JP2011214137A - Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet - Google Patents

Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet Download PDF

Info

Publication number
JP2011214137A
JP2011214137A JP2010277465A JP2010277465A JP2011214137A JP 2011214137 A JP2011214137 A JP 2011214137A JP 2010277465 A JP2010277465 A JP 2010277465A JP 2010277465 A JP2010277465 A JP 2010277465A JP 2011214137 A JP2011214137 A JP 2011214137A
Authority
JP
Japan
Prior art keywords
compound
concentration
rolled steel
steel sheet
containing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010277465A
Other languages
Japanese (ja)
Inventor
Tadao Inose
匡生 猪瀬
Hisato Noro
寿人 野呂
Noriko Makiishi
規子 槇石
Takako Yamashita
孝子 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010277465A priority Critical patent/JP2011214137A/en
Publication of JP2011214137A publication Critical patent/JP2011214137A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling concentration of an S-compound-containing solution for treating a cold rolled steel sheet, and a method for producing the cold rolled steel sheet, in which it is possible to reduce the amount of an S compound used for production of a high strength cold rolled steel sheet and to reduce a production cost, while stably producing the high strength cold rolled steel sheet.SOLUTION: The method for controlling concentration of an S-compound-containing solution for treating a cold rolled steel sheet includes: measuring the concentration of an S-compound in the S-compound-containing solution using an analytical means having a minimum determination limit of 0.70 mg-S/L or less in terms of S, when annealing a cold rolled steel strip containing 0.8-3.0 mass% of Si, pickling the annealed strip, and then performing a treatment using the S-compound-containing solution; and controlling the concentration of the S-compound in the S-compound-containing solution to 3.5 mg-S/L or more in terms of S, based on the measured concentration of the S-compound. There is also disclosed a method for producing a cold rolled steel sheet using the method for controlling concentration.

Description

本発明は、硫黄化合物含有溶液を用いて冷延鋼板を処理する際に、硫黄化合物含有溶液の濃度を適正範囲内に制御する方法に関するものである。また、本発明は、該濃度制御方法を用いて、引張強度が590MPa以上の冷延鋼板を製造する方法に関するものである。   The present invention relates to a method for controlling the concentration of a sulfur compound-containing solution within an appropriate range when a cold-rolled steel sheet is processed using the sulfur compound-containing solution. The present invention also relates to a method for producing a cold-rolled steel sheet having a tensile strength of 590 MPa or more using the concentration control method.

近年、地球環境の保全という観点から自動車の燃費改善が求められている一方で、衝突時における乗員保護という観点から自動車の安全性向上も求められている。そのため、自動車車体には軽量化と高強度化の両立が必要とされており、最近では自動車部品の薄肉化と高強度化が促進されている。   In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment, while an improvement in automobile safety has also been demanded from the viewpoint of passenger protection in the event of a collision. For this reason, it is necessary to reduce the weight and increase the strength of the automobile body. Recently, the reduction in the thickness and the increase in the strength of the automobile parts has been promoted.

ここで、自動車部品の多くは鋼板をプレス成形して製造されることから、自動車部品に用いられる鋼板には、優れたプレス成形性と高い強度とが強く求められている。そして、プレス成形性を大きく損なわずに高い強度を有する鋼板を得る方法としては、Si添加による固溶強化法が知られている。   Here, since many automobile parts are manufactured by press-molding steel sheets, excellent press formability and high strength are strongly demanded for steel sheets used for automobile parts. As a method for obtaining a steel sheet having high strength without greatly impairing press formability, a solid solution strengthening method by adding Si is known.

しかし、固溶強化法では、冷延鋼板に多量、特に0.8質量%以上のSiを含有させた場合には、焼鈍時にSiO(シリケート)やSiMnO(マンガンシリケート)などのSi酸化物が鋼板表面に形成されてしまう。そして、これらのSi酸化物は、鋼板の電着塗装の下地処理として行われるリン酸亜鉛処理(化成処理)において、鋼板表面のエッチングを阻害して健全な化成処理皮膜の形成を阻害する。そのため、こうしたSi含有量の多い高強度冷延鋼板は、電着塗装後に塩温水浸漬試験や、湿潤−乾燥を繰り返す複合サイクル腐食試験のような過酷な環境に曝されると、通常の鋼板に比べて塗膜がはがれ易く、塗装後耐食性が低下し易い。 However, in the solid solution strengthening method, when a cold rolled steel sheet contains a large amount, particularly 0.8 mass% or more, of Si oxide such as SiO 2 (silicate) or SiMnO 3 (manganese silicate) during annealing. Will be formed on the surface of the steel sheet. These Si oxides inhibit the etching of the steel sheet surface and inhibit the formation of a healthy chemical conversion film in the zinc phosphate treatment (chemical conversion treatment) performed as a base treatment for electrodeposition coating of the steel plate. Therefore, such high-strength cold-rolled steel sheets with a high Si content can be applied to ordinary steel sheets when exposed to harsh environments such as a salt warm water immersion test or a combined cycle corrosion test that repeats wet-drying after electrodeposition coating. In comparison, the coating film is easily peeled off, and the corrosion resistance after coating tends to be lowered.

そこで、酸洗により鋼板表面からSi酸化物を除去すると共に、鋼板表面に所定量の硫黄化合物(以下「S化合物」という。)を存在させることにより化成処理の初期段階で生成するリン酸亜鉛結晶核の数を増加させてリン酸亜鉛結晶の微細化、緻密化を図り、鋼板のリン酸処理性(化成処理性)を向上させて塗装後耐食性を改善する方法が提案されている。具体的には、Siを0.8〜3.0質量%含む鋼スラブを、熱間圧延し、冷間圧延し、連続焼鈍した後、酸洗してなる鋼板の表面に、さらに、S化合物を含む水溶液を接触させることにより、塗装後耐食性に優れた高強度冷延鋼板を製造する方法が提案されている(例えば、特許文献1〜3参照)。   Therefore, the zinc phosphate crystals generated at the initial stage of the chemical conversion treatment by removing Si oxide from the steel sheet surface by pickling and making a predetermined amount of sulfur compound (hereinafter referred to as “S compound”) present on the steel sheet surface. There has been proposed a method for improving the corrosion resistance after coating by increasing the number of nuclei to refine and refine the zinc phosphate crystal and improve the phosphoric acid treatment property (chemical conversion property) of the steel sheet. Specifically, a steel slab containing 0.8 to 3.0% by mass of Si is hot-rolled, cold-rolled, continuously annealed, and then pickled on the surface of the steel plate. There has been proposed a method for producing a high-strength cold-rolled steel sheet having excellent post-coating corrosion resistance by contacting with an aqueous solution containing bismuth (see, for example, Patent Documents 1 to 3).

特開2007−126747号公報JP 2007-126747 A 特開2007−217743号公報JP 2007-217743 A 特開2007−224325号公報JP 2007-224325 A

ここで、上記従来の塗装後耐食性に優れた高強度冷延鋼板の製造方法では、S化合物を含む水溶液の濃度については特に管理がなされていなかった。しかし、本発明者らの研究によれば、上記従来の製造方法では、酸洗を行った直後の鋼板と、S化合物含有溶液とを接触させることによりS化合物を鋼板表面に吸着させているので、高強度冷延鋼板を連続的に製造した場合、時間の経過に伴いS化合物含有溶液中のS化合物濃度が低下してしまい、塗装後耐食性に優れる高強度冷延鋼板を安定的に製造できなくなる可能性があることが明らかとなった。   Here, in the conventional method for producing a high-strength cold-rolled steel sheet having excellent post-coating corrosion resistance, the concentration of the aqueous solution containing the S compound has not been particularly controlled. However, according to the studies by the present inventors, in the conventional manufacturing method described above, the S compound is adsorbed on the steel sheet surface by bringing the steel sheet immediately after pickling into contact with the S compound-containing solution. When a high strength cold-rolled steel sheet is continuously produced, the S compound concentration in the S compound-containing solution decreases with the passage of time, and a high-strength cold-rolled steel sheet having excellent corrosion resistance after coating can be stably produced. It became clear that it might disappear.

そこで、本発明者らは、S化合物含有溶液による処理を用いた高強度冷延鋼板の製造方法において、S化合物含有溶液の濃度を適切に管理することで、塗装後耐食性に優れる高強度冷延鋼板を安定的に製造しつつ、高強度冷延鋼板の製造に使用するS化合物の量を低減して製造コストを低減することを目的として、鋭意検討を行った。   Therefore, the inventors of the present invention provide a high-strength cold-rolled steel sheet that is excellent in post-coating corrosion resistance by appropriately managing the concentration of the S-compound-containing solution in the method for producing a high-strength cold-rolled steel sheet using treatment with an S compound-containing solution. In order to reduce the manufacturing cost by reducing the amount of S compound used for the production of a high-strength cold-rolled steel sheet while stably producing the steel sheet, intensive studies were conducted.

具体的には、本発明者らは最初に、鋼板表面に十分な量のS化合物を付着させて化成処理性を向上させるために必要なS化合物含有溶液の濃度の下限について検討するため、引張強度が590MPa級の高強度鋼(Si含有量:1.2質量%)および780MPa級の高強度鋼(Si含有量:1.5質量%)を用いて、以下の実験を行った。
まず、各高強度鋼を、焼鈍後、20質量%硝酸−5質量%塩酸溶液で酸洗し、その後、下表1に示す各濃度のS化合物含有溶液中に浸漬して高強度冷延鋼板を得た。次に、得られた鋼板に、スプレー脱脂処理、表面調整処理、化成処理を順次施した後、電着塗料を塗装して試験片を作製した。そして、試験片に対してカッターでクロスカット疵を付与した後、試験片を60℃の5質量%NaCl溶液に240時間浸漬し、その後、水洗、乾燥を行った。そして最後に、試験片のクロスカット疵部に対してテープ剥離試験を行い、クロスカット疵部の左右の最大剥離幅を測定した。
Specifically, the present inventors first examined the lower limit of the concentration of the S compound-containing solution necessary for improving the chemical conversion treatment property by attaching a sufficient amount of S compound to the steel sheet surface. The following experiments were performed using high-strength steel (Si content: 1.2 mass%) with a strength of 590 MPa and high-strength steel (Si content: 1.5 mass%) with a strength of 780 MPa.
First, after annealing, each high-strength steel is pickled with a 20% by mass nitric acid-5% by mass hydrochloric acid solution, and then immersed in an S-compound-containing solution having each concentration shown in Table 1 below. Got. Next, the obtained steel sheet was sequentially subjected to spray degreasing treatment, surface conditioning treatment, and chemical conversion treatment, and then an electrodeposition coating was applied to prepare a test piece. And after giving a crosscut wrinkle with a cutter with respect to the test piece, the test piece was immersed in the 60 mass C 5 mass% NaCl solution for 240 hours, Then, water washing and drying were performed. And finally, the tape peeling test was done with respect to the crosscut collar part of the test piece, and the maximum peeling width of the right and left of the crosscut collar part was measured.

その結果、試験片の最大剥離幅は表1に示すようになり、鋼板表面に十分な量のS化合物を付着させて化成処理性を向上させ、塗装後耐食性に優れる冷延鋼板を連続して安定的に得るためには、S化合物の濃度が硫黄換算(S換算)で3.5mg−S/L以上のS化合物含有溶液を用いる必要があることが、本検討にて初めて分かった。   As a result, the maximum peel width of the test piece is as shown in Table 1, and a sufficient amount of S compound is attached to the steel sheet surface to improve the chemical conversion treatment property, and continuously cold-rolled steel sheet having excellent corrosion resistance after coating. In order to obtain stably, it became clear for the first time in this examination that it is necessary to use the S compound containing solution whose S compound concentration is 3.5 mg-S / L or more in terms of sulfur (S conversion).

Figure 2011214137
Figure 2011214137

そこで、次に、本発明者らは、高強度冷延鋼板を製造する際にS化合物含有溶液中のS化合物の濃度を3.5mg−S/L以上に制御するために必要な手段の検討を行った。その結果、S化合物含有溶液中のS化合物の濃度を3.5mg−S/L以上に制御するためには、S化合物の濃度を3.5±0.2mg−S/L程度の精度で測定し、管理する必要があることが分かった。そこで、工程管理分析に関する発明者らの今までの経験に基づき更に検討を進めた結果、S化合物の濃度を3.5±0.2mg−S/L程度の精度で測定するためには、ブランクを繰り返し測定した際の標準偏差(σ)が0.07mg−S/L以下(即ち、標準偏差(σ)の10倍の大きさに相当する定量下限が0.70mg−S/L以下)の分析手段を用いる必要があることが見出された。
そして、本発明者らは、上記知見に基づき本発明を完成させた。
Therefore, next, the present inventors examined the means necessary for controlling the concentration of the S compound in the S compound-containing solution to 3.5 mg-S / L or more when producing a high-strength cold-rolled steel sheet. Went. As a result, in order to control the concentration of the S compound in the S compound-containing solution to 3.5 mg-S / L or more, the concentration of the S compound is measured with an accuracy of about 3.5 ± 0.2 mg-S / L. And found it necessary to manage. Therefore, as a result of further investigation based on the inventors' previous experience regarding process control analysis, in order to measure the concentration of S compound with an accuracy of about 3.5 ± 0.2 mg-S / L, a blank is used. The standard deviation (σ) when repeatedly measuring is 0.07 mg-S / L or less (that is, the lower limit of quantification corresponding to 10 times the standard deviation (σ) is 0.70 mg-S / L or less). It has been found that it is necessary to use analytical means.
And the present inventors completed this invention based on the said knowledge.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の冷延鋼板処理用S化合物含有溶液の濃度制御方法は、Siを0.8〜3.0質量%含有する冷延鋼帯を焼鈍し、酸洗した後、S化合物含有溶液を用いた処理を行う際に、該S化合物含有溶液中のS化合物濃度を、定量下限がS換算で0.70mg−S/L以下の分析手段を用いて測定し、測定されたS化合物濃度に基づき、前記S化合物含有溶液中のS化合物濃度をS換算で3.5mg−S/L以上となるように制御することを特徴とする。なお、本発明において、「定量下限」とは、ブランクを繰り返し10回測定した際に得られる測定値の標準偏差(σ)を10倍した値を指し、「定量下限がS換算で0.70mg−S/L以下」とは、S化合物含有溶液中に複数のS化合物が添加されている場合には、使用する分析手段における各S化合物の定量下限(S換算値)の合計値が0.70mg−S/L以下であることを指す。   That is, this invention aims at solving the said subject advantageously, The concentration control method of the S compound containing solution for cold-rolled steel plate processing of this invention is Si 0.8-3.0 mass. After annealing and pickling the cold-rolled steel strip, the S compound concentration in the S compound-containing solution is 0.70 mg when the lower limit of quantification is converted to S. -Measured using an analysis means of S / L or less, and based on the measured S compound concentration, the S compound concentration in the S compound-containing solution is controlled to be 3.5 mg-S / L or more in terms of S It is characterized by doing. In the present invention, the “lower limit of quantification” refers to a value obtained by multiplying the standard deviation (σ) of a measurement value obtained when a blank is measured 10 times repeatedly, and the “lower limit of quantification is 0.70 mg in terms of S”. “S / L or less” means that when a plurality of S compounds are added to the S compound-containing solution, the total value of the lower limit of quantification (S converted value) of each S compound in the analysis means used is 0. It means that it is 70 mg-S / L or less.

ここで、本発明の冷延鋼板処理用S化合物含有溶液の濃度制御方法は、前記分析手段が、蛍光X線分析法、ICP発光分光分析法、液体クロマトグラフ法、吸光光度法または燃焼赤外硫黄分析法を用いた分析装置であることが好ましい。これらの分析方法を利用した分析装置は、定量下限が0.70mg−S/L以下であり、本発明の濃度制御方法に特に適しているからである。   Here, the method for controlling the concentration of the S compound-containing solution for cold-rolled steel sheet processing according to the present invention is such that the analysis means is an X-ray fluorescence analysis method, an ICP emission spectroscopy method, a liquid chromatograph method, an absorptiometry method or a combustion infrared ray. An analyzer using a sulfur analysis method is preferred. This is because an analytical apparatus using these analytical methods has a lower limit of quantification of 0.70 mg-S / L or less, and is particularly suitable for the concentration control method of the present invention.

また、本発明の冷延鋼板の製造方法は、Siを0.8〜3.0質量%含有する冷延鋼帯を焼鈍し、酸洗した後に、S化合物含有溶液を用いた処理を行う工程を含む、冷延鋼板を製造する方法であって、前記S化合物含有溶液中のS化合物濃度を、上述した濃度制御方法の何れかを用いて制御することを特徴とする。   Moreover, the manufacturing method of the cold rolled steel sheet of this invention is the process of performing the process using an S compound containing solution, after annealing and pickling the cold rolled steel strip containing 0.8-3.0 mass% of Si. A method for producing a cold-rolled steel sheet, comprising controlling the concentration of S compound in the S compound-containing solution by using any one of the above-described concentration control methods.

本発明の冷延鋼板処理用S化合物含有溶液の濃度制御方法によれば、S化合物含有溶液中のS化合物濃度をS換算で3.5mg−S/L以上に制御して、塗装後耐食性に優れる冷延鋼板を安定的に製造するのに必要なS化合物濃度を、S化合物を過剰に添加することなく確保することができる。また、本発明の冷延鋼板の製造方法によれば、塗装後耐食性に優れる冷延鋼板を低コストで安定的に製造することができる。   According to the method for controlling the concentration of the S compound-containing solution for cold-rolled steel sheet processing according to the present invention, the S compound concentration in the S compound-containing solution is controlled to 3.5 mg-S / L or more in terms of S, thereby improving the corrosion resistance after coating. The S compound concentration necessary for stably producing an excellent cold-rolled steel sheet can be ensured without adding an excessive amount of the S compound. Moreover, according to the manufacturing method of the cold-rolled steel plate of this invention, the cold-rolled steel plate excellent in corrosion resistance after coating can be manufactured stably at low cost.

本発明の冷延鋼板の製造方法に適用し得る代表的な冷延鋼板製造装置の要部を模式的に示す説明図である。It is explanatory drawing which shows typically the principal part of the typical cold-rolled steel plate manufacturing apparatus applicable to the manufacturing method of the cold-rolled steel plate of this invention. 図1に示す装置を用いて冷延鋼板を連続的に製造した際の、S化合物含有溶液中のS化合物濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the S compound density | concentration in the S compound containing solution at the time of manufacturing a cold-rolled steel plate continuously using the apparatus shown in FIG. 比較例の装置を用いて冷延鋼板を連続的に製造した際の、S化合物含有溶液中のS化合物濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the S compound density | concentration in the S compound containing solution at the time of manufacturing a cold-rolled steel plate continuously using the apparatus of a comparative example. 図1に示す装置を用いて冷延鋼板を長時間にわたり連続的に製造した際の、S化合物含有溶液中のS化合物濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the S compound density | concentration in the S compound containing solution at the time of manufacturing a cold-rolled steel plate continuously over a long time using the apparatus shown in FIG.

以下、図面を参照して本発明の実施の形態を説明する。ここで、本発明に係る冷延鋼板の製造方法は、例えば特許文献1〜3に記載されているような、Siを0.8〜3.0質量%含有する鋼スラブを、熱間圧延した後に冷間圧延して得た冷延鋼帯に対し、更に連続焼鈍、酸洗を施した直後にS化合物含有溶液を接触させることで、鋼板の表面にS化合物を存在させる冷延鋼板の製造方法において、鋼板に接触させるS化合物含有溶液の濃度を、所定の濃度制御方法により制御したことを特徴とする。そして、本発明の冷延鋼板の製造方法の一例では、図1に要部のみを示す冷延鋼板製造装置を用いて、例えば以下のようにして、引張強度が590MPa以上の高強度冷延鋼板を製造する。なお、以下の一例の製造方法では、熱間圧延条件、冷間圧延条件、焼鈍条件および酸洗条件などは、適宜変更することができる。   Embodiments of the present invention will be described below with reference to the drawings. Here, the manufacturing method of the cold-rolled steel sheet according to the present invention hot-rolled a steel slab containing 0.8 to 3.0% by mass of Si as described in Patent Documents 1 to 3, for example. Production of a cold-rolled steel sheet in which an S compound is present on the surface of the steel sheet by bringing the S compound-containing solution into contact with the cold-rolled steel strip obtained by cold rolling later, immediately after continuous annealing and pickling. In the method, the concentration of the S compound-containing solution brought into contact with the steel sheet is controlled by a predetermined concentration control method. And in an example of the manufacturing method of the cold-rolled steel plate of this invention, using the cold-rolled steel plate manufacturing apparatus which shows only the principal part in FIG. 1, for example, as follows, the high-strength cold-rolled steel plate with a tensile strength of 590 MPa or more Manufacturing. In the following example manufacturing method, hot rolling conditions, cold rolling conditions, annealing conditions, pickling conditions, and the like can be appropriately changed.

まず、Siを0.8〜3.0質量%含有する鋼スラブを、例えば1200℃以下の温度まで加熱し、熱間圧延し、例えば400〜650℃の温度で巻取った後に、任意に酸洗を施して、熱延鋼板を得る。次に、得られた熱延鋼板を、例えば30〜60%の圧下率で冷間圧延して、冷延鋼帯とした後に、850℃以下の温度で焼鈍する。そして、焼鈍を行った鋼板(鋼帯)を、図1に示すような、酸洗槽1、S化合物処理槽2および水洗槽3に順次通すことにより、高強度冷延鋼板を連続的に製造する。なお、本発明では、鋼スラブ中のSiが鋼板の化成処理性に影響を及ぼすため、Si含有量のみを限定しており、他の成分については特に限定はしないが、例えば、Si以外にも、C:0.05〜0.25質量%、Mn:0.5〜3.0質量%、P:0.05質量%以下、S:0.01質量%以下、Al:0.06質量%以下などを含有していても良い。以下、上記各成分の限定理由について説明する。   First, a steel slab containing 0.8 to 3.0 mass% of Si is heated to, for example, a temperature of 1200 ° C. or less, hot-rolled, and wound at a temperature of, for example, 400 to 650 ° C., and then optionally an acid. Washing is performed to obtain a hot-rolled steel sheet. Next, the obtained hot-rolled steel sheet is cold-rolled at a rolling reduction of, for example, 30 to 60% to form a cold-rolled steel strip, and then annealed at a temperature of 850 ° C. or lower. And the high-strength cold-rolled steel plate is continuously manufactured by sequentially passing the annealed steel plate (steel strip) through the pickling tank 1, the S compound treatment tank 2, and the water washing tank 3 as shown in FIG. To do. In the present invention, since Si in the steel slab affects the chemical conversion property of the steel sheet, only the Si content is limited, and other components are not particularly limited. , C: 0.05 to 0.25 mass%, Mn: 0.5 to 3.0 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.06 mass% The following may be contained. Hereinafter, the reasons for limitation of the above components will be described.

C:Cは、鋼の組織強化に必要な残留オーステナイト、ベイナイト、マルテンサイトなどの生成に有効な元素である。そのため、0.05質量%以上含有させるが、C量が0.25質量%を超えると溶接性の劣化を招く。そのため、C量は0.05〜0.25質量%、好ましくは0.10〜0.20質量%とする。   C: C is an element effective for producing retained austenite, bainite, martensite and the like necessary for strengthening the steel structure. Therefore, 0.05 mass% or more is contained, but if the C content exceeds 0.25 mass%, weldability is deteriorated. Therefore, the C content is 0.05 to 0.25% by mass, preferably 0.10 to 0.20% by mass.

Mn:Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上させ、残留オーステナイト、ベイナイト、マルテンサイトの生成を促進する作用を有する。このような作用は、Mn量が0.5質量%以上で認められるが、3.0質量%を超えると飽和し、コストの上昇を招く。そのため、Mn量は0.5〜3.0質量%、好ましくは1.0〜2.0質量%とする。   Mn: Mn strengthens steel by solid solution strengthening, improves the hardenability of the steel, and has an action of promoting the formation of retained austenite, bainite, and martensite. Such an effect is recognized when the amount of Mn is 0.5% by mass or more, but when it exceeds 3.0% by mass, it is saturated and the cost is increased. Therefore, the amount of Mn is 0.5 to 3.0% by mass, preferably 1.0 to 2.0% by mass.

P:Pは、固溶強化元素であり、通常、高強度鋼板を得るのに有効な元素ではあるため、0.005質量%以上含有させることが好ましいが、0.05質量%を超えるとスポット溶接性を低下させる。そのため、P量は0.05質量%以下、好ましくは0.02質量%以下とする。   P: P is a solid solution strengthening element, and is usually an element effective for obtaining a high-strength steel sheet. Therefore, it is preferably contained in an amount of 0.005% by mass or more. Reduce weldability. Therefore, the P content is 0.05% by mass or less, preferably 0.02% by mass or less.

S:Sは、鋼中にMnSとして析出し、鋼板の伸びフランジ性を低下させる。そのため、S量は0.01質量%以下、好ましくは0.005質量%以下、より好ましくは0.003質量%以下とする。   S: S precipitates as MnS in the steel and reduces the stretch flangeability of the steel sheet. Therefore, the S content is 0.01% by mass or less, preferably 0.005% by mass or less, more preferably 0.003% by mass or less.

Al:Alは、製鋼段階での脱酸剤として添加される元素であり、伸びフランジ性を低下させる非金属介在物をスラグとして分離するのに有効な元素であるので、0.01質量%以上含有させることが好ましいが、0.06質量%を超えるとコストの上昇を招く。このため、Al量は0.06質量%以下とする。好ましくは0.02〜0.06質量%とする。   Al: Al is an element added as a deoxidizer in the steelmaking stage, and is an element effective for separating nonmetallic inclusions that reduce stretch flangeability as slag, so 0.01% by mass or more Although it is preferable to contain, if it exceeds 0.06 mass%, a raise of cost will be caused. For this reason, Al amount shall be 0.06 mass% or less. Preferably it is 0.02 to 0.06 mass%.

以上、基本成分について説明したが、本発明では以下に述べる成分を必要に応じて適宜含有させることができる。
Ti、Nb、V:Ti、Nb、Vは、炭化物や窒化物を形成し、焼鈍時の加熱段階でフェライトの成長を抑制し、組織を微細化させ、成形性、特に伸びフランジ性を著しく向上させる。そのため、こうした元素を少なくとも1種含有させることが効果的である。このとき上記効果を得るため、各元素は各々0.005質量%以上含有させる必要がある。しかしながら、各元素とも0.3質量%を超えると析出強化により降伏強度YSが上昇して成形性が低下し、またTRIP効果を発現させるための残留オーステナイトが減少する。したがって、これらの元素の量は、それぞれ0.005〜0.3質量%、好ましくは0.01〜0.2質量%とする。
As mentioned above, although the basic component was demonstrated, the component described below can be suitably contained in this invention as needed.
Ti, Nb, V: Ti, Nb, V forms carbides and nitrides, suppresses the growth of ferrite in the heating stage during annealing, refines the structure, and remarkably improves formability, especially stretch flangeability Let Therefore, it is effective to contain at least one of these elements. At this time, in order to obtain the above effect, each element needs to be contained in an amount of 0.005% by mass or more. However, if each element exceeds 0.3% by mass, the yield strength YS increases due to precipitation strengthening, the formability decreases, and the retained austenite for expressing the TRIP effect decreases. Therefore, the amount of these elements is 0.005 to 0.3 mass%, preferably 0.01 to 0.2 mass%, respectively.

Mo:Moは、鋼の焼入性を向上させ、ベイナイトやマルテンサイトの生成を促進する作用を有する元素である。このような作用は、Mo量が0.005質量%以上で認められるが、0.3質量%を超えるとその効果が飽和し、コストの上昇を招く。このため、Mo量は0.005〜0.3質量%、好ましくは0.01〜0.2質量%とする。   Mo: Mo is an element having an effect of improving the hardenability of steel and promoting the generation of bainite and martensite. Such an action is recognized when the Mo amount is 0.005% by mass or more, but when it exceeds 0.3% by mass, the effect is saturated and the cost is increased. For this reason, the amount of Mo is 0.005-0.3 mass%, preferably 0.01-0.2 mass%.

Ca、REM:Ca、REMは、硫化物系介在物の形態を制御し、鋼板の伸びフランジ性を向上させる効果を有する。このような効果は、こうした元素を少なくとも1種含有させることで得られる。このとき各々の元素は0.001質量%以上含有させる必要がある。しかしながら、0.1質量%を超えるとその効果は飽和する。したがって、これらの元素の量は、それぞれ0.001〜0.1質量%、好ましくは0.001〜0.05質量%とする。   Ca, REM: Ca and REM have the effect of controlling the form of sulfide inclusions and improving the stretch flangeability of the steel sheet. Such an effect can be obtained by including at least one of these elements. At this time, each element needs to be contained by 0.001% by mass or more. However, the effect is saturated when it exceeds 0.1 mass%. Therefore, the amount of these elements is 0.001 to 0.1% by mass, preferably 0.001 to 0.05% by mass, respectively.

酸洗槽1は、例えば硝酸と塩酸との混合物、塩酸または硫酸などで鋼板を酸洗することで、焼鈍時に鋼板の表面に形成されたSi酸化物を除去して鋼板表面に存在するSiの量を低減するためのものである。そして、酸洗槽1では、特に限定されることなく、冷延鋼板を、例えば1質量%塩酸−25質量%硝酸溶液中に30〜70℃で5〜20秒浸漬することにより酸洗する。   The pickling tank 1 removes Si oxide formed on the surface of the steel sheet during annealing by, for example, pickling the steel sheet with a mixture of nitric acid and hydrochloric acid, hydrochloric acid or sulfuric acid, etc. This is to reduce the amount. And in the pickling tank 1, it does not specifically limit, For example, a cold-rolled steel plate is pickled by being immersed in a 1 mass% hydrochloric acid -25 mass% nitric acid solution at 30-70 degreeC for 5 to 20 seconds.

S化合物処理槽2は、酸洗を行った鋼板を、S化合物含有溶液と接触させることにより、鋼板の表面に、S換算で例えば0.1〜100mg−S/mのS化合物を吸着させるためのものであり、酸洗槽1で酸洗された鋼板は、湿潤状態にあるうちに、即ち表面が乾燥する前に、S化合物処理槽2中のS化合物含有溶液で連続的に処理される。なお、S化合物含有溶液としては、チオ尿素、チオグリコール酸、硫化ジメチル、並びに、これらの塩(チオグリコール酸ナトリウム、チオグリコール酸アンモニウム等)および誘導体(ジチオジグリコール酸、二硫化ジメチル、ジチオカルブ三水和物等)からなる群より選択される1種または2種以上の混合物を純水に溶解させた、組成既知のS化合物水溶液を用いることができる。また、S化合物含有溶液を用いた鋼板の処理は、特に限定されることなく、S化合物含有溶液中に鋼板を例えば30秒間浸漬することにより行うことができる。 The S compound treatment tank 2 adsorbs, for example, 0.1 to 100 mg-S / m 2 of the S compound in terms of S to the surface of the steel sheet by bringing the pickled steel sheet into contact with the S compound-containing solution. The steel plate pickled in the pickling tank 1 is continuously treated with the S compound-containing solution in the S compound treating tank 2 while it is in a wet state, that is, before the surface is dried. The Examples of S compound-containing solutions include thiourea, thioglycolic acid, dimethyl sulfide, and salts (sodium thioglycolate, ammonium thioglycolate, etc.) and derivatives (dithiodiglycolic acid, dimethyl disulfide, dithiocarb An S compound aqueous solution having a known composition in which one or a mixture of two or more selected from the group consisting of hydrates and the like is dissolved in pure water can be used. Moreover, the process of the steel plate using S compound containing solution can be performed by immersing a steel plate in S compound containing solution for 30 second, for example, without being specifically limited.

ここで、S化合物処理槽2には、S化合物処理槽2中のS化合物含有溶液をサンプリングするためのサンプリング手段と、該サンプリング手段でサンプリングしたS化合物含有溶液中のS化合物濃度を測定する分析手段とが設けられている。また、S化合物処理槽2には、分析手段で測定したS化合物含有溶液中のS化合物濃度に基づきS化合物処理槽2中のS化合物含有溶液の濃度を制御するためのS化合物濃度制御手段として、S化合物処理槽2へとS化合物を供給するためのS化合物供給手段と、S化合物処理槽2へと純水を供給するための純水供給手段と、それらS化合物供給手段および純水供給手段の動作を制御する動作制御手段とが設けられている。具体的には、S化合物処理槽2には、サンプリング手段としてのフィルタ21およびサンプリングポンプ22と、分析手段としての分析装置24とが設けられていると共に、S化合物供給手段としての高濃度S化合物溶液タンク25および高濃度S化合物溶液ポンプ26と、純水供給手段としての純水タンク27および純水ポンプ28が設けられている。そして、高濃度S化合物溶液ポンプ26および純水ポンプ28の動作は、分析装置24で測定されたS化合物含有溶液中のS化合物濃度に基づき、分析装置24、高濃度S化合物溶液ポンプ26および純水ポンプ28と電気的に接続された動作制御手段としての制御部29で制御されている。   Here, the S compound treatment tank 2 has a sampling means for sampling the S compound containing solution in the S compound treatment tank 2 and an analysis for measuring the S compound concentration in the S compound containing solution sampled by the sampling means. Means. The S compound treatment tank 2 has S compound concentration control means for controlling the concentration of the S compound containing solution in the S compound treatment tank 2 based on the S compound concentration in the S compound containing solution measured by the analyzing means. The S compound supply means for supplying the S compound to the S compound treatment tank 2, the pure water supply means for supplying pure water to the S compound treatment tank 2, the S compound supply means and the pure water supply And operation control means for controlling the operation of the means. Specifically, the S compound treatment tank 2 is provided with a filter 21 and a sampling pump 22 as sampling means, and an analysis device 24 as analysis means, and a high concentration S compound as S compound supply means. A solution tank 25 and a high-concentration S compound solution pump 26, and a pure water tank 27 and a pure water pump 28 as pure water supply means are provided. The operations of the high concentration S compound solution pump 26 and the pure water pump 28 are based on the S compound concentration in the S compound containing solution measured by the analysis device 24, and the analysis device 24, the high concentration S compound solution pump 26 and the pure water pump 28. It is controlled by a control unit 29 as operation control means electrically connected to the water pump 28.

フィルタ21は、サンプリングしたS化合物含有溶液中に含まれている浮遊物やゴミを除去して分析装置24におけるS化合物濃度の測定精度を向上させるためのものであり、フィルタ21としては、例えば孔径0.45μmのメンブレンフィルタを用いることができる。そして、フィルタ21を介してサンプリングポンプ22でサンプリングされたS化合物処理槽2中のS化合物含有溶液は、分析装置24へと送られ、S化合物濃度を測定される。   The filter 21 is for removing suspended matters and dust contained in the sampled S compound-containing solution to improve the measurement accuracy of the S compound concentration in the analyzer 24. A 0.45 μm membrane filter can be used. And the S compound containing solution in the S compound processing tank 2 sampled with the sampling pump 22 via the filter 21 is sent to the analyzer 24, and S compound concentration is measured.

分析装置24としては、定量下限がS換算で0.70mg−S/L以下の分析装置、例えば、蛍光X線分析法、ICP発光分光分析法、液体クロマトグラフ法、吸光光度法または燃焼赤外吸収硫黄分析法を利用した分析装置を用いることができる。そして、分析装置24では、サンプリングしたS化合物含有溶液中のS化合物濃度が、例えば以下のようにして連続的、或いは、間欠的に測定される。なお、S化合物含有溶液に配合したS化合物の種類は既知であるので、分析装置24では、これらの既知のS化合物の濃度を、S化合物含有溶液中のS濃度を定量分析することにより、間接的に測定することができる。   The analyzer 24 is an analyzer having a lower limit of quantification of 0.70 mg-S / L or less in terms of S, for example, X-ray fluorescence analysis, ICP emission spectroscopy, liquid chromatography, absorptiometry or combustion infrared An analyzer using an absorption sulfur analysis method can be used. Then, in the analyzer 24, the S compound concentration in the sampled S compound-containing solution is measured continuously or intermittently as follows, for example. In addition, since the kind of S compound mix | blended with the S compound containing solution is known, in the analyzer 24, the concentration of these known S compounds is indirectly analyzed by quantitatively analyzing the S concentration in the S compound containing solution. Can be measured automatically.

まず、蛍光X線分析法を利用した分析装置を用いる場合には、サンプリングしたS化合物含有溶液の酸濃度を必要に応じて調整した後に、ろ紙点滴法または液体試料専用ホルダーを用いて分析することができ、波長分散型の装置であれば波長0.5373nmのSKα線の強度を、エネルギー分散型の装置であれば2.307keV(Kα1線)や2.306keV(Kα2線)のエネルギー強度を求めることにより、S化合物濃度を定量することができる。   First, in the case of using an analyzer utilizing fluorescent X-ray analysis, the acid concentration of the sampled S compound-containing solution should be adjusted as necessary, and then analyzed using a filter paper drip method or a liquid sample holder. In the case of a wavelength dispersion type device, the intensity of the SKα ray having a wavelength of 0.5373 nm is obtained, and in the case of an energy dispersion type device, the energy intensity of 2.307 keV (Kα1 line) or 2.306 keV (Kα2 line) is obtained. Thus, the S compound concentration can be quantified.

ICP発光分光分析法を利用した分析装置を用いる場合には、サンプリングしたS化合物含有溶液の酸濃度を必要に応じて調整した後に、S化合物含有溶液を装置内に導入し、波長182.036nmまたは180.669nmの発光の強度を求めることにより、S化合物濃度を定量することができる。   In the case of using an analyzer utilizing ICP emission spectroscopy, after adjusting the acid concentration of the sampled S compound-containing solution as necessary, the S compound-containing solution is introduced into the device, and a wavelength of 182.036 nm or By determining the intensity of emission at 180.669 nm, the concentration of S compound can be quantified.

液体クロマトグラフ法を利用した分析装置を用いる場合には、適当な充填剤を固定相として詰めたカラムに、サンプリングしたS化合物含有溶液を移動相として通液することにより、例えばピーク測定法を用いてS化合物濃度を求めることができる。なお、必要に応じて、ポンプ、前処理用カラム、サプレッサーなどを用いても良い。   When using an analyzer utilizing the liquid chromatographic method, for example, a peak measurement method is used by passing the sampled S compound-containing solution as a mobile phase through a column packed with an appropriate packing material as a stationary phase. Thus, the S compound concentration can be determined. Note that a pump, a pretreatment column, a suppressor, or the like may be used as necessary.

吸光光度法を利用した分析装置を用いる場合には、サンプリングしたS化合物含有溶液のpHを必要に応じて調整した後に、モリブデン酸イオンなどの適当な発色試薬とS化合物含有溶液とを混合し、発色した錯体の吸収極大点の吸光光度を測定することにより、S化合物濃度を定量することができる。   When using an analyzer utilizing absorptiometry, after adjusting the pH of the sampled S compound-containing solution as necessary, an appropriate color reagent such as molybdate ion and the S compound-containing solution are mixed, By measuring the absorbance at the absorption maximum point of the colored complex, the S compound concentration can be quantified.

燃焼赤外吸収硫黄分析法を利用した分析装置を用いる場合には、サンプリングしたS化合物含有溶液を燃焼ボート上に一定容量滴下し、乾燥した後に、燃焼ボート上に残留したS化合物を燃焼ボートごと加熱炉に供し、S化合物を燃焼させ、発生したSOの量に応じて得られる赤外吸収量からS化合物量濃度を求めることができる。 When using an analyzer utilizing the combustion infrared absorption sulfur analysis method, a predetermined volume of the sampled S compound-containing solution is dropped on the combustion boat and dried, and then the S compound remaining on the combustion boat is removed together with the combustion boat. subjected to a heating furnace, the combustion of S compounds, can be obtained S compound amount concentration from the infrared absorption amount obtained in accordance with the amount of generated SO 2.

制御部29は、S化合物処理槽2中のS化合物含有溶液のS化合物濃度がS換算で3.5mg−S/L以上となるように、分析装置24で測定したS化合物含有溶液中のS化合物濃度に基づいて高濃度S化合物溶液ポンプ26および純水ポンプ28の動作を制御するためのものであり、制御部29としてはコンピュータなどを用いることができる。なお、S化合物処理槽2中のS化合物含有溶液のS化合物濃度は、S換算で3.5mg−S/L以上となる範囲であれば、任意の目標濃度値を設けて、S化合物処理槽2中のS化合物含有溶液のS化合物濃度が例えば目標濃度値の0.8〜1.2倍(目標濃度値±20%)の範囲内に収まるように制御を行っても良い。具体的には、制御部29は、S化合物濃度が3.5mg−S/Lに近づいた場合や、目標濃度値の0.85倍未満(目標濃度値−15%未満)となった場合や、目標濃度値を下回った場合には、高濃度S化合物溶液ポンプ26を起動してS化合物をS化合物処理槽2へと供給し、また、S化合物の供給によりS化合物濃度が目標濃度値の1.15倍超(目標濃度値+15%超)となった場合や、目標濃度値を大きく上回った場合には、純水ポンプ28を起動して純水をS化合物処理槽2へと供給するようにしても良い。   The control unit 29 controls the S compound-containing solution measured by the analyzer 24 so that the S compound concentration of the S compound-containing solution in the S compound treatment tank 2 is 3.5 mg-S / L or more in terms of S. This is for controlling the operations of the high-concentration S compound solution pump 26 and the pure water pump 28 based on the compound concentration. As the control unit 29, a computer or the like can be used. In addition, if the S compound concentration of the S compound-containing solution in the S compound treatment tank 2 is in a range that is 3.5 mg-S / L or more in terms of S, an arbitrary target concentration value is provided, and the S compound treatment tank Control may be performed so that the S compound concentration of the S compound-containing solution in 2 falls within a range of, for example, 0.8 to 1.2 times the target concentration value (target concentration value ± 20%). Specifically, the control unit 29 is configured such that when the S compound concentration approaches 3.5 mg-S / L, or when the concentration is less than 0.85 times the target concentration value (the target concentration value is less than −15%) When the concentration is lower than the target concentration value, the high concentration S compound solution pump 26 is activated to supply the S compound to the S compound treatment tank 2, and the supply of the S compound causes the S compound concentration to reach the target concentration value. When it exceeds 1.15 times (target concentration value + 15%) or greatly exceeds the target concentration value, the pure water pump 28 is activated to supply pure water to the S compound treatment tank 2. You may do it.

そして、この一例の冷延鋼板の製造方法では、S化合物処理槽2でS化合物含有溶液と接触した鋼板が、水洗槽3で純水を用いて水洗され、鋼板に付着した余分なS化合物含有溶液等が除去される。   And in the manufacturing method of the cold-rolled steel plate of this example, the steel plate contacted with the S compound containing solution in the S compound treatment tank 2 is washed with pure water in the water washing tank 3 and contains an excess S compound attached to the steel plate. Solutions and the like are removed.

このような冷延鋼板の製造方法によれば、焼鈍時に鋼板の表面に形成されたSi酸化物を酸洗により除去しているので、製造した冷延鋼板の化成処理性が劣化するのを抑制することができる。また、この製造方法では、酸洗後に鋼板にS化合物含有溶液を接触させて鋼板表面にS化合物を吸着させており、酸洗により鋼板表面からセメンタイトや硫化物などのカソードサイトが除去されてしまっても、吸着したS化合物がカソードサイトとして機能するので、製造した冷延鋼板は、化成処理時にリン酸亜鉛結晶核を微細かつ緻密に生成させることができ、良好な化成処理性が得られる。従って、本発明に係る製造方法に従い製造された冷延鋼板は、塗装後耐食性に優れている。   According to such a method of manufacturing a cold-rolled steel sheet, since the Si oxide formed on the surface of the steel sheet during annealing is removed by pickling, it is possible to suppress deterioration of the chemical conversion processability of the manufactured cold-rolled steel sheet. can do. Further, in this manufacturing method, after pickling, an S compound-containing solution is brought into contact with the steel sheet to adsorb the S compound on the steel sheet surface, and the cathode sites such as cementite and sulfide are removed from the steel sheet surface by the pickling. However, since the adsorbed S compound functions as a cathode site, the produced cold-rolled steel sheet can generate zinc phosphate crystal nuclei finely and densely during the chemical conversion treatment, and good chemical conversion treatment properties can be obtained. Therefore, the cold-rolled steel sheet manufactured according to the manufacturing method according to the present invention is excellent in post-coating corrosion resistance.

ここで、上記製造方法では、鋼板をS化合物含有溶液中に浸漬することで、鋼板の表面にS化合物を吸着させている。また、酸洗後に湿潤状態の鋼板をS化合物含有溶液中に浸漬しているので、S化合物含有溶液が希釈される。従って、特に冷延鋼板を連続的に製造した場合には、S化合物処理槽2中のS化合物含有溶液のS化合物濃度が、時間の経過に伴い低下することとなるが、前述した通り、この製造方法ではS化合物含有溶液中のS化合物濃度が3.5mg−S/L以上となるように本発明に係る濃度制御方法に従い制御しているので、常に鋼板の表面に十分な量のS化合物を吸着させることができる。また、鋼板製造中のS化合物含有溶液中のS化合物濃度を安定させることができると共に、S化合物処理に必要なS化合物濃度を確保するためにS化合物を大量に使用する必要がないので、塗装後耐食性に優れる冷延鋼板を低コストで安定的に製造し得る。   Here, in the said manufacturing method, the S compound is made to adsorb | suck to the surface of a steel plate by immersing a steel plate in the S compound containing solution. Moreover, since the wet steel plate is immersed in the S compound-containing solution after pickling, the S compound-containing solution is diluted. Therefore, particularly when a cold-rolled steel sheet is produced continuously, the S compound concentration of the S compound-containing solution in the S compound treatment tank 2 decreases with the passage of time. In the production method, the concentration of the S compound in the S compound-containing solution is controlled according to the concentration control method of the present invention so that the concentration is 3.5 mg-S / L or more. Can be adsorbed. In addition, the S compound concentration in the S compound-containing solution during steel plate production can be stabilized, and it is not necessary to use a large amount of the S compound in order to ensure the S compound concentration necessary for the S compound treatment. A cold-rolled steel sheet having excellent post-corrosion resistance can be stably produced at a low cost.

なお、塗装後耐食性に優れる冷延鋼板を製造するという観点からは、S化合物含有溶液中のS化合物濃度を3.5mg−S/L以上に維持する必要があるが、このように極めて低濃度域のS化合物含有溶液であっても、上記製造方法では定量下限が0.70mg−S/L以下の分析手段を用いてS化合物濃度を測定することで、確実かつ正確にS化合物濃度を制御することができる。   In addition, from the viewpoint of producing a cold-rolled steel sheet having excellent corrosion resistance after coating, it is necessary to maintain the S compound concentration in the S compound-containing solution at 3.5 mg-S / L or more. Even in the case of S compound-containing solutions in the region, the above-described production method controls the S compound concentration reliably and accurately by measuring the S compound concentration using an analysis means having a lower limit of quantification of 0.70 mg-S / L or less. can do.

以上、図面を参照して本発明の実施形態を説明したが、本発明の濃度制御方法および冷延鋼板の製造方法は上述した例に限定されることは無く、適宜変更を加えることができる。   As mentioned above, although embodiment of this invention was described with reference to drawings, the concentration control method of this invention and the manufacturing method of a cold-rolled steel plate are not limited to the example mentioned above, A change can be added suitably.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

Cを0.11質量%、Siを1.25質量%、Mnを1.55質量%、Pを0.018質量%、Sを0.001質量%、Alを0.032質量%含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、図1に要部を示す冷延鋼板製造装置を用いて、熱間圧延および冷間圧延した後に、表2に示す条件で焼鈍、酸洗、S化合物処理し、冷延鋼板を製造した。ここで、S化合物処理の際のラインスピードは、300m/分とした。
ここで、フィルタには、孔径0.45μmのメンブレンフィルタを用い、分析装置には、蛍光X線分析法を用いたろ紙点滴方式の分析装置(定量下限:0.5mg−S/L)を用いた。また、S化合物としてはチオグリコール酸を用い、S化合物処理槽におけるS化合物の目標濃度値は4.5mg−S/L、管理幅は±20%(3.6〜5.4mg−S/L)とし、分析装置でのS化合物濃度の測定値が4.0mg−S/L未満となった場合には高濃度S化合物溶液を供給し、S化合物濃度の測定値が5.0mg−S/L超となった場合には純水を供給するようにして鋼板に接触させるS化合物含有溶液の濃度を制御した。
S化合物処理槽中のS化合物含有溶液のS化合物濃度の経時変化を図2に示す。
また、得られた冷延鋼板について、製造開始から600秒後(サンプル1−a)、製造開始から1200秒後(サンプル1−b)、製造開始から1800秒後(サンプル1−c)、製造開始から2400秒後(サンプル1−d)の位置からサンプルを切り出し、各サンプルの塗装後耐食性を以下の方法で評価した。結果を表3に示す。
0.11% by mass of C, 1.25% by mass of Si, 1.55% by mass of Mn, 0.018% by mass of P, 0.001% by mass of S, and 0.032% by mass of Al, The remainder is a steel slab composed of Fe and inevitable impurities, using a cold-rolled steel sheet manufacturing apparatus whose main part is shown in FIG. 1, and then hot-rolled and cold-rolled, and then annealed, pickled, under the conditions shown in Table 2. A cold-rolled steel sheet was produced by treating with the S compound. Here, the line speed in the S compound treatment was set to 300 m / min.
Here, a membrane filter having a pore diameter of 0.45 μm is used as the filter, and a filter paper drip analysis apparatus using a fluorescent X-ray analysis method (lower limit of quantification: 0.5 mg-S / L) is used as the analysis apparatus. It was. Moreover, thioglycolic acid is used as the S compound, the target concentration value of the S compound in the S compound treatment tank is 4.5 mg-S / L, and the control range is ± 20% (3.6 to 5.4 mg-S / L). When the measured value of the S compound concentration in the analyzer is less than 4.0 mg-S / L, a high concentration S compound solution is supplied, and the measured value of the S compound concentration is 5.0 mg-S / L. When it exceeded L, the concentration of the S compound-containing solution brought into contact with the steel sheet was controlled by supplying pure water.
FIG. 2 shows changes with time in the S compound concentration of the S compound-containing solution in the S compound treatment tank.
Moreover, about the obtained cold-rolled steel sheet, 600 seconds after manufacture start (sample 1-a), 1200 seconds after manufacture start (sample 1-b), 1800 seconds after manufacture start (sample 1-c), manufacture Samples were cut out from the position after 2400 seconds (sample 1-d) from the start, and the corrosion resistance after coating of each sample was evaluated by the following method. The results are shown in Table 3.

サンプリング手段、分析手段およびS化合物濃度制御手段を有さない冷延鋼板製造装置を使用し、S化合物の濃度を制御しなかった以外は、上記と同様にして冷延鋼板を製造した。
S化合物処理槽中のS化合物含有溶液のS化合物濃度の経時変化を図3に示す。
また、得られた冷延鋼板について、製造開始から600秒後(サンプル2−a)、製造開始から1200秒後(サンプル2−b)、製造開始から1800秒後(サンプル2−c)、製造開始から2400秒後(サンプル2−d)の位置からサンプルを切り出し、各サンプルの塗装後耐食性を以下の方法で評価した。結果を表3に示す。
A cold-rolled steel sheet was manufactured in the same manner as described above except that a cold-rolled steel sheet manufacturing apparatus having no sampling means, analysis means, and S compound concentration control means was used and the concentration of S compound was not controlled.
FIG. 3 shows changes with time in the S compound concentration of the S compound-containing solution in the S compound treatment tank.
Moreover, about the obtained cold-rolled steel sheet, 600 seconds after manufacture start (sample 2-a), 1200 seconds after manufacture start (sample 2-b), 1800 seconds after manufacture start (sample 2-c), manufacture Samples were cut out from the position after 2400 seconds (sample 2-d) from the start, and the corrosion resistance after coating of each sample was evaluated by the following method. The results are shown in Table 3.

<塗装後耐食性>
まず、鋼板に、スプレー脱脂処理(脱脂剤濃度:16g/L、処理温度:42〜44℃、処理時間:120秒)、表面調整処理(表面調整剤の全アルカリ度:1.5〜2.5ポイント、処理温度:20〜25℃、処理時間:30秒)、化成処理(化成処理剤の全酸度:21〜24ポイント、遊離酸度:0.7〜0.9ポイント、促進剤濃度:2.8〜3.5ポイント、処理温度:44℃、処理時間:120秒)を順次施した後、電着塗料を塗装して試験片を作製した。なお、化成処理皮膜の付着量は2.0〜2.5g/mとし、電着塗装の膜厚は25μmとした。
次に、試験片に対してカッターでクロスカット疵を付与した後、試験片を60℃の5質量%NaCl溶液に240時間浸漬し、その後、水洗、乾燥を行った。そして、クロスカット疵部に対してテープ剥離試験を行い、クロスカット疵部の左右の最大剥離幅を測定した。結果を表3に示す。
<Corrosion resistance after painting>
First, spray degreasing treatment (degreasing agent concentration: 16 g / L, treatment temperature: 42 to 44 ° C., treatment time: 120 seconds), surface conditioning treatment (total alkalinity of the surface conditioning agent: 1.5 to 2. 5 points, treatment temperature: 20-25 ° C., treatment time: 30 seconds, chemical conversion treatment (total acidity of chemical conversion treatment agent: 21-24 points, free acidity: 0.7-0.9 points, accelerator concentration: 2 8 to 3.5 points, treatment temperature: 44 ° C., treatment time: 120 seconds), and then an electrodeposition coating was applied to prepare a test piece. In addition, the adhesion amount of the chemical conversion treatment film was 2.0 to 2.5 g / m 2, and the film thickness of the electrodeposition coating was 25 μm.
Next, after giving a crosscut wrinkle with a cutter with respect to the test piece, the test piece was immersed in a 5 mass% NaCl solution at 60 ° C. for 240 hours, and then washed and dried. And the tape peeling test was done with respect to the crosscut collar part, and the maximum peeling width of the right and left of the crosscut collar part was measured. The results are shown in Table 3.

Figure 2011214137
Figure 2011214137

Figure 2011214137
Figure 2011214137

図2および3より、本発明の濃度制御方法によれば、S化合物含有溶液のS化合物の濃度を適正範囲内に制御できることが分かる。また、表3より、本発明の冷延鋼板の製造方法によれば、塗装後耐食性に優れる冷延鋼板を低コストで安定的に得ることができることが分かる。なお、S化合物として、チオ尿素や硫化ジメチルを用いた場合にも、同様の結果が得られた。   2 and 3, it can be seen that according to the concentration control method of the present invention, the concentration of the S compound in the S compound-containing solution can be controlled within an appropriate range. Moreover, it can be seen from Table 3 that according to the method for producing a cold-rolled steel sheet of the present invention, a cold-rolled steel sheet having excellent post-coating corrosion resistance can be stably obtained at low cost. Similar results were obtained when thiourea or dimethyl sulfide was used as the S compound.

Cを0.12質量%、Siを1.45質量%、Mnを2.55質量%、Pを0.019質量%、Sを0.008質量%、Alを0.040質量%含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、実施例1と同様の工程で製造した際の、S化合物処理液濃度の分析および制御を、25000秒を超える長時間にわたって行った。ここで、S化合物処理の際のラインスピードは、85m/分とした。
分析装置としてICP発光分光分析装置(定量下限値:0.05mg−S/L)を用いた。また、測定溶液としては、分析対象のS化合物処理液をS化合物処理槽から採取し、PTFE製のメンブランフィルタ(孔径0.45μm)によってS化合物処理液中のゴミやスラッジなどの浮遊物質をろ過除去した後、純粋で10倍希釈したものを用いた。その際、10倍希釈後の測定溶液が硝酸4質量%、内標準物質としてイットリウム(Y)が1ppmとなるように調製した。なお、分析装置導入前に、ポンプや多方バルブなどを組み合わせることにより、一連の溶液調製を自動化することも可能である。
S化合物としては、チオグリコール酸を用いた。また、S化合物処理槽におけるS化合物の目標濃度値は6.5mg−S/L、管理幅は±25%(4.9〜8.1mg−S/L)とし、分析は2700秒毎に行った。その際、得られたS化合物濃度の測定値が5.5mg−S/L未満となった場合には高濃度S化合物溶液を供給し、S化合物濃度の測定値が7.5mg−S/L超となった場合には純粋を供給するようにして鋼板に接触させるS化合物含有溶液の濃度を制御した。なお、高濃度S化合物溶液や純水の供給によってS化合物濃度を調整した場合には、調整後のS化合物濃度を確認するため、その直後にも分析を行った。
S化合物処理槽中のS化合物含有溶液におけるS化合物濃度の経時変化を図4に示す。この図4から、25000秒を超える長時間の実機操業においても、S化合物処理液濃度を適正範囲に管理することが可能であることが分かる。
0.12% by mass of C, 1.45% by mass of Si, 2.55% by mass of Mn, 0.019% by mass of P, 0.008% by mass of S, 0.040% by mass of Al, The balance was obtained by analyzing and controlling the concentration of the S compound treatment liquid when a steel slab composed of Fe and inevitable impurities was produced in the same process as in Example 1 over a long period of time exceeding 25000 seconds. Here, the line speed in the S compound treatment was set to 85 m / min.
An ICP emission spectroscopic analyzer (lower limit of quantification: 0.05 mg-S / L) was used as the analyzer. In addition, as the measurement solution, the S compound treatment liquid to be analyzed is collected from the S compound treatment tank, and suspended substances such as dust and sludge in the S compound treatment liquid are filtered with a PTFE membrane filter (pore diameter 0.45 μm). After removal, pure and 10-fold diluted were used. At that time, the measurement solution after 10-fold dilution was prepared such that nitric acid was 4% by mass and yttrium (Y) was 1 ppm as an internal standard substance. Note that a series of solution preparations can be automated by combining a pump, a multi-way valve, and the like before introducing the analyzer.
As the S compound, thioglycolic acid was used. The target concentration value of S compound in the S compound treatment tank is 6.5 mg-S / L, the control width is ± 25% (4.9 to 8.1 mg-S / L), and the analysis is performed every 2700 seconds. It was. At that time, when the measured value of the obtained S compound concentration was less than 5.5 mg-S / L, a high concentration S compound solution was supplied, and the measured value of the S compound concentration was 7.5 mg-S / L. When it became super, the density | concentration of the S compound containing solution made to contact with a steel plate was controlled so that pure might be supplied. In addition, when adjusting the S compound concentration by supplying a high concentration S compound solution or pure water, an analysis was performed immediately after that in order to confirm the adjusted S compound concentration.
FIG. 4 shows the change with time of the S compound concentration in the S compound-containing solution in the S compound treatment tank. From FIG. 4, it is understood that the concentration of the S compound treatment liquid can be managed in an appropriate range even in a long-time actual machine operation exceeding 25000 seconds.

本発明の冷延鋼板処理用S化合物含有溶液の濃度制御方法によれば、塗装後耐食性に優れる冷延鋼板を安定的に製造するのに必要なS化合物濃度を、S化合物を過剰に添加することなく確保することができる。また、本発明の冷延鋼板の製造方法によれば、引張強度が590MPa以上の高強度冷延鋼板を低コストで安定的に製造することができる。   According to the method for controlling the concentration of the S compound-containing solution for cold-rolled steel sheet processing of the present invention, the S compound concentration is excessively added to the S compound concentration necessary for stably producing a cold-rolled steel sheet having excellent post-coating corrosion resistance. It can be secured without. Moreover, according to the manufacturing method of the cold-rolled steel sheet of the present invention, a high-strength cold-rolled steel sheet having a tensile strength of 590 MPa or more can be stably manufactured at a low cost.

1 酸洗槽
2 S化合物処理槽
3 水洗槽
21 フィルタ
22 サンプリングポンプ
24 分析装置
25 高濃度S化合物溶液タンク
26 高濃度S化合物溶液ポンプ
27 純水タンク
28 純水ポンプ
29 制御部
DESCRIPTION OF SYMBOLS 1 Pickling tank 2 S compound processing tank 3 Water washing tank 21 Filter 22 Sampling pump 24 Analyzer 25 High concentration S compound solution tank 26 High concentration S compound solution pump 27 Pure water tank 28 Pure water pump 29 Control part

Claims (3)

Siを0.8〜3.0質量%含有する冷延鋼帯を焼鈍し、酸洗した後、S化合物含有溶液を用いた処理を行う際に、該S化合物含有溶液中のS化合物濃度を、定量下限がS換算で0.70mg−S/L以下の分析手段を用いて測定し、測定されたS化合物濃度に基づき、前記S化合物含有溶液中のS化合物濃度をS換算で3.5mg−S/L以上となるように制御することを特徴とする、冷延鋼板処理用S化合物含有溶液の濃度制御方法。   After annealing a cold-rolled steel strip containing 0.8 to 3.0 mass% of Si and pickling, when performing the treatment using the S compound-containing solution, the S compound concentration in the S compound-containing solution is set. The lower limit of quantification was measured using an analysis means having a S conversion of 0.70 mg-S / L or less, and based on the measured S compound concentration, the S compound concentration in the S compound-containing solution was 3.5 mg in S conversion. A method for controlling the concentration of an S compound-containing solution for cold-rolled steel sheet treatment, which is controlled to be at least S / L. 前記分析手段が、蛍光X線分析法、ICP発光分光分析法、液体クロマトグラフ法、吸光光度法または燃焼赤外吸収硫黄分析法を用いた分析装置であることを特徴とする、請求項1に記載の冷延鋼板処理用S化合物含有溶液の濃度制御方法。   2. The analysis device according to claim 1, wherein the analysis means is an analyzer using a fluorescent X-ray analysis method, an ICP emission spectroscopic analysis method, a liquid chromatographic method, an absorptiometric method, or a combustion infrared absorption sulfur analysis method. The density | concentration control method of the S compound containing solution for cold-rolled steel plate description of description. Siを0.8〜3.0質量%含有する冷延鋼帯を焼鈍し、酸洗した後に、S化合物含有溶液を用いた処理を行う工程を含む、冷延鋼板を製造する方法であって、
前記S化合物含有溶液中のS化合物濃度を、請求項1または2に記載の濃度制御方法を用いて制御することを特徴とする、冷延鋼板の製造方法。
A method for producing a cold-rolled steel sheet, comprising a step of performing a treatment using an S compound-containing solution after annealing and pickling a cold-rolled steel strip containing 0.8 to 3.0% by mass of Si. ,
A method for producing a cold-rolled steel sheet, wherein the S compound concentration in the S compound-containing solution is controlled using the concentration control method according to claim 1 or 2.
JP2010277465A 2010-03-19 2010-12-13 Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet Withdrawn JP2011214137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277465A JP2011214137A (en) 2010-03-19 2010-12-13 Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010065090 2010-03-19
JP2010065090 2010-03-19
JP2010277465A JP2011214137A (en) 2010-03-19 2010-12-13 Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet

Publications (1)

Publication Number Publication Date
JP2011214137A true JP2011214137A (en) 2011-10-27

Family

ID=44944174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277465A Withdrawn JP2011214137A (en) 2010-03-19 2010-12-13 Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JP2011214137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191810B1 (en) * 2017-03-24 2017-09-06 新日鐵住金株式会社 Steel plate manufacturing method
JP7432431B2 (en) 2020-04-16 2024-02-16 日本パーカライジング株式会社 Hiding agent, metal material and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191810B1 (en) * 2017-03-24 2017-09-06 新日鐵住金株式会社 Steel plate manufacturing method
WO2018173287A1 (en) * 2017-03-24 2018-09-27 新日鐵住金株式会社 Method for manufacturing steel sheet
CN110121573A (en) * 2017-03-24 2019-08-13 日本制铁株式会社 The manufacturing method of steel plate
US11401567B2 (en) 2017-03-24 2022-08-02 Nippon Steel Corporation Manufacturing method of steel sheet
JP7432431B2 (en) 2020-04-16 2024-02-16 日本パーカライジング株式会社 Hiding agent, metal material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI554616B (en) Method for manufacturing excellent chemical conversion treatment of si containing cold rolled steel sheet and apparatus for manufacturing the same
Rahmi et al. Multielement determination of trace metals in seawater by ICP-MS with aid of down-sized chelating resin-packed minicolumn for preconcentration
Sereshti et al. Optimized ultrasound-assisted emulsification microextraction for simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES
Mohtadi-Bonab et al. Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments
Fajardo et al. Low-nickel stainless steel passive film in simulated concrete pore solution: A SIMS study
EP2806051B1 (en) Method for prevention of yellowing on surface of steel sheet after pickling
Baig et al. A novel strategy for chromium speciation at ultra-trace level by microsample injection flame atomic absorption spectrophotometry
Al-Refaie et al. Photoelectron spectroscopy study of the inhibition of mild steel corrosion by molybdate and nitrite anions
JP2009197293A (en) Ferritic stainless steel material, manufacturing method therefor, and automotive muffler
Begić Hadžipašić et al. The influence of microstructure on hydrogen diffusion and embrittlement of multiphase fine-grained steels with increased plasticity and strength
Saint’Pierre et al. The direct analysis of fuel ethanol by ICP-MS using a flow injection system coupled to an ultrasonic nebulizer for sample introduction
JP6041079B1 (en) Cold rolled steel strip manufacturing method and manufacturing equipment
Izadi et al. Effect of thermomechanical processing on hydrogen permeation in API X70 pipeline steel
Uemura et al. Depth profile analysis of thin passive films on stainless steel by glow discharge optical emission spectroscopy
Yue et al. Synchrotron-based near ambient-pressure X-ray photoelectron spectroscopy and electrochemical studies of passivation behavior of N-and V-containing martensitic stainless steel
JP2011214137A (en) Method for controlling concentration of s-compound-containing solution for treating cold rolled steel sheet and method for producing cold rolled steel sheet
Welna et al. Ultrasound-and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples
Maeda et al. Pre-straining alters hydrogen-assisted cracking site and local hydrogen diffusivity in a nitrogen-doped duplex steel
Wang et al. A chemiluminescence method for the determination of mercury (II) ions by tuning the catalytic activity of gold nanoparticles with ethylenediamine
EP3321394B1 (en) Process and equipment for producing cold-rolled steel strip
Jones The polarograph1c estimation of molybdenum in plant materials
JP5163451B2 (en) Steel design method
Latva et al. Separation of picogram quantities of Cr (III) and Cr (VI) species in aqueous solutions and determination by graphite furnace atomic absorption spectrometry
EP2013616B1 (en) Method for the detection of hydrogen in steel
Weldy et al. Selective and sensitive detection of chromium (VI) in waters using electrospray ionization mass spectrometry

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304