次空気混合ガス膨張室(59)(59)の上開口を仕切り板(52)で閉塞し、二次空気混合ガス膨張室(59)の入口に絞り孔(60)をあけ、二次空気混合ガス膨張室(59)の出口に二次空気混合ガス出口(61)をあけ、可燃性ガス生成触媒室(11)と二次空気供給源(47)とから二次空気合流室(58)に可燃性ガス(4)と二次空気(48)とを供給することにより、二次空気合流室(58)で可燃性ガス(4)と二次空気(48)とを合流させた二次空気混合ガス(49)が形成され、この二次空気混合ガス(49)が、絞り孔(60)で絞られた後、二次空気混合ガス膨張室(59)で膨張しながら拡散し、二次空気混合ガス出口(61)を経て燃焼触媒(46)に供給されるようにしている。
これにより、二次空気合流室(58)と二次空気混合ガス膨張室(59)とを簡易に形成することができる。
また、燃焼触媒(46)に供給される二次空気混合ガス(49)の濃度分布が均一化され、燃焼触媒(46)での触媒燃焼を効率的に行うことができる。
As shown in FIGS. 9A and 9B, an annular partition wall (57) is provided in the center of the secondary air mixing chamber (44), and the annular partition wall (57) surrounds the annular partition wall (57). The secondary air merging chamber (58) and the secondary air mixed gas expansion chamber (59) (59) inside the annular partition wall (57) are partitioned, and the secondary air mixed gas expansion chamber (59) (59) ) Is closed with a partition plate (52), a throttle hole (60) is formed at the inlet of the secondary air mixed gas expansion chamber (59), and a secondary is formed at the outlet of the secondary air mixed gas expansion chamber (59). The air mixed gas outlet (61) is opened, and the combustible gas (4) and secondary air (from the combustible gas generation catalyst chamber (11) and the secondary air supply source (47) to the secondary air merge chamber (58) are provided. 48) to form a secondary air mixed gas (49) in which the combustible gas (4) and the secondary air (48) are merged in the secondary air merge chamber (58). The secondary air mixed gas (49) is connected to the throttle hole (60). ), The gas is diffused while expanding in the secondary air mixed gas expansion chamber (59), and is supplied to the combustion catalyst (46) through the secondary air mixed gas outlet (61).
Thereby, a secondary air merging chamber (58) and a secondary air mixed gas expansion chamber (59) can be easily formed.
Further, the concentration distribution of the secondary air mixed gas (49) supplied to the combustion catalyst (46) is made uniform, and the catalytic combustion in the combustion catalyst (46) can be performed efficiently.

排気管の構造は、次の通りである。
図1に示すように、排気経路中にある排気管取り付け座(65)に排気管(66)を取り付け、この排気管(66)の下流にDPF(5)を収容したDPFケース(67)を配置し、図2に示すように、排気管取り付け座(65)内に排気出口通路(68)とこの排気出口通路(68)からその径方向外側に張り出した張り出し部(69)を設け、排気管(66)内に排気通路(7)の通路始端部(71)と可燃性ガス案内通路(70)の通路終端部(74)とを並列に並べて設け、排気通路(7)の通路始端部(71)の中心軸線(71a)は排気出口通路(68)の中心軸線(68a)に沿わせ、可燃性ガス案内通路(70)の通路終端部(74)の通路中心軸線(74a)は張り出し部(69)に向け、可燃性ガス案内通路(70)の通路終端部(74)と排気通路(7)の通路始端部(71)との境界に前記可燃性ガス放出口(6)をあけている。
The structure of the exhaust pipe is as follows.
As shown in FIG. 1, an exhaust pipe (66) is attached to an exhaust pipe mounting seat (65) in the exhaust path, and a DPF case (67) containing a DPF (5) is placed downstream of the exhaust pipe (66). As shown in FIG. 2, the exhaust pipe mounting seat (65) is provided with an exhaust outlet passage (68) and a projecting portion (69) projecting radially outward from the exhaust outlet passage (68). A passage start end portion (71) of the exhaust passage (7) and a passage end portion (74) of the combustible gas guide passage (70) are arranged in parallel in the pipe (66), and the passage start end portion of the exhaust passage (7) is provided. The central axis (71a) of (71) runs along the central axis (68a) of the exhaust outlet passage (68), and the passage central axis (74a) of the passage end portion (74) of the combustible gas guide passage (70) overhangs. Toward the portion (69), at the boundary between the passage end portion (74) of the combustible gas guide passage (70) and the passage start end portion (71) of the exhaust passage (7). Has opened gas outlet (6).

これにより、可燃性ガス案内通路(70)の通路終端部(74)の通路軸線(74a)に沿って流れる可燃性ガス(4)は張り出し部(69)に向かい、排気通路(7)を通過する排気(8)を直撃せず、可燃性ガス放出口(6)から排気通路(7)の通路始端部(71)に緩やかに放出される。このため、可燃性ガス(4)による排気(8)の流れの偏向が抑制され、背圧を小さくすることができる。
また、図12に示すように、排気通路(7)の通路終端部(63)側が曲がった排気管(66)や真っ直ぐな排気管(66)を使い分けて、DPFケース(67)の配置を変更する場合でも、排気(8)の偏向が抑制されているため、排気管(66)の形状の相違による背圧の相違は小さく、一定した排気性能を保証することができる。このため、排気管(66)の通路終端部(63)側の形状を変更し、DPFケース(67)の配置の自由度を大きくすることができる。
Thereby, the combustible gas (4) flowing along the passage axis (74a) of the passage end portion (74) of the combustible gas guide passage (70) is directed to the overhanging portion (69) and passes through the exhaust passage (7). The exhaust (8) is not directly hit, but is gradually released from the combustible gas discharge port (6) to the passage start end (71) of the exhaust passage (7). For this reason, the deflection | deviation of the flow of exhaust_gas | exhaustion (8) by combustible gas (4) is suppressed, and back pressure can be made small.
In addition, as shown in FIG. 12, the arrangement of the DPF case (67) is changed by properly using the exhaust pipe (66) or the straight exhaust pipe (66) where the exhaust passage end (63) side of the exhaust passage (7) is bent. Even in this case, since the deflection of the exhaust (8) is suppressed, the difference in the back pressure due to the difference in the shape of the exhaust pipe (66) is small, and a constant exhaust performance can be guaranteed. For this reason, it is possible to change the shape of the exhaust pipe (66) on the side of the passage end (63) and to increase the degree of freedom of the DPF case (67).

図2に示すように、排気管取り付け座(65)として過給機(75)の排気タービン(76)排気管取り付け座を用い、排気出口通路(68)として排気タービン(76)の排気出口通路を用い、張り出し部(69)として排気タービン(76)のウェイストゲートバルブ(77)とそのバルブ取り付け部(78)とを用いている。
これにより、過給機(77)を利用して、排気管(66)を取り付けることができる。
As shown in FIG. 2, an exhaust turbine (76) exhaust pipe mounting seat of a supercharger (75) is used as an exhaust pipe mounting seat (65), and an exhaust outlet passage of the exhaust turbine (76) is used as an exhaust outlet passage (68). The waste gate valve (77) of the exhaust turbine (76) and its valve mounting part (78) are used as the overhanging part (69).
Thereby, an exhaust pipe (66) can be attached using a supercharger (77).

図2に示すように、燃焼触媒(46)の出口側端面(79)を可燃性ガス放出口(6)から可燃性ガス案内通路(70)の始端側に離間させている。
これにより、排気(8)の脈動によって排気(8)が可燃性ガス放出口(6)から可燃性ガス案内通路(70)に進入しても、この排気(8)が燃焼触媒(46)に接触しにくく、排気(8)中の酸素により燃焼触媒(46)で可燃性ガス(4)が不要に燃焼する不具合が抑制され、これに起因する燃焼触媒(46)の熱損傷を防止することができる。
As shown in FIG. 2, the outlet side end face (79) of the combustion catalyst (46) is separated from the combustible gas discharge port (6) toward the start end side of the combustible gas guide passage (70).
As a result, even if the exhaust (8) enters the combustible gas guide passage (70) from the combustible gas discharge port (6) due to the pulsation of the exhaust (8), the exhaust (8) enters the combustion catalyst (46). To prevent the combustion catalyst (46) from being unnecessarily combusted by the oxygen in the exhaust gas (8) and preventing the combustion catalyst (46) from burning the combustible gas (4) unnecessarily, thereby preventing thermal damage to the combustion catalyst (46). Can do.

燃焼触媒の固定構造は、次の通りである。
図10(A)に示すように、二次空気混合室(44)の二次空気混合ガス出口(61)と燃焼触媒室(45)との間に二次空気混合ガス入口室(81)を形成し、二次空気混合ガス入口室(81)と燃焼触媒室(45)に燃焼触媒受け止め手段(82)と燃焼触媒抜け止め手段(83)とを設け、可燃性ガス案内通路(70)の通路終端部(74)から二次空気混合ガス入口室(81)側に向けて燃焼触媒室(45)に燃焼触媒(46)を差し込み、燃焼触媒受け止め手段(82)で二次空気混合ガス入口室(81)側への燃焼触媒(46)の移動を受け止め、燃焼触媒抜け止め手段(83)で可燃性ガス案内通路(70)の通路終端部(74)側への燃焼触媒(46)の抜けを止めることにより、燃焼触媒(46)を触媒燃焼室(45)に固定している。
これにより、触媒燃焼室(45)での燃焼触媒(46)の固定を容易に行うことができる。
The fixed structure of the combustion catalyst is as follows.
As shown in FIG. 10A, a secondary air mixed gas inlet chamber (81) is provided between the secondary air mixed gas outlet (61) and the combustion catalyst chamber (45) of the secondary air mixing chamber (44). And a combustion catalyst receiving means (82) and a combustion catalyst retaining means (83) are provided in the secondary air mixed gas inlet chamber (81) and the combustion catalyst chamber (45), and the combustible gas guide passage (70) is provided. The combustion catalyst (46) is inserted into the combustion catalyst chamber (45) from the passage end portion (74) toward the secondary air mixed gas inlet chamber (81), and the secondary air mixed gas inlet is inserted by the combustion catalyst receiving means (82). The movement of the combustion catalyst (46) toward the chamber (81) is received, and the combustion catalyst removal prevention means (83) moves the combustion catalyst (46) toward the passage end portion (74) of the combustible gas guide passage (70). By stopping the removal, the combustion catalyst (46) is fixed to the catalytic combustion chamber (45).
Thereby, the combustion catalyst (46) can be easily fixed in the catalyst combustion chamber (45).

図10(A)に示すように、二次空気混合ガス入口室(81)の内周面(88)を二次空気混合ガス出口(61)から燃焼触媒室(45)に向かって拡開するテーパ状にし、二次空気混合ガス入口室(81)の内周面(88)を燃焼触媒受け止め手段(82)としている。
これにより、二次空気混合ガス出口(61)から流出した二次空気混合ガス(49)が二次空気混合ガス入口室(81)で燃焼触媒(46)の入口側端面(80)に向けて広く拡散し、燃焼触媒(46)の入口側端面(80)全域から偏りなく燃焼触媒(46)に流入し、燃焼触媒(46)全域で二次空気混合ガス(49)中の可燃性ガス(4)を効率的に燃焼させるこができる。また、燃焼触媒受け止め手段(82)を特別に設ける必要がない。
As shown in FIG. 10A, the inner peripheral surface (88) of the secondary air mixed gas inlet chamber (81) is expanded from the secondary air mixed gas outlet (61) toward the combustion catalyst chamber (45). The inner peripheral surface (88) of the secondary air mixed gas inlet chamber (81) is formed as a combustion catalyst receiving means (82).
Thus, the secondary air mixed gas (49) flowing out from the secondary air mixed gas outlet (61) is directed toward the inlet side end face (80) of the combustion catalyst (46) in the secondary air mixed gas inlet chamber (81). It diffuses widely, flows into the combustion catalyst (46) from the entire inlet side end face (80) of the combustion catalyst (46), and flows into the combustion catalyst (46) over the entire area of the combustion catalyst (46). 4) can be burned efficiently. Further, it is not necessary to provide the combustion catalyst receiving means (82) specially.

図10(A)(B)に示すように、可燃性ガス案内通路(70)の通路壁(85)にセンサ挿入孔(86)をあけ、このセンサ挿入孔(86)から可燃性ガス案内通路(70)に燃焼触媒出口側温度センサ(87)を挿入し、この燃焼触媒出口側温度センサ(87)のセンサ感温部(89)を燃焼触媒(46)の出口側端面(79)に臨ませるに当たり、センサ挿入孔(86)にパイプ(90)を挿入し、パイプ(90)に燃焼触媒出口側温度センサ(87)を挿通させ、パイプ(90)の挿入側端部(91)からセンサ感温部(89)を突出させ、パイプ(90)の挿入側端部(91)の外周面(92)で燃焼触媒(46)の出口側端面(79)を受け止めることにより、パイプ(90)の挿入側端部(91)を燃焼触媒抜け止め手段(83)とし、パイプ(90)の挿入側端部(91)で燃焼触媒(46)の出口側端面(79)から燃焼触媒出口側温度センサ(87)のセンサ感温部(89)を離間させている。   As shown in FIGS. 10A and 10B, a sensor insertion hole (86) is formed in the passage wall (85) of the combustible gas guide passage (70), and the combustible gas guide passage is formed from the sensor insertion hole (86). The combustion catalyst outlet side temperature sensor (87) is inserted into (70), and the sensor temperature sensing part (89) of the combustion catalyst outlet side temperature sensor (87) is exposed to the outlet side end face (79) of the combustion catalyst (46). At first, the pipe (90) is inserted into the sensor insertion hole (86), the combustion catalyst outlet side temperature sensor (87) is inserted into the pipe (90), and the sensor is inserted from the insertion side end (91) of the pipe (90). By projecting the temperature sensing part (89) and receiving the outlet side end face (79) of the combustion catalyst (46) at the outer peripheral face (92) of the insertion side end part (91) of the pipe (90), the pipe (90) The insertion side end (91) of the combustion catalyst serves as a combustion catalyst retaining means (83), and the outlet side end surface (79) of the combustion catalyst (46) at the insertion side end (91) of the pipe (90). Sensor temperature sensing portion of al combustion catalyst outlet temperature sensor (87) which is separated (89).

これにより、可燃性ガス案内通路(70)の通路壁(85)に抜け止め手段(83)を取り付けるための新たな挿入孔を設ける必要がない。また、燃焼触媒(46)の出口側端面(79)からセンサ感温部(89)に直接に入熱がなされる不具合や、エンジンの振動で燃焼触媒(46)の出口側端面(79)がセンサ感温部(89)に接触する不具合が防止され、燃焼触媒出口側温度センサ(87)のセンサ感温部(89)の損傷を防止することができる。   Thereby, it is not necessary to provide a new insertion hole for attaching the retaining means (83) to the passage wall (85) of the combustible gas guide passage (70). In addition, the outlet side end face (79) of the combustion catalyst (46) is caused by a problem that heat is directly input to the sensor temperature sensing part (89) from the outlet side end face (79) of the combustion catalyst (46) or vibration of the engine. The trouble of contacting the sensor temperature sensing part (89) is prevented, and damage to the sensor temperature sensing part (89) of the combustion catalyst outlet side temperature sensor (87) can be prevented.

図10(B)に示すように、センサ挿入孔(86)のキリ孔加工時に、センサ挿入孔(86)の奥端の一部に可燃性ガス案内通路(70)の通路壁(85)を残してパイプ受け止め部(93)とし、このパイプ受け止め部(93)でパイプ(90)の挿入側端面(94)の一部を受け止めている。
これにより、可燃性ガス案内通路(70)にパイプ(90)が必要以上に進入せず、パイプ(90)の挿入側端部(91)で燃焼触媒出口側温度センサ(87)のセンサ感温部(89)が覆われる不具合を防止することができる。
As shown in FIG. 10 (B), the passage wall (85) of the flammable gas guide passage (70) is formed at a part of the back end of the sensor insertion hole (86) at the time of drilling the sensor insertion hole (86). The pipe receiving portion (93) is left and a part of the insertion side end surface (94) of the pipe (90) is received by the pipe receiving portion (93).
As a result, the pipe (90) does not enter the combustible gas guide passage (70) more than necessary, and the sensor temperature of the combustion catalyst outlet side temperature sensor (87) is detected at the insertion side end (91) of the pipe (90). A problem that the portion (89) is covered can be prevented.

図10(C)〜(F)は燃焼触媒の固定構造の変形例を示している。
図10(C)に示す第1変形例は、図10(A)(B)に示す実施形態において、燃焼触媒室(45)の室壁(62)と燃焼触媒(46)との間に断熱性クッション材(96)を介在させたものである。断熱性クッション材(96)はグラスウールのシートである。
10 (C) to 10 (F) show modifications of the combustion catalyst fixing structure.
The first modification shown in FIG. 10 (C) is a heat insulation between the chamber wall (62) of the combustion catalyst chamber (45) and the combustion catalyst (46) in the embodiment shown in FIGS. 10 (A) and (B). A cushioning material (96) is interposed. The heat insulating cushion material (96) is a glass wool sheet.

図10(D)に示す第2変形例は、燃焼触媒室(45)と燃焼触媒(46)との間に断熱性クッション材(96)を介在させ、燃焼触媒室(45)の室壁(62)に断熱性クッション材(96)を摩擦固定し、この断熱性クッション材(96)に燃焼触媒(46)を摩擦固定することにより、この断熱性クッション材(96)を前記燃焼触媒抜け止め手段(83)としたものである。
図10(C)(D)に示す第1変形例と第2変形例では、断熱性クッション材(96)で燃焼触媒(46)の温度低下や衝撃を避けることができ、燃焼触媒(46)の触媒活性と耐久性を高めることができる。
In the second modified example shown in FIG. 10D, a heat insulating cushion material (96) is interposed between the combustion catalyst chamber (45) and the combustion catalyst (46), and the chamber wall of the combustion catalyst chamber (45) ( 62) is thermally fixed to the heat insulating cushion material (96), and the combustion catalyst (46) is friction fixed to the heat insulating cushion material (96) to thereby prevent the heat insulating cushion material (96) from coming off the combustion catalyst. Means (83).
In the first and second modifications shown in FIGS. 10 (C) and 10 (D), the heat-insulating cushion material (96) can avoid the temperature drop and impact of the combustion catalyst (46), and the combustion catalyst (46). The catalytic activity and durability can be improved.

図10(E)に示す第3変形例は、燃焼触媒室(45)の出口に止め輪(98)を内嵌固定し、この止め輪(98)を前記燃焼触媒抜け止め手段(83)としている。
図10(F)に示す第4変形例は、可燃性ガス案内通路(70)の通路終端部(74)から燃焼触媒室(45)に向けてスリーブ(99)を圧入し、このスリーブ(99)を可燃性ガス案内通路(70)の通路壁(85)に摩擦固定し、このスリーブ(99)を前記燃焼触媒抜け止め手段(83)としている。このスリーブ(99)にはセンサ挿通孔(99a)を設け、このセンサ挿通孔(99a)からスリーブ(99)内に燃焼触媒出口側温度センサ(87)のセンサ感温部(89)を突出させている。
図10(E)(F)に示す第3変形例と第4変形例では、触媒燃焼室(45)での燃焼触媒(46)の固定を強固に行うことができる。
In the third modification shown in FIG. 10 (E), a retaining ring (98) is fitted and fixed to the outlet of the combustion catalyst chamber (45), and this retaining ring (98) is used as the combustion catalyst retaining means (83). Yes.
In the fourth modification shown in FIG. 10 (F), a sleeve (99) is press-fitted from the passage end portion (74) of the combustible gas guide passage (70) toward the combustion catalyst chamber (45), and this sleeve (99 ) Is frictionally fixed to the passage wall (85) of the combustible gas guide passage (70), and the sleeve (99) serves as the combustion catalyst retaining means (83). The sleeve (99) is provided with a sensor insertion hole (99a), and the sensor temperature sensing part (89) of the combustion catalyst outlet side temperature sensor (87) protrudes into the sleeve (99) from the sensor insertion hole (99a). ing.
In the third and fourth modifications shown in FIGS. 10E and 10F, the combustion catalyst (46) can be firmly fixed in the catalyst combustion chamber (45).

図2に示すように、二次空気混合ガス入口室(81)の室壁(95)と二次空気混合室(44)の室壁(55)と環状区画壁(57)とを相互に連続する一体成型品で構成し、可燃性ガス案内通路(70)の通路終端部(74)から二次空気混合ガス入口室(81)と二次空気混合ガス膨張室(59)を経て二次空気合流室(58)に向けて直進するキリの一連のキリ加工によって、二次空気混合ガス入口室(81)と二次空気混合ガス膨張室(59)との境界壁(97)を貫通する二次空気混合ガス出口(61)と、環状区画壁(57)を貫通する絞り孔(60)(60)とを形成している。
これにより、二次空気混合ガス出口(61)と絞り孔(60)(60)の形成を簡易に行うことができる。
As shown in FIG. 2, the chamber wall (95) of the secondary air mixed gas inlet chamber (81), the chamber wall (55) of the secondary air mixing chamber (44), and the annular partition wall (57) are continuously connected to each other. Secondary air through the secondary air mixed gas inlet chamber (81) and the secondary air mixed gas expansion chamber (59) from the passage end portion (74) of the combustible gas guide passage (70). Through a series of drilling of the drill that goes straight toward the merge chamber (58), the second through the boundary wall (97) between the secondary air mixed gas inlet chamber (81) and the secondary air mixed gas expansion chamber (59). A secondary air mixed gas outlet (61) and throttle holes (60) (60) penetrating the annular partition wall (57) are formed.
Thereby, formation of the secondary air mixed gas outlet (61) and the throttle holes (60), (60) can be easily performed.

排気経路の構成と可燃性ガス生成の制御は次の通りである。
図1に示す制御手段であるエンジンECU(102)は、PM堆積量推定手段(101)とPM再生制御手段(111)とを備えている。エンジンECUはエンジン電子制御ユニットの略称である。
PM堆積量推定手段(101)は、エンジンECU(1)の所定の演算部であり、エンジン負荷、エンジン回転数、DPF上流側排気温度センサ(103)による検出排気温度、DPF上流側排気圧センサ(104)によるDPF(5)上流側の排気圧、差圧センサ(105)によるDPF(5)の上流と下流の差圧等に基づいて、予め実験的に求めたマップデータからPM堆積量を推定する。
The configuration of the exhaust path and the control of combustible gas generation are as follows.
The engine ECU (102) as the control means shown in FIG. 1 includes a PM accumulation amount estimation means (101) and a PM regeneration control means (111). Engine ECU is an abbreviation for engine electronic control unit.
The PM accumulation amount estimation means (101) is a predetermined calculation unit of the engine ECU (1), and is engine load, engine speed, detected exhaust temperature by the DPF upstream exhaust temperature sensor (103), DPF upstream exhaust pressure sensor. Based on the exhaust pressure upstream of the DPF (5) by (104), the differential pressure upstream and downstream of the DPF (5) by the differential pressure sensor (105), etc. presume.

PM堆積量推定手段(101)によりPM堆積量推定値が所定の再生要求値に至ると、PM再生制御手段(111)は、ヒータ(25)を発熱させ、液体燃料ポンプ(107)と空気供給ポンプ(108)と二次空気供給ポンプ(109)とを駆動する。これにより、空燃混合室(12)に液体燃料(2)と空気(3)が供給され、可燃性ガス生成触媒(13)で可燃性ガス(4)が発生し、二次空気混合室(44)で二次空気混合ガス(49)が形成され、燃焼触媒(46)で可燃性ガス(4)が昇温され、昇温された可燃性ガス(4)はDPF(5)の上流で可燃性ガス放出口(6)から排気通路(7)に放出される。   When the PM accumulation amount estimated value reaches a predetermined regeneration required value by the PM accumulation amount estimating means (101), the PM regeneration control means (111) generates heat in the heater (25), and supplies the liquid fuel pump (107) and air. The pump (108) and the secondary air supply pump (109) are driven. As a result, liquid fuel (2) and air (3) are supplied to the air-fuel mixing chamber (12), and combustible gas (4) is generated by the combustible gas generating catalyst (13). 44), a secondary air mixed gas (49) is formed, the combustible gas (4) is heated by the combustion catalyst (46), and the heated combustible gas (4) is upstream of the DPF (5). It is discharged from the combustible gas discharge port (6) into the exhaust passage (7).

PM再生制御手段(111)は、可燃性ガス生成触媒温度センサ(106)による可燃性ガス生成触媒(13)の検出温度に基づいて、液体燃料ポンプ(107)の液体燃料供給量や空気ポンプ(108)の空気供給量を調量し、燃焼触媒出口側温度センサ(87)による燃焼触媒(46)の出口側での可燃性ガス(4)の検出温度に基づいて、二次空気ポンプ(109)の二次空気供給量を調量する。
PM再生制御手段(111)は、DOC上流側排気温度センサ(110)によるDOC(100)上流側の排気(8)の検出温度がDOC(100)の活性化温度よりも低い場合には、二次空気ポンプ(109)の二次空気供給量を調量し、可燃性ガス(4)を昇温させ、排気(12)の温度を高め、DOC(10)の活性化を図る。
PM再生制御手段(111)は、DPF下流側排気温度センサ(112)による検出排気温度が所定の異常温度に至った場合には、排気(8)への可燃性ガス(4)の供給を停止する。
Based on the temperature detected by the combustible gas generation catalyst (13) by the combustible gas generation catalyst temperature sensor (106), the PM regeneration control means (111) determines the liquid fuel supply amount of the liquid fuel pump (107) and the air pump ( 108) and the secondary air pump (109) based on the detected temperature of the combustible gas (4) on the outlet side of the combustion catalyst (46) by the combustion catalyst outlet side temperature sensor (87). ) Secondary air supply amount.
When the detected temperature of the exhaust (8) upstream of the DOC (100) by the DOC upstream exhaust temperature sensor (110) is lower than the activation temperature of the DOC (100), the PM regeneration control means (111) The secondary air supply amount of the secondary air pump (109) is adjusted, the temperature of the combustible gas (4) is increased, the temperature of the exhaust (12) is increased, and the DOC (10) is activated.
The PM regeneration control means (111) stops supplying the combustible gas (4) to the exhaust (8) when the exhaust temperature detected by the DPF downstream exhaust temperature sensor (112) reaches a predetermined abnormal temperature. To do.

DPF再生制御手段(111)による制御は、次の通りである。
図1に示すように、DPF再生制御手段(111)で空燃混合室(12)への空気(3)と液体燃料(2)の供給を制御するに当たり、可燃性ガス(4)の生成開始時に、可燃性ガス生成触媒温度に基づくことなく、ヒータ(25)の発熱開始から所定の予熱時間を経過したことに基づいて、DPF再生制御手段(111)が空気(3)と液体燃料(2)の供給を開始するようにしている。
これにより、ヒータ(25)の発熱開始後、空気(3)と液体燃料(2)の供給開始までに不要な時間がかからず、可燃性ガス(4)の生成をスムーズに開始することができる。
The control by the DPF regeneration control means (111) is as follows.
As shown in FIG. 1, when the DPF regeneration control means (111) controls the supply of air (3) and liquid fuel (2) to the air-fuel mixing chamber (12), generation of combustible gas (4) is started. At times, the DPF regeneration control means (111) does not depend on the combustible gas generation catalyst temperature, but based on the fact that a predetermined preheating time has elapsed from the start of heat generation of the heater (25), the air (3) and liquid fuel (2 ) Supply starts.
Thereby, after the start of heat generation of the heater (25), unnecessary time is not taken until the supply of air (3) and liquid fuel (2) is started, and the generation of the combustible gas (4) can be started smoothly. it can.

その理由は、次の通りである。
すなわち、可燃性ガス生成触媒温度センサ(106)には可燃性ガス生成触媒(13)に差し込んだサーミスタ等を用いるが、可燃性ガス生成触媒温度センサ(106)は破損防止の観点から、可燃性ガス生成触媒(13)に接触させることができないため、ヒータ(25)の発熱開始後の空気(3)と液体燃料(2)の供給開始を、可燃性ガス生成触媒温度に基づいて行う場合、可燃性ガス生成触媒温度センサ(106)では、ヒータ発熱開始後の比較的低い可燃性ガス生成触媒(13)の温度を正確に検出することが困難で、可燃性ガス生成触媒(13)が確実に可燃性ガス生成温度に達していると思われる高めの検出温度を可燃性ガス生成触媒温度センサ(106)が検出するまで、空気(3)と液体燃料(2)の供給開始を待つ必要がある。
The reason is as follows.
That is, a thermistor or the like inserted into the combustible gas generating catalyst (13) is used as the combustible gas generating catalyst temperature sensor (106). The combustible gas generating catalyst temperature sensor (106) is combustible from the viewpoint of preventing damage. Since it cannot be brought into contact with the gas generating catalyst (13), when the supply of air (3) and liquid fuel (2) after the start of heat generation of the heater (25) is started based on the combustible gas generating catalyst temperature, In the combustible gas generating catalyst temperature sensor (106), it is difficult to accurately detect the temperature of the relatively low combustible gas generating catalyst (13) after the start of heat generation of the heater, and the combustible gas generating catalyst (13) is surely secured. It is necessary to wait for the start of the supply of air (3) and liquid fuel (2) until the combustible gas generation catalyst temperature sensor (106) detects a higher detection temperature that seems to have reached the combustible gas generation temperature. is there.

これに対し、ヒータ(25)の発熱開始後の液体燃料(2)の供給開始を、可燃性ガス生成触媒温度に基づくことなく、ヒータ(25)の発熱開始後に所定の予熱時間を経過したことに基づいて行う場合、必要な予熱時間を予め実験的に求めておけば、ヒータ(25)の発熱開始後、液体燃料(2)の供給を開始するまでに不要に長い予熱時間を待つ必要がなく、可燃性ガス(4)の生成をスムーズに開始することができる。   On the other hand, the start of the supply of the liquid fuel (2) after the start of the heat generation of the heater (25) does not depend on the combustible gas generation catalyst temperature, and a predetermined preheating time has elapsed after the start of the heat generation of the heater (25) If the required preheating time is experimentally obtained in advance, it is necessary to wait for an unnecessarily long preheating time before starting the supply of the liquid fuel (2) after the heating of the heater (25) is started. And generation of the combustible gas (4) can be started smoothly.

図1に示すように、DPF(5)の再生処理の終了後は、可燃性ガス生成器(1)に液体燃料(2)を供給することなく液体燃料パージ用の空気(3)を供給し、可燃性ガス生成触媒(13)に残留している液体燃料(2)を空気(3)で可燃性ガス(4)にして可燃性ガス生成触媒(13)からパージする。
これにより、次回のDPFの再生処理の開始時に、可燃性ガス生成触媒(13)が液体燃料(2)で湿ったままになっておらず、可燃性ガス生成触媒(13)の温度が早期に上昇し、可燃性ガス(4)の生成開始をスムーズに行うことができる。
As shown in FIG. 1, after completion of the regeneration process of the DPF (5), the liquid fuel purge air (3) is supplied without supplying the liquid fuel (2) to the combustible gas generator (1). The liquid fuel (2) remaining in the combustible gas generating catalyst (13) is purged from the combustible gas generating catalyst (13) by using air (3) as a combustible gas (4).
Thereby, at the start of the next DPF regeneration process, the combustible gas generating catalyst (13) is not kept wet with the liquid fuel (2), and the temperature of the combustible gas generating catalyst (13) is increased early. As a result, the generation of the combustible gas (4) can be started smoothly.

図1、図15に示すように、液体燃料パージ用の空気(3)の供給を開始(S11)してから、可燃性ガス生成触媒温度が上昇している場合には、空気(3)の供給を継続(S13)し、可燃性ガス生成触媒温度がパージ中止温度を越えている場合には、空気(3)の供給を停止する。このため、空気(3)の過剰供給で生じる可燃性ガス生成触媒(13)の過熱による熱損傷を防止することができる。   As shown in FIG. 1 and FIG. 15, when the temperature of the combustible gas generating catalyst has risen since the supply of liquid fuel purge air (3) was started (S <b> 11), the air (3) The supply is continued (S13), and when the combustible gas generation catalyst temperature exceeds the purge stop temperature, the supply of air (3) is stopped. For this reason, the thermal damage by overheating of the combustible gas production | generation catalyst (13) produced by the excessive supply of air (3) can be prevented.

図1、図15に示すように、液体燃料パージ用の空気(3)の供給を開始(S11)してから、可燃性ガス生成触媒温度が上昇していない場合には、空気(3)の供給量を増加(S16)し、それでも可燃性ガス生成触媒温度が上昇していない場合には、空気(3)の供給を停止(S18)して、液体燃料パージ処理を終了する。
このように、液体燃料パージ用の空気(3)の供給を開始(S11)してから、可燃性ガス生成触媒温度が上昇していない場合には、空気(3)の供給量を増加するので、空気不足による液体燃料パージの不全を防止することができる。
また、空気(3)の供給量を増加(S16)し、それでも可燃性ガス生成触媒温度が上昇していない場合には、可燃性ガス生成触媒(13)に液体燃料(2)が殆ど残留していないことを意味するので、空気(3)の供給を停止(S18)して、液体燃料パージ処理を終了し、可燃性ガス生成触媒(13)から液体燃料がパージされると、速やかに液体燃料パージ処理を終了させる。
As shown in FIGS. 1 and 15, when the temperature of the combustible gas generating catalyst has not risen since the supply of liquid fuel purge air (3) is started (S11), the air (3) When the supply amount is increased (S16) and the temperature of the combustible gas generating catalyst has not increased yet, the supply of air (3) is stopped (S18), and the liquid fuel purge process is terminated.
As described above, when the temperature of the combustible gas generating catalyst has not increased since the supply of the liquid fuel purge air (3) is started (S11), the supply amount of the air (3) is increased. In addition, liquid fuel purge failure due to air shortage can be prevented.
Further, when the supply amount of air (3) is increased (S16) and the temperature of the combustible gas generating catalyst has not increased yet, the liquid fuel (2) almost remains in the combustible gas generating catalyst (13). Therefore, when the supply of air (3) is stopped (S18), the liquid fuel purge process is terminated, and the liquid fuel is purged from the combustible gas generation catalyst (13), the liquid quickly The fuel purge process is terminated.

DPF再生制御手段(111)による処理の流れは、次の通りである。
図14に示すように、ステップ(S1)でPM堆積推定値が所定のDPF再生要求値に至ったか否かが判断される。判断が肯定である場合には、ステップ(S2)でヒータ(25)の発熱を開始させ、ステップ(S3)で所定の予熱時間が経過したか否かが判断される。判断が肯定である場合には、ステップ(S4)で空気(3)と液体燃料(2)の供給が開始され、ステップ(S5)で可燃性ガス生成触媒温度がガス生成温度を越えているか否かが判断される。判断が肯定である場合には、ステップ(S6)でヒータ(25)の発熱を終了させ、ステップ(S7)でPM堆積推定値が所定のDPF再生終了値に至ったか否かが判断される。判断が肯定である場合には、ステップ(S8)で空気(3)と液体燃料にの供給を終了させる。
The flow of processing by the DPF regeneration control means (111) is as follows.
As shown in FIG. 14, it is determined in step (S1) whether the estimated PM deposition value has reached a predetermined DPF regeneration request value. If the determination is affirmative, heat generation of the heater (25) is started in step (S2), and it is determined whether or not a predetermined preheating time has elapsed in step (S3). If the determination is affirmative, supply of air (3) and liquid fuel (2) is started in step (S4), and whether or not the combustible gas generation catalyst temperature exceeds the gas generation temperature in step (S5). Is judged. If the determination is affirmative, the heat generation of the heater (25) is terminated in step (S6), and it is determined in step (S7) whether or not the PM accumulation estimated value has reached a predetermined DPF regeneration end value. If the determination is affirmative, the supply of air (3) and liquid fuel is terminated in step (S8).

図15に示すように、ステップ(S9)でDOC出口温度がパージガス処理温度(DOCの触媒活性化温度)を越えているか否かが判断される。判断が肯定である場合には、ステップ(S10)で可燃性ガス生成触媒温度がガス生成温度を越えているか否かが判断される。判断が肯定である場合には、ステップ(S11)で液体燃料パージ用の空気(3)の供給を開始し、ステップ(S12)で可燃性ガス生成触媒温度が上昇しているか否かが判断される。判断が肯定である場合には、ステップ(S13)で空気の供給を継続し、ステップ(S14)で可燃性ガス生成触媒温度がパージ中止温度(DPFの過熱による熱損傷を抑制できる温度)を越えているか否かが判断される。判断が肯定の場合、ステップ(S15)で空気の供給を停止し、ステップ(S9)に戻る。ステップ(S14)の判断が否定である場合、ステップ(S13)に戻る。
ステップ(S12)での判断が否定である場合には、ステップ(S16)で空気(3)の供給量を増加し、ステップ(S17)で可燃性ガス生成触媒温度が上昇しているか否かが判断される。判断が肯定である場合には、ステップ(S13)に移行し、判断が否定である場合には、ステップ(S18)で空気(3)の供給が停止され、液体燃料パージ処理は終了する。
As shown in FIG. 15, it is determined in step (S9) whether or not the DOC outlet temperature exceeds the purge gas processing temperature (DOC catalyst activation temperature). If the determination is affirmative, it is determined in step (S10) whether or not the combustible gas generation catalyst temperature exceeds the gas generation temperature. If the determination is affirmative, the supply of liquid fuel purge air (3) is started in step (S11), and it is determined in step (S12) whether or not the combustible gas generating catalyst temperature has increased. The If the determination is affirmative, the supply of air is continued in step (S13), and the combustible gas generation catalyst temperature exceeds the purge stop temperature (a temperature at which thermal damage due to overheating of the DPF can be suppressed) in step (S14). It is determined whether or not. If the determination is affirmative, the air supply is stopped in step (S15), and the process returns to step (S9). If the determination in step (S14) is negative, the process returns to step (S13).
If the determination in step (S12) is negative, the supply amount of air (3) is increased in step (S16), and whether or not the combustible gas generation catalyst temperature is increased in step (S17). To be judged. If the determination is affirmative, the process proceeds to step (S13). If the determination is negative, the supply of air (3) is stopped in step (S18), and the liquid fuel purge process is ended.

図1に示すように、DPF再生制御手段(111)はDOC(100)の上流側排気温度に基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算する。
これにより、負荷変動や回転変動によるDOC(100)の上流側排気温度の変化が、DOC(100)の蓄熱作用の影響を受ける前に、そのまま可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量の演算に反映され、その演算値が排気の温度変化に迅速に対応したものになり、可燃性ガス(4)の生成量が適正になり、DPF(5)の再生効率を高めることができる。
As shown in FIG. 1, the DPF regeneration control means (111) supplies air (3) and liquid fuel (2) to the combustible gas generator (1) based on the exhaust temperature upstream of the DOC (100). Calculate the quantity.
As a result, before the change in the upstream exhaust temperature of the DOC (100) due to load fluctuation or rotation fluctuation is affected by the heat storage action of the DOC (100), the air (3) is directly supplied to the combustible gas generator (1). ) And liquid fuel (2) supply amount calculation, the calculated value quickly corresponds to the exhaust gas temperature change, the amount of combustible gas (4) generation becomes appropriate, DPF (5 ) Can be improved.

図1に示すように、DOC(100)の上流側排気温度とエンジン回転数とに基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算することにより、燃料噴射弁から燃焼室への燃料噴射量や吸気量に基づく演算を不要にしている。
これにより、この排気処理装置を、機械カム式燃料噴射ポンプを備えたディーゼルエンジンやエアフローセンサを備えていないディーゼルエンジンにも用いることができる。
DPF再生制御手段(111)による可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量の演算は、DOC(100)の上流側排気温度とエンジン回転数に対して実験的に求めた供給量のマップデータに基づいて行う。
As shown in FIG. 1, the supply amount of air (3) and liquid fuel (2) to the combustible gas generator (1) is calculated based on the upstream exhaust temperature of the DOC (100) and the engine speed. This eliminates the need for calculations based on the fuel injection amount from the fuel injection valve to the combustion chamber and the intake air amount.
Thus, the exhaust treatment device can be used for a diesel engine equipped with a mechanical cam fuel injection pump or a diesel engine not equipped with an air flow sensor.
The calculation of the supply amount of air (3) and liquid fuel (2) to the combustible gas generator (1) by the DPF regeneration control means (111) is performed with respect to the upstream exhaust temperature of the DOC (100) and the engine speed. Based on the map data of the supply amount obtained experimentally.

(1) 可燃性ガス生成器
(2) 液体燃料
(3) 空気
(4) 可燃性ガス
(5) DPF
(6) 可燃性ガス放出口
(7) 排気通路
(8) 排気
(100) DOC
(1) Combustible gas generator
(2) Liquid fuel
(3) Air
(4) Combustible gas
(5) DPF
(6) Combustible gas outlet
(7) Exhaust passage
(8) Exhaust
(100) DOC

Claims (2)

可燃性ガス生成器(1)で可燃性ガス(4)を生成させ、この可燃性ガス(4)をDPF(5)の上流で可燃性ガス放出口(6)から排気通路(7)に放出し、この可燃性ガス(4)を排気(8)中の酸素で燃焼させ、その燃焼熱で排気(8)を昇温させ、排気(8)の熱でDPF(5)に溜まったPMを燃焼除去することができるようにし、
可燃性ガス生成器(1)に可燃性ガス生成触媒室(11)を設け、この可燃性ガス生成触媒室(11)に可燃性ガス生成触媒(13)を収容し、可燃性ガス生成器(1)に空気(3)と液体燃料(2)とを供給することにより、可燃性ガス生成触媒(13)で可燃性ガス(4)を生成させ、この可燃性ガス(4)をDPF(5)の上流に配置したDOC(100)に供給する、ディーゼルエンジンの排気処理装置において、
DOC(100)の上流側排気温度に基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算するようにした、ことを特徴とするディーゼルエンジンの排気処理装置。
The combustible gas generator (1) generates the combustible gas (4), and the combustible gas (4) is discharged from the combustible gas discharge port (6) to the exhaust passage (7) upstream of the DPF (5). The combustible gas (4) is burned with oxygen in the exhaust (8), the temperature of the exhaust (8) is increased by the combustion heat, and the PM accumulated in the DPF (5) is heated by the heat of the exhaust (8). So that it can be burned off,
The combustible gas generator (1) is provided with a combustible gas generating catalyst chamber (11), the combustible gas generating catalyst (13) is accommodated in the combustible gas generating catalyst chamber (11), and a combustible gas generator ( By supplying air (3) and liquid fuel (2) to 1), a combustible gas (4) is generated by the combustible gas generating catalyst (13), and this combustible gas (4) is converted into DPF (5 In an exhaust treatment device for a diesel engine, which is supplied to a DOC (100) arranged upstream of
A diesel engine characterized in that the supply amount of air (3) and liquid fuel (2) to the combustible gas generator (1) is calculated based on the exhaust gas temperature upstream of the DOC (100). Exhaust treatment equipment.
請求項1に記載したディーゼルエンジンの排気処理装置において、
DOC(100)の上流側排気温度とエンジン回転数とに基づいて、可燃性ガス生成器(1)への空気(3)と液体燃料(2)の供給量を演算することにより、燃料噴射弁から燃焼室への燃料噴射量や吸気量に基づく演算を不要にした、ことを特徴とするディーゼルエンジンの排気処理装置。
In the exhaust treatment device of the diesel engine according to claim 1,
By calculating the supply amount of air (3) and liquid fuel (2) to the combustible gas generator (1) based on the upstream exhaust temperature of the DOC (100) and the engine speed, the fuel injection valve An exhaust processing apparatus for a diesel engine, characterized in that computation based on the amount of fuel injected into the combustion chamber and the amount of intake air is unnecessary.
JP2010081112A 2010-03-31 2010-03-31 Diesel engine exhaust treatment equipment Active JP5470136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081112A JP5470136B2 (en) 2010-03-31 2010-03-31 Diesel engine exhaust treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081112A JP5470136B2 (en) 2010-03-31 2010-03-31 Diesel engine exhaust treatment equipment

Publications (2)

Publication Number Publication Date
JP2011214441A true JP2011214441A (en) 2011-10-27
JP5470136B2 JP5470136B2 (en) 2014-04-16

Family

ID=44944442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081112A Active JP5470136B2 (en) 2010-03-31 2010-03-31 Diesel engine exhaust treatment equipment

Country Status (1)

Country Link
JP (1) JP5470136B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140034061A (en) * 2012-09-11 2014-03-19 가부시끼 가이샤 구보다 Exhaust treatment device of diesel engine
JP2014055524A (en) * 2012-09-11 2014-03-27 Kubota Corp Exhaust gas treatment device of diesel engine
JP2014055523A (en) * 2012-09-11 2014-03-27 Kubota Corp Exhaust treatment device for diesel engine
JP6046163B2 (en) * 2012-12-10 2016-12-14 ボルボトラックコーポレーション Exhaust pipe fuel injection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510323A (en) * 2005-09-30 2009-03-12 コリア・インスティチュート・オブ・エネルギー・リサーチ Exhaust gas heating device for internal combustion engine
JP2009534586A (en) * 2006-04-25 2009-09-24 ルノー・エス・アー・エス Control method for exhaust gas treatment device of internal combustion engine
JP2009299677A (en) * 2008-05-15 2009-12-24 Kubota Corp Exhaust device for diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510323A (en) * 2005-09-30 2009-03-12 コリア・インスティチュート・オブ・エネルギー・リサーチ Exhaust gas heating device for internal combustion engine
JP2009534586A (en) * 2006-04-25 2009-09-24 ルノー・エス・アー・エス Control method for exhaust gas treatment device of internal combustion engine
JP2009299677A (en) * 2008-05-15 2009-12-24 Kubota Corp Exhaust device for diesel engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140034061A (en) * 2012-09-11 2014-03-19 가부시끼 가이샤 구보다 Exhaust treatment device of diesel engine
JP2014055524A (en) * 2012-09-11 2014-03-27 Kubota Corp Exhaust gas treatment device of diesel engine
JP2014055523A (en) * 2012-09-11 2014-03-27 Kubota Corp Exhaust treatment device for diesel engine
US9353666B2 (en) 2012-09-11 2016-05-31 Kubota Corporation Exhaust treatment device of diesel engine
KR102044560B1 (en) 2012-09-11 2019-12-02 가부시끼 가이샤 구보다 Exhaust treatment device of diesel engine
JP6046163B2 (en) * 2012-12-10 2016-12-14 ボルボトラックコーポレーション Exhaust pipe fuel injection system

Also Published As

Publication number Publication date
JP5470136B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5286320B2 (en) Diesel engine exhaust treatment equipment
JP5210999B2 (en) Diesel engine exhaust treatment equipment
KR101560835B1 (en) An exhaust device for a diesel engine
JP5393571B2 (en) Diesel engine exhaust treatment equipment
JP5576582B1 (en) burner
JP5470136B2 (en) Diesel engine exhaust treatment equipment
JP2012188972A (en) Engine exhaust treatment device
JP2012188971A (en) Exhaust gas processing device of engine
JP5167215B2 (en) Diesel engine exhaust treatment equipment
JP5859412B2 (en) Diesel engine exhaust treatment equipment
JP5167216B2 (en) Diesel engine exhaust treatment equipment
JP5167217B2 (en) Diesel engine exhaust treatment equipment
US9416704B2 (en) Exhaust gas treatment device of engine
US9353666B2 (en) Exhaust treatment device of diesel engine
JP6828987B2 (en) Engine exhaust treatment device
JP5959465B2 (en) Engine exhaust treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5470136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150