JP2011214424A - Solar thermoacoustic electric generating apparatus - Google Patents

Solar thermoacoustic electric generating apparatus Download PDF

Info

Publication number
JP2011214424A
JP2011214424A JP2010080555A JP2010080555A JP2011214424A JP 2011214424 A JP2011214424 A JP 2011214424A JP 2010080555 A JP2010080555 A JP 2010080555A JP 2010080555 A JP2010080555 A JP 2010080555A JP 2011214424 A JP2011214424 A JP 2011214424A
Authority
JP
Japan
Prior art keywords
heat
solar
solar heat
axial direction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010080555A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iwasaki
克博 岩崎
Hiroshi Yamamoto
浩 山本
Norihito Uetake
規人 植竹
Takeshi Nakayama
剛 中山
Takeshi Uchiyama
武 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2010080555A priority Critical patent/JP2011214424A/en
Publication of JP2011214424A publication Critical patent/JP2011214424A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar thermoacoustic electric generating apparatus that utilizes solar heat as its heat source when generating electricity using a thermoacoustic phenomenon.SOLUTION: The thermoacoustic electric generating apparatus includes a gas cylinder 1 having both ends closed in an axial direction, where gas is filled therein, a heat accumulating part 4 arranged inside one end side in the axial direction of the gas cylinder 1 and formed with a plurality of narrow flow paths along the axial direction, a high-temperature heat exchanger 5 contacting one end of the heat accumulating part 4 and for heating the gas inside the narrow flow paths, a low-temperature heat exchanger 6 contacting the other end of the heat accumulating part 4 and for cooling the gas inside the narrow flow paths, and a transducer 11 provided on the other end side of the gas cylinder 1 and for converting acoustic energy generated by self-excited vibration which is caused based on a temperature gradient in the axial direction which is generated inside the heat accumulating part 4, to electric energy. The apparatus also includes a solar heat collecting device 8 for collecting solar heat, a solar heat receiving device 7 for receiving the solar heat collected by the solar heat collecting device 8 and supplying the received solar heat to the high-temperature heat exchanger 5.

Description

本発明は、熱音響現象を用いて発電する熱音響発電装置に関する。   The present invention relates to a thermoacoustic power generation device that generates power using a thermoacoustic phenomenon.

気体を封入した管内に、該管の軸方向に延びる複数の狭流路を形成する蓄熱部(スタック)を設け、上記軸方向で該蓄熱部両側の間に温度差を生じさせて温度勾配を形成させることにより、気体の自励振動が生じ音波が発生する熱音響現象が知られており、生じた音波エネルギを電気エネルギに変換する熱音響発電装置が知られている。   A heat storage section (stack) that forms a plurality of narrow flow paths extending in the axial direction of the pipe is provided in a tube filled with gas, and a temperature difference is generated between both sides of the heat storage section in the axial direction to create a temperature gradient. A thermoacoustic phenomenon in which a self-excited vibration of gas is generated to generate a sound wave is known, and a thermoacoustic power generation apparatus that converts the generated sound wave energy into electric energy is known.

このような熱音響現象を利用して内燃機関の排気熱を回収して発電する装置が特許文献1で提案されている。この特許文献1の装置は内燃機関の排気浄化用触媒コンバータに接続された共鳴管と、この共鳴管の一端に設けられたスタックと、共鳴管の他端に設けられた音/電気変換器とを備えている。共鳴管は内部に気体が封入されている。この特許文献1の装置では触媒コンバータから発せられる熱により共鳴管内のスタックの一端が加熱され、スタックの両端部間に温度勾配が付与され、これによってスタック内の気体に自励振動が生じ音波が発生し、音波エネルギが音/電気変換器により電気エネルギに変換される。   Patent Document 1 proposes an apparatus for generating electric power by recovering exhaust heat of an internal combustion engine using such a thermoacoustic phenomenon. The device of Patent Document 1 includes a resonance tube connected to an exhaust gas purification catalytic converter of an internal combustion engine, a stack provided at one end of the resonance tube, and a sound / electrical converter provided at the other end of the resonance tube. It has. A gas is sealed inside the resonance tube. In the apparatus of Patent Document 1, one end of the stack in the resonance tube is heated by heat generated from the catalytic converter, and a temperature gradient is applied between both ends of the stack, thereby generating self-excited vibration in the gas in the stack and generating sound waves. Generated and sonic energy is converted to electrical energy by a sound / electrical converter.

特開2002−122020号公報JP 2002-122020 A

しかしながら、特許文献1の熱音響発電装置は、内燃機関の排気熱を回収して発電しており、近来、二酸化炭素排出量削減の観点から求められている自然エネルギを利用して熱音響発電を行う技術については、いまだ開発されていない。   However, the thermoacoustic power generation device of Patent Document 1 collects exhaust heat from an internal combustion engine to generate power, and has recently generated thermoacoustic power generation using natural energy that has been required from the viewpoint of reducing carbon dioxide emissions. The technology to be performed has not been developed yet.

本発明は、かかる事情に鑑み、熱音響現象を用いて発電する際に、熱源として太陽熱を利用する太陽熱利用熱音響発電装置を提供することを課題とする。   In view of such circumstances, an object of the present invention is to provide a solar thermal thermoacoustic power generation apparatus that uses solar heat as a heat source when generating power using a thermoacoustic phenomenon.

本発明に係る太陽熱利用熱音響発電装置は、軸方向両端が閉じられていて内部に気体が封入された気柱管と、気柱管の軸方向での一端部側内部に配置され上記軸方向に複数の狭流路が形成された蓄熱部と、蓄熱部の一端部に接し狭流路内の気体を加熱する高温熱交換器と、蓄熱部の他端部に接し狭流路内の気体を冷却する低温熱交換器と、気柱管の他端部側に設けられ上記蓄熱部内の気体に生じる上記軸方向での温度勾配にもとづいて生じる自励振動により発生する音響エネルギを電気エネルギに変換するトランスデューサとを備えている。   The solar thermal thermoacoustic power generation device according to the present invention includes an air column tube in which both ends in the axial direction are closed and gas is enclosed therein, and one end side in the axial direction of the air column tube. A heat storage section in which a plurality of narrow flow paths are formed, a high-temperature heat exchanger that is in contact with one end of the heat storage section and heats the gas in the narrow flow path, and a gas in the narrow flow path that is in contact with the other end of the heat storage section The acoustic energy generated by the self-excited vibration generated based on the temperature gradient in the axial direction generated in the gas in the heat storage unit provided on the other end side of the air column tube and the low-temperature heat exchanger for cooling A transducer for conversion.

かかる熱音響発電装置において、本発明では、太陽熱を集熱する太陽熱集熱装置と、太陽熱集熱装置で集熱された太陽熱を受熱し、受熱した太陽熱を高温熱交換器に供給する太陽熱受熱装置とを有していることを特徴としている。   In such a thermoacoustic power generator, in the present invention, a solar heat collector that collects solar heat, and a solar heat receiver that receives solar heat collected by the solar heat collector and supplies the received solar heat to a high-temperature heat exchanger. It is characterized by having.

このような構成の本発明によると、太陽熱集熱装置で集熱した太陽熱により高温熱交換器の熱交換面で蓄熱部の一端部が加熱され、蓄熱部の他端部が低温熱交換器に供給される低温冷熱により冷却される。この蓄熱部の一端部での加熱そして他端部での冷却により、該蓄熱部内の気体に上記軸方向での温度勾配が生じて、この温度勾配により気体の自励振動が発生し、発生した音響エネルギがトランスデューサにより電気エネルギに変換され、発電がなされる。本発明では、高温熱交換器へ供給する高温熱源として自然エネルギである太陽熱を有効利用して発電される。   According to the present invention having such a configuration, one end of the heat storage unit is heated on the heat exchange surface of the high-temperature heat exchanger by the solar heat collected by the solar heat collector, and the other end of the heat storage unit becomes the low-temperature heat exchanger. It is cooled by the supplied low-temperature cold heat. Due to heating at one end of the heat storage unit and cooling at the other end, a temperature gradient in the axial direction is generated in the gas in the heat storage unit, and self-excited vibration of the gas is generated due to this temperature gradient. Acoustic energy is converted into electrical energy by a transducer, and electricity is generated. In the present invention, electric power is generated by effectively using solar heat, which is natural energy, as a high-temperature heat source supplied to the high-temperature heat exchanger.

本発明では、このように、熱源として太陽熱を利用して熱音響発電を行うので、自然エネルギを有効に利用した発電が可能であり、二酸化炭素排出量削減の効果がある。   In the present invention, as described above, thermoacoustic power generation is performed using solar heat as a heat source. Therefore, power generation using natural energy can be effectively performed, and the carbon dioxide emission can be reduced.

本発明の一実施形態装置の概要構成図である。It is a schematic block diagram of the apparatus of one Embodiment of this invention.

以下、添付図面の図1にもとづき、本発明の実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 of the accompanying drawings.

本実施形態の太陽熱利用熱音響発電装置は、軸方向両端が閉塞された円形断面の気柱管1を有している。該気柱管1は、図1にも見られるように、軸方向中間部にテーパ部分を有していて、一端側(図にて左端側)に対して他端側が拡径されている。該気柱管1内には、空気、窒素、ヘリウム等の希ガスが作動ガスとして封入されている。   The solar thermal thermoacoustic power generation device of the present embodiment includes an air column tube 1 having a circular cross section with both axial ends closed. As seen in FIG. 1, the air column tube 1 has a tapered portion at an axially intermediate portion, and the other end side is enlarged in diameter with respect to one end side (left end side in the drawing). A rare gas such as air, nitrogen, or helium is sealed in the air column tube 1 as a working gas.

かかる気柱管1の一端側には、音波発生部2がそしてそれよりも他端側には共鳴部3が形成されている。   A sound wave generating unit 2 is formed on one end side of the air column tube 1 and a resonance unit 3 is formed on the other end side.

上記音波発生部2は、一端側で気柱管1内に配された蓄熱部(スタック)4と、気柱管1の外周で該蓄熱部4の一端側位置に設けられた高温熱交換器5と、気柱管1の外周で上記蓄熱部4の他端側に設けられた低温熱交換器6とを有している。   The sound wave generating unit 2 includes a heat storage unit (stack) 4 disposed in the air column tube 1 on one end side, and a high-temperature heat exchanger provided at one end side position of the heat storage unit 4 on the outer periphery of the air column tube 1. 5 and a low-temperature heat exchanger 6 provided on the other end side of the heat storage unit 4 on the outer periphery of the air column tube 1.

上記蓄熱部4は、気柱管1の軸方向に平行に延びる複数の狭流路を有する部材で形成されており、例えば、多数のステンレス鋼板が小隙間をもって積層されることにより構成されている。かかる小隙間で形成される狭流路は軸方向に貫通している。   The heat storage unit 4 is formed of a member having a plurality of narrow flow paths extending in parallel to the axial direction of the air column tube 1, and is configured, for example, by laminating many stainless steel plates with small gaps. . The narrow channel formed by such a small gap penetrates in the axial direction.

上記高温熱交換器5は、外部から熱を受けてこれを気柱管1の管壁を介しての熱交換により上記蓄熱部4の一端部にこの熱を伝熱するように形成されている。該高温熱交換器5へ外部から熱を供給するのは、該高温熱交換器5に接続されている下述の太陽熱受熱装置7である。   The high-temperature heat exchanger 5 is configured to receive heat from the outside and transfer this heat to one end of the heat storage unit 4 by heat exchange via the tube wall of the air column tube 1. . The solar heat receiving device 7 described below connected to the high temperature heat exchanger 5 supplies heat to the high temperature heat exchanger 5 from the outside.

上記太陽熱受熱装置7は、太陽熱を集熱する太陽熱集熱装置8に接続されていて、太陽熱集熱装置で集熱された太陽熱を受けこの熱を上記高温熱交換器5へ供給するが、その熱を高温熱交換器5へ直接供給しても、該太陽熱受熱装置7で熱媒体を加熱してこの熱媒体を介して間接的に熱を供給してもよい。   The solar heat receiving device 7 is connected to a solar heat collecting device 8 that collects solar heat, receives solar heat collected by the solar heat collecting device, and supplies the heat to the high temperature heat exchanger 5, Even if heat is directly supplied to the high-temperature heat exchanger 5, the solar heat receiving device 7 may heat the heat medium and indirectly supply heat via the heat medium.

上記太陽熱集熱装置8は、太陽熱を集熱すべく構成されていて、例えば、複数の反射鏡と反射された太陽光を収束させるため断面が放物線状の収束反射鏡とを有していて、複数の反射鏡で反射された太陽光が収束反射鏡により集光され、収束された太陽光を太陽熱受熱装置の受熱部に照射することにより効率的に太陽熱を利用するようになっている。   The solar heat collecting device 8 is configured to collect solar heat, and includes, for example, a plurality of reflecting mirrors and a converging reflecting mirror having a parabolic cross section for converging reflected sunlight. Sunlight reflected by a plurality of reflecting mirrors is collected by a converging reflecting mirror, and solar heat is efficiently utilized by irradiating the converged sunlight on a heat receiving portion of a solar heat receiving device.

一方、太陽熱受熱装置7は、間接的に上記蓄熱部4を加熱する場合には、内部に熱媒体を流通させる受熱部を有していて、太陽熱集熱装置8からの太陽熱により熱媒体を加熱するようになっている。加熱された熱媒体は高温熱交換器5に送られ、蓄熱部4の一端側たる高温側端部を加熱する。太陽熱受熱装置7の表面は、透明ガラス、透明石英等に覆われ、透明ガラス等と受熱部との間の空間を真空とすることにより、対流伝熱による熱ロスを抑制できる。また、受熱部表面は、黒色塗料が塗布されるか、凹凸のある鏡面構造を有することで、輻射伝熱ロスを抑制できるようになっていて、太陽熱集熱装置8からの受熱熱量を最大に、かつ熱ロスを最小化にする。   On the other hand, when the solar heat receiving device 7 indirectly heats the heat storage unit 4, the solar heat receiving device 7 has a heat receiving unit for circulating the heat medium therein, and heats the heat medium by solar heat from the solar heat collecting device 8. It is supposed to be. The heated heat medium is sent to the high-temperature heat exchanger 5 to heat the high-temperature side end that is one end side of the heat storage unit 4. The surface of the solar heat receiving device 7 is covered with transparent glass, transparent quartz or the like, and heat loss due to convective heat transfer can be suppressed by evacuating the space between the transparent glass and the heat receiving portion. In addition, the surface of the heat receiving portion is coated with black paint or has an uneven mirror surface structure, so that the radiation heat transfer loss can be suppressed, and the amount of heat received from the solar heat collecting device 8 is maximized. And minimizing heat loss.

このように、太陽熱受熱装置7は、上記太陽熱集熱装置8から受けた太陽熱を高温熱交換器5で用いられるのに適合した形で、高温熱交換器5に接続されている。高温熱交換器5の熱交換面は、既述したように、太陽熱受熱装置7によって上記のように熱媒体を介して間接的に加熱されてもよいし、熱媒体を介さずに上記太陽熱受熱装置7により直接加熱されてもよい。太陽熱受熱装置7により高温熱交換器5の熱交換面を直接加熱する場合には、太陽熱受熱装置7の加熱部と高温熱交換器5の熱交換面とが熱伝導性の高い銅製部材や銀製部材により熱的に連結されていることが好ましい。また、高温熱交換器5の熱交換面は、上記太陽熱集熱装置8により直接加熱されてもよい。太陽熱集熱装置8で集熱した太陽熱を高温熱交換器5の熱交換面に直接照射する場合には、熱交換面の受熱部の表面は、透明ガラス、透明石英等に覆われ、太陽熱が透過できるようになっていることが好ましい。   Thus, the solar heat receiving device 7 is connected to the high-temperature heat exchanger 5 in a form suitable for using the solar heat received from the solar heat collecting device 8 in the high-temperature heat exchanger 5. As described above, the heat exchange surface of the high-temperature heat exchanger 5 may be indirectly heated by the solar heat receiving device 7 through the heat medium as described above, or the solar heat heat reception without using the heat medium. It may be heated directly by the device 7. When the heat exchange surface of the high temperature heat exchanger 5 is directly heated by the solar heat receiving device 7, the heating part of the solar heat receiving device 7 and the heat exchange surface of the high temperature heat exchanger 5 are made of a copper member or silver having high heat conductivity. It is preferable that they are thermally connected by members. Further, the heat exchange surface of the high-temperature heat exchanger 5 may be directly heated by the solar heat collector 8. When the solar heat collected by the solar heat collector 8 is directly applied to the heat exchange surface of the high-temperature heat exchanger 5, the surface of the heat receiving portion of the heat exchange surface is covered with transparent glass, transparent quartz, etc. It is preferable to be able to transmit.

一方、上記低温熱交換器6は、外部から低温冷熱源の供給を受けて蓄熱部4の他端部を冷却するようになっている。本実施形態において、例えば、冷却水を供給することにより、簡便に低温熱交換器6へ低温冷熱源を供給することができる。太陽熱利用熱音響発電装置を、廃棄物の焼却又はガス化・溶融を行う廃棄物処理炉施設に設け、低温熱交換器へ供給する低温冷熱源として、廃棄物処理炉へ供給する支燃ガス、廃棄物処理炉からの排ガスから廃熱回収するボイラへ供給する給水を用いることができる。このようにすることにより、これらの流体が上記低温熱交換器での熱交換により加熱されるので、従来の廃棄物処理炉施設においてこれらの流体加熱のために使用されている蒸気使用量を低減でき、蒸気を発電タービンに供給する量を増加させる効果がある。   On the other hand, the low-temperature heat exchanger 6 is supplied with a low-temperature cold heat source from the outside and cools the other end of the heat storage unit 4. In this embodiment, for example, by supplying cooling water, a low-temperature cold heat source can be easily supplied to the low-temperature heat exchanger 6. A solar thermal thermoacoustic generator is installed in a waste treatment furnace facility that incinerates or gasifies and melts waste, and as a low-temperature cold heat source to be supplied to a low-temperature heat exchanger, a combustion-supporting gas supplied to the waste treatment furnace, The feed water supplied to the boiler that recovers waste heat from the exhaust gas from the waste treatment furnace can be used. By doing so, since these fluids are heated by heat exchange in the low-temperature heat exchanger, the amount of steam used for heating these fluids in a conventional waste treatment furnace facility is reduced. It is possible to increase the amount of steam supplied to the power generation turbine.

上記音波発生部2に対して軸方向他端側に設けられている共鳴部3は、音波発生部2における気柱管1の部分と同径の管部9と、該管部9からテーパ部を経て拡径された閉鎖端部10と、該閉鎖端部10の端壁に設けられたトランスデューサ11とを有している。該トランスデューサ11は、音響エネルギを電気エネルギに変換する機能を有している。   The resonance part 3 provided on the other end side in the axial direction with respect to the sound wave generation part 2 includes a pipe part 9 having the same diameter as the air column tube 1 in the sound wave generation part 2, and a taper part from the pipe part 9. And a transducer 11 provided on the end wall of the closed end 10. The transducer 11 has a function of converting acoustic energy into electrical energy.

上記トランスデューサ11は、音波を受けて該音波を機械振動に変換し、この機械振動を電気エネルギに変換するものであって、具体的には、振動ピストンとリニア発電機の組み合わせユニット、振動板とピエゾ変換素子の組み合わせユニット、さらには、磁気誘導発電機として実現できる。上記トランスデューサの出力は、制御手段を介して、バッテリ、電気機器等の電気負荷に供給される。   The transducer 11 receives a sound wave, converts the sound wave into mechanical vibration, and converts the mechanical vibration into electric energy. Specifically, the transducer 11 includes a combination unit of a vibration piston and a linear generator, a vibration plate, It can be realized as a combination unit of piezo conversion elements, and further as a magnetic induction generator. The output of the transducer is supplied to an electric load such as a battery or an electric device via the control means.

かかる構成の本実施形態では、次の要領で発電される。   In this embodiment having such a configuration, power is generated in the following manner.

(1)太陽熱を受けた高温熱交換器5により、蓄熱部4の高温側端部たる一端部が加熱され、低温側端部たる他端部が低温熱交換器6により冷却されると、上記蓄熱部4の両端間に、蓄熱部4は軸方向で大きな温度勾配が形成される。   (1) When the one end part which is the high temperature side end part of the heat storage part 4 is heated by the high temperature heat exchanger 5 which has received solar heat, and the other end part which is the low temperature side end part is cooled by the low temperature heat exchanger 6, A large temperature gradient is formed in the axial direction of the heat storage unit 4 between both ends of the heat storage unit 4.

(2)上記温度勾配により、蓄熱部4の狭流路内の作動気体は、軸方向で局所的な圧力の変化が生じ、自発的に該軸方向に振動(自励振動)して音波を発生する。   (2) Due to the temperature gradient, the working gas in the narrow flow path of the heat storage unit 4 undergoes a local pressure change in the axial direction, and spontaneously vibrates in the axial direction (self-excited vibration) to generate sound waves. appear.

(3)この音波は、作動気体を介して共鳴部3内を往復する。このような熱エネルギによって音波が生じる現象は熱音響現象として知られている。   (3) This sound wave reciprocates in the resonance unit 3 via the working gas. A phenomenon in which sound waves are generated by such heat energy is known as a thermoacoustic phenomenon.

(4)この音波の周波数と共鳴部3の固有振動数が一致すると、共鳴部3内に定在波が生じ、この定在波により、閉鎖端部10に設けられたトランスデューサ11の振動部が加振され、その振動が電気エネルギに変換され、発電がなされる。この発電による電力は、制御手段を介して電気負荷に供給される。   (4) When the frequency of this sound wave and the natural frequency of the resonance part 3 coincide with each other, a standing wave is generated in the resonance part 3, and this standing wave causes the vibration part of the transducer 11 provided at the closed end 10 to Excitation is performed, the vibration is converted into electric energy, and electric power is generated. The electric power generated by this power generation is supplied to the electric load via the control means.

本発明の太陽熱利用熱音響発電装置において、熱膨張や経年変化等の影響による変形により、気柱管の共鳴部の固有振動数が微小ながら変化する可能性があり、固有振動数からのずれや偏りにより発電効率が低下する可能性があるが、この対策として、固有振動数調整のために気柱管の共鳴部の長さを微調整できるような機構、すなわち、楽器のトロンボーンのような固有振動数を無段階で連続的に調整できる機構を設けることがより好ましい。   In the solar thermal thermoacoustic power generation device of the present invention, the natural frequency of the resonance part of the air column tube may change while being minute due to deformation due to thermal expansion, aging, etc. The power generation efficiency may decrease due to the bias, but as a countermeasure, a mechanism that can finely adjust the length of the resonance part of the air column tube to adjust the natural frequency, that is, like a trombone of an instrument It is more preferable to provide a mechanism capable of continuously adjusting the natural frequency in a stepless manner.

1 気柱管
4 蓄熱部
5 高温熱交換器
6 低温熱交換器
7 太陽熱受熱装置
8 太陽熱集熱装置
11 トランスデューサ
DESCRIPTION OF SYMBOLS 1 Air column tube 4 Heat storage part 5 High temperature heat exchanger 6 Low temperature heat exchanger 7 Solar heat receiving device 8 Solar heat collecting device 11 Transducer

Claims (1)

軸方向両端が閉じられていて内部に気体が封入された気柱管と、
気柱管の軸方向での一端部側内部に配置され上記軸方向に複数の狭流路が形成された蓄熱部と、
蓄熱部の一端部に接し狭流路内の気体を加熱する高温熱交換器と、
蓄熱部の他端部に接し狭流路内の気体を冷却する低温熱交換器と、
気柱管の他端部側に設けられ上記蓄熱部内の気体に生じる上記軸方向での温度勾配にもとづいて生じる自励振動により発生する音響エネルギを電気エネルギに変換するトランスデューサとを備えた熱音響発電装置において、
太陽熱を集熱する太陽熱集熱装置と、
太陽熱集熱装置で集熱された太陽熱を受熱し、受熱した太陽熱を高温熱交換器に供給する太陽熱受熱装置と、
を有することを特徴とする太陽熱利用熱音響発電装置。
An air column tube in which both ends in the axial direction are closed and gas is sealed inside;
A heat storage unit disposed inside the one end portion in the axial direction of the air column tube and having a plurality of narrow flow paths formed in the axial direction;
A high-temperature heat exchanger that contacts one end of the heat storage unit and heats the gas in the narrow flow path;
A low-temperature heat exchanger that contacts the other end of the heat storage unit and cools the gas in the narrow flow path;
A thermoacoustic provided with a transducer that is provided on the other end of the air column tube and converts acoustic energy generated by self-excited vibration caused by the temperature gradient in the axial direction generated in the gas in the heat storage section into electric energy. In the power generator,
A solar heat collector for collecting solar heat;
A solar heat receiving device that receives solar heat collected by the solar heat collecting device and supplies the received solar heat to a high-temperature heat exchanger;
A solar thermal thermoacoustic generator characterized by comprising:
JP2010080555A 2010-03-31 2010-03-31 Solar thermoacoustic electric generating apparatus Pending JP2011214424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080555A JP2011214424A (en) 2010-03-31 2010-03-31 Solar thermoacoustic electric generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080555A JP2011214424A (en) 2010-03-31 2010-03-31 Solar thermoacoustic electric generating apparatus

Publications (1)

Publication Number Publication Date
JP2011214424A true JP2011214424A (en) 2011-10-27

Family

ID=44944430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080555A Pending JP2011214424A (en) 2010-03-31 2010-03-31 Solar thermoacoustic electric generating apparatus

Country Status (1)

Country Link
JP (1) JP2011214424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183655A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic equipment and vaporizer including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183655A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Thermoacoustic equipment and vaporizer including the same

Similar Documents

Publication Publication Date Title
US9777951B2 (en) Thermoacoustic engine
US7908856B2 (en) In-line stirling energy system
JP2012112621A (en) Thermoacoustic engine
Chen et al. Development and assessment of thermoacoustic generators operating by waste heat from cooking stove
RU2009112987A (en) SYSTEM AND METHOD FOR ELECTRICITY GENERATION USING A CHEMICAL THERMAL ENGINE AND A PIEZOELECTRIC MATERIAL
CN101344077A (en) Thermo-acoustic power generation method and system with solar energy as driving source
US8567187B2 (en) Thermoacoustic engine
CN104124334A (en) Thermo-magnetic power generation system driven by thermo-acoustic engine
KR20130087946A (en) Cover of latent heat exchanger having cooling line
Chen et al. Development of thermoacoustic engine operating by waste heat from cooking stove
JP2013234820A (en) Thermoacoustic engine
JP2007214523A (en) Tpv combined power generating apparatus
Kisha et al. Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator
JP5453950B2 (en) Thermoacoustic engine
JP2004258543A (en) Piping device equipped with sound wave amplifier attenuator using thermoacoustic effect
JP2011214424A (en) Solar thermoacoustic electric generating apparatus
Yang et al. Performance comparison of looped thermoacoustic electric generators with various thermoacoustic stages
US10495355B2 (en) Thermoacoustic electric generator system
KR20100060322A (en) Linear heat engine
CN113137779B (en) Combined cooling heating and power system without moving parts
KR101637674B1 (en) Thermoelectric Generation Device for vehicle
Tiwatane et al. Thermoacoustic effect: The power of conversion of sound energy & heat energy
KR101098474B1 (en) Linear heat engine having the cooling chamber
CN113137778B (en) Combined cooling heating and power system without moving parts
JP7057224B2 (en) Thermoacoustic device