JP2011214400A - Ignition control device for internal combustion engine - Google Patents

Ignition control device for internal combustion engine Download PDF

Info

Publication number
JP2011214400A
JP2011214400A JP2010080086A JP2010080086A JP2011214400A JP 2011214400 A JP2011214400 A JP 2011214400A JP 2010080086 A JP2010080086 A JP 2010080086A JP 2010080086 A JP2010080086 A JP 2010080086A JP 2011214400 A JP2011214400 A JP 2011214400A
Authority
JP
Japan
Prior art keywords
knock
internal combustion
combustion engine
atmospheric pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010080086A
Other languages
Japanese (ja)
Inventor
Kazuo Ichimura
和生 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010080086A priority Critical patent/JP2011214400A/en
Publication of JP2011214400A publication Critical patent/JP2011214400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ignition control device for an internal combustion engine improved by balancing avoidance of outbreaks of a knock with lowering of engine output.SOLUTION: This ignition control device for an internal combustion engine includes: a knock control means (S14) which retards the ignition time by a predetermined quantity when outbreaks of a knock in the engine is detected; and an air pressure compensating means (S15) which corrects the predetermined quantity so as to be reduced as the air pressure is lower. With this structure, since the amount of ignition lag by the knock control means is restricted as the air pressure is lower, the sureness of avoidance of a knock by the knock control means is reduced, but remarkable lowering of the engine output can be prevented. In other words, a balance between the sureness of avoidance of a knock due to an ignition lag and the improvement of engine output by restricting the amount of ignition lag can be optimized.

Description

本発明は、内燃機関のノック発生時に点火時期を遅角させるノック制御手段を備えた、内燃機関の点火制御装置に関する。   The present invention relates to an ignition control device for an internal combustion engine provided with knock control means for retarding an ignition timing when a knock occurs in the internal combustion engine.

内燃機関のノック発生が検出される毎に点火時期を所定量だけ遅角させていき、ノック発生が検出されない状態が所定時間継続する毎に点火時期を所定量だけ進角させていくノック制御が従来より知られている(特許文献1参照)。このノック制御によれば、ノックが発生しない限界まで点火時期を進角させて、機関出力の効率を最大にする最適点火時期(MBT:Minimum advance for the Best Torque)に点火時期を近づけることができる。   There is a knock control in which the ignition timing is retarded by a predetermined amount every time the occurrence of knock in the internal combustion engine is detected, and the ignition timing is advanced by a predetermined amount every time a state where no knock occurrence is detected continues for a predetermined time. Conventionally known (see Patent Document 1). According to this knock control, the ignition timing can be advanced to the limit at which knock does not occur, and the ignition timing can be brought close to the optimum ignition timing (MBT: Minimum advance for the Best Torque) that maximizes the engine output efficiency. .

特許第2920222号公報Japanese Patent No. 2920222

ところで、大気圧の低い高地で内燃機関を運転させる場合には、燃焼室へ吸入される空気の質量流量が少なくなる。そのため、スロットルバルブ開度及び燃料噴射量等の条件が同じであれば、高地で運転させる場合には低地に比べて機関出力は低下する。   By the way, when the internal combustion engine is operated at a high altitude with a low atmospheric pressure, the mass flow rate of air sucked into the combustion chamber is reduced. Therefore, if the conditions such as the throttle valve opening and the fuel injection amount are the same, the engine output is lower than that in the low altitude when operating in the high altitude.

したがって、上述したノック制御を高地で実施した場合、ノック発生に伴い点火時期を遅角させていくと、高地であることに起因して機関出力が低下していることに加え、さらに点火遅角により機関出力が低下していくので、機関出力が著しく低下してしまう。   Therefore, when the above-described knock control is performed at a high altitude, if the ignition timing is retarded due to the occurrence of the knock, the engine output decreases due to the high altitude, and further the ignition retard As a result, the engine output decreases, and the engine output decreases significantly.

本発明は、上記課題を解決するためになされたものであり、その目的は、ノック発生回避と機関出力低下とのバランス改善を図った内燃機関の点火制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ignition control device for an internal combustion engine that improves the balance between avoidance of knocking and reduction in engine output.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、内燃機関のノック発生が検出された場合に、点火時期を所定量だけ遅角させるノック制御手段と、前記内燃機関が位置する場所の大気圧が低いほど、前記所定量を少なくするよう補正する大気圧補正手段と、を備えることを特徴とする。   According to the first aspect of the present invention, the knock control means for retarding the ignition timing by a predetermined amount when the occurrence of knock in the internal combustion engine is detected, and the lower the atmospheric pressure at the location where the internal combustion engine is located, the lower the position. And an atmospheric pressure correcting means for correcting so as to reduce the quantification.

これによれば、内燃機関が位置する場所の大気圧が低いほど、ノック制御手段による点火遅角量が抑制されるので、ノック制御手段によるノック回避の確実性を低下させるものの、機関出力が著しく低下することを抑制できる。換言すれば、点火遅角によるノック回避の確実性と、点火遅角量抑制による機関出力向上とのバランスを最適化できる。   According to this, the lower the atmospheric pressure at the place where the internal combustion engine is located, the smaller the ignition delay amount by the knock control means, so the reliability of knock avoidance by the knock control means is reduced, but the engine output is remarkably high. It can suppress that it falls. In other words, it is possible to optimize the balance between the certainty of knock avoidance due to the ignition retard and the improvement in engine output due to suppression of the ignition retard amount.

但し、内燃機関の温度が高くなるほどノックは発生しやすくなるので、このような高温時には、機関出力向上の効果を低下させてノック回避の確実性を向上させるよう前記バランスを変更させることが望ましい。この点を鑑みた請求項2記載の発明では、前記内燃機関の温度が所定の上限値より高い場合には、前記大気圧の大きさに拘わらず前記大気圧補正手段による補正を禁止することを特徴とする。これによれば、ノックが発生しやすい高温時には、上述の如くノック回避を優先させる側へ前記バランスが変更されるので、当該バランスの最適化を促進できる。   However, knocking is more likely to occur as the temperature of the internal combustion engine increases. Therefore, at such a high temperature, it is desirable to change the balance so as to reduce the effect of improving engine output and improve the reliability of knock avoidance. In view of this point, in the invention according to claim 2, when the temperature of the internal combustion engine is higher than a predetermined upper limit value, the correction by the atmospheric pressure correction means is prohibited regardless of the magnitude of the atmospheric pressure. Features. According to this, at a high temperature at which knocking is likely to occur, the balance is changed to the side where priority is given to avoiding knocking as described above, so that optimization of the balance can be promoted.

さらに請求項3記載の発明では、前記内燃機関の温度が前記上限値以下である場合に、前記内燃機関の温度が前記上限値に近づくにつれ前記大気圧補正手段による補正量を少なく設定することを特徴とする。これによれば、内燃機関の温度が上限値に近づくにつれ大気圧補正手段による補正量を少なく設定するので、高温になるほどノック回避を優先させる側へバランスが徐々に変更されることとなる。よって、前記バランスをきめ細かく最適化できる。   According to a third aspect of the present invention, when the temperature of the internal combustion engine is equal to or lower than the upper limit value, the correction amount by the atmospheric pressure correction means is set to be small as the temperature of the internal combustion engine approaches the upper limit value. Features. According to this, as the temperature of the internal combustion engine approaches the upper limit value, the correction amount by the atmospheric pressure correcting means is set to be small, so that the balance is gradually changed to a side that gives priority to knock avoidance as the temperature becomes higher. Therefore, the balance can be finely optimized.

一方、内燃機関の温度が低くなるほどノックは発生しにくくなるので、このような低温時には、点火遅角量を抑制して機関出力を向上させてもノック回避の確実性はそれほど低下しない。この点を鑑みた請求項4記載の発明では、前記内燃機関の温度が所定の下限値より低い場合には、前記大気圧の大きさに拘わらず前記所定量をゼロにして前記ノック制御手段による遅角を中止することを特徴とする。これによれば、ノックが発生しにくい低温時には、上述の如く機関出力を向上させる側へバランスが変更されるので、前記バランスの最適化を促進できる。   On the other hand, knocking is less likely to occur as the temperature of the internal combustion engine becomes lower. Therefore, at such a low temperature, even if the ignition retard amount is suppressed to improve the engine output, the reliability of knock avoidance does not decrease so much. In view of this point, in the invention according to claim 4, when the temperature of the internal combustion engine is lower than a predetermined lower limit value, the predetermined amount is made zero regardless of the magnitude of the atmospheric pressure, and the knock control means The retard is stopped. According to this, at a low temperature at which knocking is difficult to occur, the balance is changed to the side for improving the engine output as described above, so that the optimization of the balance can be promoted.

請求項5記載の発明では、前記内燃機関の温度が低いほど、前記所定量を少なくするよう補正する温度補正手段を備えることを特徴とする。内燃機関の温度が低いほどノックは発生しにくくなるので、低温であるほど点火遅角量が抑制される上記発明によれば、前記バランスの最適化を促進できる。   According to a fifth aspect of the invention, there is provided temperature correction means for correcting so that the predetermined amount is decreased as the temperature of the internal combustion engine is lower. Since the knock is less likely to occur as the temperature of the internal combustion engine is lower, according to the above invention in which the ignition delay amount is suppressed as the temperature is lower, the optimization of the balance can be promoted.

本発明の一実施形態にかかる点火制御装置が適用される、エンジン制御システム全体を示す図。The figure which shows the whole engine control system to which the ignition control apparatus concerning one Embodiment of this invention is applied. 図1のECUによりノック制御を実行した場合の一態様を示すタイミングチャート。The timing chart which shows the one aspect | mode at the time of performing knock control by ECU of FIG. 図1のECUによる点火時期制御及びノック制御の処理手順を示すフローチャート。The flowchart which shows the process sequence of the ignition timing control and knock control by ECU of FIG. 図3の処理による補正係数Cの算出に用いるマップ。The map used for calculation of the correction coefficient C by the process of FIG.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.

まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。当該エンジン11(内燃機関)は車両に搭載されて走行駆動源として機能するものであり、点火式のガソリンエンジンである。また、複数気筒を有する多気筒エンジンでもある。燃料を噴射する燃料噴射弁12は吸気管13に取り付けられており、ポート噴射式のエンジンが採用されている。また、エンジン11のシリンダヘッドには、気筒毎に点火プラグ14が取り付けられ、各点火プラグ14の火花放電によって筒内の混合気に着火される。   First, a schematic configuration of the entire engine control system will be described with reference to FIG. The engine 11 (internal combustion engine) is mounted on a vehicle and functions as a travel drive source, and is an ignition type gasoline engine. It is also a multi-cylinder engine having a plurality of cylinders. A fuel injection valve 12 for injecting fuel is attached to an intake pipe 13, and a port injection type engine is adopted. An ignition plug 14 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each ignition plug 14.

エンジン11のシリンダブロックには、エンジン冷却水の温度を検出する水温センサ15と、ノック振動を検出するノックセンサ16と、エンジン11のクランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ17が取り付けられている。このクランク角センサ17の出力信号に基づいてクランク角やエンジン回転速度が検出される。さらに本実施形態では、大気圧を検出する大気圧センサ18が搭載されている。   The cylinder block of the engine 11 includes a water temperature sensor 15 that detects the temperature of engine cooling water, a knock sensor 16 that detects knock vibration, and a crank that outputs a pulse signal each time the crankshaft of the engine 11 rotates a predetermined crank angle. An angle sensor 17 is attached. Based on the output signal of the crank angle sensor 17, the crank angle and the engine rotation speed are detected. Furthermore, in this embodiment, the atmospheric pressure sensor 18 for detecting the atmospheric pressure is mounted.

これら各種センサの出力は、エンジン制御装置(以下「ECU19」と表記する)に入力される。このECU19は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、燃料噴射弁12の燃料噴射量や点火プラグ14の点火時期を制御する。   Outputs of these various sensors are input to an engine control device (hereinafter referred to as “ECU 19”). The ECU 19 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), thereby allowing the fuel injection amount of the fuel injection valve 12 and the ignition timing of the spark plug 14 to be executed. To control.

点火プラグ14による点火時期に関し、ECU19は、エンジン負荷及びエンジン回転速度に基づき基本点火時期を算出する。具体的には、エンジン回転速度が大きいほど基本点火時期を進角させるとともに、エンジン負荷が高いほど基本点火時期を進角させている。この基本点火時期に対して、以下に説明する暖機補正及びノック制御等により各種補正を行い、目標点火時期を算出する。そして、当該目標点火時期にて点火されるよう点火プラグ14の作動を制御(点火時期制御)する。   Regarding the ignition timing by the spark plug 14, the ECU 19 calculates a basic ignition timing based on the engine load and the engine speed. Specifically, the basic ignition timing is advanced as the engine speed increases, and the basic ignition timing is advanced as the engine load increases. Various corrections are performed on the basic ignition timing by warm-up correction and knock control described below to calculate a target ignition timing. Then, the operation of the spark plug 14 is controlled (ignition timing control) so as to be ignited at the target ignition timing.

ECU19は、エンジン冷却水が所定温度以下となっているエンジン11の暖機運転時には、点火時期を所定量遅角させる暖機補正を実施する。これにより、燃焼状態を安定化させるとともに燃焼温度の上昇を促進して、暖機運転の促進を図る。   The ECU 19 performs warm-up correction that retards the ignition timing by a predetermined amount during the warm-up operation of the engine 11 in which the engine coolant is at a predetermined temperature or lower. This stabilizes the combustion state and promotes an increase in combustion temperature, thereby promoting warm-up operation.

さらにECU19は、点火毎にノックセンサ16の出力信号から振動強度を算出して、その振動強度がノック判定値KCよりも高い場合にノックが発生していると判定している。そして、ノック発生有りと判定したときには点火時期を遅角補正してノックを抑制し、ノック無しの状態が続いたときには点火時期を進角補正するといったノック制御を行う。これにより、聴感で許容できるノック音の範囲内で点火時期を進角させてエンジン出力(機関出力)や燃費を向上させるようにしている。このノック制御によれば、ノックが発生しない限界まで点火時期を進角させて、最適点火時期MBTへ目標点火時期を近づけることができる。   Further, the ECU 19 calculates the vibration intensity from the output signal of the knock sensor 16 for each ignition, and determines that knock has occurred when the vibration intensity is higher than the knock determination value KC. When it is determined that knocking has occurred, the ignition timing is retarded to suppress the knocking, and when the state without knocking continues, the knocking control is performed to advance the ignition timing. As a result, the ignition timing is advanced within the range of the knocking sound that is permissible for audibility to improve the engine output (engine output) and fuel consumption. According to this knock control, the ignition timing can be advanced to the limit at which knock does not occur, and the target ignition timing can be brought close to the optimum ignition timing MBT.

図2は、上記ノック制御を実行した場合の一態様を示すタイミングチャートであり、(a)はノック有りと判定された場合に出力されるノック判定信号の変化を示し、(b)は点火時期の変化を示す。このようにノック有り判定がなされる毎に点火時期は所定量(図中の符号D1参照)遅角され、ノック無し判定が所定回数続いた時に点火時期は所定量(図中の符号D2参照)進角されている。なお、遅角量D1と進角量D2とは同じ量に設定されている。   FIG. 2 is a timing chart showing one mode when the knock control is executed. (A) shows a change in the knock determination signal output when it is determined that there is a knock, and (b) shows the ignition timing. Shows changes. Thus, each time the knocking determination is made, the ignition timing is retarded by a predetermined amount (see symbol D1 in the drawing), and when the knocking determination continues for a predetermined number of times, the ignition timing is a predetermined amount (see symbol D2 in the drawing). It has been advanced. The retard amount D1 and the advance amount D2 are set to the same amount.

ところで、大気圧の低い高地でエンジン11を運転させる場合には、燃焼室11aへ吸入される空気の質量流量が少なくなる。そのため、スロットルバルブ開度及び燃料噴射量等の条件が同じであれば、高地で運転させる場合には低地に比べてエンジン出力は低下する。したがって、上述したノック制御を高地で実施した場合、ノック発生に伴い点火時期を遅角させていくと、高地であることに起因してエンジン出力が低下していることに加え、さらに点火遅角によりエンジン出力が低下していくので、エンジン出力が著しく低下してしまう。   By the way, when the engine 11 is operated at a high altitude with a low atmospheric pressure, the mass flow rate of the air sucked into the combustion chamber 11a decreases. Therefore, if the conditions such as the throttle valve opening and the fuel injection amount are the same, the engine output is lower than that in the lowland when operating in the highland. Therefore, when the above-described knock control is performed at a high altitude, if the ignition timing is retarded due to the occurrence of the knock, in addition to the engine output decreasing due to the high altitude, the ignition retard is further reduced. As a result, the engine output decreases, so the engine output decreases significantly.

この点を鑑みた本実施形態では、ノック制御による遅角量D1を、大気圧が低いほど少なくするよう補正する大気圧補正を実施する。また、エンジン11の温度が低いほど燃焼温度が低くなるのでノックが発生しにくくなる。そこで本実施形態では、エンジン温度が低いほど遅角量D1を少なくするよう補正する温度補正を実施する。   In the present embodiment in view of this point, atmospheric pressure correction is performed to correct the retard amount D1 by knock control so that the retardation amount D1 decreases as the atmospheric pressure decreases. In addition, the lower the temperature of the engine 11, the lower the combustion temperature, so that knocking is less likely to occur. Therefore, in the present embodiment, temperature correction is performed so that the retard amount D1 is decreased as the engine temperature is lower.

次に、上述した点火時期制御及びノック制御の処理手順を、図3のフローチャートを用いて説明する。当該処理は、ECU19が有するマイクロコンピュータにより所定周期で繰り返し実行される。   Next, processing procedures of the ignition timing control and the knock control described above will be described with reference to the flowchart of FIG. This process is repeatedly executed at a predetermined cycle by a microcomputer included in the ECU 19.

先ず、図3のステップS10において、エンジン負荷(例えばアクセル操作量、吸気量、吸気圧等)、クランク角センサ17の検出値に基づき算出されるエンジン回転速度NE、水温センサ15の検出値に基づき算出される冷却水温度、大気圧センサ18の検出値に基づき算出される大気圧を取得する。   First, in step S10 of FIG. 3, based on the engine load (for example, accelerator operation amount, intake air amount, intake pressure, etc.), the engine rotational speed NE calculated based on the detected value of the crank angle sensor 17, and the detected value of the water temperature sensor 15. The atmospheric pressure calculated based on the calculated coolant temperature and the detected value of the atmospheric pressure sensor 18 is acquired.

続くステップS11では、ステップS10で取得したエンジン負荷及びエンジン回転速度NEに基づき基本点火時期を算出する。具体的には、エンジン負荷及びエンジン回転速度NEに応じた最適点火時期を予め試験しておき、当該試験結果に基づき作成されたマップ等に基づき基本点火時期を算出する。   In the subsequent step S11, the basic ignition timing is calculated based on the engine load and engine speed NE acquired in step S10. Specifically, the optimal ignition timing corresponding to the engine load and the engine rotational speed NE is tested in advance, and the basic ignition timing is calculated based on a map created based on the test result.

続くステップS12では、エンジン始動時の暖機運転中であるか否かを判定する。例えば、ステップS10で取得した冷却水温度が所定温度以下であれば暖機運転中であると判定する。そして、暖機運転中である場合(S12:YES)には、続くステップS13にて、先述した暖機補正に係る暖機遅角量を算出する。この暖機遅角量は、予め設定された一定の値を遅角させるものであってもよいし、冷却水温度が低いほど大きく遅角させるように可変設定させてもよい。   In a succeeding step S12, it is determined whether or not the engine is warming up when starting the engine. For example, if the cooling water temperature acquired in step S10 is equal to or lower than a predetermined temperature, it is determined that the warm-up operation is being performed. When the warm-up operation is being performed (S12: YES), in the following step S13, the warm-up delay amount related to the warm-up correction described above is calculated. This warm-up delay amount may be a retarded constant value set in advance, or may be variably set so as to be retarded more as the coolant temperature is lower.

続くステップS14(ノック制御手段)及びステップS15,S16(大気圧補正手段、温度補正手段)では、先述したノック制御に係るノック遅角量を算出する。   In the subsequent step S14 (knock control means) and steps S15 and S16 (atmospheric pressure correction means, temperature correction means), the knock retardation amount related to the knock control described above is calculated.

先ずステップS14では、ノック遅角量のベース値Tbを、図2を用いて先に説明した遅角量D1及び進角量D2に基づき算出する。すなわち、ベース値Tbは、ノック有り判定がなされる毎に所定量(遅角量D1)だけ遅角させていき、ノック無し判定が所定回数続く毎に所定量(進角量D2)だけ進角させていくことで算出される。   First, in step S14, the base value Tb of the knock retardation amount is calculated based on the retardation amount D1 and the advance amount D2 described above with reference to FIG. That is, the base value Tb is retarded by a predetermined amount (retard amount D1) every time a knocking determination is made, and the base value Tb is advanced by a predetermined amount (advance amount D2) every time the non-knock determination continues a predetermined number of times. Calculated by letting go.

続くステップS15では、ベース値Tbに対する補正係数Cを算出する。この補正係数Cに、先述した温度補正及び大気圧補正が含まれる。すなわち、ステップS10で取得した冷却水温度が低いほどノック遅角量を小さくする(温度補正)とともに、ステップS10で取得した大気圧が低いほどノック遅角量を小さくする(大気圧補正)ように補正係数Cを算出し、続くステップS16にてベース値Tbに補正係数Cを乗算(Tb×C)してノック遅角量を算出する。   In subsequent step S15, a correction coefficient C for the base value Tb is calculated. This correction coefficient C includes the above-described temperature correction and atmospheric pressure correction. That is, as the cooling water temperature acquired in step S10 is lower, the knock retardation amount is decreased (temperature correction), and as the atmospheric pressure acquired in step S10 is lower, the knock retardation amount is decreased (atmospheric pressure correction). In step S16, the correction coefficient C is calculated, and the base value Tb is multiplied by the correction coefficient C (Tb × C) to calculate the knock retardation amount.

具体的には、冷却水温度及び大気圧に応じた最適補正係数Cを予め試験しておき、当該試験結果に基づき作成されたマップ(図4参照)に基づき補正係数Cを算出する。図4中の実線は大気圧が100kPaの場合、図4中の破線は大気圧が90kPaの場合、図4中の一点鎖線は大気圧が70kPaの場合における冷却水温度と補正係数Cとの関係をそれぞれ示す。   Specifically, an optimum correction coefficient C corresponding to the coolant temperature and atmospheric pressure is tested in advance, and the correction coefficient C is calculated based on a map (see FIG. 4) created based on the test result. The solid line in FIG. 4 is the relationship between the cooling water temperature and the correction coefficient C when the atmospheric pressure is 100 kPa, the broken line in FIG. 4 is the atmospheric pressure is 90 kPa, and the alternate long and short dash line in FIG. Respectively.

図4に示すように、補正係数Cは、冷却水温度が低いほど小さい値に設定される(温度補正)とともに、大気圧が低いほど小さい値に設定される(大気圧補正)。したがって、冷却水温度が同じ(例えば70℃)であっても、高地を走行しており大気圧が通常(100kPa)よりも低くなっていれば(90kPa、70kPa)、気圧が低くなっている分だけ補正係数Cを小さくする。つまり、図4中のΔC1,ΔC2が大気補正にかかる補正量に相当する。   As shown in FIG. 4, the correction coefficient C is set to a smaller value as the cooling water temperature is lower (temperature correction), and is set to a smaller value as the atmospheric pressure is lower (atmospheric pressure correction). Therefore, even if the cooling water temperature is the same (for example, 70 ° C.), if the vehicle is traveling on a high altitude and the atmospheric pressure is lower than normal (100 kPa) (90 kPa, 70 kPa), the pressure is reduced. Only the correction coefficient C is reduced. That is, ΔC1 and ΔC2 in FIG. 4 correspond to the correction amount for the atmospheric correction.

但し、冷却水温度が所定の上限値T1(例えば約80℃)より高い場合には、補正係数Cを1に設定することで、ベース値Tbをそのままノック遅角量に設定する。つまり、大気圧の大きさに拘わらずノック遅角量を設定するよう、大気圧補正及び温度補正を禁止させる。   However, when the cooling water temperature is higher than a predetermined upper limit value T1 (for example, about 80 ° C.), the correction coefficient C is set to 1, so that the base value Tb is set to the knock retardation amount as it is. That is, the atmospheric pressure correction and the temperature correction are prohibited so that the knock retardation amount is set regardless of the magnitude of the atmospheric pressure.

一方、冷却水温度が所定の下限値T2(例えば約50℃)より低い場合には、補正係数Cを0に設定することで、ノック遅角量をゼロに設定する。つまり、ノック発生の有無に拘わらずノック制御を中止させる。ちなみに、上記下限値T2は、ステップS12の暖機運転判定に用いられる所定温度よりも高い温度に設定されている。   On the other hand, when the cooling water temperature is lower than a predetermined lower limit value T2 (for example, about 50 ° C.), the knock retardation amount is set to zero by setting the correction coefficient C to zero. That is, the knock control is stopped regardless of whether or not the knock has occurred. Incidentally, the lower limit value T2 is set to a temperature higher than a predetermined temperature used for the warm-up operation determination in step S12.

要するに、冷却水温度が上限値T1以下かつ下限値T2以上の温度領域であることを条件として、温度補正及び大気補正は実施される。そして、先述した大気圧補正量ΔC1,ΔC2は、温度領域中の所定値(図4の例では70℃)よりも高温側では、冷却水温度が上限値T1に近づくにつれ大気圧補正量ΔC1,ΔC2を少なく設定する。また、所定値(70℃)よりも低温側では、冷却水温度が下限値T2に近づくにつれ大気圧補正量ΔC1,ΔC2を少なく設定する。そして、大気圧の大きさに拘わらず、上限値T1及び下限値T2は同じ値に設定している。   In short, the temperature correction and the atmospheric correction are performed on the condition that the cooling water temperature is in the temperature range of the upper limit value T1 or lower and the lower limit value T2 or higher. The above-described atmospheric pressure correction amounts ΔC1, ΔC2 are higher than a predetermined value in the temperature region (70 ° C. in the example of FIG. 4), and the atmospheric pressure correction amounts ΔC1, ΔC1, as the coolant temperature approaches the upper limit value T1. Set ΔC2 small. On the lower temperature side than the predetermined value (70 ° C.), the atmospheric pressure correction amounts ΔC1 and ΔC2 are set to be smaller as the coolant temperature approaches the lower limit value T2. Regardless of the magnitude of the atmospheric pressure, the upper limit value T1 and the lower limit value T2 are set to the same value.

続くステップS17では、ステップS11で算出した基本点火時期を、ステップS13で算出した暖機遅角量及びステップS16で算出したノック遅角量に基づき補正して、目標点火時期を算出する。   In the subsequent step S17, the target ignition timing is calculated by correcting the basic ignition timing calculated in step S11 based on the warm-up delay amount calculated in step S13 and the knock delay amount calculated in step S16.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)大気圧が低いほど、ノック制御による遅角量D1を少なくするので、高地走行時において1回の遅角量D1でエンジン出力が急激に低下することを回避できる。つまり、ノック制御によるノック回避の確実性を低下させるものの、エンジン出力が著しく低下することを抑制できるので、点火遅角によるノック回避の確実性と、高地走行に伴う点火遅角量抑制によるエンジン出力向上とのバランスを最適化できる。   (1) Since the retard amount D1 by the knock control is decreased as the atmospheric pressure is lower, it is possible to avoid the engine output from rapidly decreasing with one retard amount D1 during high altitude traveling. In other words, although the reliability of knock avoidance by knock control is reduced, it is possible to suppress a significant decrease in engine output, so the reliability of knock avoidance due to ignition retard and the engine output due to suppression of the ignition delay amount associated with high altitude travel. The balance with improvement can be optimized.

(2)冷却水温度が低いほどノックが発生しにくくなることに着目し、冷却水温度が低いほどノック制御にかかる遅角量D1を少なくするので、低温時において過剰にノック遅角量を多くすることを回避できる。   (2) Focusing on the fact that knocking is less likely to occur as the cooling water temperature is lower, and the retard amount D1 required for knock control is reduced as the cooling water temperature is lower. Therefore, the knock retardation amount is excessively increased at low temperatures. Can be avoided.

(3)冷却水温度が上限値T1より高い場合には、ノックが発生しやすい高温状態であるとみなして大気圧補正を禁止することで、ノック回避を優先させる側(補正係数Cを大きくする側)へ前記バランスを変更させる。よって、当該バランスの最適化を促進できる。   (3) When the cooling water temperature is higher than the upper limit value T1, it is regarded as a high temperature state in which knocking is likely to occur, and atmospheric pressure correction is prohibited, so that knock avoidance is prioritized (the correction coefficient C is increased). Side) to change the balance. Therefore, optimization of the balance can be promoted.

(3)冷却水温度が上限値T1以下かつ下限値T2以上の温度領域であることを条件として、冷却水温度が上限値T1に近づくにつれ大気圧補正量ΔC1,ΔC2を少なく設定することで、高温になるほどノック回避を優先させる側(補正係数Cを大きくする側)へ前記バランスを徐々に変更させていく。よって、前記バランスをきめ細かく最適化できる。   (3) By setting the atmospheric pressure correction amounts ΔC1 and ΔC2 to be smaller as the cooling water temperature approaches the upper limit value T1, on the condition that the cooling water temperature is in the temperature range of the upper limit value T1 or lower and the lower limit value T2 or higher, As the temperature rises, the balance is gradually changed to the side that gives priority to knock avoidance (the side that increases the correction coefficient C). Therefore, the balance can be finely optimized.

(4)冷却水温度が下限値T2より低い場合には、ノックが殆ど発生しない低温状態であるとみなしてノック遅角量をゼロにする(ノック制御を中止する)ことで、エンジン出力を向上させる側(補正係数Cを小さくする側)へ前記バランスを変更させる。よって、当該バランスの最適化を促進できる。   (4) When the cooling water temperature is lower than the lower limit value T2, the engine output is improved by setting the knock retardation amount to zero (disabling the knock control) on the assumption that it is in a low temperature state where knocking hardly occurs. The balance is changed to the side to be corrected (the side to reduce the correction coefficient C). Therefore, optimization of the balance can be promoted.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図3中のステップS11にて基本点火時期を算出するにあたり、エンジン負荷及びエンジン回転速度NEに加え大気圧にも基づいて基本点火時期を算出してもよい。例えば、大気圧が低いほど点火時期を進角させる。つまり、ステップS16におけるノック制御にかかる大気圧補正とは別に、基本点火時期に対しても大気圧補正を実施させる。   In calculating the basic ignition timing in step S11 in FIG. 3, the basic ignition timing may be calculated based on the atmospheric pressure in addition to the engine load and the engine speed NE. For example, the ignition timing is advanced as the atmospheric pressure is lower. That is, apart from the atmospheric pressure correction related to the knock control in step S16, the atmospheric pressure correction is also performed for the basic ignition timing.

・図4に示すマップでは、大気圧の大きさに拘わらず、上限値T1及び下限値T2を同じ値に設定しているが、大気圧に応じて上限値T1及び下限値T2を異なる値に設定してもよい。この場合、大気圧が低いほど上限値T1及び下限値T2を高くすることが望ましい。   In the map shown in FIG. 4, the upper limit value T1 and the lower limit value T2 are set to the same value regardless of the magnitude of the atmospheric pressure, but the upper limit value T1 and the lower limit value T2 are set to different values according to the atmospheric pressure. It may be set. In this case, it is desirable to increase the upper limit value T1 and the lower limit value T2 as the atmospheric pressure is lower.

・図4に示すマップでは、冷却水温度が上限値T1及び下限値T2に近づくにつれ大気圧補正量ΔC1,ΔC2を少なく設定しているが、冷却水温度に拘わらず大気圧補正量ΔC1,ΔC2を一定の値に固定させてもよい。また、図4に示すマップでは、上限値T1及び下限値T2を大気圧に拘わらず同じ値に設定しているが、大気圧が低くなるほど上限値T1及び下限値T2を高い値にするよう可変設定してもよい。   In the map shown in FIG. 4, the atmospheric pressure correction amounts ΔC1 and ΔC2 are set to be smaller as the cooling water temperature approaches the upper limit value T1 and the lower limit value T2, but the atmospheric pressure correction amounts ΔC1 and ΔC2 are set regardless of the cooling water temperature. May be fixed to a constant value. In the map shown in FIG. 4, the upper limit value T1 and the lower limit value T2 are set to the same value regardless of the atmospheric pressure. However, the upper limit value T1 and the lower limit value T2 can be changed to higher values as the atmospheric pressure decreases. It may be set.

D1…所定量、S14…ノック制御手段、S15,S16…大気圧補正手段、温度補正手段、T1…所定の上限値、T2…所定の下限値。   D1 ... predetermined amount, S14 ... knock control means, S15, S16 ... atmospheric pressure correction means, temperature correction means, T1 ... predetermined upper limit value, T2 ... predetermined lower limit value.

Claims (5)

内燃機関のノック発生が検出された場合に、点火時期を所定量だけ遅角させるノック制御手段と、
前記内燃機関が位置する場所の大気圧が低いほど、前記所定量を少なくするよう補正する大気圧補正手段と、
を備えることを特徴とする内燃機関の点火制御装置。
A knock control means for retarding the ignition timing by a predetermined amount when knocking of the internal combustion engine is detected;
Atmospheric pressure correction means for correcting so that the predetermined amount decreases as the atmospheric pressure at the location where the internal combustion engine is located is lower;
An ignition control device for an internal combustion engine, comprising:
前記内燃機関の温度が所定の上限値より高い場合には、前記大気圧の大きさに拘わらず前記大気圧補正手段による補正を禁止することを特徴とする請求項1に記載の内燃機関の点火制御装置。   2. The ignition of the internal combustion engine according to claim 1, wherein when the temperature of the internal combustion engine is higher than a predetermined upper limit value, correction by the atmospheric pressure correction unit is prohibited regardless of the magnitude of the atmospheric pressure. Control device. 前記内燃機関の温度が前記上限値以下である場合に、前記内燃機関の温度が前記上限値に近づくにつれ前記大気圧補正手段による補正量を少なく設定することを特徴とする請求項2に記載の内燃機関の点火制御装置。   3. The correction amount by the atmospheric pressure correction means is set to be small as the temperature of the internal combustion engine approaches the upper limit value when the temperature of the internal combustion engine is equal to or lower than the upper limit value. An ignition control device for an internal combustion engine. 前記内燃機関の温度が所定の下限値より低い場合には、前記大気圧の大きさに拘わらず前記所定量をゼロにして前記ノック制御手段による遅角を中止することを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の点火制御装置。   2. The retard by the knock control means is stopped when the temperature of the internal combustion engine is lower than a predetermined lower limit value, regardless of the magnitude of the atmospheric pressure, and the predetermined amount is set to zero. The ignition control device for an internal combustion engine according to any one of? 前記内燃機関の温度が低いほど、前記所定量を少なくするよう補正する温度補正手段を備えることを特徴とする請求項1〜4のいずれか1つに記載の内燃機関の点火制御装置。   The ignition control device for an internal combustion engine according to any one of claims 1 to 4, further comprising a temperature correction unit that corrects the predetermined amount to decrease as the temperature of the internal combustion engine decreases.
JP2010080086A 2010-03-31 2010-03-31 Ignition control device for internal combustion engine Pending JP2011214400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010080086A JP2011214400A (en) 2010-03-31 2010-03-31 Ignition control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080086A JP2011214400A (en) 2010-03-31 2010-03-31 Ignition control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011214400A true JP2011214400A (en) 2011-10-27

Family

ID=44944409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080086A Pending JP2011214400A (en) 2010-03-31 2010-03-31 Ignition control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011214400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089904A (en) * 2014-05-13 2015-11-25 福特全球技术公司 Adjustments for engine spark using remote data
JP7397716B2 (en) 2020-02-26 2023-12-13 株式会社デンソー Knock determination device and knock control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089904A (en) * 2014-05-13 2015-11-25 福特全球技术公司 Adjustments for engine spark using remote data
JP7397716B2 (en) 2020-02-26 2023-12-13 株式会社デンソー Knock determination device and knock control device

Similar Documents

Publication Publication Date Title
JP2006138300A (en) Torque control device for internal combustion engine
JP7087609B2 (en) Engine control unit
WO2008149831A1 (en) Ignition timing control apparatus for internal combustion engine
JP6006228B2 (en) In-cylinder pressure sensor abnormality diagnosis device and in-cylinder pressure sensor sensitivity correction device including the same
WO2019163459A1 (en) Internal-combustion engine control device, and internal-combustion engine control method
JP2008095539A (en) Premixed compression ignition internal combustion engine
JP5234513B2 (en) Torque control device for internal combustion engine
JP2011214400A (en) Ignition control device for internal combustion engine
US20180195487A1 (en) Control device for internal combustion engine
JP3846191B2 (en) Ignition timing control device for internal combustion engine
JP6156125B2 (en) Control device for internal combustion engine
JP4251028B2 (en) Control device for internal combustion engine
JP2013083188A (en) Ignition timing control device of internal combustion engine
JP6077371B2 (en) Control device for internal combustion engine
JP6453021B2 (en) Ignition timing control device and control method
JP2011247108A (en) Knocking control device for internal combustion engine
JP6885291B2 (en) Internal combustion engine control device
JP2011174476A (en) Combustion controller of spark-ignition multicylinder engine
JP2008298032A (en) Ignition timing control device for internal combustion engine
JP5146337B2 (en) Control device for internal combustion engine
JP2007170198A (en) Torque control device of internal combustion engine
JP3968902B2 (en) Ignition timing control device
WO2014141598A1 (en) Cylinder injection type internal combustion engine and fuel injection controller
JP2007002685A (en) Ignition timing control device for internal combustion engine
JPH0315035B2 (en)