JP2011211977A - Electroconductive microorganism carrier - Google Patents

Electroconductive microorganism carrier Download PDF

Info

Publication number
JP2011211977A
JP2011211977A JP2010083973A JP2010083973A JP2011211977A JP 2011211977 A JP2011211977 A JP 2011211977A JP 2010083973 A JP2010083973 A JP 2010083973A JP 2010083973 A JP2010083973 A JP 2010083973A JP 2011211977 A JP2011211977 A JP 2011211977A
Authority
JP
Japan
Prior art keywords
bamboo charcoal
microorganism
conductive
electroconductive
microorganism carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010083973A
Other languages
Japanese (ja)
Inventor
Osamu Hamamoto
修 浜本
Yoshinori Hisayoshi
良則 久芳
Masahiro Saito
政宏 斉藤
Junichi Takahashi
潤一 高橋
Kazutaka Umetsu
一孝 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Obihiro University of Agriculture and Veterinary Medicine NUC
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Obihiro University of Agriculture and Veterinary Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Obihiro University of Agriculture and Veterinary Medicine NUC filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2010083973A priority Critical patent/JP2011211977A/en
Publication of JP2011211977A publication Critical patent/JP2011211977A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electroconductive microorganism carrier having electroconductivity sufficiently expressing specific functions of the carried microorganism, e.g., capable of keeping stable desulfurization effect.SOLUTION: There are provided an electroconductive microorganism carrier comprising bamboo charcoal having ≥0.85 ratio (P1/P2) of 1,580 cmpeak strength (P1) and 1,360 cmpeak strength (P2) in Raman spectrum, an electroconductive microorganism carrier comprising a bamboo charcoal having 1-10% elemental ratio O/C based on Cand Opeak areas in surface analysis by ESCA, and an electroconductive microorganism carrier usable as an filler of a biological desulfurization vessel.

Description

本発明は、導電性微生物担体に関し、詳しくは、バイオリアクター等の充填材として好適な導電性微生物担体に関する。   The present invention relates to a conductive microbial carrier, and more particularly to a conductive microbial carrier suitable as a filler for bioreactors and the like.

特許文献1には、導電性物質に微生物を担持し、メディエーター(キノン)を介して導電性物質と微生物との間の電子移動を行って、微生物を培養する技術が開示されている。そして、導電性物質として、粉末活性炭を、1300℃以上の温度で空気を遮断して焼成して得られる導電性炭素粒状物を用いることが培養微生物を増殖する上で好ましいことが開示されている。   Patent Document 1 discloses a technique for cultivating a microorganism by supporting a microorganism on a conductive substance and performing electron transfer between the conductive substance and the microorganism via a mediator (quinone). In addition, it is disclosed that it is preferable for growing cultured microorganisms to use, as a conductive substance, conductive carbon particulates obtained by firing powdered activated carbon while blocking air at a temperature of 1300 ° C. or higher. .

特開2009−65940号公報JP 2009-65940 A 特開2007−175048号公報JP 2007-175048 A

しかし、特許文献1に記載の活性炭を再焼成した導電性活性炭を微生物坦持体として用いてメタンガスや硫化水素ガスを含むバイオガスを生物脱硫する際に、ガス透過の圧損が時として大きくなり、一時に気泡として透過してしまうため、脱硫効率が大きく低下する問題があった。   However, when biodesulfurizing biogas containing methane gas or hydrogen sulfide gas using the conductive activated carbon obtained by recalculating the activated carbon described in Patent Document 1 as a microorganism carrier, the pressure loss of gas permeation sometimes increases, Since it permeate | transmits as a bubble at once, there existed a problem that desulfurization efficiency fell large.

また、特許文献2は、竹炭の比表面積に着目して微生物吸着材として利用する技術を開示しているが、高温焼成の竹炭の導電性に着目していない。   Patent Document 2 discloses a technique of using as a microorganism adsorbent by paying attention to the specific surface area of bamboo charcoal, but does not pay attention to the conductivity of bamboo charcoal fired at high temperature.

従来、導電性について竹炭内部の結晶構造のX線回折に関する研究は知られているが、竹炭表面(数〜10数原子層程度)の構造解析は知られていない。   Conventionally, studies on X-ray diffraction of the crystal structure inside bamboo charcoal have been known for conductivity, but structural analysis on the surface of bamboo charcoal (several tens to several atomic layers) is not known.

本発明者は、竹炭に担持された微生物の活動(代謝)を制御する上で、ラマン分光スペクトル及びESCAによる表面構造の規定が非常に重要であることを見出した。   The present inventor has found that the definition of the surface structure by Raman spectroscopy and ESCA is very important in controlling the activity (metabolism) of microorganisms supported on bamboo charcoal.

本発明者は、高温焼成(再焼成も含む)された竹炭のラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)を求めたところ、所定値以上の場合に、微生物の活動(代謝)を制御するための表面導電性や微生物担持性に優れるばかりでなく、各種反応槽の充填材として用いても圧力損失増大させて反応性低下を招くことなく、特に、生物脱硫槽の導電性充填材として用いた場合に、微生物担持性に優れ、ガス透過の際の圧力損失増大に起因する脱硫効果の低下を招かないことを見出した。 The present inventor obtained a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) and 1360 cm −1 peak intensity (P2) in a Raman spectroscopic spectrum of bamboo charcoal fired at high temperature (including refired). When it exceeds the specified value, it not only excels in surface conductivity and microbial support for controlling the activity (metabolism) of microorganisms, but also reduces pressure loss by increasing pressure loss even when used as a filler in various reaction vessels. In particular, it has been found that when used as a conductive filler in a biological desulfurization tank, it has excellent microbial support and does not cause a decrease in desulfurization effect due to an increase in pressure loss during gas permeation.

また、これらの優れた効果を発揮する竹炭について、ESCA(X線光電子分光)による表面分析を行ったところ、C1S及びO1Sピーク面積から求める元素数比O/Cが1〜10%であることがわかった。 Moreover, about the bamboo charcoal which exhibits these outstanding effects, when surface analysis by ESCA (X-ray photoelectron spectroscopy) was performed, element number ratio O / C calculated | required from C1S and O1S peak area is 1-10%. I understood it.

そこで、本発明の課題は、担持された微生物の特定の機能を十分に発現する導電性を有し、例えば、安定した脱硫効果を維持できる導電性微生物担体を提供することにある。   Accordingly, an object of the present invention is to provide a conductive microbial carrier that has sufficient conductivity to express a specific function of a supported microorganism, and can maintain, for example, a stable desulfurization effect.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上である竹炭からなることを特徴とする導電性微生物担体。
(Claim 1)
A conductive microbial carrier comprising a bamboo charcoal having a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in a Raman spectroscopic spectrum of 0.85 or more.

(請求項2)
ESCAによる表面分析でC1S及びO1Sピーク面積から求める元素数比O/Cが1〜10%である竹炭からなることを特徴とする導電性微生物担体。
(Claim 2)
A conductive microbial carrier comprising bamboo charcoal having an element number ratio O / C of 1 to 10% obtained from C 1S and O 1S peak areas by surface analysis by ESCA.

(請求項3)
生物脱硫槽の導電性充填材として用いる請求項1又は2記載の導電性微生物担体。
(Claim 3)
The conductive microbial carrier according to claim 1 or 2, which is used as a conductive filler in a biological desulfurization tank.

本発明によれば、担持された微生物の特定の機能を十分に発現する導電性を有し、例えば、安定した脱硫効果を維持できる導電性微生物担体導電性微生物担体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electroconductive microorganism carrier which has the electroconductivity which fully expresses the specific function of the carry | supported microorganism, for example, can maintain the stable desulfurization effect, can be provided.

炭素表面における顕微ラマンスペクトルMicro-Raman spectrum on carbon surface

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明において、導電性微生物担体は、たとえばバイオリアクターやバイオセンサーにおいて気体又は液体(スラリー)からなる被処理流体を微生物による生物化学的な処理を行う充填層を形成する充填材に用いられる。   In the present invention, the conductive microorganism carrier is used as a filler for forming a packed layer for performing a biochemical treatment with a microorganism on a fluid to be treated, for example, a gas or a liquid (slurry) in a bioreactor or a biosensor.

本発明の導電性微生物担体を形成する竹炭を製造する原料は、例えばモウソウ竹などの竹(竹を破砕又は裁断したものを含む)である。   The raw material for producing bamboo charcoal forming the conductive microorganism carrier of the present invention is bamboo such as moso bamboo (including bamboo crushed or cut).

本発明の導電性微生物担体は、竹原料を、好ましくは1250℃以上、より好ましくは1400℃以上で、還元雰囲気下で焼成または再焼成して竹炭を製造し、それらの中から、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上のものを選別する。 The conductive microorganism carrier of the present invention produces bamboo charcoal by firing or re-baking bamboo raw material, preferably at 1250 ° C. or higher, more preferably 1400 ° C. or higher, in a reducing atmosphere. The one having a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) at 0.85 or more is selected.

また、ESCA(X線光電子分光)による表面分析において、C1S及びO1Sピーク面積から求める元素数比O/Cが1〜10%であるものを選別することが好ましい。 Moreover, in the surface analysis by ESCA (X-ray photoelectron spectroscopy), it is preferable to select those having an element number ratio O / C of 1 to 10% obtained from the C 1S and O 1S peak areas.

高温焼成又は再焼成すれば必ず上記特性を備えるわけではないので、この選別は本発明において重要である。   This selection is important in the present invention because the above-mentioned characteristics are not necessarily provided by high-temperature baking or re-baking.

なお、還元雰囲気下とは、酸素元素を含まない気体中を意味し、酸素元素を含まない気体としては、窒素等を好ましく例示できる。   The term “in a reducing atmosphere” means a gas that does not contain an oxygen element, and preferred examples of the gas that does not contain an oxygen element include nitrogen.

また、「還元雰囲気下で焼成または再焼成する」とは、例えば1250℃で焼成または再焼成する場合、焼成温度(1250℃)で還元雰囲気であればよく、その後降温時には空気などを注入してもよい。   In addition, “baking or re-baking in a reducing atmosphere” means, for example, when baking or re-baking at 1250 ° C., a reducing atmosphere may be used at the baking temperature (1250 ° C.), and then air or the like is injected when the temperature is lowered. Also good.

本発明において、導電性微生物担体を形成する竹炭(それらの破砕片であってもよい)は、充填層を形成した際に圧力損失を増大させない形状が好ましい。活性炭粒子の場合に、圧力損失増加に伴う脱硫効率の低下を招く原因は、活性炭粒子の粒子形状や粒径に起因する充填密度が極めて密であることによって、ガス透過流路が閉塞されやすいことが起因していると思われるので、本発明では、充填密度を疎にする手法が好ましい。充填密度を疎にする手法は、竹炭の粒径を大きくする手法や、充填した際に必然的に疎になるような形状の竹炭を使用する手法などがある。   In the present invention, the bamboo charcoal (which may be a crushed piece thereof) forming the conductive microorganism carrier preferably has a shape that does not increase the pressure loss when the packed bed is formed. In the case of activated carbon particles, the cause of the decrease in desulfurization efficiency due to an increase in pressure loss is that the gas permeation flow path is likely to be blocked due to the extremely dense packing density due to the particle shape and particle size of the activated carbon particles. Therefore, in the present invention, a method of making the packing density sparse is preferable. There are two methods for reducing the packing density: one is to increase the particle size of bamboo charcoal, and the other is to use bamboo charcoal that is inevitably sparse when filled.

竹炭の粒径を大きくする手法の場合には、粒径が小さい方が、脱硫効果に対して制限的な要因となりえるので、最低の粒径を規定することは意味がある。本発明では、破砕された竹炭の場合に、その粒径(直径)は、1cm以上が好ましく、より好ましくは3cm以上、さらに好ましくは5cm以上であることである。粒径は、破砕された竹炭が円形でない場合には円形に換算した径を意味する。   In the method of increasing the particle size of bamboo charcoal, it is meaningful to define the minimum particle size because a smaller particle size can be a limiting factor for the desulfurization effect. In the present invention, in the case of crushed bamboo charcoal, the particle size (diameter) is preferably 1 cm or more, more preferably 3 cm or more, and further preferably 5 cm or more. The particle diameter means a diameter converted into a circle when the crushed bamboo charcoal is not circular.

充填した際に必然的に疎になるような形状の竹炭を使用する手法では、原料の形のまま焼成した竹炭を用いることが挙げられる。たとえば竹炭の場合には、長さ5cm〜10cm程度の円筒竹炭をそのまま充填材として用いれば、充填された状態で間隙が大きく、圧損が、脱硫効果に対して制限的な要因にはならない。また竹原料を線状に裁断して、格子状に平織りして、その後焼成して得られた網状竹炭を用いれば、それらを積層するだけでも、充填された状態で間隙が大きく、圧損が、脱硫効果に対して制限的な要因にはならない。また網状竹炭の層と円筒竹炭の層を交互に積層する手法も好ましい態様として例示できる。   In the method of using bamboo charcoal having a shape that inevitably becomes sparse when filled, it is possible to use bamboo charcoal fired in the form of raw materials. For example, in the case of bamboo charcoal, if cylindrical bamboo charcoal having a length of about 5 cm to 10 cm is used as a filler as it is, the gap is large in the filled state, and the pressure loss does not become a limiting factor for the desulfurization effect. In addition, if the bamboo raw material obtained by cutting the bamboo raw material into a line, plain weaving into a lattice, and then firing it is used to laminate them, the gap is large in the filled state, and the pressure loss is It is not a limiting factor for the desulfurization effect. A method of alternately laminating reticulated bamboo charcoal layers and cylindrical bamboo charcoal layers can also be exemplified as a preferred embodiment.

本発明の導電性微生物担体は、充填材として充填された竹炭は、担持された微生物の特定の機能を十分に発現する導電性を有する。ここで特定の機能とは、脱硫、脱窒、発酵等、微生物の特定の代謝反応を利用したものである。本発明の導電性微生物担体は、その導電性により、微生物の特定の代謝反応に好適な電位を印加することができ、特定の代謝反応を促進し、特定の機能を十分に発現することを可能にする。   In the conductive microbial carrier of the present invention, bamboo charcoal filled as a filler has conductivity sufficient to express a specific function of the supported microorganism. Here, the specific function uses a specific metabolic reaction of microorganisms such as desulfurization, denitrification, and fermentation. The conductive microbial carrier of the present invention can apply a potential suitable for a specific metabolic reaction of a microorganism due to its conductivity, and can promote a specific metabolic reaction and fully express a specific function. To.

本発明では、その導電性を利用する上で、竹炭の内部の結晶構造ではなく、表面構造が重要であることを見出した。   In the present invention, it was found that the surface structure is important, not the crystal structure inside bamboo charcoal, in utilizing the conductivity.

竹炭内部の結晶構造のX線回折に関する研究は進んでおり、知られているが、竹炭表面(数〜10数原子層程度)の構造解析は研究されていない。   Although research on X-ray diffraction of the crystal structure inside bamboo charcoal is progressing and known, structural analysis on the surface of bamboo charcoal (several tens to several atomic layers) has not been studied.

本発明者は、担持された微生物の活動(代謝)を制御する上で、ラマン分光スペクトル及びESCAによる表面構造の規定が非常に重要であることを見出した。   The present inventor has found that the regulation of the surface structure by Raman spectroscopy and ESCA is very important in controlling the activity (metabolism) of the supported microorganisms.

本発明の導電性微生物担体を構成する竹炭は、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上、好ましくは1.0以上、より好ましくは1.2以上のものが選別されて得られたものである。 The bamboo charcoal constituting the conductive microorganism carrier of the present invention has a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in a Raman spectrum of 0.85 or more, preferably 1 0.0 or more, and more preferably 1.2 or more.

前述のように高温焼成又は再焼成すれば必ず上記特性を備えるわけではないので、この選別は本発明において重要である。   This selection is important in the present invention because the above-mentioned characteristics are not necessarily provided when fired at a high temperature or refired as described above.

炭素表面における顕微ラマンスペクトルを図1に示す。   A micro Raman spectrum on the carbon surface is shown in FIG.

このスペクトルには、グラファイト質を示すピーク(1580cm−1)と炭素質を示すピーク(1360cm−1)とが現われている。 In this spectrum, a peak (1580 cm −1 ) indicating the graphite quality and a peak (1360 cm −1 ) indicating the carbon quality appear.

炭素質が十分にグラファイト化されていると、グラファイト質を示すピークが高く、炭素質を示すピークが低くなる。導電性は主にグラファイト質によって与えられるものであるから、上記のように、グラファイト質を示すピークが高く、炭素質を示すピークが低いことが好ましい。   If the carbonaceous material is sufficiently graphitized, the peak indicating the graphite quality is high and the peak indicating the carbonaceous material is low. Since conductivity is mainly given by the graphite, it is preferable that the peak indicating the graphite is high and the peak indicating the carbon is low as described above.

本発明において、前述のように、1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上、好ましくは1.00以上、より好ましくは1.20以上であるものが選別使用されるのである。 In the present invention, as described above, the ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) is 0.85 or more, preferably 1.00 or more, more preferably 1 Those that are 20 or more are selected and used.

本発明の導電性微生物担体において、竹炭表面(数〜10数原子層程度)の構造が、顕微ラマン分光分析によって特定されたものを選別使用することにより、充填電極としての用途において、担持された微生物の活動(代謝)を制御するための表面導電性を発現して、微生物の特定の機能を十分に発現することができる。上述の範囲外である場合、導電性微生物担体が形成する充填層が導電性不十分となり、電極として機能せず、担持された微生物の機能を発現することが困難になる。   In the conductive microbial carrier of the present invention, the structure of the bamboo charcoal surface (several to several tens of atomic layers) was supported for use as a filling electrode by selectively using the one specified by microscopic Raman spectroscopic analysis. By expressing the surface conductivity for controlling the activity (metabolism) of the microorganism, the specific function of the microorganism can be sufficiently expressed. When it is outside the above range, the packed layer formed by the conductive microorganism carrier becomes insufficient in conductivity, does not function as an electrode, and it becomes difficult to express the function of the supported microorganism.

また、本発明の導電性微生物担体を構成する竹炭は、ESCAによる表面分析でC1S及びO1Sピーク面積から求める元素数比O/Cが1〜10%、好ましくは1〜5%、より好ましくは2〜3%のものが選別されて得られたものである。 In addition, the bamboo charcoal constituting the conductive microorganism carrier of the present invention has an element number ratio O / C determined from the C 1S and O 1S peak areas by surface analysis by ESCA of 1 to 10%, preferably 1 to 5%, more preferably Is obtained by sorting 2 to 3%.

前述のように高温焼成又は再焼成すれば必ず上記特性を備えるわけではないので、この選別は本発明において重要である。   This selection is important in the present invention because the above-mentioned characteristics are not necessarily provided when fired at a high temperature or refired as described above.

ESCAによるC1S及びO1Sピーク面積から求める元素数比O/Cは、竹炭表面(数〜10数原子層程度)における酸素含有官能基(ヒドロキシ基、カルボキシル基、オキソ基など)の形成状態を示し、この値が高いと酸素含有官能基が多く形成されており、低いと形成が少ないと判断できる。 The element number ratio O / C obtained from the C 1S and O 1S peak areas by ESCA indicates the formation state of oxygen-containing functional groups (hydroxy group, carboxyl group, oxo group, etc.) on the bamboo charcoal surface (several to several dozen atomic layers). When this value is high, many oxygen-containing functional groups are formed.

竹炭の表面に酸素含有官能基が多く形成された場合(元素数比O/Cが10%を超える場合)、酸素含有官能基は、竹炭の表面に導電性を付与するグラファイト質を被覆してしまうため、粒状炭素間の電気的な接続に対して立体障害となり、その結果、導電性が低下する。竹炭と担持微生物との間や、粒状炭素と電子メディエーターとの間の導電性の低下にも繋がる。   When many oxygen-containing functional groups are formed on the surface of bamboo charcoal (when the element number ratio O / C exceeds 10%), the oxygen-containing functional groups cover the surface of bamboo charcoal with a graphite material that imparts conductivity. Therefore, it becomes a steric hindrance to the electrical connection between the granular carbons, and as a result, the conductivity decreases. This also leads to a decrease in electrical conductivity between bamboo charcoal and supported microorganisms and between granular carbon and electron mediators.

さらに、多量に形成された酸素含有官能基は、竹炭の表面の物性にも大きな影響を及ぼす。つまり、酸素含有官能基は、酸素原子の影響により負電荷を帯び易いため、竹炭の表面が負電荷を帯びることになる。その結果、竹炭同士の接触は、酸素含有官能基が静電的障害となって、静電反発力により阻害される。その結果、導電性が更に低下する。   Furthermore, the oxygen-containing functional group formed in a large amount has a great influence on the physical properties of the surface of bamboo charcoal. That is, since the oxygen-containing functional group is easily negatively charged due to the influence of oxygen atoms, the surface of bamboo charcoal is negatively charged. As a result, the contact between bamboo charcoal is inhibited by electrostatic repulsion because the oxygen-containing functional group becomes an electrostatic obstacle. As a result, the conductivity further decreases.

更にまた、一般に微生物の表面は負電荷を帯びているため、竹炭に対する微生物の接触乃至担持も、上述の立体障害及び静電的障害によって阻害され、微生物担持数までもが低下することになる。   Furthermore, since the surface of the microorganism is generally negatively charged, the contact or loading of the microorganism with respect to bamboo charcoal is inhibited by the above-mentioned steric hindrance and electrostatic hindrance, and the number of the microorganism loading is also reduced.

従って元素数比O/Cが10%を超えると、酸素含有官能基による立体障害及び静電的障害によって、担持微生物による特定の機能の発現は、大幅に阻害されるので好ましくない。   Therefore, if the element number ratio O / C exceeds 10%, the expression of a specific function by the supported microorganism is greatly inhibited due to steric hindrance and electrostatic hindrance due to the oxygen-containing functional group, which is not preferable.

酸素含有官能基の形成が少ない場合(元素数比O/Cが1%より少ない場合)は、竹炭の表面の水素、酸素過電圧が著しく低下するため、水素、酸素発生領域を超えて電位を印加するとガス発生(H、O)が起こるため好ましくない。 When the formation of oxygen-containing functional groups is small (when the element ratio O / C is less than 1%), the hydrogen and oxygen overvoltages on the surface of bamboo charcoal are significantly reduced, so a potential is applied across the hydrogen and oxygen generation regions. Then, gas generation (H 2 , O 2 ) occurs, which is not preferable.

上述したように、本発明の導電性微生物担体を構成する竹炭は、ESCAによる表面分析でC1S及びO1Sピーク面積から求める元素数比O/Cが1〜10%、好ましくは1〜5%、より好ましくは2〜3%のものが選別されて得られたものであり、上記の範囲であれば、担持された微生物の特定の機能を十分に発現する導電性を有することができる。 As described above, bamboo charcoal constituting the conductive microorganism carrier of the present invention has an element number ratio O / C determined from the C 1S and O 1S peak areas by surface analysis by ESCA of 1 to 10%, preferably 1 to 5%. More preferably, it is obtained by screening 2 to 3%, and if it is in the above range, it can have conductivity sufficient to express a specific function of the supported microorganism.

上記性質の他に、導電性微生物担体において、導電性微生物担体と担持微生物との間の電子移動の反応密度は、電極の比表面積に大きく依存する。導電性微生物担体の比表面積を大きくすることは、電子移動の反応密度を増加させることに繋がる。   In addition to the above properties, in the conductive microorganism carrier, the reaction density of the electron transfer between the conductive microorganism carrier and the supporting microorganism depends greatly on the specific surface area of the electrode. Increasing the specific surface area of the conductive microorganism carrier leads to an increase in the reaction density of electron transfer.

本発明の導電性微生物担体は、窒素吸着により測定したBET比表面積が、好ましくは1m/g(窒素吸着量)以上、より好ましくは4.5m/g(窒素吸着量)以上、さらに好ましくは7.0m/g(窒素吸着量)以上であることである。 The conductive microbial carrier of the present invention has a BET specific surface area measured by nitrogen adsorption of preferably 1 m 2 / g (nitrogen adsorption amount) or more, more preferably 4.5 m 2 / g (nitrogen adsorption amount) or more, and further preferably Is 7.0 m 2 / g (nitrogen adsorption amount) or more.

本発明の導電性微生物担体に担持される対象は、微生物に限定されず、例えば酵素などの生体由来の物質であってもよい。   The target carried on the conductive microbial carrier of the present invention is not limited to microorganisms, and may be biologically derived substances such as enzymes.

以下に、本発明の実施例を説明するが、本発明はかかる実施例によって限定されない。   Examples of the present invention will be described below, but the present invention is not limited to such examples.

実施例1
<試料の調整>
(試料1)
竹片を還元雰囲気下(窒素気流中)にて1250℃で焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が1.00の竹炭を得た。得られた竹炭を破砕して、平均長径2〜5cm、平均短形1〜2cmの楕円体状とした。
Example 1
<Sample preparation>
(Sample 1)
The bamboo piece was fired at 1250 ° C. in a reducing atmosphere (in a nitrogen stream), and the ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in the Raman spectroscopic spectrum was 1. 00 bamboo charcoal was obtained. The obtained bamboo charcoal was crushed into an ellipsoidal shape having an average major axis of 2 to 5 cm and an average minor axis of 1 to 2 cm.

(試料2)
竹片を還元雰囲気下(窒素気流中)にて1400℃で焼成し、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が1.20の竹炭を得た。得られた竹炭を破砕して、平均長径2〜5cm、平均短形1〜2cmの楕円体状とした。
(Sample 2)
The bamboo piece was fired at 1400 ° C. in a reducing atmosphere (in a nitrogen stream), and the ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in the Raman spectroscopic spectrum was 1. 20 bamboo charcoals were obtained. The obtained bamboo charcoal was crushed into an ellipsoidal shape having an average major axis of 2 to 5 cm and an average minor axis of 1 to 2 cm.

<物性値の測定>
上記の各試料について、以下ア〜ウに示す測定を行った。各測定の結果は表1に示した。
<Measurement of physical properties>
About each said sample, the measurement shown to a) below was performed. The results of each measurement are shown in Table 1.

ア.ラマン分光ピーク比の測定
顕微ラマン分光分析装置(Jobin−Yvon製U−1000ラマンシステム)を用いて、試料表面における、1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)を測定し、強度比(P1/P2)を算出した。
A. Measurement of Raman spectral peak ratio Using a microscopic Raman spectroscopic analyzer (U-1000 Raman system manufactured by Jobin-Yvon), 1580 cm −1 peak intensity (P1) and 1360 cm −1 peak intensity (P2) on the sample surface were measured. The intensity ratio (P1 / P2) was calculated.

イ.BET比表面積の測定
試料の比表面積を、窒素吸着によるBET法によって測定した。
I. Measurement of BET specific surface area The specific surface area of the sample was measured by the BET method by nitrogen adsorption.

ウ.表面導電性の測定
室温において、長さ140mm、幅、深さ共に10mmの溝を有する容器の溝に、上記の試料を砕いて充填して充填極を形成し、溝の長手方向の両端部に通電極を設け、長手方向に50mmの間隔を開けて充填極に電圧計の電極を差し込み、通電値10mAにおいて、直流四端子法によって充填極の表面導電性を測定した。本発明において、表面導電性は、好ましくは、1kΩcm以下、より好ましくは、200Ωcm以下、最も好ましくは100Ωcm以下である。
C. Measurement of surface conductivity At room temperature, the above sample is crushed and filled into a groove of a container having a length of 140 mm, a width and a depth of 10 mm to form a filling electrode, and at both ends in the longitudinal direction of the groove A through electrode was provided, and an electrode of a voltmeter was inserted into the filling electrode at an interval of 50 mm in the longitudinal direction, and the surface conductivity of the filling electrode was measured by a direct current four-terminal method at an energization value of 10 mA. In the present invention, the surface conductivity is preferably 1 kΩcm or less, more preferably 200 Ωcm or less, and most preferably 100 Ωcm or less.

<生物脱硫試験>
試験用の生物学的ガス処理装置が備える層高約100mm、内径約100mmの充填部に、上記の試料を充填し、28℃、+0.2(V vs Ag/AgCl)の電圧を印加し、該充填部において、下記被処理ガスと下記循環液とを向流で接触させて、生物脱硫試験を連続的に行った。被処理ガスには空気注入は行わなかった。
<Biodesulfurization test>
The above sample is filled in a packed portion having a layer height of about 100 mm and an inner diameter of about 100 mm provided in the biological gas processing apparatus for testing, and a voltage of 28 ° C. and +0.2 (V vs Ag / AgCl) is applied, In the filling section, the following gas to be treated and the following circulating liquid were brought into contact with each other in countercurrent, and the biodesulfurization test was continuously performed. No air was injected into the gas to be treated.

連続運転の過程で脱硫処理後の処理ガスをガスクロマトグラフィー分析に供し、硫化水素濃度の定量を行った。   In the process of continuous operation, the treated gas after the desulfurization treatment was subjected to gas chromatography analysis, and the hydrogen sulfide concentration was quantified.

被処理ガス:搾乳牛糞尿メタン発酵処理施設(4t/日)発酵槽からのバイオガスを用いた。組成比(体積)は、CH:53%、CO:47%、HS:1800〜2000ppmである。導入バイオガスの流量は150ml/minとした。
循環液:メタン発酵消化液を循環させた。
Gas to be treated: Milking cow manure methane fermentation treatment facility (4t / day) Biogas from the fermenter was used. The composition ratio (volume) is CH 4 : 53%, CO 2 : 47%, H 2 S: 1800 to 2000 ppm. The flow rate of introduced biogas was 150 ml / min.
Circulating fluid: A methane fermentation digestive fluid was circulated.

結果を表1に示す。   The results are shown in Table 1.

<評価>
試料1、2を用いた各々の試験において、継続運転を行っても、バイオガス流量の低下が確認されなかった。
<Evaluation>
In each test using Samples 1 and 2, a decrease in the biogas flow rate was not confirmed even if continuous operation was performed.

試料1、2は、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上であり、本発明の導電性微生物担体としての要件を満たす場合は、脱硫機能が好適に発現していることがわかる。特に、ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が1.2以上である試料2では、脱硫機能も特に優れていることがわかる。 Samples 1 and 2 have a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in the Raman spectroscopic spectrum of 0.85 or more, and are used as the conductive microorganism carrier of the present invention. It can be seen that the desulfurization function is suitably developed when the above requirement is satisfied. In particular, the sample 2 in which the ratio (P1 / P2) of the 1580 cm −1 peak intensity (P1) to the 1360 cm −1 peak intensity (P2) in the Raman spectrum is 1.2 or more has a particularly excellent desulfurization function. Recognize.

Claims (3)

ラマン分光スペクトルにおける1580cm−1ピーク強度(P1)と1360cm−1ピーク強度(P2)の比(P1/P2)が0.85以上である竹炭からなることを特徴とする導電性微生物担体。 A conductive microbial carrier comprising a bamboo charcoal having a ratio (P1 / P2) of 1580 cm −1 peak intensity (P1) to 1360 cm −1 peak intensity (P2) in a Raman spectroscopic spectrum of 0.85 or more. ESCAによる表面分析でC1S及びO1Sピーク面積から求める元素数比O/Cが1〜10%である竹炭からなることを特徴とする導電性微生物担体。 A conductive microbial carrier comprising bamboo charcoal having an element number ratio O / C of 1 to 10% obtained from C 1S and O 1S peak areas by surface analysis by ESCA. 生物脱硫槽の導電性充填材として用いる請求項1又は2記載の導電性微生物担体。   The conductive microbial carrier according to claim 1 or 2, which is used as a conductive filler in a biological desulfurization tank.
JP2010083973A 2010-03-31 2010-03-31 Electroconductive microorganism carrier Pending JP2011211977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083973A JP2011211977A (en) 2010-03-31 2010-03-31 Electroconductive microorganism carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083973A JP2011211977A (en) 2010-03-31 2010-03-31 Electroconductive microorganism carrier

Publications (1)

Publication Number Publication Date
JP2011211977A true JP2011211977A (en) 2011-10-27

Family

ID=44942420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083973A Pending JP2011211977A (en) 2010-03-31 2010-03-31 Electroconductive microorganism carrier

Country Status (1)

Country Link
JP (1) JP2011211977A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133593A (en) * 1988-11-11 1990-05-22 Mitsui Eng & Shipbuild Co Ltd Carbonaceous electrode
JPH0467568A (en) * 1990-07-06 1992-03-03 Mitsui Eng & Shipbuild Co Ltd Anode electrode material and electrochemical device using the same
JPH10251620A (en) * 1997-03-07 1998-09-22 Shinko Kisho:Kk Nonferrous metallic conductive powder using bamboo charcoal and preparation thereof
JP2000042585A (en) * 1998-07-29 2000-02-15 Toho Rayon Co Ltd Biomembrane carrier, water purifying device using the biomembrane carrier, purifying method of water and method for forming algal field
JP2000166584A (en) * 1998-12-08 2000-06-20 Osaka Gas Co Ltd Reactor for producing alkanol
JP2004135668A (en) * 2002-09-26 2004-05-13 Gsi Creos Corp Carrier for culturing cell and method for culturing the cell
JP2006159112A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
JP2007175048A (en) * 2005-12-02 2007-07-12 Npo Nihon Yuki No Sato Wo Susumerukai Culture medium to be used in organic cultivation of field crop
JP2008169491A (en) * 2007-01-09 2008-07-24 Shin Nippon Tex Kk Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2009065940A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology Method for culturing microorganism and apparatus for culturing microorganism
JP2009298690A (en) * 2008-06-13 2009-12-24 Food Industry Research & Development Inst Bacterial cellulose film and carbon nanotube-like thin film structure developed from bacterial cellulose
JP2010029746A (en) * 2008-07-25 2010-02-12 Ihi Corp Biological desulfurization method and apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133593A (en) * 1988-11-11 1990-05-22 Mitsui Eng & Shipbuild Co Ltd Carbonaceous electrode
JPH0467568A (en) * 1990-07-06 1992-03-03 Mitsui Eng & Shipbuild Co Ltd Anode electrode material and electrochemical device using the same
JPH10251620A (en) * 1997-03-07 1998-09-22 Shinko Kisho:Kk Nonferrous metallic conductive powder using bamboo charcoal and preparation thereof
JP2000042585A (en) * 1998-07-29 2000-02-15 Toho Rayon Co Ltd Biomembrane carrier, water purifying device using the biomembrane carrier, purifying method of water and method for forming algal field
JP2000166584A (en) * 1998-12-08 2000-06-20 Osaka Gas Co Ltd Reactor for producing alkanol
JP2004135668A (en) * 2002-09-26 2004-05-13 Gsi Creos Corp Carrier for culturing cell and method for culturing the cell
JP2006159112A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
JP2007175048A (en) * 2005-12-02 2007-07-12 Npo Nihon Yuki No Sato Wo Susumerukai Culture medium to be used in organic cultivation of field crop
JP2008169491A (en) * 2007-01-09 2008-07-24 Shin Nippon Tex Kk Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2009065940A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology Method for culturing microorganism and apparatus for culturing microorganism
JP2009298690A (en) * 2008-06-13 2009-12-24 Food Industry Research & Development Inst Bacterial cellulose film and carbon nanotube-like thin film structure developed from bacterial cellulose
JP2010029746A (en) * 2008-07-25 2010-02-12 Ihi Corp Biological desulfurization method and apparatus

Similar Documents

Publication Publication Date Title
Baek et al. Role and potential of direct interspecies electron transfer in anaerobic digestion
Bian et al. Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO 2 using Sporomusa ovata
Beckers et al. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum
Tian et al. CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing
NL1035340C2 (en) Device and method for carrying out a biologically catalyzed electrochemical reaction.
Khan et al. Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles
Kitcha et al. Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads
Igarashi et al. Direct interspecies electron transfer mediated by graphene oxide-based materials
Bernal et al. Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite “leaves”
US20110123835A1 (en) Methane-powered microbial fuel cells
Hu et al. 3D Pt/Graphene foam bioplatform for highly sensitive and selective in-situ adsorption and detection of superoxide anions released from living cells
US20220348468A1 (en) Procedure for the doping of graphene oxide by the use of microorganisms, nitrogen- and sulfur-dual doped graphene thus obtained and its use
de Nicolás et al. Evaluating bioelectrochemically-assisted constructed wetland (METland®) for treating wastewater: Analysis of materials, performance and electroactive communities
Flores et al. Biodegradation of carbamazepine and production of bioenergy using a microbial fuel cell with bioelectrodes fabricated from devil fish bone chars
AU2016344003A1 (en) Bioelectrochemical methods and systems for efficient production of graphene oxide and hydrogen
CA3060784A1 (en) Multi-purpose bio-electrical modules and procedures
Yang et al. Promoting biomethane production from propionate with Fe2O3@ carbon nanotubes composites
Liu et al. Optimizing biochar and conductive carbon black composites as cathode catalysts for microbial fuel cells to improve isopropanol removal and power generation
Aryal et al. Surface-modified activated carbon for anaerobic digestion to optimize the microbe-material interaction
Liu et al. Triggering photo fermentative biohydrogen production through NiFe2O4 photo nanocatalysts with various excitation sources
JP2011211977A (en) Electroconductive microorganism carrier
Idris et al. Simultaneous naphthalene degradation and electricity production in a biowaste-powered microbial fuel cell
JP5368278B2 (en) Carbon electrode for biochemical reaction
Piloni et al. Chemical properties of biosilica and bio-oil derived from fast pyrolysis of Melosira varians
JP5430474B2 (en) Biological gas processing method and biological gas processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318