JP2011212566A - Control method of amount of sludge in water sprinkling type water treatment apparatus - Google Patents

Control method of amount of sludge in water sprinkling type water treatment apparatus Download PDF

Info

Publication number
JP2011212566A
JP2011212566A JP2010082224A JP2010082224A JP2011212566A JP 2011212566 A JP2011212566 A JP 2011212566A JP 2010082224 A JP2010082224 A JP 2010082224A JP 2010082224 A JP2010082224 A JP 2010082224A JP 2011212566 A JP2011212566 A JP 2011212566A
Authority
JP
Japan
Prior art keywords
sludge
amount
water
reaction tank
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010082224A
Other languages
Japanese (ja)
Other versions
JP5550965B2 (en
Inventor
Akihiro Nagano
晃弘 長野
Hideji Tanaka
秀治 田中
Kaoru Kato
薫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2010082224A priority Critical patent/JP5550965B2/en
Publication of JP2011212566A publication Critical patent/JP2011212566A/en
Application granted granted Critical
Publication of JP5550965B2 publication Critical patent/JP5550965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To preferably control an amount of sludge carried on the surface of a carrier in a reactor by a simple method, with respect to a water sprinkling type water treatment apparatus using DHS (Down-flow Hanging Sponge).SOLUTION: The water sprinkling type water treatment apparatus having a plurality of reactors standingly charged with the carrier is installed. The water to be treated is supplied to the respective reactors, thereby the water to be treated is subjected to aerobic treatment, and supply of the water to be treated to the reactors is stopped for a fixed period before the amount of the sludge carried on the surface of the carrier in the reactor increases by the aerobic treatment and reaches a saturated region 8, and the supply of the water to be treated to the reactors is restarted after the sludge carried on the surface of the carrier is reduced by self-decomposition by microorganisms, and the supply of the treating water to the reactors is stopped again for a fixed period before the amount of the sludge carried on the surface of the carrier in the reactor increases and reaches the saturated region 8. Such operations are carried out in a rotation system for the all reactors.

Description

本発明は、散水式水処理装置内の汚泥量制御方法に関する。特に、好気性微生物を表面に担持させた担体をスタックし、上方から被処理水を散水滴下させる無曝気好気性処理法における余剰汚泥の発生量制御方法に関する。   The present invention relates to a method for controlling the amount of sludge in a sprinkling water treatment apparatus. In particular, the present invention relates to a method for controlling the amount of excess sludge generated in a non-aerobic aerobic treatment method in which a carrier carrying aerobic microorganisms is stacked and water to be treated is sprinkled from above.

汚水を浄化処理するため、あるいは、産業排水、雑排水、または農業廃水などの排水(以降被処理水という。)を浄化処理するため、従来から、好気性反応槽内に、表面(担体の外表面及び/又は担体が多孔体の場合は、孔部の面内も含む)に好気性微生物を担持可能なプラスチック担体やスポンジ担体をスタック装填し、上方から被処理水を散水滴下させる高効率無曝気好気性処理法(DHS: Down-flow Hanging Sponge、以下、DHSという。)を用いた散水式水処理装置が知られている。(例えば、特許文献1、特許文献2を参照)。
ここで、DHSでは、反応槽内にスタックする担体は、例えば、プラスチックの網を籠状に形成したもの、プラスチックの網を筒状に形成したもの、発泡性ポリウレタンスポンジを筒状に形成し、スタックした際に下方のスポンジがつぶれないように、前述のプラスチックの網筒の内部に装填したもの、さらにはスポンジシートを吊り下げる懸架式のものなどがあり、そのどれもが担体表面に上方から滴下される被処理水が含む汚泥成分が絡みつくように、表面が凹凸処理されている。そして、反応槽内に、人為的に撒いたり被処理水により汚泥とともにもたらされたりする好気性微生物が、その担体表面に絡み付く汚泥成分に住み着き、汚泥成分をえさにしながら汚泥成分を分解するものである。
このDHS方式が優れているのは、担体に被処理水を上方から滴下するので、空気と単体表面の汚泥成分との接触機会が、浸漬形(汚泥を水に懸濁させた状態での処理)の好気性処理槽と比べ桁違いに多く、好気性微生物に必要な酸素が曝気装置なく充分に供給できることが挙げられる。又、特徴的な事柄として、担体の表面の好気性微生物がえさになる汚泥の供給とともに増殖し、担体表面に捕捉される汚泥としてその捕捉堆積量を増加させる事柄がある。この担体表面に捕捉され堆積する汚泥量について、懸架式の担体自体を反応槽外部に移動させ、多すぎる堆積汚泥を機械的にこそぎおとすメンテナンスすることを開示している装置に例えば特許文献3がある。
Conventionally, in order to purify sewage, or to purify wastewater such as industrial wastewater, miscellaneous wastewater, or agricultural wastewater (hereinafter referred to as treated water), the surface (outside the carrier) If the surface and / or the carrier is a porous body, the plastic carrier and sponge carrier capable of supporting aerobic microorganisms are loaded on the stack (including the surface of the pores), and the water to be treated is sprinkled and dropped from above. A watering type water treatment apparatus using an aerobic aerobic treatment method (DHS: Down-flow Hanging Sponge, hereinafter referred to as DHS) is known. (For example, see Patent Document 1 and Patent Document 2).
Here, in DHS, the carrier stacked in the reaction vessel is, for example, a plastic net formed in a bowl shape, a plastic net formed in a cylinder, or a foamed polyurethane sponge in a cylinder, In order to prevent the sponge below from collapsing when stacked, there are those loaded inside the plastic mesh tube mentioned above, and suspension types that suspend the sponge sheet, all of which are on the carrier surface from above. The surface is roughened so that the sludge component contained in the treated water to be dripped is entangled. And aerobic microorganisms that are artificially sprinkled in the reaction tank or brought along with the sludge by the treated water settle on the sludge component tangled on the surface of the carrier, and decompose the sludge component while gaining the sludge component. It is.
This DHS method is superior because the water to be treated is dripped onto the carrier from above, so the contact opportunity between air and sludge components on the surface of the single unit is immersed (treatment in a state where sludge is suspended in water) The oxygen required for aerobic microorganisms can be sufficiently supplied without an aeration device. In addition, as a characteristic matter, there is a matter of growing along with the supply of sludge that feeds aerobic microorganisms on the surface of the carrier, and increasing the amount of trapped sediment as sludge trapped on the surface of the carrier. With respect to the amount of sludge trapped and deposited on the surface of the carrier, for example, Patent Document 3 discloses an apparatus that displaces a suspended carrier itself to the outside of the reaction tank and mechanically scavenges too much accumulated sludge. There is.

散水式水処理装置の反応槽に下水等の有機物を含む被処理水(有機性排水)を流入すると、反応層内には水処理に伴って微生物を含む汚泥がスポンジ担体に捕捉堆積される一方、汚泥が微生物によって自己分解することで水処理が行われる。このとき、反応槽内の担体に保持される担体表面保持汚泥量の時間変化は、次式で表される。
担体表面保持汚泥量=汚泥増加量−汚泥自己分解量・・・(I)
また、この式は次式と同義である。
担体表面保持汚泥量=(汚泥捕捉量+微生物増殖量)−汚泥自己分解量・・・(II)
When water to be treated (organic wastewater) containing organic substances such as sewage flows into the reaction tank of the watering type water treatment device, sludge containing microorganisms is trapped and deposited on the sponge carrier during the water treatment in the reaction layer. Water treatment is carried out by sludge self-degradation by microorganisms. At this time, the change over time in the amount of sludge retained on the carrier surface held by the carrier in the reaction tank is expressed by the following equation.
Carrier surface retained sludge amount = Sludge increase amount-Sludge self-decomposition amount (I)
This formula is synonymous with the following formula.
Carrier surface retained sludge amount = (sludge trapping amount + microbial growth amount)-sludge self-decomposition amount (II)

汚泥増加量と汚泥自己分解量は、反応槽に流入する被処理水中における微生物の餌となる有機物質(F)と反応槽内微生物量(M)との比であるF/M比で示すと、次式の関係にある。
F/M比が大きいとき(増加量>自己分解量)→担体表面保持汚泥量の増加
F/M比が小さいとき(増加量<自己分解量)→担体表面保持汚泥量の減少
The amount of sludge increase and the amount of self-degradation of sludge are expressed by the F / M ratio, which is the ratio of the organic substance (F) serving as a microorganism feed in the treated water flowing into the reaction tank and the amount of microorganisms (M) in the reaction tank. The relationship is as follows.
When F / M ratio is large (increase amount> self-decomposition amount) → Increase in the amount of retained sludge on the carrier surface When F / M ratio is small (increase amount <self-decomposition amount) → Decrease in the amount of sludge retained on the carrier surface

前記DHSを用いた散水式水処理装置において、反応槽内の微生物が増殖途上にある運転初期は流入する被処理水の有機物負荷に対して微生物量が小さい、即ちF/M比が大きい状態になるため担体表面保持汚泥量は経時的に増加していくが、微生物が馴養された運転定常期にはF/M比が十二分に小さくなるために、
汚泥増加量≒汚泥自己分解量
となり、故に、担体表面保持汚泥量の増加は装置運用上無視できる程度のものであると考えられてきた。そのため、従来においては、反応槽内の汚泥量を制御する手法は提案されることがなかった。
In the sprinkling water treatment apparatus using the DHS, at the initial stage of operation when microorganisms in the reaction tank are still growing, the amount of microorganisms is small relative to the organic matter load of the treated water that flows in, that is, the F / M ratio is large. Therefore, the amount of sludge retained on the surface of the carrier increases with time, but the F / M ratio becomes sufficiently smaller during the steady operation period when microorganisms are acclimatized.
Increase in sludge ≒ Sludge self-decomposition amount. Therefore, it has been considered that the increase in the amount of sludge retained on the carrier surface is negligible in the operation of the apparatus. Therefore, conventionally, a method for controlling the amount of sludge in the reaction tank has not been proposed.

特開2007−307530号公報JP 2007-307530 A 特許第3967896号Japanese Patent No. 3967896 特開2005−199182号公報JP 2005-199182 A

上述したように、DHSを用いた散水式水処理装置で処理が良好に行われている定常状態では、反応槽内での汚泥増加量と汚泥自己分解量は大略バランスしており、よって、反応槽内の担体表面保持汚泥量はほとんど増減することがなく安定しているものと考えられている。   As described above, in the steady state where the treatment is performed satisfactorily with the watering type water treatment apparatus using DHS, the amount of sludge increase and the amount of sludge self-decomposition in the reaction tank are roughly balanced, and thus the reaction The amount of sludge retained on the surface of the carrier in the tank is considered to be stable with little increase or decrease.

しかしながら、前記散水式水処理装置においては、反応槽内のF/M比が変化したり、或いは、担体表面保持汚泥内の微生物の増殖特性や自己分解特性が変化することが希にあり、このために、担体表面保持汚泥量は前記安定状態から増加に転じる可能性を常に抱えている。   However, in the sprinkling water treatment apparatus, the F / M ratio in the reaction tank may change, or the growth characteristics and self-decomposition characteristics of microorganisms in the carrier surface holding sludge may rarely change. Therefore, there is always a possibility that the amount of sludge retained on the carrier surface will increase from the stable state.

従って、担体表面保持汚泥量が安定状態から増加へ転じる事態が発生した場合には、反応槽内の汚泥層が肥厚して担体が目詰まりを起こす問題が生じ、更には、肥厚した汚泥層が担体から剥離して脱落し、処理水に混入するといった問題が起こり得る。このように、担体から剥離した汚泥が処理水に混入した場合には、処理水質の不安定性に直結する問題を引き起こすことになるため、このような問題が生じないように予め防止策を講じる必要があるが、これまでは、このような問題を未然に回避するための好適な手段は存在しなかった。   Therefore, when a situation occurs in which the amount of sludge retained on the surface of the carrier changes from a stable state to an increase, the sludge layer in the reaction tank thickens and the carrier becomes clogged. There may be a problem that it peels off from the carrier and falls off and enters the treated water. In this way, when the sludge peeled off from the carrier is mixed into the treated water, it will cause a problem directly related to the instability of the treated water, so it is necessary to take preventive measures in advance to prevent such a problem from occurring. However, until now, there has been no suitable means for avoiding such problems.

上記したような問題に対処するために、汚泥を水に懸濁させた状態で水処理を行う活性汚泥法等の既存技術においては、過剰発生分の汚泥を反応槽から引抜いて取り出すことで、反応槽内汚泥量を制御することが行われている。   In order to deal with the problems as described above, in the existing technology such as the activated sludge method that performs water treatment in a state where the sludge is suspended in water, by extracting and removing excess sludge from the reaction tank, Controlling the amount of sludge in the reaction tank is performed.

しかし、前記散水式水処理装置の場合においては、反応槽内の汚泥の一部だけを引き抜くことは容易ではない。なぜなら、汚泥を水に懸濁させた状態で水処理を行う浸漬式の既存技術では、懸濁している汚泥を、大きな容積を有する沈降部や堰で固液分離する仕組みを元来必須で備えており、処理水とは異なる引抜管で濃縮した汚泥を引き抜けるが、前記散水式水処理装置(DHS)では、担体に付着した汚泥をベッドとした好気性微生物に被処理水を滴下させることを、その処理反応の基礎としており、汚泥は、反応槽内に広く装填される担体に付着することが前提で、付着汚泥が肥厚して微生物と被処理水との接触機会が減じても、付着汚泥は、期待する付着に逆らって、機械的にこそぎ落とすなどしないと、減らすことができないからである。しかし、担体から機械的に余剰の汚泥をこそぎ落としたところで、その後運転を復帰した際に、担体への付着が機械的処理により弱くなった汚泥が流れ出すことが生じてしまい、せっかく懸濁汚泥の固液分離部の必要ない特徴が生かせなくなる。
そのため、従来の散水式水処理装置においては、効果的な汚泥量制御方法は事実上存在しなかった。
However, in the case of the watering type water treatment apparatus, it is not easy to draw out only a part of the sludge in the reaction tank. This is because the existing immersion-type technology that performs water treatment in a state where sludge is suspended in water is essentially equipped with a mechanism for solid-liquid separation of suspended sludge using a sedimentation section or weir with a large volume. However, in the water sprinkling water treatment device (DHS), the water to be treated is dropped onto aerobic microorganisms using the sludge adhering to the carrier as a bed. As a basis for the treatment reaction, sludge adheres to the carrier widely loaded in the reaction tank, and even if the attached sludge thickens and the chance of contact between the microorganisms and the water to be treated decreases, This is because sludge cannot be reduced unless it is mechanically scraped off against the expected adhesion. However, when surplus sludge is mechanically scraped off from the carrier, when the operation is resumed after that, sludge whose adhesion to the carrier has become weak due to mechanical treatment will flow out, and the suspended sludge Unnecessary features of the solid-liquid separation part are not available.
Therefore, in the conventional watering type water treatment apparatus, there is virtually no effective sludge amount control method.

本発明は、上記課題に鑑みてなしたもので、DHSを用いた散水式水処理装置において、反応槽内の担体表面保持汚泥量を、機械的なこそぎ落としなどの処理を用いず、簡略な手法によって好適に制御できるようにした散水式水処理装置内の汚泥量制御方法を提供しようとするものである。   The present invention has been made in view of the above problems, and in a sprinkling water treatment apparatus using DHS, the amount of retained sludge on the carrier surface in the reaction tank is simplified without using a process such as mechanical scraping. It is an object of the present invention to provide a method for controlling the amount of sludge in a sprinkling water treatment apparatus that can be suitably controlled by various techniques.

本発明は、表面に好気性微生物と汚泥が付着固定される担体が静置装填された複数の反応槽を有する散水式水処理装置を設け、前記各反応槽に被処理水を供給することにより被処理水の好気性水処理を行い、反応槽内の担体表面保持汚泥量が前記好気性水処理により増加して飽和域に達する前に反応槽への被処理水の供給を一定期間停止し、前記担体表面保持汚泥が好気性微生物により自己分解されて減量した後に、再び反応槽に対する被処理水の供給を再開し、反応槽内の担体表面保持汚泥量が前記好気性水処理により増加して飽和域に達する前に反応槽への被処理水の供給を一定期間停止するという操作を繰り返し、この操作を全ての反応槽に対してローテーション式に行うことを特徴とする散水式水処理装置内の汚泥量制御方法、に係るものである。   The present invention provides a sprinkling water treatment apparatus having a plurality of reaction tanks that are statically loaded with a carrier to which aerobic microorganisms and sludge adhere and are fixed on the surface, and supplies treated water to each of the reaction tanks. Perform aerobic water treatment of the treated water, and stop supplying the treated water to the reaction tank for a certain period of time before the carrier surface retained sludge amount in the reaction tank increases due to the aerobic water treatment and reaches the saturation region. Then, after the carrier surface retained sludge is self-degraded by aerobic microorganisms and reduced in volume, the supply of treated water to the reaction vessel is resumed, and the amount of carrier surface retained sludge in the reaction vessel is increased by the aerobic water treatment. A watering-type water treatment device that repeats the operation of stopping the supply of treated water to the reaction tank for a certain period of time before reaching the saturation region, and performs this operation in a rotating manner for all reaction tanks In the sludge amount control method It is intended.

上記散水式水処理装置内の汚泥量制御方法において、前記反応槽内の前記担体表面保持汚泥量が前記好気性水処理により増加して飽和域に達する前に反応槽への被処理水の供給を停止する前記一定期間の算出方法を、
dX/dt = Xr+α×Sr−a×X
(各記号は、以下のとおり。X:反応槽内保持汚泥量、t:時間、Xr:汚泥捕捉量、Sr:溶解性有機物分解量、X:反応槽内微生物量(Xの画分)、α:溶解性有機物分解に伴うXの増殖率(=汚泥転換率)、a:Xの自己分解率(=内生呼吸速度))
の式に、
Xr:汚泥捕捉量=0、Sr:溶解性有機物分解量=0として代入演算して得た、X:反応槽内保持汚泥量と、経過時間tとの関係から導くことを特徴とするものである。
In the method of controlling the amount of sludge in the watering type water treatment apparatus, supply of water to be treated to the reaction tank before the carrier surface retained sludge amount in the reaction tank is increased by the aerobic water treatment and reaches a saturation region. A method for calculating the certain period of time
dX / dt = Xr + α × Sr−a × X B
(Each symbol is as follows. X: Amount of sludge retained in reaction tank, t: Time, Xr: Amount of sludge trapped, Sr: Amount of dissolved organic matter decomposed, X B : Amount of microorganisms in reaction tank (fraction of X) , alpha: growth rate of X associated with soluble organic decomposition (= sludge conversion ratio), a: autolysis rate of X B (= endogenous respiration rate))
In the formula
Xr: Sludge trapping amount = 0, Sr: Soluble organic matter decomposition amount = 0, obtained by substitution calculation, X: Derived from the relationship between the amount of sludge retained in the reaction tank and the elapsed time t. is there.

上記散水式水処理装置内の汚泥量制御方法において、反応槽に対する被処理水の供給を一定期間停止した後に再び被処理水の供給を再開する際には、被処理水の供給再開に伴って当該反応槽から導出される処理水を所定期間だけ各反応槽の入口に戻すことは好ましい。   In the sludge amount control method in the sprinkling water treatment apparatus, when the supply of the water to be treated is resumed after the supply of the water to be treated to the reaction tank is stopped for a certain period, the supply of the water to be treated is resumed. It is preferable to return the treated water led out from the reaction tank to the inlet of each reaction tank for a predetermined period.

又、上記散水式水処理装置内の汚泥量制御方法において、各反応槽に空気供給手段を設け、被処理水の供給を停止する反応槽に空気供給手段により空気を供給し、担体表面保持汚泥が微生物により自己分解して減量する作用を促進させることは好ましい。   In the method of controlling the amount of sludge in the sprinkling water treatment apparatus, air supply means is provided in each reaction tank, air is supplied to the reaction tank that stops the supply of water to be treated by the air supply means, and the carrier surface holding sludge is obtained. It is preferable to promote the action of self-degrading by microorganisms and reducing the weight.

又、上記散水式水処理装置内の汚泥量制御方法において、各反応槽に加熱手段を設け、被処理水の供給を停止する反応槽を加熱手段により加熱し、担体表面保持汚泥が微生物により自己分解して減量する作用を促進させることは好ましい。   In the method of controlling the amount of sludge in the sprinkling water treatment apparatus, each reaction tank is provided with heating means, the reaction tank for stopping the supply of water to be treated is heated by the heating means, and the carrier surface retained sludge is self-generated by microorganisms. It is preferable to promote the action of decomposing and reducing the weight.

本発明の水処理装置内の汚泥量制御方法によれば、反応槽に被処理水を供給して好気性水処理することにより反応槽内の担体表面保持汚泥量が増加して飽和域に達する前に、当該反応槽への被処理水の供給を一定期間停止し、担体表面保持汚泥が微生物により自己分解して減量された後に、再び被処理水の供給を再開し、反応槽内の担体表面保持汚泥量が増加して飽和域に達する前に再び反応槽への被処理水の供給を一定期間停止するという操作を繰り返すようにしたので、反応槽内の担体表面保持汚泥量を常に飽和域直前の微生物の活性が盛んな領域に保持することができ、よって、従来問題となっていた、汚泥層が肥厚して担体が目詰まりを生じたり、或いは、肥厚した汚泥層が担体から剥離して脱落し、処理水に混入するといった問題の発生を未然に回避できるという優れた効果を奏し得る。   According to the method of controlling the amount of sludge in the water treatment apparatus of the present invention, the amount of sludge retained on the surface of the carrier in the reaction tank increases and reaches the saturation region by supplying the water to be treated to the reaction tank and treating with aerobic water. Before the treatment water supply to the reaction tank is stopped for a certain period, the support surface retained sludge is self-decomposed by microorganisms and reduced, and then the supply of treatment water is resumed. The operation of stopping the supply of treated water to the reaction tank again for a certain period of time before the surface retention sludge volume increases and reaches the saturation region is repeated, so the carrier surface sludge volume in the reaction tank is always saturated. Therefore, the sludge layer thickens and the carrier clogs, or the thickened sludge layer peels off from the carrier. Problem of falling off and mixing into treated water It can be an excellent effect of being able to avoid the occurrence in advance.

又、一定期間の被処理水の供給停止と供給再開を行う操作を、複数の反応槽に対してローテーション式に適用することで、散水式水処理装置の運転を停止することなく、好気性水処理を継続しながら汚泥量制御を行える効果がある。   In addition, the operation of stopping and restarting the supply of treated water for a certain period is applied to a plurality of reaction tanks in a rotating manner, so that the aerobic water is not stopped without stopping the operation of the watering treatment system. There is an effect that the amount of sludge can be controlled while continuing the treatment.

又、各反応槽に対する被処理水の供給停止と供給再開を行う操作は、給水バルブの開閉だけで済むため、極めて簡易な操作で行える効果がある。   In addition, the operation of stopping and restarting the supply of the water to be treated to each reaction tank only needs to be performed by opening and closing the water supply valve.

又、反応槽に対する被処理水の供給を一定期間停止した後に再び被処理水の供給を再開する際には、被処理水の供給再開に伴って当該反応槽から導出される処理水を所定期間だけ各反応槽の入口に戻すようにしたので、被処理水の供給を停止した後再び供給を再開する反応槽から汚れた処理水が流出する問題を未然に防止できる効果がある。   In addition, when the supply of the water to be treated is resumed after the supply of the water to be treated to the reaction tank is stopped for a certain period, the treated water led out from the reaction tank along with the resumption of the supply of the water to be treated is supplied for a predetermined period. Therefore, it is possible to prevent the problem that dirty treated water flows out from the reaction tank that resumes the supply after the supply of the water to be treated is stopped.

又、各反応槽に空気供給手段、或いは加熱手段を設けて、被処理水の供給を一定期間停止する反応槽に空気を供給する、或いは当該反応槽を加熱する、又は空気の供給と加熱を同時に行うことで、担体表面保持汚泥が微生物により自己分解して減量する作用を促進させることができ、よって、反応槽の運転停止期間を短縮できる効果がある。   Also, air supply means or heating means is provided in each reaction tank, and air is supplied to the reaction tank that stops the supply of water to be treated for a certain period of time, or the reaction tank is heated, or air supply and heating are performed. By carrying out at the same time, it is possible to promote the action of the carrier surface-retained sludge to be self-degraded by microorganisms and to reduce the amount, and therefore, there is an effect that the operation stop period of the reaction tank can be shortened.

テストプラントを用いて担体表面保持汚泥量の挙動を調査した結果を示すグラフである。It is a graph which shows the result of having investigated the behavior of the carrier surface retention sludge amount using a test plant. 反応槽に対する被処理水の供給を停止したときの担体表面保持汚泥量の挙動を示すグラフである。It is a graph which shows the behavior of the support surface sludge amount when supply of the to-be-processed water with respect to a reaction tank is stopped. 本発明を実施する散水式水処理装置の一例を示す正面図である。It is a front view which shows an example of the watering type water treatment apparatus which implements this invention. 本発明の汚泥量制御方法の一例を示すグラフである。It is a graph which shows an example of the sludge amount control method of this invention. 担体表面保持汚泥量の減量速度を大きくする考えを示すグラフである。It is a graph which shows the idea which enlarges the reduction | decrease rate of the amount of carrier surface holding sludge. 汚泥減量期間短縮のための装置構成を示した図3の側面図である。It is the side view of FIG. 3 which showed the apparatus structure for sludge reduction period shortening. 一般的なDHSを用いた散水式水処理装置の一例を示す正面図である。It is a front view which shows an example of the watering type water treatment apparatus using general DHS.

以下、本発明の実施の形態を図示例と共に説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の形態を説明するのに先立ち、先ず散水式水処理装置の反応槽における担体表面保持汚泥量の挙動について説明する。   Prior to describing the embodiment of the present invention, the behavior of the amount of sludge retained on the carrier surface in the reaction tank of the sprinkling water treatment apparatus will be described first.

図7は一般的なDHSを用いた散水式水処理装置1の一例を示すもので、図中2は、内部にスポンジ担体3(以下、担体と言う。)が静置装填された1つの反応槽であり、該反応槽2の上部には給水ポンプ4によって供給される被処理水5が散水されており、上部から散水された被処理水5は前記担体3に保持される汚泥の微生物により好気性水処理され、清浄な処理水6となって反応槽2の下部から導出されるようになっている。   FIG. 7 shows an example of a sprinkling water treatment apparatus 1 using a general DHS. In FIG. 7, reference numeral 2 denotes one reaction in which a sponge carrier 3 (hereinafter referred to as a carrier) is statically loaded. Water to be treated 5 supplied by a water supply pump 4 is sprinkled on the upper part of the reaction tank 2, and the water 5 to be treated sprinkled from above is formed by sludge microorganisms held on the carrier 3. The aerobic water treatment is performed, so that clean treated water 6 is derived from the lower part of the reaction tank 2.

図7に示した散水式水処理装置1の反応槽2における担体表面保持汚泥量の時間変化は、前述した式(I)、(II)に基づくと、次式で表わすことができる。
dX/dt=(Xinf−Xeff)+α・(Sinf−Seff)−a・XB
又、この式は次式(1)と同義である。
dX/dt=Xr+α・Sr−a・XB ・・・(1)
上記2式における夫々の記号は以下の意味を示す。
X:反応槽内担体表面保持汚泥量
t:時間
inf:流入水中汚泥量
eff:流出水中汚泥量
Xr:汚泥捕捉量
inf:流入水中溶解性有機物量
eff:流出水中溶解性有機物量
Sr:溶解性有機物分解量
B:反応槽内微生物量(XTの画分)
α:汚泥転換率(溶解性有機物分解に伴うXの増殖率)
a:内生呼吸速度(XBの自己分解率)
The time change of the carrier surface retained sludge amount in the reaction tank 2 of the sprinkling water treatment apparatus 1 shown in FIG. 7 can be expressed by the following formula based on the formulas (I) and (II) described above.
dX / dt = (X inf −X eff ) + α · (S inf −S eff ) −a · X B
Moreover, this formula is synonymous with the following formula (1).
dX / dt = Xr + α · Sr−a · X B (1)
Each symbol in the above two formulas has the following meaning.
X: amount of sludge retained on the surface of the carrier in the reaction tank t: time X inf : amount of sludge in the inflow water X eff : amount of sludge in the outflow water Xr: amount of sludge trapped S inf : amount of soluble organic matter in the inflow water S eff : amount of soluble organic matter in the effluent water sr: soluble organic substances decomposed amount X B: (the fraction of X T) reactor microbial load
α: Sludge conversion rate (X growth rate associated with dissolved organic matter decomposition)
a: endogenous respiration rate (self-decomposition rate of the X B)

前記式(1)においてXBはXの画分であるので、XにおけるXBの割合をbとすると、この式は
dX/dt=Xr+α・Sr−a・b・X ・・・(2)
と書き換えることができる。
式(2)を変形すると
dX/dt=a・b{(Xr+α・Sr)/(a・b)−X}
←→{(a・b)/(Xr+α・Sr−a・b・X)}dX=a・bdt
であり、X:0→X,t:0→tにおいて解くと、
X={1−exp(−a・b・t)}・(Xr+α・Sr)/(a・b) ・・・(3)
が得られる。
In the above formula (1), X B is a fraction of X. Therefore, when the ratio of X B in X is b, this formula is expressed as dX / dt = Xr + α · Sr−a · b · X ... (2)
Can be rewritten.
When formula (2) is transformed, dX / dt = a · b {(Xr + α · Sr) / (a · b) −X}
← → {(a · b) / (Xr + α · Sr−a · b · X)} dX = a · bdt
And solving for X: 0 → X, t: 0 → t,
X = {1−exp (−a · b · t)} · (Xr + α · Sr) / (a · b) (3)
Is obtained.

また、図7の散水式水処理装置1のテストプラントを用いて水処理試験を実施した場合の前記式(3)の各パラメータは下記表1の如くであった。尚、表1は被処理水が有機性排水の最も一般的な例である生活排水(下水)である場合を示している。

Figure 2011212566
Moreover, each parameter of said Formula (3) at the time of implementing a water treatment test using the test plant of the watering type water treatment apparatus 1 of FIG. Table 1 shows the case where the water to be treated is domestic wastewater (sewage), which is the most common example of organic wastewater.
Figure 2011212566

前記表1及び式(3)を用いて担体表面保持汚泥量の時間変化を模擬し、その結果を図1に示した。図1の横軸は運転期間(日)を表わし、縦軸は担体表面保持汚泥量X(kg-SS/m3担体)を表わす。 Using Table 1 and Formula (3), the time change of the carrier surface retained sludge amount was simulated, and the results are shown in FIG. The horizontal axis in FIG. 1 represents the operation period (days), and the vertical axis represents the carrier surface retained sludge amount X (kg-SS / m 3 carrier).

表1に示すように、汚泥転換率α、内生呼吸速度a、担体表面保持汚泥中微生物割合bは所要の範囲を有していることから、担体表面保持汚泥量Xは図1に示す上限範囲曲線7aと下限範囲曲線7bとの間で挙動する理屈となる。しかしながら、装置が良好に運転されている場合においては、反応槽2内の汚泥変換率α、内生呼吸速度a、担体表面保持汚泥中微生物割合bが夫々の平均値に近い値から大きく変化することはないため、担体表面保持汚泥量が上限範囲曲線7a或いは下限範囲曲線7bに近付くようなことはなく、通常の場合の担体表面保持汚泥量は、平均挙動曲線7に沿って変化することがテストプラントにおいて確認されている。   As shown in Table 1, since the sludge conversion rate α, the endogenous respiration rate a, and the microorganism ratio b in the carrier surface retained sludge have the required ranges, the carrier surface retained sludge amount X is the upper limit shown in FIG. It is a theory that behaves between the range curve 7a and the lower limit range curve 7b. However, when the apparatus is operating satisfactorily, the sludge conversion rate α, the endogenous respiration rate a, and the microorganism ratio b in the carrier surface holding sludge in the reaction tank 2 vary greatly from values close to their average values. Therefore, the carrier surface retained sludge amount does not approach the upper limit range curve 7a or the lower limit range curve 7b, and the carrier surface retained sludge amount in a normal case may change along the average behavior curve 7. Confirmed at test plant.

上記平均挙動曲線7で示すように、散水式水処理装置における担体のm3当たりの担体表面保持汚泥量は、起動初期には急速に増加し、その後は経時的に増加して一定の値に近付く(担体表面保持汚泥量の増加が0に近付く)ように挙動する。 As shown by the above average behavior curve 7, the amount of sludge on the surface of the carrier per m 3 of the carrier in the sprinkling water treatment apparatus increases rapidly at the beginning of startup and then increases over time to a constant value. It behaves like approaching (increase in the amount of sludge retained on the carrier surface approaches 0).

一方、散水式水処理装置1の反応槽2には、物理的に汚泥が飽和状態で保持される範囲を示す飽和域8が存在している。図7の反応槽2の場合における飽和域8は、図1に示すように経験的に25〜35kg−SS/m3担体であり、この飽和域8は固定値であって変わることはない。図1中、8aは飽和域8の下限値、8bは飽和域8の上限値である。 On the other hand, the reaction tank 2 of the sprinkling water treatment apparatus 1 has a saturation region 8 indicating a range in which sludge is physically held in a saturated state. The saturation region 8 in the case of the reaction tank 2 in FIG. 7 is empirically 25 to 35 kg-SS / m 3 carrier as shown in FIG. 1, and this saturation region 8 is a fixed value and does not change. In FIG. 1, 8 a is a lower limit value of the saturation region 8, and 8 b is an upper limit value of the saturation region 8.

生物学的水処理装置では装置の処理能力は処理を担う生物の量に比例する。散水式水処理装置においては、担体が保持する微生物を含んだ汚泥量が多いほど装置の処理能力を確保でき、上記飽和域8は散水式水処理装置1における最大の担体表面保持汚泥量を示す。しかしながら、担体表面保持汚泥量が上限値8bを超えて増加するような場合には、汚泥層の肥厚により担体の目詰まりが生じたり、汚泥層が担体から剥離して脱落し、処理水質の悪化を引き起こしたりする虞れがある。図1においては、担体表面保持汚泥量の増加が最も大きく見積もられる上限範囲曲線7aの場合では80日程度で平均挙動曲線7の場合では同日程度で略上限値8bに達するようになる。又、担体表面保持汚泥量の増加が最も小さく見積もられる下限範囲曲線7bの場合には、700日を超えても飽和域8に達することはない。   In biological water treatment equipment, the capacity of the equipment is proportional to the amount of organisms responsible for the treatment. In the sprinkling water treatment apparatus, the larger the amount of sludge containing microorganisms held by the carrier, the more the processing capacity of the apparatus can be secured, and the saturated region 8 indicates the maximum amount of sludge retained on the carrier surface in the watering water treatment apparatus 1. . However, when the amount of retained sludge on the carrier surface exceeds the upper limit 8b, the carrier is clogged due to thickening of the sludge layer, or the sludge layer is detached from the carrier and dropped off, resulting in deterioration of the quality of treated water. There is a possibility of causing. In FIG. 1, in the case of the upper limit range curve 7a in which the increase in the amount of retained sludge on the carrier surface is estimated to be the largest, the upper limit value 8b is reached in about 80 days and in the case of the average behavior curve 7 about the same day. Further, in the case of the lower limit range curve 7b in which the increase in the amount of retained sludge on the carrier surface is estimated to be the smallest, the saturation region 8 is not reached even after 700 days.

上記において問題になるのは、担体表面保持汚泥量が飽和域8の上限値8bを超えて増加する場合であり、図1のように平均挙動曲線7が飽和域8の範囲内にある運転状態においても、反応槽2内のF/M比が変化したり、或いは、微生物の増殖特性や自己分解特性が変化することが希にあるため、このような事態が発生した場合には、担体表面保持汚泥量が飽和域8の上限値8bを超えて増加してしまうので、このような問題を防止できる手段を確立する必要がある。   The problem in the above is the case where the amount of sludge retained on the carrier surface exceeds the upper limit 8b of the saturation region 8, and the operating state in which the average behavior curve 7 is within the range of the saturation region 8 as shown in FIG. In this case, the F / M ratio in the reaction tank 2 may change, or the growth characteristics and self-decomposition characteristics of microorganisms may rarely change. Since the amount of retained sludge increases beyond the upper limit 8b of the saturation region 8, it is necessary to establish means that can prevent such a problem.

図1において、担体表面保持汚泥量XTが増加する速度は、式(1)、(2)における汚泥増加要因(=Xr+α・Sr)と汚泥減少要因(=a・XB=a・b・X)のバランスで決まる。 In Figure 1, the rate at which the support surface holding sludge quantity X T increases, the formula (1), (2) Sludge increasing factor in (= Xr + α · Sr) and sludge reduction factor (= a · X B = a · b · X) is determined by the balance.

前記散水式水処理装置1において、水処水質を高度かつより安定した状態で維持し続けるには、飽和域下限値8a付近で担体表面保持汚泥量を維持すべきである。これにより、装置の処理能力を最大付近に保ちつつ、微生物の増殖特性や自己分解特性或いはF/M比の突発的な変動により担体表面保持汚泥量が飽和上限値8bを容易に超えてしまうのを回避し易くなると考えられる。このためには、平均汚泥挙動曲線7のように時間変化する担体表面保持汚泥量が飽和域下限値8aに達する直前に、式(1)のおいてdX/dt≦0とすることが求められる。dX/dt≦0を得るには、前記汚泥増加要因(=Xr+α・Sr)を0とすること、即ち、反応槽2に対する被処理水5の供給を停止することが最も確実である。   In the sprinkling water treatment apparatus 1, in order to keep the water treatment quality in a high and more stable state, the carrier surface retained sludge amount should be maintained near the saturation region lower limit value 8a. As a result, the amount of sludge retained on the carrier surface easily exceeds the saturation upper limit value 8b due to sudden fluctuations in the growth characteristics, self-degradation characteristics, or F / M ratio of the microorganisms, while maintaining the processing capacity of the apparatus near the maximum. This is considered to be easier to avoid. For this purpose, it is required that dX / dt ≦ 0 in the equation (1) immediately before the carrier surface retained sludge amount that changes with time as shown in the average sludge behavior curve 7 reaches the saturation range lower limit value 8a. . In order to obtain dX / dt ≦ 0, it is most certain to set the sludge increase factor (= Xr + α · Sr) to 0, that is, to stop the supply of the treated water 5 to the reaction tank 2.

反応槽2に対する被処理水5の供給を停止する、即ち、表1におけるXr=0、Sr=0とするとき、式(2)より
dX/dt=−a・b・X
1/XdX=−a・bdt
であり、これをX:X'→X、t:0→tにおいて積分すると
X=X'・exp(−a・b・t) ・・・(4)
と表わせる。
表1及び式(4)を用いて模擬した担体表面保持汚泥量の挙動を図2に示す。
When the supply of the water 5 to be treated to the reaction tank 2 is stopped, that is, when Xr = 0 and Sr = 0 in Table 1, dX / dt = −a · b · X from equation (2)
1 / XdX = -a.bdt
When this is integrated in X: X ′ → X, t: 0 → t, X = X ′ · exp (−a · b · t) (4)
It can be expressed as
FIG. 2 shows the behavior of the carrier surface retained sludge amount simulated using Table 1 and Equation (4).

図2に示すように、被処理水5の供給を停止した場合には、担体表面保持汚泥量は上限範囲曲線9aと下限範囲曲線9bの間で減少するように時間変化する。被処理水5の供給の停止は、反応槽2内の微生物の餌となる有機物質(F)の供給の停止と同義であり、F/M比は最小となって反応槽2内の汚泥自己分解による担体表面保持汚泥量の減量が進む。通常の場合の担体表面保持汚泥量は、汚泥転換率α、内生呼吸速度a、汚泥中微生物割合bの夫々の平均値に近い値を示す中間の平均挙動曲線9に沿って減少する。図2では、被処理水5の供給停止直前の汚泥量を100%とした場合、被処理水5の供給停止15日経過後には担体表面保持汚泥量が80%となり、担体表面保持汚泥量が20%減量されたことを示している。   As shown in FIG. 2, when supply of the to-be-processed water 5 is stopped, the carrier surface retained sludge amount changes with time so as to decrease between the upper limit range curve 9a and the lower limit range curve 9b. Stopping the supply of the water 5 to be treated is synonymous with stopping the supply of the organic substance (F) serving as a feed for microorganisms in the reaction tank 2, and the sludge self in the reaction tank 2 is minimized and the F / M ratio is minimized. Decrease in the amount of sludge retained on the carrier surface due to decomposition. The amount of sludge retained on the carrier surface in a normal case decreases along an intermediate average behavior curve 9 showing values close to the average values of the sludge conversion rate α, the endogenous respiration rate a, and the microorganism ratio b in the sludge. In FIG. 2, when the amount of sludge immediately before the supply of treated water 5 is stopped is 100%, the amount of retained sludge on the carrier surface becomes 80% after 15 days after the supply of treated water 5 is stopped, and the amount of retained sludge on the surface of the carrier is reduced. It shows that it was reduced by 20%.

上記の考えに基づいた本発明の方法の形態を以下に説明する。   The mode of the method of the present invention based on the above idea will be described below.

図3は本発明を実施する散水式水処理装置の一例を示すもので、散水式水処理装置100は担体(図7参照)が静置装填された複数の反応槽101を備えている。図3では5個の反応槽101を備えた場合を示しているが、反応槽101は複数備えていればよくその数には限定されない。この反応槽101は、図3に示すように、反応装置本体102の内部を区画壁103によって複数に区画したものであってもよく、或いは単独に構成された複数の反応槽を備えるようにしてもよい。   FIG. 3 shows an example of a watering type water treatment apparatus for carrying out the present invention. The watering type water treatment apparatus 100 includes a plurality of reaction vessels 101 in which carriers (see FIG. 7) are statically loaded. Although FIG. 3 shows a case where five reaction vessels 101 are provided, the number of reaction vessels 101 is not limited to that as long as a plurality of reaction vessels 101 are provided. As shown in FIG. 3, the reaction vessel 101 may be one in which the inside of the reaction apparatus main body 102 is divided into a plurality of sections by a partition wall 103, or includes a plurality of reaction vessels configured independently. Also good.

一方、給水ポンプ4からの被処理水5は分配タンク104に供給されており、分配タンク104に供給された被処理水5は、夫々に給水バルブVA1〜VA5を備えた給水管105によって前記各反応槽101に供給されるようになっている。又、各反応槽101で処理された処理水6は、夫々に処理水バルブVB1〜VB5を備えた処理水取出管106によって外部に取り出されるようになっている。   On the other hand, the water to be treated 5 from the water supply pump 4 is supplied to the distribution tank 104, and the water to be treated 5 supplied to the distribution tank 104 is supplied by the water supply pipes 105 provided with water supply valves VA1 to VA5, respectively. The reaction vessel 101 is supplied. The treated water 6 treated in each reaction tank 101 is taken out to the outside by treated water take-out pipes 106 each having treated water valves VB1 to VB5.

又、各処理水取出管106における各反応槽101と各処理水バルブVB1〜VB5との間には、夫々に循環水バルブVC1〜VC5を備えた循環水管107の一端が接続されており、循環水管107の他端は1本の配管に集合して処理水循環ポンプ108に接続されており、前記循環水バルブVC1〜VC5を開閉することにより、任意の反応槽101の処理水を取出して循環水109として前記分配タンク104に再循環し得るようにしている。   In addition, one end of a circulating water pipe 107 provided with circulating water valves VC1 to VC5 is connected between each reaction tank 101 and each of the treated water valves VB1 to VB5 in each treated water take-out pipe 106. The other end of the water pipe 107 is gathered into one pipe and connected to the treated water circulation pump 108. By opening and closing the circulating water valves VC1 to VC5, the treated water in any reaction tank 101 is taken out and the circulating water is collected. 109 can be recirculated to the distribution tank 104.

前記図1に示すアイデアと図2に示すアイデアを組み合わせた本発明の汚泥量制御方法の一例を図4に示し、図3の散水式水処理装置100における汚泥制御モデルのパラメータを表2に示した。表2による担体表面保持汚泥量の挙動を示す図4の曲線は、図1の平均挙動曲線7をベースとした。

Figure 2011212566
An example of the sludge amount control method of the present invention combining the idea shown in FIG. 1 and the idea shown in FIG. 2 is shown in FIG. 4, and parameters of the sludge control model in the water spray type water treatment apparatus 100 of FIG. It was. The curve of FIG. 4 showing the behavior of the carrier surface retained sludge amount according to Table 2 was based on the average behavior curve 7 of FIG.
Figure 2011212566

図3の散水式水処理装置100の運転初期には、給水ポンプ4が駆動されて被処理水5が分配タンク104に供給され、この時、給水バルブVA1〜VA5は開、処理水バルブVB1〜VB5は開、循環水バルブVC1〜VC5は閉となっており、分配タンク104の被処理水5は各反応槽101に分配供給されて好気性水処理される。   In the initial operation of the water spray type water treatment apparatus 100 of FIG. 3, the feed water pump 4 is driven and the treated water 5 is supplied to the distribution tank 104. At this time, the feed water valves VA1 to VA5 are opened, and the treated water valves VB1 to VB1. VB5 is open and circulating water valves VC1 to VC5 are closed, and the treated water 5 in the distribution tank 104 is distributed and supplied to each reaction tank 101 for aerobic water treatment.

反応槽101に被処理水5を供給して好気性水処理を行うと、反応槽101内には汚泥が発生し、担体表面保持汚泥量は図4に示す平均挙動曲線7の如く経時的に増加するようになる。この時、反応槽101内の担体表面保持汚泥量が飽和域8の下限値8aに達する前に、当該反応槽101への被処理水5の供給を停止する制御を行う。図3の左端の反応槽101を例にとって説明すると、該左端の反応槽101の担体表面保持汚泥量が飽和域8の下限値8aに達する直前になった時、給水バルブVA1を閉じて、反応槽101に対する被処理水5の供給を停止する。この時、反応槽101の飽和域8は、前述したように決まっていて予め分かっているので、上記被処理水5の供給を停止する制御は容易に行うことができる。図4では、好気性水処理を開始してから120日で担体表面保持汚泥量が略飽和域8の下限値8aに近付くので、飽和域8の下限値8aの直前で被処理水5の供給を停止した場合を示している。   When the water 5 to be treated is supplied to the reaction tank 101 and aerobic water treatment is performed, sludge is generated in the reaction tank 101, and the amount of sludge retained on the surface of the carrier is changed over time as shown in the average behavior curve 7 shown in FIG. To increase. At this time, before the carrier surface retained sludge amount in the reaction tank 101 reaches the lower limit value 8a of the saturation region 8, the supply of the treated water 5 to the reaction tank 101 is stopped. The reaction tank 101 at the left end in FIG. 3 will be described as an example. When the amount of sludge retained on the carrier surface in the reaction tank 101 at the left end is just before reaching the lower limit value 8a of the saturation region 8, the water supply valve VA1 is closed and the reaction is performed. Supply of the to-be-processed water 5 with respect to the tank 101 is stopped. At this time, since the saturation region 8 of the reaction tank 101 is determined as described above and is known in advance, the control for stopping the supply of the water 5 to be treated can be easily performed. In FIG. 4, since the carrier surface retained sludge amount approaches the lower limit value 8a of the saturated region 8 in 120 days after the start of the aerobic water treatment, the supply of the treated water 5 immediately before the lower limit value 8a of the saturated region 8 Shows the case of stopping.

被処理水5の供給が停止された反応槽101には、微生物の餌となる有機物の供給が停止するので、反応槽101内に保持された汚泥は微生物によって積極的に自己分解され、従って、反応槽101内の担体表面保持汚泥量は、図2に示す平均挙動曲線9に沿って減量するようになる。図4に示す破線は上記被処理水5の供給停止を行わなかった場合における平均挙動曲線7の仮想曲線である。   Since the supply of the organic matter serving as microorganism feed is stopped in the reaction tank 101 in which the supply of the water to be treated 5 is stopped, the sludge retained in the reaction tank 101 is actively self-decomposed by the microorganisms. The amount of sludge retained on the carrier surface in the reaction tank 101 decreases along the average behavior curve 9 shown in FIG. The broken line shown in FIG. 4 is a virtual curve of the average behavior curve 7 when the supply of the treated water 5 is not stopped.

被処理水5の供給停止によって担体表面保持汚泥量が所定量だけ減量された後には、再び前記給水バルブVA1を開いて左端の反応槽101への被処理水5の供給を再開する。反応槽101への被処理水5の供給を再開すると、反応槽101内の担体表面保持汚泥量は再び増加してくるので、飽和域8に達する前に再び反応槽101への被処理水5の供給を停止する。この操作を図4に示す如く繰り返すことによって、担体表面保持汚泥量は飽和域8の下限値8aより低いが飽和域8直前の微生物の活性が盛んな領域において常に安定して運転されるようになる。   After the carrier surface retained sludge amount is reduced by a predetermined amount due to the stop of the supply of the water to be treated 5, the water supply valve VA1 is opened again to resume the supply of the water to be treated 5 to the reaction tank 101 at the left end. When the supply of the treated water 5 to the reaction tank 101 is resumed, the amount of the carrier surface retained sludge in the reaction tank 101 increases again, so that the treated water 5 to the reaction tank 101 again before reaching the saturation region 8. Stop supplying. By repeating this operation as shown in FIG. 4, the carrier surface retained sludge amount is lower than the lower limit value 8a of the saturation region 8 but is always stably operated in a region where the activity of microorganisms immediately before the saturation region 8 is active. Become.

このように、反応槽101内の担体表面保持汚泥量を常に飽和域8直前の範囲に保持することにより、例えば、反応槽101内のF/M比が変化したり、或いは、微生物の増殖特性や自己分解特性が変化することが生じて、担体表面保持汚泥量が増加することが起こっても、担体表面保持汚泥量は飽和域8内に留めて上限値8bより増加することを防止でき、よって、従来問題となっていた、汚泥層が肥厚して担体が目詰まりを生じたり、或いは、肥厚した汚泥層が担体から剥離して脱落し、処理水に混入するといった問題の発生を未然に防止することができる。   Thus, by always maintaining the carrier surface retained sludge amount in the reaction tank 101 within the range immediately before the saturation region 8, for example, the F / M ratio in the reaction tank 101 changes, or the growth characteristics of microorganisms. Even if the self-decomposition property changes and the carrier surface retained sludge amount increases, it can be prevented that the carrier surface retained sludge amount remains in the saturation region 8 and increases from the upper limit value 8b. Therefore, the problem that the sludge layer is thickened and the carrier is clogged, or the thickened sludge layer is peeled off from the carrier and dropped out and mixed into the treated water has been generated. Can be prevented.

又、各反応槽101に対する被処理水5の供給停止と供給再開を行う操作は、給水バルブVA1〜VA5の開閉だけで済むため、極めて簡易な操作で行うことができる。   In addition, the operation for stopping and restarting the supply of the water 5 to be treated to each reaction tank 101 can be performed by an extremely simple operation because it is only necessary to open and close the water supply valves VA1 to VA5.

上記した如く、上記した如く、被処理水5の供給を一定期間停止した後に、再び被処理水5の供給を再開することを繰り返す操作は、全ての反応槽101に対してローテーション式に行うようにする。即ち、図4に示す運転停止動作と担体表面保持汚泥との関係では、図3の反応槽5台のうちの1台だけで試験した結果を示しているので、飽和域8の下限に担体表面保持汚泥量Xが到達した運転時間から停止動作を掛けて担体表面保持汚泥量を減量させているが、例えば、図3の反応槽5台のうちの1台を再生処理することとしてローテーションで給水しない場合は、最初の動作だけ5台に被処理水5を供給するが、1台の再生時間を予め見越して、飽和域8の下限に担体表面保持汚泥量Xが到達するまえに、5台の反応槽101の内1台を切り離して被処理水を供給停止して再生に入らせる。その後、飽和域8の下限に担体表面保持汚泥量Xが到達するまえに、所定の再生時間を経過した再生済み1台の反応槽101に被処理水の給水を再開して、同時に、次のローテーションの1台の反応槽101への被処理水の供給を停止して再生に入らせる。このローテーション動作を繰り返すことで、4台の反応槽101全体の担体表面保持汚泥量Xは、飽和域8の下限を上限として、常に安定して運転できる。
この操作を繰り返すことによって、図4の運転再生周期とは異なるが、反応槽101全体として、担体表面保持汚泥量は飽和域8の下限値8aより低いが、飽和域直前の微生物の活性が盛んな領域において常に安定して運転されるようになる。
As described above, as described above, after the supply of the treated water 5 is stopped for a certain period of time, the operation of resuming the supply of the treated water 5 again is performed in a rotating manner for all the reaction tanks 101. To. That is, the relationship between the operation of stopping operation and the support surface holding sludge shown in FIG. 4 shows the result of testing with only one of the five reaction tanks in FIG. The amount of retained sludge on the surface of the carrier is reduced by operating from the operation time when the amount of retained sludge X has reached. For example, one of the five reaction tanks in FIG. If not, the treated water 5 is supplied to 5 units only for the first operation, but 5 units before the carrier surface retained sludge amount X reaches the lower limit of the saturation region 8 in anticipation of the regeneration time of 1 unit. One of the reaction tanks 101 is cut off, and the supply of water to be treated is stopped to start regeneration. Thereafter, before the carrier surface retained sludge amount X reaches the lower limit of the saturation region 8, the supply of water to be treated is resumed in one regenerated reaction tank 101 after a predetermined regeneration time, and at the same time, The supply of the water to be treated to one reaction tank 101 in the rotation is stopped to start the regeneration. By repeating this rotation operation, the carrier surface retained sludge amount X of the entire four reaction tanks 101 can always be stably operated with the lower limit of the saturation region 8 as the upper limit.
By repeating this operation, the amount of sludge retained on the surface of the carrier is lower than the lower limit value 8a of the saturated region 8, but the activity of microorganisms immediately before the saturated region is thriving, although the operation regeneration cycle shown in FIG. In such a region, the vehicle is always stably operated.

前記反応槽101に対する被処理水5の供給を停止する期間は、被処理水の種類ごとに試験して計測した、α:汚泥転換率(溶解性有機物分解に伴う汚泥の増殖率)、a:内生呼吸速度(汚泥の自己分解率)、b:担体表面保持汚泥中微生物割合、などにより変わる図2の経過時間tと担体表面保持汚泥量Xとの関係に応じて、任意に設定することができる。   The period during which the supply of the treated water 5 to the reaction tank 101 is stopped is measured by testing for each kind of treated water, α: sludge conversion rate (sludge growth rate accompanying dissolved organic matter decomposition), a: 2 depending on the relationship between the elapsed time t in FIG. 2 and the amount X of retained sludge on the carrier surface, which varies depending on the endogenous respiration rate (sludge self-decomposition rate), b: the proportion of microorganisms in the carrier surface retained sludge, and the like. Can do.

散水式水処理装置100では処理すべき被処理水5の目標量が決められているため、反応槽101に対する供給停止期間を長く設定した場合には、停止している反応槽101に供給する分の被処理水5を他の反応槽101で処理することになるため、他の反応槽101への被処理水5の供給量が増加して他の反応槽101の担体表面保持汚泥量が増加することになるので、前記供給停止期間は短く設定することが好ましい。   Since the target amount of the water 5 to be treated is determined in the sprinkling water treatment apparatus 100, when the supply stop period for the reaction tank 101 is set to be long, the amount of water supplied to the stopped reaction tank 101 is set. Since the to-be-processed water 5 is processed in the other reaction tank 101, the supply amount of the to-be-processed water 5 to the other reaction tank 101 increases, and the amount of carrier surface holding sludge in the other reaction tank 101 increases. Therefore, it is preferable to set the supply stop period short.

被処理水を下水(生活排水)とした図4においては、担体表面保持汚泥量が約10%減量される7日前後を被処理水5の供給停止期間とし、再び通常運転を行う期間を20日前後のように設定した場合の担体表面保持汚泥量の挙動を示した。実際の運用では、排水種に応じて表2を作成し、各パラメータを前記式(3)及び(4)に入力することで、被処理水の供給期間と停止期間の設定を判断することができる。   In FIG. 4 in which treated water is sewage (domestic wastewater), about 7 days when the carrier surface retained sludge amount is reduced by about 10% is set as a supply stop period for treated water 5 and a period for performing normal operation again is 20. The behavior of the amount of sludge retained on the carrier surface when set as before and after is shown. In actual operation, Table 2 is created according to the type of wastewater, and each parameter is input to the above formulas (3) and (4) to determine the setting of the supply period and stop period of the treated water. it can.

一方、前記制御において、被処理水5の供給停止後に再び被処理水5の供給を再開した際には、水分が減少した状態で担体に保持されていた汚泥が被処理水5の供給により洗い流される作用を受けて落下し、処理水に混入してしまう虞れがある。   On the other hand, in the above control, when the supply of the treated water 5 is resumed after the supply of the treated water 5 is stopped, the sludge retained on the carrier in a state where the moisture is reduced is washed away by the supply of the treated water 5. There is a risk that it will fall under the action of being mixed into the treated water.

このため、例えば左端の反応槽101に対する被処理水5の供給停止後に再び被処理水5の供給を再開する際には、処理水バルブVB1を閉じ、循環水バルブVC1を開け、処理水循環ポンプ108を駆動することにより、前記反応槽101からの処理水を循環水109として分配タンク104に戻すように制御する。   Therefore, for example, when the supply of the treated water 5 is resumed after the supply of the treated water 5 to the leftmost reaction tank 101 is stopped, the treated water valve VB1 is closed, the circulating water valve VC1 is opened, and the treated water circulation pump 108 is opened. , The treated water from the reaction tank 101 is controlled to be returned to the distribution tank 104 as the circulating water 109.

これにより、被処理水5の供給を再開した際に担体表面保持汚泥が落下する事態が生じても、汚れた処理水は反応槽101から取り出されることなく、循環水バルブVC1、処理水循環ポンプ108を介して前記分配タンク104に循環水109として循環され、この循環水109は被処理水5に混合されて各反応槽101に供給されるようになる。   Thus, even if the carrier surface holding sludge falls when the supply of the water to be treated 5 is restarted, the dirty treated water is not taken out from the reaction tank 101, and the circulating water valve VC1 and the treated water circulating pump 108 are removed. The circulating water 109 is circulated through the distribution tank 104 as circulating water 109, and the circulating water 109 is mixed with the treated water 5 and supplied to each reaction tank 101.

ここで、被処理水5の供給を再開した反応槽101の処理水を循環水109として分配タンク104に戻す再循環期間は、反応槽101における被処理水5の滞留時間に基づいて決定することができる。反応槽101における被処理水5滞留時間は、経験的に平均値で3〜5時間程度であり、従って、前記再循環期間は、最低前記滞留時間の2倍以上、例えば8時間以上を保持すればよい。   Here, the recirculation period in which the treated water in the reaction tank 101 that has resumed the supply of the treated water 5 is returned to the distribution tank 104 as the circulating water 109 is determined based on the residence time of the treated water 5 in the reaction tank 101. Can do. The retention time of the treated water 5 in the reaction tank 101 is empirically about 3 to 5 hours on average, and therefore the recirculation period is kept at least twice the retention time, for example, 8 hours or more. That's fine.

従って、被処理水5の供給を停止した後再び供給を再開する反応槽101からは汚れた処理水が流出する問題は生じない。   Therefore, there is no problem that dirty treated water flows out of the reaction tank 101 that resumes the supply after the supply of the treated water 5 is stopped.

又、上述した汚泥量制御方法において、図5に矢印で示すように、担体表面保持汚泥量の減量速度を大きくすることができれば、汚泥量制御における被処理水5の供給を停止する期間を短くできるため、装置の実稼働率を向上することができる。   Moreover, in the sludge amount control method described above, as shown by the arrow in FIG. 5, if the rate of reduction of the carrier surface retained sludge amount can be increased, the period for stopping the supply of the water 5 to be treated in the sludge amount control can be shortened. Therefore, the actual operation rate of the apparatus can be improved.

前記式(4)によれば、担体表面保持汚泥量の減少速度は内生呼吸速度aに比例する。つまり、内生呼吸速度aを大きくすることで、汚泥減量速度を大きくすることができる。内生呼吸は好気性微生物反応によっており、一般にその速度は反応層内の温度や酸素濃度に比例するとされる。   According to the equation (4), the rate of decrease in the amount of sludge retained on the carrier surface is proportional to the endogenous respiration rate a. That is, the sludge reduction rate can be increased by increasing the endogenous respiration rate a. Endogenous respiration is due to an aerobic microbial reaction, and the rate is generally proportional to the temperature and oxygen concentration in the reaction layer.

図6にこの原理を利用した汚泥減量期間短縮のための装置構成を示した。図6は図3に示した反応装置本体102の側面図であり、反応装置本体102に構成された複数の反応槽101には、ブロワ110による空気を送気管111を介して前記反応槽101内下部に吹き込むようにした空気供給手段112を設けている。又、前記反応装置本体102の反応槽101には、各反応槽101を加熱するようにしたヒータ113或いは温水管等からなる加熱手段114を設けている。この時、加熱手段114は各反応槽101を独立して加熱できるように、各反応槽101の外周をヒータ113や温水管で巻いたり、或いは各反応槽101の内部に温水管を通す等の方法で実施することができる。尚、図6では、反応槽101に空気供給手段112と加熱手段114の両方を備えた場合を示したが、その一方のみを備えるようにしてもよい。   FIG. 6 shows an apparatus configuration for shortening the sludge reduction period using this principle. FIG. 6 is a side view of the reaction apparatus main body 102 shown in FIG. 3. In the plurality of reaction tanks 101 configured in the reaction apparatus main body 102, air from the blower 110 is supplied into the reaction tank 101 via the air supply pipe 111. Air supply means 112 is provided to be blown into the lower part. Further, the reaction tank 101 of the reaction apparatus main body 102 is provided with a heating means 114 comprising a heater 113 or a hot water pipe for heating each reaction tank 101. At this time, the heating means 114 can heat each reaction tank 101 independently, such as winding the outer periphery of each reaction tank 101 with a heater 113 or a hot water pipe, or passing a hot water pipe inside each reaction tank 101. Can be implemented in a method. Although FIG. 6 shows the case where the reaction tank 101 is provided with both the air supply means 112 and the heating means 114, only one of them may be provided.

上記したように、各反応槽101に空気供給手段112、或いは加熱手段114を設けて、被処理水5の供給を一定期間停止する反応槽101に空気を供給する、或いは当該反応槽101を加熱する、又は空気の供給と加熱を同時に行うことにより、担体表面保持汚泥が微生物によって自己分解して減量する作用が促進され、よって、反応槽101の運転停止期間を短縮することができる。   As described above, the air supply means 112 or the heating means 114 is provided in each reaction tank 101 to supply air to the reaction tank 101 that stops the supply of the water 5 to be treated for a certain period of time or to heat the reaction tank 101. Or by supplying air and heating at the same time promotes the action of the carrier surface holding sludge to be self-decomposed and reduced by microorganisms, thereby shortening the operation stop period of the reaction tank 101.

3 担体
5 被処理水
6 処理水
8 飽和域
100 散水式水処理装置
101 反応槽
105 給水管
106 処理水取出管
107 循環水管
108 処理水循環ポンプ
109 循環水
112 空気供給手段
114 加熱手段
VA1〜VA5 給水バルブ
VB1〜VB5 処理水バルブ
VC1〜VC5 循環水バルブ
DESCRIPTION OF SYMBOLS 3 Carrier 5 Water to be treated 6 Treated water 8 Saturated area 100 Sprinkling water treatment device 101 Reaction tank 105 Water supply pipe 106 Treated water take-out pipe 107 Circulating water pipe 108 Treated water circulation pump 109 Circulating water 112 Air supply means 114 Heating means VA1 to VA5 Valves VB1 to VB5 Treated water valve VC1 to VC5 Circulating water valve

Claims (5)

表面に好気性微生物と汚泥が付着固定される担体が静置装填された複数の反応槽を有する散水式水処理装置を設け、前記各反応槽に被処理水を供給することにより被処理水の好気性水処理を行い、反応槽内の担体表面保持汚泥量が前記好気性水処理により増加して飽和域に達する前に反応槽への被処理水の供給を一定期間停止し、前記担体表面保持汚泥が好気性微生物により自己分解されて減量した後に、再び反応槽に対する被処理水の供給を再開し、反応槽内の担体表面保持汚泥量が前記好気性水処理により増加して飽和域に達する前に反応槽への被処理水の供給を一定期間停止するという操作を繰り返し、この操作を全ての反応槽に対してローテーション式に行うことを特徴とする散水式水処理装置内の汚泥量制御方法。   Provided with a sprinkling water treatment device having a plurality of reaction vessels in which a carrier to which aerobic microorganisms and sludge are fixedly attached is fixed on the surface and supplying the treated water to each of the reaction vessels, Performing aerobic water treatment, and stopping the supply of treated water to the reaction tank for a certain period before the amount of sludge retained on the carrier surface in the reaction tank increases due to the aerobic water treatment and reaches the saturation region, After the retained sludge is self-degraded by aerobic microorganisms and reduced in volume, the supply of treated water to the reaction tank is resumed, and the amount of sludge retained on the surface of the carrier in the reaction tank is increased by the aerobic water treatment and becomes saturated. The amount of sludge in the sprinkling water treatment system is characterized by repeating the operation of stopping the supply of treated water to the reaction tank for a certain period of time before reaching it, and performing this operation in a rotating manner for all reaction tanks Control method. 前記反応槽内の前記担体表面保持汚泥量が前記好気性水処理により増加して飽和域に達する前に反応槽への被処理水の供給を停止する前記一定期間の算出方法を、
dX/dt = Xr+α×Sr−a×X
(各記号は、以下のとおり。X:反応槽内担体表面保持汚泥量、t:時間、Xr:汚泥捕捉量、Sr:溶解性有機物分解量、X:反応槽内微生物量(Xの画分)、α:溶解性有機物分解に伴うXの増殖率(=汚泥転換率)、a:Xの自己分解率(=内生呼吸速度))
の式に、
Xr:汚泥捕捉量=0、Sr:溶解性有機物分解量=0として代入演算して得た、X:反応槽内担体表面保持汚泥量と、経過時間tとの関係から導くことを特徴とする請求項1記載の散水式水処理装置内の汚泥量制御方法、に係るものである。
The method for calculating the certain period of time to stop the supply of the water to be treated to the reaction tank before the amount of the carrier surface retained sludge in the reaction tank is increased by the aerobic water treatment and reaches the saturation region,
dX / dt = Xr + α × Sr−a × X B
(Each symbol is as follows. X: amount of sludge retained on carrier surface in reaction vessel, t: time, Xr: amount of sludge trapped, Sr: amount of dissolved organic matter decomposed, X B : amount of microorganisms in reaction vessel (image of X min), alpha: growth rate of X associated with soluble organic decomposition (= sludge conversion ratio), a: autolysis rate of X B (= endogenous respiration rate))
In the formula
Xr: Sludge trapping amount = 0, Sr: Soluble organic matter decomposition amount = 0, obtained by substitution calculation, X: derived from the relationship between the amount of sludge retained on the carrier surface in the reaction tank and the elapsed time t The present invention relates to a method for controlling the amount of sludge in the watering type water treatment apparatus according to claim 1.
反応槽に対する被処理水の供給を一定期間停止した後に再び被処理水の供給を再開する際には、被処理水の供給再開に伴って当該反応槽から導出される処理水を所定期間だけ各反応槽の入口に戻すことを特徴とする請求項1又は2記載の散水式水処理装置内の汚泥量制御方法。   When restarting the supply of treated water again after stopping the supply of treated water to the reaction tank for a certain period of time, the treated water derived from the reaction tank along with the restart of the supply of treated water for each predetermined period. 3. The method for controlling the amount of sludge in a watering-type water treatment apparatus according to claim 1 or 2, wherein the sludge amount is returned to the inlet of the reaction tank. 各反応槽に空気供給手段を設け、被処理水の供給を停止する反応槽に空気供給手段により空気を供給し、担体表面保持汚泥が微生物により自己分解して減量する作用を促進させることを特徴とする請求項1又は2記載の散水式水処理装置内の汚泥量制御方法。   Air supply means is provided in each reaction tank, air is supplied to the reaction tank that stops the supply of water to be treated, and promotes the action of the carrier surface holding sludge to be self-decomposed and reduced by microorganisms. The method of controlling the amount of sludge in the watering type water treatment apparatus according to claim 1 or 2. 各反応槽に加熱手段を設け、被処理水の供給を停止する反応槽を加熱手段により加熱し、担体表面保持汚泥が微生物により自己分解して減量する作用を促進させることを特徴とする請求項1〜4のいずれか1項記載の散水式水処理装置内の汚泥量制御方法。 A heating means is provided in each reaction tank, the reaction tank for stopping the supply of water to be treated is heated by the heating means, and the action of reducing the amount of the carrier surface retained sludge by self-decomposition by microorganisms is promoted. The sludge amount control method in the watering type water treatment apparatus of any one of 1-4.
JP2010082224A 2010-03-31 2010-03-31 Sludge control method in sprinkling water treatment system Active JP5550965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082224A JP5550965B2 (en) 2010-03-31 2010-03-31 Sludge control method in sprinkling water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082224A JP5550965B2 (en) 2010-03-31 2010-03-31 Sludge control method in sprinkling water treatment system

Publications (2)

Publication Number Publication Date
JP2011212566A true JP2011212566A (en) 2011-10-27
JP5550965B2 JP5550965B2 (en) 2014-07-16

Family

ID=44942885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082224A Active JP5550965B2 (en) 2010-03-31 2010-03-31 Sludge control method in sprinkling water treatment system

Country Status (1)

Country Link
JP (1) JP5550965B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076014A (en) * 2010-09-30 2012-04-19 Toshiba Corp Apparatus and method of water treatment
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
JP2013198834A (en) * 2012-03-23 2013-10-03 Swing Corp Operation method of biological treatment apparatus of water
JP2015217347A (en) * 2014-05-19 2015-12-07 株式会社トーエネック Wastewater treatment method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492361A (en) * 1972-04-24 1974-01-10
JPS5084034A (en) * 1973-11-26 1975-07-07
JPS5321859A (en) * 1976-08-13 1978-02-28 Mitsubishi Plastics Ind Ltd Method of treating sewage
JPS5667591A (en) * 1979-11-06 1981-06-06 Tadashi Niimi Sewage purification method dependent upon contact aeration tank
JPS5681184A (en) * 1979-12-03 1981-07-02 Masato Hara Sewage purifying filter bed utilizing kokaseki
JPS588587A (en) * 1981-07-07 1983-01-18 Keizo Sekine Closed activated-sludge system for treating organic waste water
JPS61209089A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Method and apparatus for treating organic waste water
JPS6354495U (en) * 1986-09-27 1988-04-12
JPH06304588A (en) * 1993-04-21 1994-11-01 Nippon Kentetsu Co Ltd Waste water treatment by biological membrane method
JPH0747383A (en) * 1993-08-04 1995-02-21 Kurita Water Ind Ltd Operating method of biological filter device
JPH10263578A (en) * 1997-03-27 1998-10-06 Tokyu Constr Co Ltd Cleaning zone, cleaning device and method for cleaning sewage
JP2004154668A (en) * 2002-11-06 2004-06-03 Yonden Gijutsu Consultant:Kk Resource recovery type sewage purification method and apparatus using the same
JP2008178824A (en) * 2007-01-25 2008-08-07 Kazuaki Tamatsubo Method and device for recovering phosphorous
JP2009274042A (en) * 2008-05-16 2009-11-26 Sekisui Urethane Kako Kk Sewage sprinkling structure of cleaning apparatus
JP2009274044A (en) * 2008-05-16 2009-11-26 Hideki Harada Purification belt for sewage purifier

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492361A (en) * 1972-04-24 1974-01-10
JPS5084034A (en) * 1973-11-26 1975-07-07
JPS5321859A (en) * 1976-08-13 1978-02-28 Mitsubishi Plastics Ind Ltd Method of treating sewage
JPS5667591A (en) * 1979-11-06 1981-06-06 Tadashi Niimi Sewage purification method dependent upon contact aeration tank
JPS5681184A (en) * 1979-12-03 1981-07-02 Masato Hara Sewage purifying filter bed utilizing kokaseki
JPS588587A (en) * 1981-07-07 1983-01-18 Keizo Sekine Closed activated-sludge system for treating organic waste water
JPS61209089A (en) * 1985-03-09 1986-09-17 Shimizu Constr Co Ltd Method and apparatus for treating organic waste water
JPS6354495U (en) * 1986-09-27 1988-04-12
JPH06304588A (en) * 1993-04-21 1994-11-01 Nippon Kentetsu Co Ltd Waste water treatment by biological membrane method
JPH0747383A (en) * 1993-08-04 1995-02-21 Kurita Water Ind Ltd Operating method of biological filter device
JPH10263578A (en) * 1997-03-27 1998-10-06 Tokyu Constr Co Ltd Cleaning zone, cleaning device and method for cleaning sewage
JP2004154668A (en) * 2002-11-06 2004-06-03 Yonden Gijutsu Consultant:Kk Resource recovery type sewage purification method and apparatus using the same
JP2008178824A (en) * 2007-01-25 2008-08-07 Kazuaki Tamatsubo Method and device for recovering phosphorous
JP2009274042A (en) * 2008-05-16 2009-11-26 Sekisui Urethane Kako Kk Sewage sprinkling structure of cleaning apparatus
JP2009274044A (en) * 2008-05-16 2009-11-26 Hideki Harada Purification belt for sewage purifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076014A (en) * 2010-09-30 2012-04-19 Toshiba Corp Apparatus and method of water treatment
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
JP2013198834A (en) * 2012-03-23 2013-10-03 Swing Corp Operation method of biological treatment apparatus of water
JP2015217347A (en) * 2014-05-19 2015-12-07 株式会社トーエネック Wastewater treatment method

Also Published As

Publication number Publication date
JP5550965B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
EP1957413B1 (en) Membrane for the treatment of sewage
JP5987202B1 (en) Water treatment system and water treatment method
US8758620B2 (en) Decanted bio-balanced reactor and method
HU222677B1 (en) Method and apparatus for sewage water treatment
KR101860480B1 (en) Pigsty management system
CN104773901A (en) Biological treatment method of circulating culture water body
JP5550965B2 (en) Sludge control method in sprinkling water treatment system
WO2012169381A1 (en) Method and apparatus for biological treatment of organic wastewater
JP2012024664A (en) Microorganism carrier and biological deodorization apparatus
KR101367229B1 (en) Operating method of advanced treatment process use of submerged membrane and advanced treatment apparatus thereof
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
JP6652898B2 (en) Water treatment device and water treatment method
WO2019039008A1 (en) Water treatment control system
CN205099464U (en) Sewage treatment device based on MBR membrane is used
RU121499U1 (en) WASTE WATER RECEIVER
JP2010142781A (en) Biological denitrification apparatus
JP2712132B2 (en) Fish culture water filter
JPS60212292A (en) Apparatus for high degree treatment of sewage
JP2002210325A (en) Membrane type biological deodorization tower and operation method
US11272694B2 (en) Aquaculture filtration systems
JP2019127780A (en) Rainwater utilization system
JP2022142977A (en) Water sprinkling biofiltration apparatus, water sprinkling biofiltration method of water to be treated, and sewage treatment method
JP2005152835A (en) Method and apparatus for treating sewage and cleaning bag
JP2020018966A (en) Water treatment method and water treatment apparatus
JP7149702B2 (en) Wastewater treatment method and wastewater recycling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5550965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250