JP2011212606A - Biogas treatment method and biogas treatment apparatus - Google Patents

Biogas treatment method and biogas treatment apparatus Download PDF

Info

Publication number
JP2011212606A
JP2011212606A JP2010083915A JP2010083915A JP2011212606A JP 2011212606 A JP2011212606 A JP 2011212606A JP 2010083915 A JP2010083915 A JP 2010083915A JP 2010083915 A JP2010083915 A JP 2010083915A JP 2011212606 A JP2011212606 A JP 2011212606A
Authority
JP
Japan
Prior art keywords
gas
liquid contact
component
oxidatively
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010083915A
Other languages
Japanese (ja)
Other versions
JP5430474B2 (en
Inventor
Osamu Hamamoto
修 浜本
Yuichi Sato
雄一 佐藤
Masahiro Saito
政宏 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2010083915A priority Critical patent/JP5430474B2/en
Publication of JP2011212606A publication Critical patent/JP2011212606A/en
Application granted granted Critical
Publication of JP5430474B2 publication Critical patent/JP5430474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Abstract

PROBLEM TO BE SOLVED: To provide a biogas treatment method and apparatus that have low cost and superior treatment efficiency.SOLUTION: In a biogas treatment method, a gas to be treated and a circulation liquid containing oxidative decomposition component to be treated are introduced into a gas-liquid contact column 1, which is equipped with a gas-liquid contact part having an electrically conductive microorganism carrier carrying microorganism, and are brought into gas-liquid contact in the gas-liquid contact part, wherein the oxidative decomposition component to be treated is subjected to oxidative decomposition by the microorganism. In the method, the oxidative decomposition of the oxidative decomposition component to be treated is performed in a condition, in which a positive electrode voltage is applied to the electrically conductive microorganism carrier composed of high temperature firing carbon wherein a ratio (P1/P2) of 1,580 cmpeak intensity (P1) and 1,360 cmpeak intensity (P2) in Raman spectrum is ≥0.85. The invention also includes a biogas treatment apparatus that performs the method.

Description

本発明は、生物学的ガス処理方法及び生物学的ガス処理装置に関し、詳しくは、微生物の潜在的な酸化力を引き出して、酸化分解性被処理成分を酸化分解する生物学的ガス処理方法及び生物学的ガス処理装置に関する。   The present invention relates to a biological gas processing method and a biological gas processing apparatus, and more particularly, a biological gas processing method for extracting the potential oxidizing power of microorganisms and oxidatively decomposing oxidatively degradable components and The present invention relates to a biological gas processing apparatus.

バイオガス製造施設、汚泥処理施設、ゴミ処理施設、堆肥化施設などからの排気には、硫化水素や臭気成分、地球温暖化ガスが含まれる。   Exhaust gas from biogas production facilities, sludge treatment facilities, garbage treatment facilities, composting facilities, etc. includes hydrogen sulfide, odor components, and global warming gas.

従来、これら有害成分を化学処理して排ガスから除去する方法が知られているが、多くの薬品が必要であり、高コストという問題がある。   Conventionally, a method of chemically treating these harmful components and removing them from exhaust gas is known, but many chemicals are required and there is a problem of high cost.

このため、例えば特許文献1、2及び3には、微生物の好気的代謝を利用して排ガス中の硫化水素を酸化して硫酸とし、排ガスから除去する生物学的ガス処理技術が開示されている。   For this reason, for example, Patent Documents 1, 2, and 3 disclose biological gas treatment techniques that utilize aerobic metabolism of microorganisms to oxidize hydrogen sulfide in exhaust gas to sulfuric acid and remove it from the exhaust gas. Yes.

従来の生物学的ガス処理技術について、図9を参照して説明する。   A conventional biological gas processing technique will be described with reference to FIG.

図9は、従来技術に係る生物学的ガス処理装置の概略図である。   FIG. 9 is a schematic view of a biological gas processing apparatus according to the prior art.

図9において、101は、従来の生物学的ガス処理装置であり、102は該生物学的処理装置に設けられた充填層である。充填層102には、微生物を担持した微生物担体が充填されている。   In FIG. 9, reference numeral 101 denotes a conventional biological gas processing apparatus, and reference numeral 102 denotes a packed bed provided in the biological processing apparatus. The packed bed 102 is filled with a microorganism carrier carrying microorganisms.

103は、充填層102に循環液を注入する循環液注入部であり、104は、充填層102の下部から流出する循環液を排出する循環液排出口である。循環液排出口104は、循環液を蓄える循環液タンク105と接続されている。106は、循環液タンク105の循環液を循環液注入部103に送液するポンプである。循環液タンク105には、系外から循環液が適宜補給される。   Reference numeral 103 denotes a circulating fluid injection unit that injects the circulating fluid into the packed bed 102, and reference numeral 104 denotes a circulating fluid discharge port that discharges the circulating fluid flowing out from the lower portion of the packed bed 102. The circulating fluid discharge port 104 is connected to a circulating fluid tank 105 that stores the circulating fluid. Reference numeral 106 denotes a pump that sends the circulating fluid in the circulating fluid tank 105 to the circulating fluid injection unit 103. The circulating fluid tank 105 is appropriately replenished with circulating fluid from outside the system.

107は、生物学的ガス処理装置101の下部に設けられた被処理ガス導入部であり、108は、充填層102に充填された微生物担体と接触し、これを通過した処理ガスを排出する処理ガス排出口である。   Reference numeral 107 denotes a target gas introduction unit provided in the lower part of the biological gas processing apparatus 101, and reference numeral 108 denotes a process for contacting the microbial carrier filled in the packed bed 102 and discharging the processing gas that has passed therethrough. It is a gas outlet.

そして、従来技術に係る生物学的ガス処理装置は、被処理ガスに空気供給を行う空気供給手段を備え、空気中の酸素が、微生物による酸化分解に伴って発生する電子の受容体となることにより、生物学的ガス処理が進行する。   The biological gas processing apparatus according to the prior art includes an air supply means for supplying air to the gas to be processed, and oxygen in the air becomes an acceptor of electrons generated by oxidative decomposition by microorganisms. As a result, the biological gas treatment proceeds.

しかし、このような従来の生物学的ガス処理では、十分な処理を行うことが困難であり、硫化水素の除去が不十分となる場合が多く、その結果、生物学的処理を経た排ガスを、更に、高コストな化学処理に供するようにして対応せざるを得なかった。   However, in such a conventional biological gas treatment, it is difficult to perform a sufficient treatment, and removal of hydrogen sulfide is often insufficient, and as a result, the exhaust gas that has undergone the biological treatment, Furthermore, it was necessary to cope with such a high-cost chemical treatment.

特開2006−143779号公報Japanese Patent Laid-Open No. 2006-143779 特開2006−143780号公報JP 2006-143780 A 特開2006−143781号公報JP 2006-143781 A

本発明者は、化学処理のような高コストな処理を用いることなく、微生物の潜在的な酸化力を引き出すことにより、生物学的ガス処理の効率を向上することを鋭意検討し、本発明を完成させた。   The present inventor has eagerly studied to improve the efficiency of biological gas treatment by extracting the potential oxidizing power of microorganisms without using a high-cost treatment such as a chemical treatment. Completed.

そこで、本発明の課題は、低コストで処理効率が良い生物学的ガス処理方法及び生物学的ガス処理装置を提供することにある。   Therefore, an object of the present invention is to provide a biological gas processing method and a biological gas processing apparatus that are low in cost and have high processing efficiency.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
微生物を担持した導電性微生物担体を有する気液接触部を備えた気液接触塔内に、酸化分解性被処理成分を含む被処理ガスと循環液とを導入し、前記気液接触部で気液接触させて、前記酸化分解性被処理成分を前記微生物によって酸化分解する生物学的ガス処理方法であって、
ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上の高温焼成炭素からなる前記導電性微生物担体に正極とする電圧を印加した状態で、酸化分解性被処理成分の酸化分解を行うことを特徴とする生物学的ガス処理方法。
(Claim 1)
A gas to be treated containing an oxidatively decomposable component to be treated and a circulating liquid are introduced into a gas-liquid contact tower having a gas-liquid contact portion having a conductive microorganism carrier carrying microorganisms, and the gas-liquid contact portion introduces gas. A biological gas treatment method in which the oxidatively decomposable component to be oxidatively decomposed by the microorganism is brought into liquid contact,
The voltage ratio of the 1580 cm -1 peak intensity in the Raman spectrum (P1) and 1360 cm -1 peak intensity (P2) (P1 / P2) is that the positive electrode to the conductive microorganism carrier comprising 0.85 or more high temperature baked carbon A biological gas treatment method characterized by performing oxidative decomposition of an oxidatively decomposable component under application.

(請求項2)
前記酸化分解性被処理成分は、硫黄系の還元性且つ臭気性成分、窒素系の還元性且つ臭気性成分、揮発性有機化合物、又は、還元性の地球温暖化ガス成分の少なくとも一種からなることを特徴とする請求項1記載の生物学的ガス処理方法。
(Claim 2)
The oxidatively decomposable component is composed of at least one of a sulfur-based reducing and odorous component, a nitrogen-based reducing and odorous component, a volatile organic compound, or a reducing global warming gas component. The biological gas processing method according to claim 1.

(請求項3)
微生物を担持した導電性微生物担体を有する気液接触部を備えた気液接触塔を有し、
気液接触塔には酸化分解性被処理成分を含む被処理ガスを導入する被処理ガス導入口と、酸化分解された処理ガスを排出する処理ガス排出口と、該気液接触塔内の上部から下方に向かって循環液を散布する循環液散布部と、散布された循環液を下方から排出する循環液排出口とを備え、
該循環液排出口から該気液接触塔の外部に排出された循環液を貯留する循環タンクと、循環タンク内の循環液を、配管を介して前記循環液散布部に移送する循環ポンプとを有し、前記気液接触部で気液接触させて、酸化分解性被処理成分を前記微生物によって酸化分解する生物学的ガス処理装置であって、
ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上の高温焼成炭素からなる前記導電性微生物担体に正極とする電圧を印加する電位印加手段を有することを特徴とする生物学的ガス処理装置。
(Claim 3)
Having a gas-liquid contact tower provided with a gas-liquid contact portion having a conductive microorganism carrier carrying microorganisms;
The gas-liquid contact tower includes a process gas inlet for introducing a process gas containing an oxidatively decomposable component, a process gas outlet for discharging the oxidatively decomposed process gas, and an upper portion in the gas-liquid contact tower. A circulating fluid spraying section for spraying the circulating fluid downward from the bottom, and a circulating fluid outlet for discharging the sprayed circulating fluid from below,
A circulation tank for storing the circulation liquid discharged from the circulation liquid outlet to the outside of the gas-liquid contact tower, and a circulation pump for transferring the circulation liquid in the circulation tank to the circulation liquid spraying section via a pipe. A biological gas treatment apparatus that makes gas-liquid contact at the gas-liquid contact portion and oxidatively decomposes the oxidatively degradable component by the microorganism,
The voltage ratio of the 1580 cm -1 peak intensity in the Raman spectrum (P1) and 1360 cm -1 peak intensity (P2) (P1 / P2) is that the positive electrode to the conductive microorganism carrier comprising 0.85 or more high temperature baked carbon A biological gas processing apparatus comprising a potential applying means for applying.

(請求項4)
前記酸化分解性被処理成分は、硫黄系の還元性且つ臭気性成分、窒素系の還元性且つ臭気性成分、揮発性有機化合物、又は、還元性の地球温暖化ガス成分の少なくとも一種からなることを特徴とする請求項3記載の生物学的ガス処理装置。
(Claim 4)
The oxidatively decomposable component is composed of at least one of a sulfur-based reducing and odorous component, a nitrogen-based reducing and odorous component, a volatile organic compound, or a reducing global warming gas component. The biological gas processing device according to claim 3.

本発明によれば、低コストで処理効率が良い生物学的ガス処理方法及び生物学的ガス処理装置を提供することができる。   According to the present invention, it is possible to provide a biological gas processing method and a biological gas processing apparatus that are low in cost and have high processing efficiency.

硫化水素/硫酸系の電位−pH図Potential-pH diagram of hydrogen sulfide / sulfuric acid system 炭素表面における顕微ラマンスペクトルMicro-Raman spectrum on carbon surface 本発明に係る生物学的ガス処理装置の第一態様を示す概略図Schematic showing the first embodiment of the biological gas processing apparatus according to the present invention. 本発明に係る生物学的ガス処理装置の第二態様を示す概略図Schematic which shows the 2nd aspect of the biological gas processing apparatus which concerns on this invention. 本発明に係る生物学的ガス処理装置の第三態様を示す概略図Schematic which shows the 3rd aspect of the biological gas processing apparatus which concerns on this invention. 硫化水素濃度の経時変化を示す図Figure showing the change in hydrogen sulfide concentration over time 硫化水素濃度のガス流速依存性を示す図Figure showing gas flow rate dependence of hydrogen sulfide concentration 硫化水素濃度の処理電位依存性を示す図Figure showing the treatment potential dependence of hydrogen sulfide concentration 従来技術に係る生物学的ガス処理装置の概略図Schematic diagram of biological gas processing apparatus according to the prior art

本発明の生物学的ガス処理方法が適用される被処理ガスは、酸化によって分解される酸化分解性被処理成分を含む。前記酸化分解性被処理成分は、硫黄系の還元性且つ臭気性成分、窒素系の還元性且つ臭気性成分、揮発性有機化合物、又は、還元性の地球温暖化ガス成分の少なくとも一種からなることが好ましい。前記硫黄系の還元性且つ臭気性成分としては、硫化水素、硫化メチル類、メチルメルカプタン等のメルカプタン類、硫化カルボニル等を好ましく例示でき、前記窒素系の還元性且つ臭気性成分としては、アンモニア、トリメチルアミン、スカトール、インドール等を好ましく例示でき、前記揮発性有機化合物としては、揮発性の炭化水素類又は脂肪酸類を好ましく例示でき、前記還元性の地球温暖化ガス成分としては、亜酸化窒素、メタン等を好ましく例示できる。   The gas to be treated to which the biological gas treatment method of the present invention is applied contains an oxidatively decomposable component to be decomposed by oxidation. The oxidatively decomposable component is composed of at least one of a sulfur-based reducing and odorous component, a nitrogen-based reducing and odorous component, a volatile organic compound, or a reducing global warming gas component. Is preferred. Preferred examples of the sulfur-based reducing and odorous component include hydrogen sulfide, methyl sulfides, mercaptans such as methyl mercaptan, carbonyl sulfide, and the like. Examples of the nitrogen-based reducing and odorous component include ammonia, Trimethylamine, skatole, indole and the like can be preferably exemplified, and the volatile organic compound can be preferably exemplified by volatile hydrocarbons or fatty acids, and the reducing global warming gas component can be exemplified by nitrous oxide and methane. Etc. can be preferably exemplified.

かかる被処理ガスとしては、例えば、バイオガスプラント、水処理施設、汚泥処理施設、ゴミ処理施設、堆肥化施設、有機物加工処理施設等から排出される排ガス等を好ましく例示できる。   Preferred examples of the gas to be treated include exhaust gas discharged from a biogas plant, a water treatment facility, a sludge treatment facility, a waste treatment facility, a composting facility, an organic matter processing facility, and the like.

微生物による酸化分解性被処理成分の酸化分解は、通常、電子受容体として酸素を必要とする。しかるに、従来のようにエアレーションを行って、気液接触部に酸素を供給するだけでは、酸素が循環液に溶解する段階、溶解液中の酸素が拡散して微生物に到達する段階、更には、酸素が微生物の代謝経路に取り込まれる段階等、供給された酸素が微生物の酸化分解の発現に用いられるまでには、いくつもの段階を経なければならず、酸化分解は非効率的となり、処理ガス中に酸化分解性被処理成分が多量に残留することになる。   Oxidative degradation of oxidatively degradable components by microorganisms usually requires oxygen as an electron acceptor. However, by performing aeration as in the past and only supplying oxygen to the gas-liquid contact portion, the stage where oxygen is dissolved in the circulating liquid, the stage where oxygen in the dissolved liquid diffuses and reaches the microorganisms, Before the supplied oxygen can be used to develop oxidative degradation of microorganisms, such as when oxygen is taken into the metabolic pathways of microorganisms, oxidative degradation becomes inefficient and the process gas A large amount of oxidatively decomposable component remains inside.

本発明者は、従来の酸素のみに依存する酸化分解法から脱却し、微生物の潜在的な酸化力を引き出すことにより、生物学的ガス処理の効率を向上することを鋭意検討し、微生物を担持する担体として、導電性を有する導電性微生物担体を用い、「正極とする電圧」を印加した状態を形成して、電子受容体とする構成に到った。   The present inventor diligently studied to improve the efficiency of biological gas treatment by moving away from the conventional oxidative decomposition method that depends only on oxygen and extracting the potential oxidizing power of microorganisms, and supporting microorganisms. As a carrier to be used, a conductive microbial carrier having conductivity was used, and a state in which a “voltage to be a positive electrode” was applied was formed, resulting in an electron acceptor.

かかる構成により、微生物は、酸化分解に伴って生じる電子を、酸素と導電性微生物担体の何れにも供与することができるため、酸素のみに依存する場合には発現し得なかった潜在的な酸化力を発現できるようになり、生物学的ガス処理の効率を向上することが可能となる。   With this configuration, the microorganisms can donate electrons generated by oxidative degradation to both oxygen and the conductive microorganism carrier, so that potential oxidation that could not be expressed when relying only on oxygen was not possible. It becomes possible to express force and improve the efficiency of biological gas processing.

上述の「正極とする電圧」とは、導電性微生物担体が、酸化分解に伴って生じる電子を、好適に受容できる電位であり、−1.5〜+1.5V(基準は標準水素電極でもAg/AgCl電極でも可)程度の広い領域に亘るが、好ましくは、菌叢やpHによって、上述の範囲内で、+0.3〜1.0V程度の範囲に設定されることである。   The above-mentioned “voltage as a positive electrode” is a potential at which a conductive microorganism carrier can preferably accept electrons generated by oxidative degradation, and is −1.5 to +1.5 V (the standard is Ag or a standard hydrogen electrode). / AgCl electrode is also possible), but it is preferably set to a range of about +0.3 to 1.0 V within the above range depending on the bacterial flora and pH.

酸化分解性被処理成分に応じた分解反応における電位は、一般的な電気化学的理論計算によって求めることができるので、この結果に基づいて上記の範囲内で電位を設定することも好ましい。   Since the potential in the decomposition reaction according to the oxidatively decomposable component can be obtained by general electrochemical theoretical calculation, it is also preferable to set the potential within the above range based on this result.

例えば、酸化分解性被処理成分/分解生成物系の電位−pH図における酸化分解性被処理成分領域の境界線よりも貴側に電位を設定することで、酸化分解性被処理成分の分解反応が進行する。分解反応のドライビングフォースを好適に得るためには、前記境界線よりも0.1V以上貴側に電位を設定することが好ましい。   For example, the decomposition reaction of the oxidatively decomposable component is performed by setting the potential to the noble side of the boundary line of the oxidatively decomposable component region in the potential-pH diagram of the oxidatively decomposable component / decomposition product system Progresses. In order to suitably obtain the driving force of the decomposition reaction, it is preferable to set the potential to the noble side by 0.1 V or more from the boundary line.

具体例として、図1に、硫化水素/硫酸系の電位−pH図を示す。   As a specific example, FIG. 1 shows a potential-pH diagram of a hydrogen sulfide / sulfuric acid system.

酸化分解性被処理成分が硫化水素であり、酸化分解による分解生成物が硫酸である場合、図1において、硫化水素領域(斜線部)の境界線Lよりも貴側に電位を設定することで、分解反応が進行し、境界線よりも0.1V以上貴側に電位を設定することで、分解反応のドライビングフォースを好適に得ることができる。   When the component to be oxidatively decomposed is hydrogen sulfide and the decomposition product by oxidative decomposition is sulfuric acid, in FIG. 1, the potential is set to the noble side from the boundary line L of the hydrogen sulfide region (shaded portion). The decomposition reaction proceeds, and the driving force of the decomposition reaction can be suitably obtained by setting the potential to the noble side of 0.1 V or more from the boundary line.

更に、本発明者は、微生物と導電性微生物担体との間の電子移動を安定且つ十分に進行させて、生物学的ガス処理の効率を有意に向上させるために、導電性微生物担体の選定を行った。   Furthermore, the present inventor has selected a conductive microbial carrier in order to stably and sufficiently advance the electron transfer between the microorganism and the conductive microbial carrier and significantly improve the efficiency of biological gas treatment. went.

従来から、電極に固定された微生物の電極電子移動反応については、多くの研究が行われてきた。しかしながら、電子移動が限られた範囲の距離間でしか生じないことや、微生物と電極との親和性(具体的には吸着性及び菌体非破壊性)が得られ難いことから、微生物の電極電子移動反応を安定且つ十分に進行させることは困難であると考えられてきた。   Conventionally, many studies have been conducted on the electrode electron transfer reaction of microorganisms immobilized on electrodes. However, since the electron transfer occurs only within a limited distance and it is difficult to obtain the affinity between the microorganism and the electrode (specifically, the adsorptive and non-destructive properties of the microorganism), It has been considered difficult to allow the electron transfer reaction to proceed stably and sufficiently.

その結果、現在では、微生物ではなく、生体から抽出した酵素を、電極上に固定する方法の研究が主流となっている。   As a result, at present, research on a method for immobilizing an enzyme extracted from a living body, not a microorganism, on an electrode has become the mainstream.

しかし、酵素固定法は、手軽に行えるものではなく、生体からの酵素抽出工程や、電極表面への酵素被覆工程など、複雑な工程を必要とする。更には、使用時において、酵素の剥離や変性が生じた場合は、再生が極めて困難であり、取り換えて対応することになる。このような理由から、バイオセンサーなどの一部用途を除き、実用化には至っていない。特に、排ガスの処理を行うような大規模なバイオリアクターに用いることは極めて困難である。また、特定の酵素のみを固定した電極を用いても、微生物の複雑な代謝経路の再構築は不可能であり、排ガス中の種々の酸化分解性被処理成分の酸化分解を行うことは、やはり極めて困難である。   However, the enzyme immobilization method cannot be easily performed, and requires complicated processes such as an enzyme extraction process from a living body and an enzyme coating process on the electrode surface. Furthermore, when the enzyme is peeled off or denatured during use, it is very difficult to regenerate and it will be replaced. For these reasons, it has not been put into practical use except for some uses such as biosensors. In particular, it is extremely difficult to use in a large-scale bioreactor that treats exhaust gas. In addition, it is impossible to reconstruct complex metabolic pathways of microorganisms even when using an electrode in which only a specific enzyme is immobilized, and it is still possible to oxidize and decompose various oxidatively degradable components in exhaust gas. It is extremely difficult.

本発明者は、あくまでも微生物と担体との電子移動反応について研究を続け、有機物を、好ましくは1250℃以上、より好ましくは1400℃以上で、還元雰囲気下で焼成または再焼成して得られる高温焼成炭素のうち、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上、好ましくは1.00以上、より好ましくは1.20以上の高温焼成炭素を選別して導電性微生物担体として用いた場合に、微生物と導電性微生物担体との間の電子移動を安定且つ十分に進行させて、生物学的ガス処理の効率を有意に向上させることができることを見出した。有機物を高温焼成又は再焼成すれば必ず上記特性を備えるわけではないので、この選別は本発明において重要である。 The present inventor continues research on the electron transfer reaction between a microorganism and a carrier, and high-temperature baking obtained by baking or re-baking an organic substance in a reducing atmosphere, preferably at 1250 ° C. or higher, more preferably at 1400 ° C. or higher. Among carbon, the ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in the Raman spectrum is 0.85 or more, preferably 1.00 or more, more preferably 1. When 20 or more high-temperature calcined carbons are selected and used as a conductive microbial carrier, the electron transfer between the microorganism and the conductive microbial carrier is stably and sufficiently advanced to significantly increase the efficiency of biological gas treatment. It has been found that it can be improved. This selection is important in the present invention because the organic material is not necessarily provided with the above characteristics if it is fired at high temperature or refired.

還元雰囲気下とは、酸素元素を含まない気体中を意味し、酸素元素を含まない気体としては、窒素等を好ましく例示できる。   Under a reducing atmosphere means in a gas that does not contain an oxygen element, and preferred examples of the gas that does not contain an oxygen element include nitrogen.

高温焼成炭素の導電性は、高温焼成炭素を形成するグラファイト質の結晶構造により付与される。ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)を測定することで、主に炭素表面(数〜数10原子層程度)の構造に起因した測定値が得られる。特に、高温焼成炭素を導電性微生物担体として用いる本発明では、担持微生物との間の電子移動を効率的に行うために、表面導電性が重要となる。ラマン分光スペクトルを用いれば、導電性微生物担体としての表面導電性を好適に評価できる。これに対して、炭素内部の結晶構造を反映するX線回折は、このような評価に適さない。 The conductivity of the high-temperature calcined carbon is imparted by the graphitic crystal structure that forms the high-temperature calcined carbon. By measuring the ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) and 1360 cm −1 peak intensity (P2) in the Raman spectrum, the structure mainly on the carbon surface (several to several tens of atomic layers) is obtained. The resulting measurement is obtained. In particular, in the present invention in which high-temperature calcined carbon is used as a conductive microorganism carrier, surface conductivity is important in order to efficiently perform electron transfer with the supporting microorganism. If the Raman spectroscopic spectrum is used, the surface conductivity as a conductive microorganism carrier can be suitably evaluated. On the other hand, X-ray diffraction reflecting the crystal structure inside carbon is not suitable for such evaluation.

炭素表面における顕微ラマンスペクトルを図2に示す。   A micro Raman spectrum on the carbon surface is shown in FIG.

このスペクトルには、グラファイト質を示すピーク(1580cm−1)と炭素質を示すピーク(1360cm−1)とが現われている。 In this spectrum, a peak (1580 cm −1 ) indicating the graphite quality and a peak (1360 cm −1 ) indicating the carbon quality appear.

炭素質が十分にグラファイト化されていると、グラファイト質を示すピークが高く、炭素質を示すピークが低くなる。導電性は主にグラファイト質によって与えられるものであるから、上記のように、グラファイト質を示すピークが高く、炭素質を示すピークが低いことが好ましい。   If the carbonaceous material is sufficiently graphitized, the peak indicating the graphite quality is high and the peak indicating the carbonaceous material is low. Since conductivity is mainly given by the graphite, it is preferable that the peak indicating the graphite is high and the peak indicating the carbon is low as described above.

上述したように、導電性微生物担体が、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上の高温焼成炭素であれば、優れた導電性を得ることができ、上述した「正極とする電圧」の印加を、導電性微生物担体からなる充填層全体に好ましく行うことができるため、微生物と導電性微生物担体との間の電子移動を安定且つ十分に進行させて、生物学的ガス処理の効率を有意に向上させることができる。 As described above, the conductive microbial carrier may be a high-temperature calcined carbon having a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in a Raman spectroscopic spectrum of 0.85 or more. For example, excellent conductivity can be obtained, and the application of the above-mentioned “voltage as a positive electrode” can be preferably performed on the entire packed layer of the conductive microorganism carrier. Thus, the efficiency of biological gas treatment can be significantly improved.

また、高温焼成炭素は、有機物の燃焼により高温焼成炭素は微多孔性となるため、膨大な比表面積を有し、即ち、担持可能な微生物数が大幅に増加する。上述した、電子移動が限られた範囲の距離間でしか生じない問題については、担持微生物数の増加で十分に賄えるものである。   Moreover, since the high temperature baked carbon becomes microporous due to the combustion of organic matter, the high temperature baked carbon has a huge specific surface area, that is, the number of microorganisms that can be supported is greatly increased. The above-described problem in which electron transfer occurs only within a limited range can be sufficiently covered by an increase in the number of supported microorganisms.

本発明の高温焼成炭素は、窒素吸着により測定したBET比表面積が1m/g(窒素吸着量)以上であることが好ましい。 The high-temperature calcined carbon of the present invention preferably has a BET specific surface area measured by nitrogen adsorption of 1 m 2 / g (nitrogen adsorption amount) or more.

さらに、炭素が微生物との親和性に優れることは知られているが、高温焼成炭素もまた、微生物と電極との親和性に優れ、微生物含有溶液に浸漬するだけで微生物を担持することができる優れた吸着性と、電位の印加を行っても微生物の菌体破壊を生じ難いという菌体非破壊性に優れる。   Furthermore, it is known that carbon is excellent in affinity with microorganisms, but high-temperature calcined carbon is also excellent in affinity between microorganisms and electrodes, and can support microorganisms simply by being immersed in a microorganism-containing solution. It has excellent adsorptivity and non-destructiveness that prevents the destruction of microorganisms even when a potential is applied.

本発明において、導電性微生物担体として用いられる高温焼成炭素の好ましい具体例として、竹炭又は木炭、活性炭再焼成して得られる粒状体、炭素繊維集合を例示でき、以下に説明するように、充填層を形成した際の圧力損失の増加を防止できる竹炭又は木炭が、特に好適である。   In the present invention, preferred specific examples of the high-temperature calcined carbon used as the conductive microorganism carrier can include bamboo charcoal or charcoal, granules obtained by refiring activated carbon, and carbon fiber aggregates. As described below, a packed bed Bamboo charcoal or charcoal that can prevent an increase in pressure loss when forming is particularly suitable.

本発明において、導電性微生物担体を形成する竹炭又は木炭(それらの破砕片であってもよい)は、充填層を形成した際に圧力損失を増大させない形状が好ましく、具体的には、充填密度を疎にする手法が好ましい。充填密度を疎にする手法は、竹炭又は木炭の粒径を大きくする手法や、充填した際に必然的に疎になるような形状の竹炭又は木炭を使用する手法などがある。   In the present invention, the bamboo charcoal or charcoal (which may be a crushed piece thereof) forming the conductive microorganism carrier preferably has a shape that does not increase the pressure loss when the packed bed is formed. Specifically, the packing density A method of making sparse is preferable. As a method for reducing the packing density, there are a method for increasing the particle size of bamboo charcoal or charcoal, a method for using bamboo charcoal or charcoal having a shape that inevitably becomes sparse when filled.

竹炭又は木炭の粒径を大きくする手法の場合には、粒径が小さい方が、脱硫効果に対して制限的な要因となりえるので、最低の粒径を規定することは意味がある。本発明では、破砕された竹炭又は木炭の場合に、その粒径(直径)は、1cm以上が好ましく、より好ましくは3cm以上、さらに好ましくは5cm以上であることである。粒径は、破砕された竹炭又は木炭が円形でない場合には円形に換算した径を意味する。   In the method of increasing the particle size of bamboo charcoal or charcoal, it is meaningful to define the minimum particle size because a smaller particle size can be a limiting factor for the desulfurization effect. In the present invention, in the case of crushed bamboo charcoal or charcoal, the particle size (diameter) is preferably 1 cm or more, more preferably 3 cm or more, and further preferably 5 cm or more. The particle diameter means a diameter converted into a circle when the crushed bamboo charcoal or charcoal is not circular.

充填した際に必然的に疎になるような形状の竹炭又は木炭を使用する手法では、原料の形のまま焼成した竹炭又は木炭を用いることが挙げられる。たとえば竹炭の場合には、長さ5cm〜10cm程度の円筒竹炭をそのまま充填材として用いれば、充填された状態で間隙が大きく、圧損が、脱硫効果に対して制限的な要因にはならない。また竹原料を線状に裁断して、格子状に平織りして、その後焼成して得られた網状竹炭を用いれば、それらを積層するだけでも、充填された状態で間隙が大きく、圧損が、脱硫効果に対して制限的な要因にはならない。また網状竹炭の層と円筒竹炭の層を交互に積層する手法も好ましい態様として例示できる。   In the method of using bamboo charcoal or charcoal having a shape that inevitably becomes sparse when filled, it is possible to use bamboo charcoal or charcoal fired in the form of raw materials. For example, in the case of bamboo charcoal, if cylindrical bamboo charcoal having a length of about 5 cm to 10 cm is used as a filler as it is, the gap is large in the filled state, and the pressure loss does not become a limiting factor for the desulfurization effect. In addition, if the bamboo raw material obtained by cutting the bamboo raw material into a line, plain weaving into a lattice, and then firing it is used to laminate them, the gap is large in the filled state, and the pressure loss is It is not a limiting factor for the desulfurization effect. A method of alternately laminating reticulated bamboo charcoal layers and cylindrical bamboo charcoal layers can also be exemplified as a preferred embodiment.

図3は、本発明に係る生物学的ガス処理装置の第一態様を示す概略図である。   FIG. 3 is a schematic view showing a first embodiment of the biological gas processing apparatus according to the present invention.

図3において、1は気液接触塔であり、2は気液接触塔に設けられた充填層である。充填層2には、微生物を担持した導電性微生物担体が充填されている。   In FIG. 3, 1 is a gas-liquid contact tower, and 2 is a packed bed provided in the gas-liquid contact tower. The packed layer 2 is filled with a conductive microorganism carrier carrying microorganisms.

また、3は、導電性微生物担体と接触し、これに電位印加可能に設けられた電位印加極であり、4は対極、5は参照極である。   Reference numeral 3 denotes a potential application electrode provided in contact with the conductive microorganism carrier so that potential can be applied thereto, 4 is a counter electrode, and 5 is a reference electrode.

さらに、6は、充填層2に循環液を注入する循環液注入部であり、7は、充填層2の下部から流出する循環液を排出する循環液排出口である。循環液排出口7は、循環液を蓄える循環液タンク8と接続されている。9は、循環液タンク8の循環液を循環液注入部6に送液する循環ポンプである。循環液タンク8には、系外から循環液が適宜補給される。本発明において、循環液は、分解反応による生成物を系外に排出する目的や、導電性微生物担体に微生物を供給する目的で用いることができる。前記分解反応による生成物とは、例えば、酸化分解性被処理成分が硫黄系の還元性且つ臭気性成分であれば、硫酸などである。また、導電性微生物担体に微生物を供給する目的で循環液を用いる場合は、例えばメタン発酵消化液等のような微生物を含有する微生物含有液を、循環液として用いることができる。   Further, 6 is a circulating fluid injection part for injecting the circulating fluid into the packed bed 2, and 7 is a circulating fluid outlet for discharging the circulating fluid flowing out from the lower part of the packed bed 2. The circulating fluid discharge port 7 is connected to a circulating fluid tank 8 that stores the circulating fluid. Reference numeral 9 denotes a circulation pump that sends the circulating fluid in the circulating fluid tank 8 to the circulating fluid injection unit 6. The circulating fluid tank 8 is appropriately replenished with circulating fluid from outside the system. In the present invention, the circulating fluid can be used for the purpose of discharging a product resulting from the decomposition reaction out of the system or for supplying microorganisms to the conductive microorganism carrier. The product by the decomposition reaction is, for example, sulfuric acid or the like if the component to be oxidatively decomposed is a sulfur-based reducing and odorous component. In addition, when a circulating fluid is used for the purpose of supplying microorganisms to the conductive microorganism carrier, a microorganism-containing solution containing microorganisms such as methane fermentation digestive fluid can be used as the circulating fluid.

10は、気液接触塔1の下部に設けられた被処理ガス導入部であり、11は、充填層2に充填された導電性微生物担体と接触し、これを通過した処理ガスを排出する処理ガス排出口である。   Reference numeral 10 denotes a gas introduction section to be treated provided in the lower part of the gas-liquid contact tower 1, and 11 denotes a treatment for contacting the conductive microorganism carrier filled in the packed bed 2 and discharging the processing gas that has passed through the carrier. It is a gas outlet.

図4は、本発明に係る生物学的ガス処理装置の第二態様を示す概略図である。   FIG. 4 is a schematic view showing a second embodiment of the biological gas processing apparatus according to the present invention.

第二態様では、被処理ガス中に空気の注入を行うものであり、これによって、導電性微生物担体に加えて、注入された空気中の酸素が、酸化分解反応により生じる電子の受容体として機能するため、より高い処理能力を発揮することが可能である。   In the second aspect, air is injected into the gas to be treated, whereby oxygen in the injected air functions as an acceptor of electrons generated by the oxidative decomposition reaction in addition to the conductive microorganism carrier. Therefore, it is possible to exhibit higher processing capability.

図5は、本発明に係る生物学的ガス処理装置の第三態様を示す概略図である。   FIG. 5 is a schematic view showing a third embodiment of the biological gas processing apparatus according to the present invention.

第三態様では、従来の電位印加を行わないエアレーション型の生物学的処理装置の後段に、本発明に係る生物学的ガス処理装置を設けている。本発明に係る生物学的ガス処理装置は、従来の生物学的処理装置と容易に組み合わせることができ、また、これらを併用することで、より高い処理能力を発揮することが可能である。   In the third aspect, the biological gas processing apparatus according to the present invention is provided in the subsequent stage of the conventional aeration type biological processing apparatus that does not apply potential. The biological gas processing apparatus according to the present invention can be easily combined with a conventional biological processing apparatus, and by using them together, it is possible to exhibit a higher processing capacity.

本発明において、微生物と導電性微生物担体との間の電子移動は、直接電子移動に限定されず、例えば酸化還元活性を有するメディエータを介したものであってもよい。   In the present invention, the electron transfer between the microorganism and the conductive microorganism carrier is not limited to the direct electron transfer, and may be, for example, via a mediator having redox activity.

以下に、本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

(比較例1)
木片を還元雰囲気下にて1000℃で焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.80の木炭を得た。得られた木炭を破砕して、平均長径2〜5cm、平均短形1〜2cmの楕円体状の粒状物とし、以下の測定及び試験に供した。
(Comparative Example 1)
The wood piece was fired at 1000 ° C. in a reducing atmosphere to obtain charcoal having a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in a Raman spectroscopic spectrum of 0.80. . The obtained charcoal was crushed into an ellipsoidal granular material having an average major axis of 2 to 5 cm and an average minor axis of 1 to 2 cm, and subjected to the following measurements and tests.

<物性値の測定>
1.ラマン分光ピーク比の測定
顕微ラマン分光分析装置(Jobin−Yvon製U−1000ラマンシステム)を用いて、粒状物表面における、1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)を測定し、強度比(P1/P2)を算出した。
<Measurement of physical properties>
1. Measurement of Raman spectral peak ratio 1580 cm −1 peak intensity (P1) and 1360 cm −1 peak intensity (P2) on the surface of a granular material are measured using a microscopic Raman spectroscopic analyzer (U-1000 Raman system manufactured by Jobin-Yvon). The intensity ratio (P1 / P2) was calculated.

2.BET比表面積の測定
粒状物について、窒素吸着法によるBET比表面積を測定した。
2. Measurement of BET specific surface area The BET specific surface area of the granular material was measured by a nitrogen adsorption method.

3.表面導電性の測定
室温において、長さ140mm、幅、深さ共に10mmの溝を有する容器の溝に、上記の粒状物を砕いて充填して充填極を形成し、溝の長手方向の両端部に通電極を設け、長手方向に50mmの間隔を開けて充填極に電圧計の電極を差し込み、通電値10mAにおいて、直流四端子法によって充填極の表面導電性を測定した。本発明において、表面導電性は、好ましくは、1kΩcm以下、より好ましくは、200Ωcm以下、最も好ましくは100Ωcm以下である。
3. Measurement of surface conductivity At room temperature, the above-mentioned granular material is crushed and filled into a groove of a container having a length of 140 mm, a width and a depth of 10 mm to form a filling electrode, and both end portions in the longitudinal direction of the groove The electrode of the voltmeter was inserted into the filling electrode with an interval of 50 mm in the longitudinal direction, and the surface conductivity of the filling electrode was measured by a DC four-terminal method at an energization value of 10 mA. In the present invention, the surface conductivity is preferably 1 kΩcm or less, more preferably 200 Ωcm or less, and most preferably 100 Ωcm or less.

<生物脱硫試験>
試験用の生物学的ガス処理装置が備える層高約100mm、内径約100mmの充填部に、上記の粒状物を充填し、28℃、+0.2(V vs Ag/AgCl)の電圧を印加し、該充填部において、下記被処理ガスと下記循環液とを向流で接触させて、生物脱硫試験を行った。被処理ガスには空気注入は行わなかった。
<Biodesulfurization test>
The above-mentioned granular material is filled in a packed portion having a layer height of about 100 mm and an inner diameter of about 100 mm provided in the biological gas processing apparatus for testing, and a voltage of 28 ° C. and +0.2 (V vs Ag / AgCl) is applied. In the filling section, the following gas to be treated and the following circulating liquid were brought into contact with each other in a countercurrent to conduct a biodesulfurization test. No air was injected into the gas to be treated.

脱硫処理後の処理ガスをガスクロマトグラフィー分析に供し、硫化水素濃度の定量を行った。   The treatment gas after the desulfurization treatment was subjected to gas chromatography analysis to determine the hydrogen sulfide concentration.

被処理ガス:搾乳牛糞尿メタン発酵処理施設(4t/日)発酵槽からのバイオガスを用いた。組成比(体積)は、CH:53%、CO:47%、HS:1800〜2000ppmである。導入バイオガスの流量は150ml/minとした。循環液として、メタン発酵消化液を循環させた。 Gas to be treated: Milking cow manure methane fermentation treatment facility (4t / day) Biogas from the fermenter was used. The composition ratio (volume) is CH 4 : 53%, CO 2 : 47%, H 2 S: 1800 to 2000 ppm. The flow rate of introduced biogas was 150 ml / min. As the circulating liquid, methane fermentation digestive liquid was circulated.

結果を表1に示す。   The results are shown in Table 1.

(実施例1)
竹片を還元雰囲気下にて1250℃で焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が1.00の竹炭を得た。得られた竹炭を破砕して、平均長径2〜5cm、平均短形1〜2cmの楕円体状の粒状物とし、比較例1と同様の測定及び試験に供した。
Example 1
Bamboo pieces were fired at 1250 ° C. in a reducing atmosphere to obtain bamboo charcoal having a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in a Raman spectrum. It was. The obtained bamboo charcoal was crushed into an ellipsoidal granular material having an average major axis of 2 to 5 cm and an average minor axis of 1 to 2 cm, and subjected to the same measurements and tests as in Comparative Example 1.

結果を表1に示す。   The results are shown in Table 1.

(実施例2)
比較例1で得られた木炭からなる粒状物を還元雰囲気下にて1400℃で再焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が1.20の木炭を得た。得られた木炭を、比較例1と同様の測定及び試験に供した。
(Example 2)
The granular material made of charcoal obtained in Comparative Example 1 was refired at 1400 ° C. in a reducing atmosphere, and the ratio of the 1580 cm −1 peak intensity (P1) to the 1360 cm −1 peak intensity (P2) in the Raman spectrum (P1 / P2) obtained 1.20 charcoal. The obtained charcoal was subjected to the same measurement and test as in Comparative Example 1.

結果を表1に示す。   The results are shown in Table 1.

(実施例3)
竹片を還元雰囲気下にて1400℃で焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が1.20の竹炭を得た。得られた竹炭を破砕して、平均長径2〜5cm、平均短形1〜2cmの楕円体状の粒状物とし、比較例1と同様の測定及び試験に供した。
(Example 3)
And fired at 1400 ° C. the bamboo strips in a reducing atmosphere, to obtain a charcoal ratio (P1 / P2) of 1.20 of 1580 cm -1 peak intensity (P1) and 1360 cm -1 peak intensity in the Raman spectrum (P2) It was. The obtained bamboo charcoal was crushed into an ellipsoidal granular material having an average major axis of 2 to 5 cm and an average minor axis of 1 to 2 cm, and subjected to the same measurements and tests as in Comparative Example 1.

結果を表1に示す。   The results are shown in Table 1.

Figure 2011212606
Figure 2011212606

(実施例4)
ヤシガラ原料の活性炭を還元雰囲気下にて1400℃で再焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.90〜1.0の再焼成ヤシガラ炭を得た。得られた再焼成ヤシガラ炭の平均粒径は約5mmであった。比較例1と同様の生物脱硫装置を用いて、生物脱硫試験を行い、以下の項目について評価を行った。各試験に際し、被処理ガスには空気注入は行わなかった。
Example 4
The activated carbon coconut husk material was re-fired at 1400 ° C. in a reducing atmosphere, the ratio of the 1580 cm -1 peak intensity in the Raman spectrum (P1) and 1360 cm -1 peak intensity (P2) (P1 / P2) is 0.90 1.0 refired coconut charcoal was obtained. The average particle size of the obtained refired coconut shell charcoal was about 5 mm. A biodesulfurization test was performed using the same biodesulfurization apparatus as in Comparative Example 1, and the following items were evaluated. During each test, air was not injected into the gas to be treated.

<評価項目>
1.硫化水素濃度の経時変化
被処理ガス中と、処理ガス中の各々の硫化水素濃度の経時変化を4日間に渡り測定した。
<Evaluation items>
1. Change in hydrogen sulfide concentration over time The change in hydrogen sulfide concentration over time in the gas to be treated and in the treatment gas was measured over 4 days.

結果を図6に示した。   The results are shown in FIG.

2.硫化水素濃度のガス流速依存性
硫化水素濃度2200ppm(平均:変動幅1800〜2500ppm)の被処理ガス(28℃)の流速を変化させて充填部に供給し、検出電流値と処理ガス中の硫化水素濃度の流速依存性を測定した。
2. Dependence of hydrogen sulfide concentration on gas flow rate Varying the flow rate of the gas to be treated (28 ° C) with a hydrogen sulfide concentration of 2200 ppm (average: fluctuation range of 1800-2500 ppm) and supplying it to the filling section, the detected current value and sulfurization in the treatment gas The flow rate dependence of the hydrogen concentration was measured.

結果を図7に示した。   The results are shown in FIG.

3.硫化水素濃度の処理電位依存性
硫化水素濃度2200ppm(平均:変動幅1800〜2500ppm)の被処理ガス(28℃)を充填部に供給し、充填部において再焼成ヤシガラ炭に印加する電位を変化させて、処理ガス中の硫化水素濃度の電位依存性を測定した。
3. Treatment potential dependence of hydrogen sulfide concentration Gas to be treated (28 ° C.) having a hydrogen sulfide concentration of 2200 ppm (average: fluctuation range of 1800 to 2500 ppm) is supplied to the filling portion, and the potential applied to the refired coconut charcoal is changed in the filling portion. Thus, the potential dependence of the hydrogen sulfide concentration in the process gas was measured.

結果を図8に示した。   The results are shown in FIG.

<評価>
図6より、4日間の試験期間において、生物学的ガス処理の経時安定性が確認された。
<Evaluation>
From FIG. 6, it was confirmed that the biological gas treatment was stable over time in the test period of 4 days.

また、図7より、被処理ガスの流速の増加に伴う電流値の増加、即ち反応量の増加が確認できる。比較的流速の低い領域において、硫化水素濃度が特に低下することがわかる。   Further, from FIG. 7, it can be confirmed that the current value increases, that is, the reaction amount increases as the flow rate of the gas to be processed increases. It can be seen that the hydrogen sulfide concentration decreases particularly in the region where the flow rate is relatively low.

さらに、図8より、+0.1(V vs Ag/AgCl)以上の電位の印加によって、硫化水素濃度が十分に低下することがわかる。   Furthermore, it can be seen from FIG. 8 that the hydrogen sulfide concentration is sufficiently lowered by applying a potential of +0.1 (V vs Ag / AgCl) or more.

(実施例5)
実施例4と同様の装置を用いて、流量150ml/minの被処理ガスに対して、空気を5ml/min注入して充填部に供給した場合、処理ガス中の硫化水素濃度は0ppm(検知管において検出せず)であった。
(Example 5)
Using the same apparatus as in Example 4, when 5 ml / min of air was injected into the gas to be processed at a flow rate of 150 ml / min and supplied to the filling section, the hydrogen sulfide concentration in the processing gas was 0 ppm (detection tube It was not detected in).

(実施例6)
図22に示したような従来の生物脱硫処理後のガス(硫化水素濃度2000〜2200ppm程度)を、実施例4と同様の装置を用いて、流量150ml/minで、空気を注入しないで供給した場合、処理ガス中の硫化水素濃度は0ppm(検知管において検出せず)であった。
(Example 6)
Gas after the conventional biological desulfurization treatment as shown in FIG. 22 (hydrogen sulfide concentration of about 2000 to 2200 ppm) was supplied at a flow rate of 150 ml / min without injecting air using the same apparatus as in Example 4. In this case, the hydrogen sulfide concentration in the process gas was 0 ppm (not detected in the detector tube).

(実施例7)
実施例4と同様の装置を用いて、汚泥貯留施設から発生する排ガスを被処理ガスとして100ml/minの流速で、25℃、+0.4(V vs Ag/AgCl)の電位を印加した充填部に供給し、臭気成分の酸化分解を行った。検知管により、被処理ガス中及び処理ガス中の臭気成分の濃度測定を行った。被処理ガス中及び処理ガス中の臭気成分の組成を以下に示す。
(Example 7)
Using an apparatus similar to that in Example 4, a filling unit to which an exhaust gas generated from a sludge storage facility was applied as a process gas and a potential of 25 ° C. and +0.4 (V vs Ag / AgCl) was applied at a flow rate of 100 ml / min. The odor component was oxidatively decomposed. The concentration of odorous components in the gas to be processed and in the processing gas was measured with the detection tube. The composition of the odor component in the gas to be treated and in the treatment gas is shown below.

被処理ガス中の臭気成分の組成:硫化水素250ppm、メチルメルカプタン10ppm、アンモニア470ppm   Composition of odor components in gas to be treated: hydrogen sulfide 250 ppm, methyl mercaptan 10 ppm, ammonia 470 ppm

処理ガス中の臭気成分の組成:硫化水素10ppm、メチルメルカプタン0.2ppm、アンモニア15ppm   Composition of odor components in process gas: hydrogen sulfide 10ppm, methyl mercaptan 0.2ppm, ammonia 15ppm

(実施例8)
実施例4と同様の装置を用いて、搾乳牛糞尿処理施設から発生するガスを被処理ガスとして100ml/minの流速で、25℃、−0.2(V vs Ag/AgCl)の電位を印加した充填部に供給し、亜酸化窒素の酸化分解を行った。GC−ECD分析により、被処理ガス中及び処理ガス中の亜酸化窒素濃度の測定を行った。被処理ガス中及び処理ガス中の亜酸化窒素濃度を以下に示す。
被処理ガス中の亜酸化窒素濃度:12000ppb
処理後の亜酸化窒素濃度:750ppb
(Example 8)
Using the same apparatus as in Example 4, a gas generated from a milking cow manure treatment facility was used as a gas to be treated, and a potential of 25 ° C. and −0.2 (V vs Ag / AgCl) was applied at a flow rate of 100 ml / min. Then, the nitrous oxide was oxidatively decomposed. The nitrous oxide concentration in the gas to be treated and in the treatment gas was measured by GC-ECD analysis. The nitrous oxide concentration in the gas to be processed and in the processing gas is shown below.
Nitrous oxide concentration in gas to be treated: 12,000ppb
Nitrous oxide concentration after treatment: 750 ppb

1:気液接触塔
2:充填層
3:電位印加極
4:対極
5:参照極
6:凝縮水注入部
7:凝縮水排出口
8:循環液タンク
9:ポンプ
10:被処理ガス導入部
11:処理ガス排出口
1: Gas-liquid contact tower 2: Packed layer 3: Potential application electrode 4: Counter electrode 5: Reference electrode 6: Condensate water injection part 7: Condensate water discharge port 8: Circulating liquid tank 9: Pump 10: Gas to be treated introduction part 11 : Process gas outlet

Claims (4)

微生物を担持した導電性微生物担体を有する気液接触部を備えた気液接触塔内に、酸化分解性被処理成分を含む被処理ガスと循環液とを導入し、前記気液接触部で気液接触させて、前記酸化分解性被処理成分を前記微生物によって酸化分解する生物学的ガス処理方法であって、
ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上の高温焼成炭素からなる前記導電性微生物担体に正極とする電圧を印加した状態で、酸化分解性被処理成分の酸化分解を行うことを特徴とする生物学的ガス処理方法。
A gas to be treated containing an oxidatively decomposable component to be treated and a circulating liquid are introduced into a gas-liquid contact tower having a gas-liquid contact portion having a conductive microorganism carrier carrying microorganisms, and the gas-liquid contact portion introduces gas. A biological gas treatment method in which the oxidatively decomposable component to be oxidatively decomposed by the microorganism is brought into liquid contact,
The voltage ratio of the 1580 cm -1 peak intensity in the Raman spectrum (P1) and 1360 cm -1 peak intensity (P2) (P1 / P2) is that the positive electrode to the conductive microorganism carrier comprising 0.85 or more high temperature baked carbon A biological gas treatment method characterized by performing oxidative decomposition of an oxidatively decomposable component under application.
前記酸化分解性被処理成分は、硫黄系の還元性且つ臭気性成分、窒素系の還元性且つ臭気性成分、揮発性有機化合物、又は、還元性の地球温暖化ガス成分の少なくとも一種からなることを特徴とする請求項1記載の生物学的ガス処理方法。   The oxidatively decomposable component is composed of at least one of a sulfur-based reducing and odorous component, a nitrogen-based reducing and odorous component, a volatile organic compound, or a reducing global warming gas component. The biological gas processing method according to claim 1. 微生物を担持した導電性微生物担体を有する気液接触部を備えた気液接触塔を有し、
気液接触塔には酸化分解性被処理成分を含む被処理ガスを導入する被処理ガス導入口と、酸化分解された処理ガスを排出する処理ガス排出口と、該気液接触塔内の上部から下方に向かって循環液を散布する循環液散布部と、散布された循環液を下方から排出する循環液排出口とを備え、
該循環液排出口から該気液接触塔の外部に排出された循環液を貯留する循環タンクと、循環タンク内の循環液を、配管を介して前記循環液散布部に移送する循環ポンプとを有し、前記気液接触部で気液接触させて、酸化分解性被処理成分を前記微生物によって酸化分解する生物学的ガス処理装置であって、
ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上の高温焼成炭素からなる前記導電性微生物担体に正極とする電圧を印加する電位印加手段を有することを特徴とする生物学的ガス処理装置。
Having a gas-liquid contact tower provided with a gas-liquid contact portion having a conductive microorganism carrier carrying microorganisms;
The gas-liquid contact tower includes a process gas inlet for introducing a process gas containing an oxidatively decomposable component, a process gas outlet for discharging the oxidatively decomposed process gas, and an upper portion in the gas-liquid contact tower. A circulating fluid spraying section for spraying the circulating fluid downward from the bottom, and a circulating fluid outlet for discharging the sprayed circulating fluid from below,
A circulation tank for storing the circulation liquid discharged from the circulation liquid outlet to the outside of the gas-liquid contact tower, and a circulation pump for transferring the circulation liquid in the circulation tank to the circulation liquid spraying section via a pipe. A biological gas treatment apparatus that makes gas-liquid contact at the gas-liquid contact portion and oxidatively decomposes the oxidatively degradable component by the microorganism,
The voltage ratio of the 1580 cm -1 peak intensity in the Raman spectrum (P1) and 1360 cm -1 peak intensity (P2) (P1 / P2) is that the positive electrode to the conductive microorganism carrier comprising 0.85 or more high temperature baked carbon A biological gas processing apparatus comprising a potential applying means for applying.
前記酸化分解性被処理成分は、硫黄系の還元性且つ臭気性成分、窒素系の還元性且つ臭気性成分、揮発性有機化合物、又は、還元性の地球温暖化ガス成分の少なくとも一種からなることを特徴とする請求項3記載の生物学的ガス処理装置。   The oxidatively decomposable component is composed of at least one of a sulfur-based reducing and odorous component, a nitrogen-based reducing and odorous component, a volatile organic compound, or a reducing global warming gas component. The biological gas processing device according to claim 3.
JP2010083915A 2010-03-31 2010-03-31 Biological gas processing method and biological gas processing apparatus Expired - Fee Related JP5430474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083915A JP5430474B2 (en) 2010-03-31 2010-03-31 Biological gas processing method and biological gas processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083915A JP5430474B2 (en) 2010-03-31 2010-03-31 Biological gas processing method and biological gas processing apparatus

Publications (2)

Publication Number Publication Date
JP2011212606A true JP2011212606A (en) 2011-10-27
JP5430474B2 JP5430474B2 (en) 2014-02-26

Family

ID=44942922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083915A Expired - Fee Related JP5430474B2 (en) 2010-03-31 2010-03-31 Biological gas processing method and biological gas processing apparatus

Country Status (1)

Country Link
JP (1) JP5430474B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187466A (en) * 2017-12-31 2018-06-22 浙江工业大学 A kind of advanced oxidation coupled biological cleaning system and its application based on ozone regulation and control

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164314A (en) * 1984-09-07 1986-04-02 Nec Corp Apparatus for treating exhaust gas
JP2001017859A (en) * 1999-07-08 2001-01-23 Toyo Denka Kogyo Co Ltd Adsorbent comprising carbonized wood
JP2002346566A (en) * 2001-05-21 2002-12-03 Yamato:Kk Apparatus and method for water treatment
JP2004024996A (en) * 2002-06-24 2004-01-29 Mitsui Mining Co Ltd Carrier for carrying living body, biological deodorizing apparatus using the same and deodorization method
JP2006159112A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
JP2006265315A (en) * 2005-03-22 2006-10-05 Bussan Nanotech Research Institute Inc Composite material
JP2007319832A (en) * 2006-06-05 2007-12-13 Sharp Corp Exhaust gas treatment method and exhaust gas treatment apparatus
JP2010046657A (en) * 2008-07-23 2010-03-04 Issin Co Ltd Deodorizer, deodorizing method, exhaust gas treatment device and exhaust gas treatment method
JP2011049067A (en) * 2009-08-27 2011-03-10 Mitsui Eng & Shipbuild Co Ltd Carbon electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164314A (en) * 1984-09-07 1986-04-02 Nec Corp Apparatus for treating exhaust gas
JP2001017859A (en) * 1999-07-08 2001-01-23 Toyo Denka Kogyo Co Ltd Adsorbent comprising carbonized wood
JP2002346566A (en) * 2001-05-21 2002-12-03 Yamato:Kk Apparatus and method for water treatment
JP2004024996A (en) * 2002-06-24 2004-01-29 Mitsui Mining Co Ltd Carrier for carrying living body, biological deodorizing apparatus using the same and deodorization method
JP2006159112A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
JP2006265315A (en) * 2005-03-22 2006-10-05 Bussan Nanotech Research Institute Inc Composite material
JP2007319832A (en) * 2006-06-05 2007-12-13 Sharp Corp Exhaust gas treatment method and exhaust gas treatment apparatus
JP2010046657A (en) * 2008-07-23 2010-03-04 Issin Co Ltd Deodorizer, deodorizing method, exhaust gas treatment device and exhaust gas treatment method
JP2011049067A (en) * 2009-08-27 2011-03-10 Mitsui Eng & Shipbuild Co Ltd Carbon electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187466A (en) * 2017-12-31 2018-06-22 浙江工业大学 A kind of advanced oxidation coupled biological cleaning system and its application based on ozone regulation and control

Also Published As

Publication number Publication date
JP5430474B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
He et al. Effects of biochar size and type on gaseous emissions during pig manure/wheat straw aerobic composting: Insights into multivariate-microscale characterization and microbial mechanism
Zhao et al. Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems: short-term and long-term assessments
Schievano et al. Electroactive biochar for large-scale environmental applications of microbial electrochemistry
JP5127200B2 (en) Wastewater treatment equipment containing ammonia nitrogen
Wang et al. Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system
EP3401284A1 (en) Bio-electrical system for treating wastewater
JP2006159112A (en) Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
CN107814385B (en) Method for treating industrial wastewater and preparing graphite type porous carbon material by using biomass coke
Ortiz-Ortega et al. Aging of plasma-activated carbon surfaces: Challenges and opportunities
JP5101855B2 (en) Bioreactor
de Nicolás et al. Evaluating bioelectrochemically-assisted constructed wetland (METland®) for treating wastewater: Analysis of materials, performance and electroactive communities
Su et al. Ameliorating substance accessibility for microorganisms to amplify toluene degradation and power generation of microbial fuel cell by using activated carbon anode
Cao et al. Performance of bioelectrode based on different carbon materials in bioelectrochemical anaerobic digestion for methanation of maize straw
Flores et al. Biodegradation of carbamazepine and production of bioenergy using a microbial fuel cell with bioelectrodes fabricated from devil fish bone chars
Su et al. A study of a pilot-scale biogas bio-filter system for utilization on pig farms
Lin et al. Promoting biodegradation of toluene and benzene in groundwater using microbial fuel cells with cathodic modification
Liu et al. Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation
Veerakumar et al. Copper-palladium alloy nanoparticles immobilized over porous carbon for voltammetric determination of dimetridazole
Liu et al. Performance of a packed-bed anode bio-electrochemical reactor for power generation and for removal of gaseous acetone
De Velasco‐Maldonado et al. Cold oxygen plasma induces changes on the surface of carbon materials enhancing methanogenesis and N2O reduction in anaerobic sludge incubations
JP5430474B2 (en) Biological gas processing method and biological gas processing apparatus
Kumar et al. Evaluation of the algal-derived biochar as an anode modifier in microbial fuel cells
Saeed et al. A comparative landfill leachate treatment performance in normal and electrodes integrated hybrid constructed wetlands under unstable pollutant loadings
Lin et al. Performance of bioelectrochemical systems in treating exhaust gas with power generation: Effects of shock-load, shut-down episodes and microbial community
Cheng et al. Developing microbial communities containing a high abundance of exoelectrogenic microorganisms using activated carbon granules

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110729

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5430474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees