JP2011211965A - Heated/sterilized/dried plant prepared using aqua gas, and method for preparing the same - Google Patents

Heated/sterilized/dried plant prepared using aqua gas, and method for preparing the same Download PDF

Info

Publication number
JP2011211965A
JP2011211965A JP2010083490A JP2010083490A JP2011211965A JP 2011211965 A JP2011211965 A JP 2011211965A JP 2010083490 A JP2010083490 A JP 2010083490A JP 2010083490 A JP2010083490 A JP 2010083490A JP 2011211965 A JP2011211965 A JP 2011211965A
Authority
JP
Japan
Prior art keywords
heated
heating
plant
drying
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010083490A
Other languages
Japanese (ja)
Other versions
JP5967639B2 (en
Inventor
Kaku Saotome
格 五月女
Seiichiro Isobe
誠一郎 五十部
Makiko Takenaka
真紀子 竹中
Hiroshi Okatome
博司 岡留
Tetsuo Ogawa
哲郎 小川
Katsuyuki Chikashige
克幸 近重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
National Agriculture and Food Research Organization
Original Assignee
Shimane Prefecture
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture, National Agriculture and Food Research Organization filed Critical Shimane Prefecture
Priority to JP2010083490A priority Critical patent/JP5967639B2/en
Publication of JP2011211965A publication Critical patent/JP2011211965A/en
Application granted granted Critical
Publication of JP5967639B2 publication Critical patent/JP5967639B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heated/sterilized/dried plant prepared using aqua gas, and to provide a method for preparing the plant.SOLUTION: This method for preparing the heated/sterilized/dried plant includes low-invasively heat treating a plant after harvesting so as to suppress depletion of antioxidative component, suppress discoloring/fading, decrease the number of general live bacteria, and effectively evaporate moisture. In more details, the method for preparing the dried plant includes continuously jetting hot water and/or steam heated to 100°C or more into a heating chamber of semi-sealed space, heated to equal to or above the temperature so as to generate minute water drops and wet heat steam, replacing air in the heating chamber by the minute water drops and wet heat steam followed by filling with gas component having a composition of a humidity of not less than 95% and not more than 1% oxygen concentration and kept in a 90-180°C temperature zone, and performing heating/sterilization treatment by subjecting by the heating medium, a material to be heated to continuous amplitude heating with not less than 10°C temperature difference in the temperature zone so as to heat treat. A product of the dried plant is also provided.

Description

本発明は、微細水滴を含んだ過熱水蒸気「アクアガス」(登録商標)を用いて得られる加熱・殺菌・乾燥植物とその調製方法に関するものであり、更に詳しくは、植物を、アクアガスを用いて、低侵襲的に加熱処理することによって、植物の抗酸化成分の減耗抑制と変・退色の抑制及び一般生菌数の低減並びに効率的な水分の蒸発を図ることを可能とした、加熱・殺菌・乾燥植物とその調製方法に関するものである。本明細書では、高温微細水滴と過熱水蒸気をノズルから混合、噴霧することにより発生させた加熱媒体である、微細水滴を含んだ過熱水蒸気を「アクアガス」と記載し、該加熱媒体を用いた加熱、殺菌、乾燥方法を、アクアガスを用いた加熱、殺菌、乾燥方法と記載し、該方法により調製した抗酸化成分高含有製品を加熱・殺菌・乾燥植物と記載することがある。   The present invention relates to a heated / sterilized / dried plant obtained using superheated steam “Aquagas” (registered trademark) containing fine water droplets and a method for preparing the same, more specifically, using aquagas for the plant, By heat-treating minimally invasively, it is possible to reduce the amount of antioxidant components in plants, to suppress discoloration / fading, to reduce the number of general viable bacteria, and to efficiently evaporate water. The present invention relates to a dried plant and its preparation method. In this specification, superheated steam containing fine water droplets, which is a heating medium generated by mixing and spraying high-temperature fine water droplets and superheated steam from a nozzle, is referred to as “aqua gas”, and heating using the heating medium is performed. The sterilization and drying method may be described as a heating, sterilization and drying method using aqua gas, and a product containing a high antioxidant component prepared by the method may be described as a heating, sterilizing and drying plant.

現在、食材・食品の機能性や安全性などに関する消費者の関心が高く、総じて国産品への需要が高い状況となっている。しかし、その原料となる植物や農産物の収穫時期は限られており、国産原料の安定的な供給や、多穫期の収穫後の植物の有用成分の減耗などを減じるために、特に品質劣化が早い葉物原料を長期保存する乾燥技術について、種々検討されている。これらの収穫直後の葉物原料を、余り品質を損なわないで、1次加工処理を行い、長期貯蔵を行い、通年的に原料として供給するシステムを確立できれば、収穫期に左右されないで、国産葉物原料の安定的な供給が可能となると考えられる。   Currently, consumers are highly interested in the functionality and safety of ingredients and food, and the demand for domestic products is generally high. However, the harvest time of plants and agricultural products that are the raw materials is limited, and quality degradation is particularly serious in order to reduce the supply of domestic raw materials and the depletion of useful components of plants after harvest in the high harvest season. Various drying techniques for preserving early leaf material for a long period of time have been studied. If these leaf raw materials are harvested without losing their quality, primary processing, long-term storage, and a system that supplies them as raw materials throughout the year can be established. It is thought that stable supply of raw materials will be possible.

しかし、現実には、国産葉物原料の長期貯蔵技術や、通年的に食材として供給することを可能とする価格性能比の高い実用的・汎用的な技術は確立されておらず、葉物の有用成分のロスを減じることや、植物や葉物農産物の鮮度や機能性を損なわずに、妥当な価格で、安定的に消費者に供給することは困難な状況となっているのが実情である。季節性の高い国産植物や農産物の通年利用については、生の原料では、貯蔵中の品質の劣化の問題があり、更に、従来の乾燥方法では、生の原料と比べて、価格的にも高コストで、成分的にも劣る、通風乾燥、凍結乾燥、減圧乾燥や過熱水蒸気乾燥などによる乾燥原料を使用する以外には、十分に利用できない状況にあり、特に、国産葉物原料の端境期には、輸入植物や農産物を使用せざるを得ない状況にある。   However, in reality, the long-term storage technology for domestic leaf materials and the practical and general-purpose technology with a high price-performance ratio that can be supplied as food throughout the year have not been established. In reality, it is difficult to stably supply consumers at a reasonable price without reducing the loss of useful ingredients and without sacrificing the freshness and functionality of plants and leaf products. is there. With regard to year-round use of domestic plants and agricultural products with high seasonality, raw materials have a problem of quality deterioration during storage, and the conventional drying method is more expensive than raw materials. It is in a situation where it cannot be used sufficiently except for using dry materials such as ventilation drying, freeze drying, reduced pressure drying or superheated steam drying, which are inferior in terms of cost and ingredients, especially in the off-season of domestic leaf material In other words, imported plants and agricultural products must be used.

他方、過熱水蒸気加熱は、高温高圧で、高カロリーで、しかも、熱エネルギー的に準安定な乾燥水蒸気を利用できるため、例えば、食品の加熱焼成手段などとして、広くその応用技術が提案されている(特許文献1〜5)。農産物の乾燥法としては、上記の通風乾燥、凍結乾燥、減圧乾燥、過熱水蒸気乾燥などが用いられている。   On the other hand, since superheated steam heating can use dry steam which is high temperature and pressure, high calorie, and metastable in terms of heat energy, its application technology has been widely proposed as a means for heating and baking foods, for example. (Patent Documents 1 to 5). As drying methods for agricultural products, the above-described ventilation drying, freeze drying, reduced pressure drying, superheated steam drying and the like are used.

一方、本発明者らは、先行技術として、アクアガスによる加熱方法を開発し、報告している。このアクアガス加熱技術については、過熱水蒸気加熱技術を応用した高品質調理、食材加工システムとして、これまでに、高圧下で水を沸騰させ、高温微細水滴と過熱水蒸気をノズルから混合して噴霧することにより発生させる新しい加熱媒体の発生方法とその装置を開発し、特許出願している(特許文献6)。   On the other hand, the present inventors have developed and reported a heating method using aqua gas as a prior art. As for this aqua gas heating technology, as a high-quality cooking and food processing system that applies superheated steam heating technology, water has been boiled under high pressure and high temperature fine water droplets and superheated steam are mixed and sprayed from a nozzle. A new heating medium generating method and apparatus for generating the heating medium have been developed and a patent application has been filed (Patent Document 6).

また、加熱対象・目的に応じた最適加熱処理技術として、上記の新しい加熱媒体以外に、飽和水蒸気、過熱水蒸気を同一の装置によって発生させる方法及び装置について特許出願している(特許文献7)。更に、アクアガスの発生条件(臨界内部圧力の発見)を明らかにして、安定的制御方法について、提案している(特許文献8)が、これらの用途は、殺菌を主とした加熱処理を目的としたものであり、乾燥技術としての用途については、言及されていない。   In addition to the above-mentioned new heating medium, a patent application has been filed for a method and apparatus for generating saturated steam and superheated steam by the same apparatus as the optimum heat treatment technique according to the heating object and purpose (Patent Document 7). Furthermore, the conditions for generating aqua gas (discovery of the critical internal pressure) have been clarified and a stable control method has been proposed (Patent Document 8), but these uses are aimed at heat treatment mainly for sterilization. The use as a drying technique is not mentioned.

このアクアガスは、優れた加熱特性を有することから、調理前の生鮮野菜の表面殺菌処理やジャガイモなどの加工食材の酵素失活や澱粉のα化処理などにおいて、既存の湿熱加熱(茹で、蒸し)や、乾熱加熱(オーブン)の何れよりも、品質の面や殺菌効果の面でも優れていることから、その利用方法が提案され、一部、実用化されている。   This aqua gas has excellent heating characteristics, so existing wet heat (boiled and steamed) is used for surface sterilization of fresh vegetables before cooking, enzyme deactivation of processed foods such as potatoes, and gelatinization of starch. In addition, since it is superior in terms of quality and sterilization effect than any of dry heat heating (oven), its utilization method has been proposed and partially put into practical use.

しかし、アクアガスは、乾燥用の加熱媒体としては、過熱水蒸気よりも乾燥速度は遅く、効率の面からも今まで検討をされてこなかったが、近年、高い機能性を有した農産物の加工素材として、乾燥素材としての割合が増えることで、機能性成分の保持や、劣化抑制のための新しい乾燥法が求められる傾向となってきた。一般に、凍結乾燥法が、このような熱劣化の抑制を可能にした乾燥法としてよく知られているが、装置コストが高く、更に処理時間も長く、そのことが、冷凍乾燥処理後の食品素材のコスト高を誘引している。そこで、当技術分野においては、凍結乾燥法よりも安価で、効率的に乾燥を行うことができ、従来法よりも、乾燥素材としての品質が優れた製品を調製できる新しい処理技術の開発が強く要請されている。   However, aqua gas has a slower drying rate than superheated steam as a heating medium for drying, and has not been studied from the viewpoint of efficiency, but in recent years it has been used as a processing material for agricultural products with high functionality. As the ratio of the dry material increases, a new drying method for maintaining functional components and suppressing deterioration has been demanded. In general, the freeze-drying method is well known as a drying method that makes it possible to suppress such thermal degradation, but the equipment cost is high and the processing time is also long, which means that the food material after freeze-drying processing Is attracting high costs. Therefore, in this technical field, the development of new processing technology that can produce a product that is cheaper and more efficient than freeze-drying methods and that is superior in quality as a dry material compared to conventional methods is strongly developed. It has been requested.

従来の乾燥処理において、脂溶性の機能性物質などを多く含む農産物の乾燥については、以下のような問題点、すなわち、加熱時に生じる酸化による油脂成分や脂質含有素材の劣化については、これらが機能性成分の場合には、特に農産物の乾燥処理には用いることができない、また、減圧乾燥や、凍結乾燥については、コスト高や、処理時間などの経済的課題、また、最近は、過熱水蒸気による乾燥処理も試みられているが、安定的な過熱水蒸気の温度域(概ね150℃以上)では、低酸素状態であるが、温度自身高いこともあり、短時間処理でも熱劣化による品質や色、香りといった面での嗜好性も低下する傾向がある、などの問題点があり、その解決が求められていた。   In the conventional drying treatment, the drying of agricultural products containing a large amount of fat-soluble functional substances, etc., the following problems, that is, these functions for the deterioration of fat components and lipid-containing materials due to oxidation caused by heating In the case of sexual components, it cannot be used especially for the drying treatment of agricultural products, and for vacuum drying and freeze drying, economic problems such as high cost and processing time, and recently due to superheated steam Although a drying process has also been attempted, in a stable superheated steam temperature range (approximately 150 ° C. or higher), it is in a low oxygen state, but the temperature itself may be high. There has been a problem that the palatability in terms of fragrance tends to decrease, and there has been a need for a solution.

特開平06−090677号公報Japanese Patent Laid-Open No. 06-090677 特開2001−061655号公報JP 2001-061655 A 特開2001−214177号公報JP 2001-214177 A 特開2001−323085号公報Japanese Patent Laid-Open No. 2001-323085 特開2002−194362号公報JP 2002-194362 A 特開2004−358236号公報JP 2004-358236 A 特開2007−064564号公報JP 2007-066464 A 特開2009−091386号公報JP 2009-091386 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、国産植物や葉物農産物を通年的に素材として供給するシステムを確立することを目標として鋭意研究を積み重ねた結果、旬の植物などの植物素材を、アクアガスを用いて低侵襲的に加熱処理することによって、植物に含まれる抗酸化成分の減耗抑制と、変・退色の抑制及び一般生菌数の低減並びに効率的な水分の蒸発を図ることが可能であり、長期間保存性及びその保存安定性などの優位性を付与した乾燥素材として、通年的に供給することが実現できることを見出し、本発明を完成するに至った。   In such a situation, the present inventors, in view of the prior art, as a result of intensive research with the goal of establishing a system for supplying domestically produced plants and leafy agricultural products as raw materials year-round, Plant materials such as seasonal plants are heat-treated with aquagas in a minimally invasive manner, suppressing the depletion of antioxidant components contained in plants, suppressing discoloration / fading, reducing the number of general viable bacteria, and efficiently It is possible to achieve a sufficient evaporation of water, and as a dry material that has advantages such as long-term storage stability and storage stability, it has been found that it can be supplied year-round and to complete the present invention. It came.

本発明は、アクアガスを用いて、植物に旬の高品質維持などの優位性を付与して、その常温保存と常温輸送を可能とする、高品質の加熱・殺菌・乾燥植物を提供することを目的とするものである。また、本発明は、アクアガスを用いて、高い歩留まり、長期間保存性及びその保存安定性などの優位性を付与した抗酸化成分高含有乾燥素材を製造し、供給することを可能とする、植物や葉物農産物の新しい加工処理手法を提供することを目的とするものである。   The present invention provides a high-quality heated / sterilized / dried plant that uses aqua gas to give the plant superiority such as maintaining high quality of the season, and enables storage at room temperature and transportation at room temperature. It is the purpose. In addition, the present invention is a plant that makes it possible to produce and supply a dry material with a high antioxidant component content that has advantages such as high yield, long-term storage stability and storage stability using aqua gas. The purpose is to provide a new processing method for food and leaf products.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)収穫後の植物を、下記の加熱・殺菌処理方法を用いて低侵襲的に加熱処理することによって、植物の抗酸化成分の減耗抑制と変・退色の抑制及び一般生菌数の低減並びに水分の蒸発を図ることにより、抗酸化成分高含有の加熱・殺菌・乾燥植物を調製する方法であって、
次の工程;1)少なくとも100℃に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させる工程、2)上記微細水滴と湿熱水蒸気で上記加熱室内の空気を置換させて、少なくとも湿度95%及び多くとも酸素濃度1%の組成を有し、90〜180℃の温度領域に保持されたガス成分で満たす工程、3)上記微細水滴と湿熱水蒸気からなる加熱媒体で、被加熱材料に、上記温度領域で、少なくとも10℃の温度差の連続振幅加熱を施して加熱・殺菌処理する工程、により、加熱処理することを特徴とする乾燥植物の調製方法。
(2)下記の発生及び加熱条件の加熱媒体
1)給水量:10spm〜200spm
2)庫内制御温度:100℃〜150℃
3)加熱時間:2分〜20分
で加熱することにより、被加熱植物の水分含量が多くとも10%に保持されて成る乾燥植物を調製する、前記(1)記載の乾燥植物の調製方法。
(3)植物が農産物である、前記(1)又は(2)記載の加熱・殺菌・乾燥植物の調製方法。
(4)前記(1)から(3)のいずれかに記載の低侵襲的加熱処理方法により調製された、被加熱植物の水分含量が多くとも10%に保持されて成る、抗酸化成分高含有乾燥植物。
(5)下記の発生及び加熱条件の加熱媒体により、低侵襲的加熱処理方法により調製された、
1)給水量:10spm〜200spm
2)庫内制御温度:100℃〜150℃
3)加熱時間:2分〜20分
被加熱植物の多くとも水分含量が10%に保持されて成る、前記(4)記載の乾燥植物。
(6)植物が、農産物である、前記(4)又は(5)記載の抗酸化成分高含有乾燥植物。
(7)上記低侵襲的加熱処理方法により、抗酸化成分の減耗の抑制と、変・退色及び一般生菌数が抑制又は低減されている、前記(4)から(6)のいずれかに記載の抗酸化成分高含有乾燥植物。
The present invention for solving the above-described problems comprises the following technical means.
(1) Plants after harvesting are heat-treated in a minimally invasive manner using the following heating and sterilization treatment methods, thereby suppressing the depletion of antioxidative components of plants, the suppression of discoloration and fading, and the reduction of the number of general viable bacteria. In addition, by evaporating water, a method for preparing a heated, sterilized and dried plant with a high content of antioxidant components,
Next step: 1) Hot water and / or steam heated to at least 100 ° C. are continuously injected into the heating chamber of the semi-enclosed space heated to the same temperature or higher to generate fine water droplets and wet heat steam. 2) Substituting the air in the heating chamber with the fine water droplets and wet heat steam to have a composition of at least a humidity of 95% and an oxygen concentration of at most 1%, and kept in a temperature range of 90 to 180 ° C. A step of filling with a gas component, and 3) a step of subjecting the material to be heated to continuous amplitude heating with a temperature difference of at least 10 ° C. in the above temperature range and heating and sterilizing treatment with the heating medium composed of the fine water droplets and wet heat steam, A method for preparing a dried plant, characterized by heat treatment.
(2) Heating medium under the following generation and heating conditions 1) Water supply amount: 10 spm to 200 spm
2) Internal control temperature: 100 ° C to 150 ° C
3) Heating time: The method for preparing a dried plant according to (1) above, wherein a dried plant is prepared in which the moisture content of the heated plant is maintained at 10% at most by heating in 2 to 20 minutes.
(3) The method for preparing a heated / sterilized / dried plant according to (1) or (2) above, wherein the plant is an agricultural product.
(4) High content of antioxidant components prepared by the minimally invasive heat treatment method according to any one of (1) to (3) above, wherein the moisture content of the plant to be heated is maintained at 10% at most Dry plant.
(5) Prepared by a minimally invasive heat treatment method with a heating medium having the following generation and heating conditions:
1) Amount of water supply: 10 spm to 200 spm
2) Internal control temperature: 100 ° C to 150 ° C
3) Heating time: 2 to 20 minutes The dried plant according to (4) above, wherein the moisture content of most of the heated plants is maintained at 10%.
(6) The dried plant with a high antioxidant component content according to (4) or (5), wherein the plant is an agricultural product.
(7) The suppression according to any one of (4) to (6) above, wherein suppression of depletion of antioxidant components, discoloration / fading and general viable cell count are suppressed or reduced by the minimally invasive heat treatment method. Dry plant with high antioxidant content.

次に、本発明について更に詳細に説明する。
本発明は、植物や葉菜などの植物素材を、速やかに、アクアガス加熱装置で、低侵襲的、且つ迅速に加熱処理して、抗酸化成分の減耗抑制と、変・退色の抑制及び一般生菌数の低減並びに効率的な水分蒸発を図って、水分含有率10%以下の、常温安定性が高く、長期間の常温保存が可能な、抗酸化成分高含有の加熱・殺菌・乾燥植物や葉菜を供給することを特徴とするものである。
Next, the present invention will be described in more detail.
In the present invention, plant materials such as plants and leafy vegetables are promptly heat-treated with an aqua gas heating device in a minimally invasive and rapid manner to suppress the depletion of antioxidant components, the suppression of discoloration / fading and the general life. Heated, sterilized and dried plants with a high antioxidant content and a high moisture content stability of 10% or less, high moisture stability, and long-term storage at room temperature. It is characterized by supplying leafy vegetables.

本発明は、加熱効率が高く、高品質の食材加熱加工が可能な、アクアガスを用いた農産物の乾燥方法に関するものであり、機能性成分の存在を認めた農産物などの高付加価値乾燥素材の製造に関わるものであり、既存の通風乾燥や、一般的な過熱水蒸気による乾燥に比べて、酸化劣化などを抑制して、機能性成分やその活性を保持することを可能とするものであり、これらの乾燥処理後に、粉末化素材などとして、機能性食品などへの利用、加工を可能とするものである。   The present invention relates to a method for drying agricultural products using aqua gas, which has high heating efficiency and enables high-quality food heating processing, and manufacture of high-value-added drying materials such as agricultural products in which the presence of functional components is recognized. Compared with existing ventilation drying and drying with general superheated steam, it is possible to suppress oxidative degradation and retain functional components and their activities. After the drying process, it can be used and processed as a powdered material for functional foods.

本発明者らは、アクアガスを用いた植物素材の乾燥処理を試みたところ、利用する農産物の種類や形状によっては、それほど、過熱水蒸気と変わらない時間で、品質的に優れた乾燥素材を調製できることが明らかになり、更に、農産物中の脂質成分や抗酸化成分の劣化が抑制されることや、色などについても、変色や退色が抑えられることが明らかになった。   The present inventors tried to dry the plant material using aqua gas, and depending on the type and shape of the agricultural product to be used, it is possible to prepare a dry material with excellent quality in a time that is not so different from superheated steam. Furthermore, it became clear that the degradation of lipid components and antioxidant components in agricultural products was suppressed, and that the color and the like were also able to suppress discoloration and fading.

本発明において、「アクアガスを用いて低侵襲的に加熱処理する」とは、植物や農産物を、以下の工程、1)100℃以上に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させる工程、2)上記微細水滴と湿熱水蒸気で上記加熱室内の空気を置換させて、湿度95%以上及び酸素濃度1%以下の組成を有し、90〜180℃の温度領域に保持されたガス成分で満たす工程、3)上記微細水滴と湿熱水蒸気からなる加熱媒体で、被加熱・殺菌材料に、上記温度領域で、少なくとも10℃の温度差の連続振幅加熱を施して加熱・殺菌処理する工程、により、加熱処理することを意味するものとして定義される。   In the present invention, “low-invasive heat treatment using aqua gas” means that plants and agricultural products are subjected to the following steps, 1) hot water and / or steam heated to 100 ° C. or higher, and the same temperature as this. Step of continuously injecting into the heating chamber of the semi-enclosed space heated as described above to generate fine water droplets and wet heat steam, 2) Replacing the air in the heating chamber with the fine water droplets and wet heat steam, and a humidity of 95% Step of filling with a gas component having a composition with an oxygen concentration of 1% or less and held in a temperature range of 90 to 180 ° C. 3) A heating medium composed of the above-mentioned fine water droplets and wet heat steam. In the above temperature range, it is defined as meaning that heat treatment is performed by a step of performing heating and sterilization treatment by performing continuous amplitude heating with a temperature difference of at least 10 ° C.

本発明では、上記アクアガスを用いて、被加熱材料を低侵襲的に加熱処理するための装置として、少なくとも、被加熱材料である植物素材を外気と遮断して加熱する準密閉状態の加熱室、該加熱室を100℃を越える所定の温度に加熱する加熱手段、100℃以上に加熱された熱水及び/又は水蒸気を上記加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させて、所定の方向に移送する水蒸気発生手段、を構成要素として含むアクアガス発生装置が用いられる。   In the present invention, as a device for heat-treating the material to be heated in a minimally invasive manner using the aqua gas, at least a semi-sealed heating chamber that heats the plant material that is the material to be heated from the outside air, A heating means for heating the heating chamber to a predetermined temperature exceeding 100 ° C., hot water and / or steam heated to 100 ° C. or more are continuously injected into the heating chamber to generate fine water droplets and wet heat steam. In addition, an aqua gas generator that includes, as a constituent element, a water vapor generating means that moves in a predetermined direction is used.

本発明では、100℃以上に加熱された熱水及び/又は水蒸気を、上記加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させ、加熱室内部を常圧状態のまま微細水滴と水蒸気で充満させ、湿度95%以上、酸素濃度1.0%以下の組成を有し、90〜180℃の温度領域に保持されたガス成分で、加熱室内部の空気を置換し、該微細水滴と湿熱水蒸気で、加熱室内の被加熱材料に、上記温度領域で、少なくとも10℃の温度差の連続振幅加熱を施して加熱処理する方法が使用される。   In the present invention, hot water and / or steam heated to 100 ° C. or more are continuously jetted into the heating chamber to generate fine water droplets and wet heat steam, and the heating chamber is kept at normal pressure and fine water droplets. The fine water droplets are filled with water vapor, have a composition with a humidity of 95% or more and an oxygen concentration of 1.0% or less, and replace the air in the heating chamber with a gas component held in a temperature range of 90 to 180 ° C. A method is used in which the material to be heated in the heating chamber is subjected to a heat treatment with continuous amplitude heating at a temperature difference of at least 10 ° C. in the above temperature range.

本発明の加熱方法は、1)100℃以上に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に噴射ノズルを介して連続的に噴射させ、微細水滴と湿熱水蒸気を発生させ、2)上記微細水滴と湿熱水蒸気で、上記加熱室内の空気を置換させて、湿度95%以上及び酸素濃度1%以下の組成を有し、90〜180℃の温度領域に保持された微細水滴と高湿度の湿熱水蒸気を含む水蒸気ガス成分で満たし、3)上記微細水滴と湿熱水蒸気で、被加熱材料に、上記温度領域で、少なくとも10℃の温度差の連続振幅加熱を施して加熱処理する、ことを特徴とするものである。   In the heating method of the present invention, 1) hot water and / or steam heated to 100 ° C. or higher are continuously injected into a heating chamber of a semi-enclosed space heated to the same temperature or higher via an injection nozzle. 2) generating fine water droplets and wet heat steam, 2) replacing the air in the heating chamber with the fine water droplets and wet heat steam, and having a composition with a humidity of 95% or more and an oxygen concentration of 1% or less, 90 to 180 ° C. 3) Filled with a water vapor gas component containing fine water droplets and high-humidity moist heat steam held in the temperature range of 3) 3) With the fine water droplets and wet heat steam, the material to be heated has a temperature difference of at least 10 ° C. in the temperature range. The heat treatment is performed by applying continuous amplitude heating.

ここで、本発明でいう「準密閉空間」とは、完全密閉ないし開放空間ではなく、100℃以上に加熱された熱水及び/又は水蒸気を該空間内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させても、該水蒸気等を高温常圧状態のままで充満させることができる空間のことを意味している。本発明において、微細水滴と湿熱水蒸気とは、高湿度の湿熱水蒸気とその凝縮により部分的に生成する微細水滴との混合系を意味し、湿熱水蒸気とは、その高湿度の水蒸気部分を意味し、乾熱水蒸気とは、上記湿熱水蒸気の加熱室内での乾燥現象により部分的に生成する高乾燥水蒸気を意味する。   Here, the “semi-enclosed space” as used in the present invention is not a completely enclosed or open space, but hot water and / or water vapor heated to 100 ° C. or more are continuously injected into the space to form fine water droplets. It means a space that can be filled with the steam and the like in a high temperature and normal pressure state even when wet heat steam is generated. In the present invention, fine water droplets and moist heat steam mean a mixed system of high humidity moist heat steam and fine water droplets partially generated by condensation thereof, and moist heat steam means the high humidity steam portion. The dry heat steam means high dry steam partially generated by the drying phenomenon of the wet heat steam in the heating chamber.

本発明では、上記微細水滴と湿熱水蒸気で、被加熱材料に、90〜180℃の温度領域で、少なくとも10℃の温度差の連続振幅加熱を施して加熱処理するが、ここで、少なくとも10℃の温度差の連続振幅加熱とは、90〜180℃の温度範囲において、短時間に10℃を上回る温度差の振幅を有するノズル付近の温度変化が生起する条件で、連続的に加熱することを意味する。本発明では、例えば、10〜50℃の温度差の振幅で、連続的に、被加熱材料を加熱することができる。   In the present invention, the material to be heated is subjected to a heat treatment with continuous amplitude heating at a temperature difference of at least 10 ° C. in a temperature range of 90 to 180 ° C. with the fine water droplets and wet heat steam. Continuous temperature heating with a temperature difference of 90 ° C. means continuous heating in a temperature range of 90 to 180 ° C. under conditions where a temperature change near the nozzle having a temperature difference exceeding 10 ° C. occurs in a short time. means. In the present invention, for example, the material to be heated can be continuously heated with an amplitude of a temperature difference of 10 to 50 ° C.

本発明では、加熱室を100℃を越える所定の温度に加熱すると共に、該加熱室に熱水及び/又は水蒸気を導入し、該加熱室を水の気体で置換し、酸素濃度を1.0%以下に低下させることにより形成した雰囲気で、被加熱材料を加熱する。本発明において、上記加熱室は、被加熱材料を外気と遮断して加熱することができる所定の準閉鎖系空間で構成され、好適には、例えば、被加熱材料を載せるためのプレート、一部にガラス窓部を形成した開閉可能なドア部を有する準密閉空間が例示される。加熱室は、好適には、ステンレス製の素材で形成される。本発明では、上記加熱室を100℃を越える所定の温度に加熱するが、この場合、好適には、該加熱室に導入する熱水及び/又は水蒸気の温度と同等又はそれ以上に加熱する。   In the present invention, the heating chamber is heated to a predetermined temperature exceeding 100 ° C., hot water and / or water vapor is introduced into the heating chamber, the heating chamber is replaced with water gas, and the oxygen concentration is set to 1.0. The material to be heated is heated in an atmosphere formed by lowering to less than%. In the present invention, the heating chamber is constituted by a predetermined semi-closed system space that can heat the material to be heated from the outside air, and preferably includes, for example, a plate for placing the material to be heated, a part of A semi-enclosed space having an openable and closable door portion in which a glass window portion is formed is exemplified. The heating chamber is preferably formed of a stainless steel material. In the present invention, the heating chamber is heated to a predetermined temperature exceeding 100 ° C. In this case, the heating chamber is preferably heated to a temperature equal to or higher than the temperature of hot water and / or steam introduced into the heating chamber.

上記のように、本発明では、加熱室を所定の温度に加熱すると共に、該加熱室で微細水滴と湿熱水蒸気を発生させ、該加熱室内の空気を水の気体で置換する。この場合、上記微細水滴と湿熱水蒸気は、例えば、細管を通して所定の流速で送水された水を細管の外部からヒータで加熱し、細管の端部に設けられたノズルを介して加熱室に導入することで生成される。上記微細水滴と湿熱水蒸気は、100〜180℃、より好適には、95〜150℃に加熱された高温常圧の微細水滴と高湿度の湿熱水蒸気を含む水蒸気ガス成分であり、被加熱材料を、高いエネルギー効率で加熱する作用を有する。   As described above, in the present invention, the heating chamber is heated to a predetermined temperature, fine water droplets and wet heat steam are generated in the heating chamber, and the air in the heating chamber is replaced with a gas of water. In this case, the fine water droplets and the wet heat steam are, for example, heated by a heater from the outside of the thin tube through a thin tube and introduced into the heating chamber via a nozzle provided at the end of the thin tube. Is generated. The fine water droplets and wet heat water vapor are steam gas components including high temperature and normal pressure fine water droplets heated to 95 to 150 ° C., and more preferably high humidity and heat water vapor. , Has the effect of heating with high energy efficiency.

本発明では、給水タンクの水を給水ポンプで汲み上げ、細管からなる導管を通して水蒸気発生蓄熱パネルに供給し、加熱ヒーターにより、例えば、105〜200℃の所定の温度に加熱し、そのまま、細管の先端に設置した水蒸気噴射ノズルから高速で熱水及び/又は水蒸気を噴射させる。この場合、水蒸気ノズルとしては、先端に微細噴射孔を形成してなる、熱水及び/又は水蒸気を微細化して噴出する機能を有するものであれば、適宜のものが用いられる。   In the present invention, water in a water supply tank is pumped up by a water supply pump, supplied to a steam generation heat storage panel through a conduit made of a thin tube, heated to a predetermined temperature of, for example, 105 to 200 ° C. by a heater, and left as it is at the tip of the thin tube The hot water and / or water vapor is jetted at a high speed from the water vapor jet nozzle installed in the. In this case, as the water vapor nozzle, an appropriate one may be used as long as it has a function of forming a fine injection hole at the tip and spraying hot water and / or water vapor.

微細噴射孔の孔径、孔数、孔の穿設位置などは、任意に設定できる。水蒸気噴射ノズルからの熱水及び/又は水蒸気の噴射速度は、好適には、噴射ノズルの先端において160〜200m/s程度であるが、これらに制限されるものではなく、装置の大きさ、種類及び使用目的などに応じて、例えば、微細噴射孔の孔径、孔数などを変更することにより、任意に設定することができる。   The hole diameter, the number of holes, the drilling position of the holes, etc. can be arbitrarily set. The injection speed of hot water and / or water vapor from the water vapor injection nozzle is preferably about 160 to 200 m / s at the tip of the injection nozzle, but is not limited thereto, and the size and type of the apparatus Depending on the purpose of use and the like, it can be arbitrarily set, for example, by changing the hole diameter, the number of holes, etc. of the fine injection holes.

本発明では、例えば、上記微細噴射ノズルから噴射された水蒸気を加熱室に導入するが、その際に、噴射ノズルの先端に近接して設置した循環ファンに水蒸気を噴射して、循環ファンの回転による衝撃力と風力により所定の風向に水蒸気を移送すると共に、それらの風向に合わせて設置された加熱ヒーターに水蒸気を接触させて、水蒸気をその温度を低下させずに加熱室全体に導入し、該加熱室を所定の温度に保持された水の気体で置換し、湿度95%以上、酸素濃度1.0%以下、より好適には、湿度99.0%以上、酸素濃度1.0%以下のガス成分で加熱室を満たすことにより加熱室内に気体水雰囲気を形成する。   In the present invention, for example, the water vapor injected from the fine injection nozzle is introduced into the heating chamber. At this time, the water vapor is injected into a circulation fan installed in the vicinity of the tip of the injection nozzle to rotate the circulation fan. The water vapor is transferred to a predetermined wind direction by the impact force and wind force of the water, and the water vapor is brought into contact with a heater installed in accordance with the wind direction, and the water vapor is introduced into the entire heating chamber without lowering its temperature, The heating chamber is replaced with a gas of water maintained at a predetermined temperature, and the humidity is 95% or more and the oxygen concentration is 1.0% or less, more preferably, the humidity is 99.0% or more and the oxygen concentration is 1.0% or less. A gas water atmosphere is formed in the heating chamber by filling the heating chamber with the gas components.

微細噴射口から噴射された熱水及び/又は水蒸気は、循環ファンに衝突することで、更に微細化する。また、循環ファンにより形成された風向の風下に設置された加熱ヒーターは、その表面が噴射された熱水及び/又は水蒸気に、直接的に、かつ広面積で接触するように、好適には、噴射された熱水及び/又は水蒸気をなるべく遮るような位置及び方向に設置する。それにより、加熱ヒーターによる熱を噴射された熱水及び/又は水蒸気に効率良く伝達し、噴射された熱水及び/又は水蒸気の温度低下を、確実に防止することが可能となる。   The hot water and / or water vapor injected from the fine injection port is further refined by colliding with the circulation fan. Further, the heater installed in the lee of the wind direction formed by the circulation fan is preferably so that the surface thereof is in direct contact with the sprayed hot water and / or steam in a large area. It is installed in a position and direction so as to block the sprayed hot water and / or water vapor as much as possible. Thereby, it is possible to efficiently transfer the heat from the heater to the injected hot water and / or water vapor, and to reliably prevent a temperature drop of the injected hot water and / or water vapor.

上記循環ファンは、好適には、例えば、加熱室内部の後面側の中央に設置され、噴射された熱水及び/又は水蒸気を、加熱室内部の左側面部及び右側面部に位置するダクト内に設置された加熱ヒーターに直接接触するように移送する機能を有するものが例示されるが、これらに制限されるものではなく、同様の機能を有するものであれば同様に使用することができる。   The circulation fan is preferably installed, for example, in the center of the rear side of the heating chamber, and the sprayed hot water and / or water vapor is installed in a duct located on the left side and right side of the heating chamber. Although the thing which has the function to transfer so that it may contact directly with the heater heated was illustrated, it is not restrict | limited to these, If it has the same function, it can use similarly.

また、上記加熱ヒーターは、好適には、例えば、ヘアピン形状のシーズヒーターなどを多数設置して、噴射された熱水及び/又は水蒸気との接触面積が増えるようにしたものが例示されるが、これらに制限されるものではなく、同様の機能を有するものであれば同様に使用することができる。上記循環ファンの回転数及び回転方向は、装置の大きさ、ダクトの位置、形状、加熱ヒーターの形状、設置位置などを考慮して、噴射された熱水及び/又は水蒸気がダクト内に循環風として循環し得るように設定される。   In addition, the heater is preferably exemplified by a large number of hairpin-shaped sheathed heaters, etc., which increase the contact area with the sprayed hot water and / or steam, However, the present invention is not limited to these and can be used in the same manner as long as they have similar functions. The number of rotations and the direction of rotation of the circulation fan is determined by taking into account the size of the device, the position and shape of the duct, the shape of the heater, the installation position, etc., and the injected hot water and / or steam is circulated into the duct. Is set to be able to circulate as

加熱室は、気体水で置換された段階で、被加熱材料を該加熱室に導入し、上記気体水を熱媒体として利用して、所定の加熱処理を行う。加熱室に導入した被加熱材料は、所定の加熱処理を施した後、適宜のタイミングで加熱室の外に搬出され、被加熱材料に接触した気体水は、気体水排出口から系外に排出される。加熱室内に噴射された熱水及び/又は水蒸気は、まず、循環ファンに衝突し、微細化され、ダクトに移送され、ダクト内に設置した加熱ヒーターに接触し、所定の温度に加熱された後、加熱室内に導入された被加熱材料に接触し、熱媒体として利用された後、系外に排出される。   When the heating chamber is replaced with gaseous water, a material to be heated is introduced into the heating chamber, and a predetermined heat treatment is performed using the gaseous water as a heat medium. The material to be heated introduced into the heating chamber is subjected to a predetermined heat treatment and then carried out of the heating chamber at an appropriate timing, and the gaseous water in contact with the heated material is discharged out of the system from the gaseous water discharge port. Is done. The hot water and / or water vapor injected into the heating chamber first collides with the circulation fan, is refined, transferred to the duct, contacts the heater installed in the duct, and is heated to a predetermined temperature. After contacting the material to be heated introduced into the heating chamber and being used as a heat medium, it is discharged out of the system.

加熱媒体の熱エネルギーは、被加熱材料の加熱処理の熱源として利用されるが、本発明では、噴射された熱水及び/又は水蒸気は、そのまま、被加熱材料に接触するのではなく、一旦、ダクト内に設置された加熱ヒーターにより加熱された後に、被加熱材料に接触し、噴射された熱水及び/又は水蒸気の熱量を低下させることなく、被加熱材料を加熱するので、被加熱材料を効率よく加熱することが可能となる。   The heat energy of the heating medium is used as a heat source for the heat treatment of the material to be heated. In the present invention, the injected hot water and / or water vapor is not directly in contact with the material to be heated, After being heated by the heater installed in the duct, the material to be heated is heated without being brought into contact with the material to be heated and without reducing the amount of heat of the injected hot water and / or water vapor. It becomes possible to heat efficiently.

また、噴射された熱水及び/又は水蒸気は、高速で循環ファンに衝突し、その衝突により衝撃で水滴が分割されて、更に、微細化されると共に、更に、加熱ヒーターで加熱されるので、この微細化された高温の加熱媒体は、肉眼観察で完全に透明な高熱伝導率の高温の水粒子からなり、被加熱材料の内部への浸透性が高く、一旦、被加熱材料の内部へ浸透して熱交換を行った加熱媒体に対し、後続の高温の加熱媒体が熱エネルギーをたえず供給するので、高熱伝導率を有する熱が連続的に内部へ移動し、加熱媒体が、効率よく被加熱材料の内部へ浸透し、短時間で被加熱材料を加熱することができる。   In addition, the injected hot water and / or water vapor collides with the circulation fan at high speed, and the water droplets are divided by the impact due to the collision, and further refined and further heated by the heater, This refined high-temperature heating medium consists of high-temperature water particles with high thermal conductivity that are completely transparent to the naked eye, and has high penetrability inside the material to be heated. Then, the subsequent high-temperature heating medium constantly supplies heat energy to the heat-exchanged heat medium, so that heat with high thermal conductivity is continuously transferred to the inside, and the heating medium is efficiently heated. It penetrates into the inside of the material and can heat the material to be heated in a short time.

本発明において、上記噴出された熱水及び/又は水蒸気の水滴は、循環ファンに衝突することで更に微細化され、殺菌性の微細な水粒子として加熱室に充満する。実験の結果、給水タンクから採取された水のpHは約6.9〜7.1であったが、この殺菌性微細水粒子のpHは、約5.2〜5.8であり、105℃以上の高温条件と協動して、加熱室内で高殺菌性雰囲気を形成する。したがって、本発明を、被加熱材料に適用した場合には、高殺菌性雰囲気下で、被加熱材料を加熱処理することができるので、加熱と同時に高殺菌効果を付与できる。本発明において、上述のアクアガスによる加熱方法及びその装置、その余の具体的な構成については、本発明者らが開発し、報告した公知文献に記載の方法及び装置を適宜採用することができる。   In the present invention, the jetted hot water and / or water vapor droplets are further refined by colliding with the circulation fan, and fill the heating chamber as sterilizing fine water particles. As a result of the experiment, the pH of the water collected from the water supply tank was about 6.9 to 7.1, but the pH of the bactericidal fine water particles was about 5.2 to 5.8, which was 105 ° C. In cooperation with the above high temperature conditions, a highly sterilizing atmosphere is formed in the heating chamber. Therefore, when the present invention is applied to a material to be heated, the material to be heated can be heat-treated in a highly sterilizing atmosphere, so that a high sterilizing effect can be imparted simultaneously with heating. In the present invention, the method and apparatus described in the publicly known literature that has been developed and reported by the present inventors can be appropriately adopted for the above-described heating method using aqua gas, its apparatus, and other specific configurations.

本発明では、後記する実施例に示されるように、アクアガスの優位性を確認したエゴマ葉の乾燥素材の調製方法と同様にして、1)微細水滴を含有した100〜130℃程度の常圧の過熱水蒸気を用いた農産物の乾燥方法及びその素材、2)微細水滴を含有した100〜130℃程度の常圧の過熱水蒸気を用いた農産物の乾燥方法及びその素材、3)微細水滴を含有した100〜130℃程度の常圧の過熱水蒸気を用いた、機能性成分を有する農産物について、機能性成分の酸化劣化を抑制した乾燥方法及びその素材、を提供することができる。   In the present invention, as shown in the examples described later, in the same manner as the preparation method of the dried raw material of sesame leaves in which the superiority of aquagas is confirmed, 1) normal pressure of about 100 to 130 ° C. containing fine water droplets. Agricultural product drying method using superheated steam and its material, 2) Agricultural product drying method using superheated steam at a normal pressure of about 100 to 130 ° C. containing fine water droplets and its material, 3) 100 containing fine water droplets About the agricultural product which has a functional component using about 130 degreeC normal pressure superheated steam, the drying method which suppressed the oxidative degradation of the functional component, and its raw material can be provided.

本発明によるアクアガス乾燥のメリットは、酸素濃度1%以下の低酸素状態、及び高熱効率の点であり、例えば、エゴマ(葉)の乾燥に際して、従来法と比較すると、その特徴は、以下の通りである。尚、本発明は、エゴマの他に、シソ、バジルにも好適に適用可能であり、その他、抗酸化成分を含む植物素材であれば、同様に好適に適用することが可能である。
1)αリノレン酸
通風乾燥(80%) 過熱水蒸気・アクアガス(90−100%)
2)ロスマリン酸
通風乾燥(20%)、過熱水蒸気(60%)、アクアガス(100%)
3)可溶性総ポリフェノール量も良好な残存性を示す。
4)通風乾燥10時間では、生残微生物が確認される。
Advantages of the aqua gas drying according to the present invention are a low oxygen state with an oxygen concentration of 1% or less and a high thermal efficiency. For example, when drying sesame (leaves), the characteristics are as follows. It is. In addition to egoma, the present invention can be suitably applied to perilla and basil. In addition, any plant material containing an antioxidant component can be suitably applied as well.
1) α-Linolenic acid
Ventilation drying (80%) Superheated steam / Aqua gas (90-100%)
2) Rosmarinic acid
Ventilation drying (20%), superheated steam (60%), aqua gas (100%)
3) The amount of soluble total polyphenols also shows good persistence.
4) Survival microorganisms are confirmed after 10 hours of ventilation drying.

本発明による植物原料のアクアガス乾燥技術では、低酸素状態、高熱効率で、植物原料を低侵襲的に加熱・殺菌・乾燥処理することが可能であり、それにより、植物の抗酸化成分の減耗抑制と、植物の変・退色の抑制と、植物の一般生菌数の低減・並びに高効率な水分の蒸発を図ることによる従来の植物乾燥物にみられない、品質及び外観共に良好かつ高品質の植物乾燥物を調製し、提供できるという顕著な作用効果が得られる点で、本発明は、既存の植物乾燥方法乾燥製品と本質的に区別性を有するものである。   The plant raw material aquagas drying technology according to the present invention can heat, sterilize and dry plant materials in a low-oxygen state and with high thermal efficiency in a minimally invasive manner, thereby suppressing the depletion of plant antioxidant components. In addition, the quality and appearance are good and high quality, which is not seen in conventional dried plants, by suppressing plant discoloration and fading, reducing the number of viable bacteria in plants, and evaporating water efficiently. The present invention is essentially different from existing dried plant drying products in that a significant effect of being able to prepare and provide a dried plant product is obtained.

本発明は、植物の水分を単に蒸発、乾燥させるだけではなく、低酸素状態、高熱効率の条件で、植物を低侵襲的に加熱・殺菌・乾燥することを可能とすることを特徴とするものであり、特に、酸素濃度1%以下の低酸素条件で、抗酸化成分を含む植物素材を加熱・殺菌・乾燥する方法として好適に使用されるものであり、抗酸化成分高含有植物素材であれば、その植物の種類に制限されることなく、あらゆる種類の植物原料に好適に適用可能である。本明細書では、抗酸化成分高含有植物の代表例であるエゴマ(葉)を実施例として示したが、本発明は、これと同様に、あらゆる種類の植物原料に適用できるものである。   The present invention is characterized not only by simply evaporating and drying the moisture of the plant, but also allowing the plant to be heated, sterilized and dried minimally invasively under conditions of low oxygen and high thermal efficiency. In particular, it is preferably used as a method for heating, sterilizing and drying plant materials containing antioxidant components under low oxygen conditions with an oxygen concentration of 1% or less. For example, the present invention is not limited to the type of plant and can be suitably applied to all types of plant materials. In this specification, egoma (leaves), which is a typical example of a plant containing a high amount of antioxidant components, is shown as an example. However, the present invention can be applied to all types of plant materials in the same manner.

本発明では、アクアガス乾燥処理後、過熱水蒸気乾燥処理するアクアガス乾燥と過熱水蒸気乾燥を併用する場合、実操業の面で、例えば、連続処理工程において、アクアガス雰囲気を過熱水蒸気雰囲気に切り替えるバッチ処理、あるいはラインで処理する場合に、アクアガス雰囲気と過熱水蒸気雰囲気をセットにして組み込んだ連続処理で、乾燥操作の処理時間を大幅に短縮したり、乾燥操作の効率を大幅に高めたりすることが可能になる、という格別の効果が得られる。このように、アクアガス乾燥は、過熱水蒸気乾燥と組み合わせることで、品質保持の面では、アクアガス単独処理と同等以下であり、相乗効果は認められないが、実操業の面では、これらの処理を併用した場合に、乾燥の操作を短時間に高効率に、かつ多角的に行うことが可能となるという実用上の利点がある。   In the present invention, after using the aqua gas drying treatment, when using the aqua gas drying and the superheated steam drying for the superheated steam drying treatment, in terms of actual operation, for example, in a continuous treatment process, the batch treatment for switching the aqua gas atmosphere to the superheated steam atmosphere, or When processing in line, continuous processing that incorporates an aqua gas atmosphere and a superheated steam atmosphere as a set makes it possible to greatly reduce the processing time of the drying operation and greatly increase the efficiency of the drying operation. , Special effects can be obtained. In this way, aqua gas drying is combined with superheated steam drying, and in terms of quality maintenance, it is less than or equal to aqua gas single treatment, and no synergistic effect is observed, but in actual operation, these treatments are used in combination. In this case, there is a practical advantage that the drying operation can be performed in a short time with high efficiency and in various ways.

本発明により、次のような効果が奏される。
(1)植物や農産物を抗酸化成分による抗酸化性能などの機能性を損なうことなしに、高い歩留まり、旬の高品質維持、簡便性の向上、長期間常温保存性及びその保存安定性などの優位性を付与した乾燥材料として供給することが可能な乾燥植物や乾燥農産物とその加工処理方法を提供することができる。
(2)植物や農産物の高品質化加工及びその供給が可能となり、生産農家には作物の高付加価値化と出荷調整が、産地加工業者には産地振興が、そして、消費者には食の安心と安全確保と食生活の健全化が実現可能となる。
(3)様々な機能性を有する農産物の素材化が可能であり、アクアガス加熱装置で乾燥処理を行うことで、農産物の乾燥素材化の品質の向上、更に、システム化を図ることでコスト低減が期待される。
(4)これらの農産物の乾燥素材は、国産農産物を原料にして長期保存できることから、多収穫時に処理して、通年供給することで、国産農産物の利用率の向上や自給率向上にも寄与できる。
(5)本発明は、従来、真空凍結乾燥法で加工されている、機能性や薬効が重要視される漢方への応用や、油を多く含み酸化が懸念される魚介類、海草類などの乾燥への応用も可能であり、多くの分野へ応用することが可能である。
The present invention has the following effects.
(1) High yield, seasonal high quality maintenance, improved convenience, long-term room temperature storage stability and storage stability, etc. without compromising functionality such as antioxidant performance by antioxidant components in plants and agricultural products It is possible to provide a dry plant or dry agricultural product that can be supplied as a dry material with superiority, and a processing method thereof.
(2) High-quality processing and supply of plants and agricultural products will be possible. High-value-added crops and shipping adjustments will be provided to production farmers, production-region promotion to production-region processors, and food to consumers. It will be possible to ensure safety and security and to improve the soundness of eating habits.
(3) Agricultural products with various functions can be made into raw materials. Drying with an aqua gas heating device can improve the quality of agricultural raw materials and further reduce costs by systematizing them. Be expected.
(4) The dry materials of these agricultural products can be stored for a long time using domestic agricultural products as raw materials, so processing them at the time of high harvesting and supplying them throughout the year can contribute to improving the utilization rate and self-sufficiency rate of domestic agricultural products. .
(5) The present invention is applied to traditional Chinese medicines that have been processed by a vacuum freeze-drying method, where functionality and medicinal properties are important, and drying of seafood, seaweeds and the like that contain a lot of oil and are subject to oxidation. It can also be applied to many fields.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

実施例1
本実施例では、植物茎葉乾燥物の調製、及びそれに含まれるα−リノレン酸とロスマリン酸の含有量の評価を行った。
1.植物茎葉乾燥物の調製
以下の装置、原料を使用して、植物茎葉乾燥物の調製を行った。
(1)使用装置
1)アクアガス装置(アクアクッカー)
アクアガス装置(アクアクッカー)として、(株)タイヨー製作所(北海道北斗市清水川)製、アクアガス試作1号機、を使用した。この装置を、供給水量(spm)160、180、及び200、庫内設定温度120℃、の条件で使用した。
2)過熱水蒸気装置
過熱水蒸気装置として、(株)中国メンテナンス製、SDAHW、を使用した。
3)温風乾燥装置
温風乾燥装置として、八尋産業(株)(岐阜県美加茂市森山町)社製の減圧平衡発熱乾燥機(BCD−2000U)、を使用した。
4)凍結乾燥装置
凍結乾燥装置として、MRTIN CHRIST Gefriertrocknungsanlagen(Germany)社製のALPHA−1−4、を使用した。
Example 1
In the present example, the preparation of dried plant foliage and the content of α-linolenic acid and rosmarinic acid contained therein were evaluated.
1. Preparation of dried plant foliage The following apparatus and raw materials were used to prepare a dried plant foliage.
(1) Equipment used 1) Aqua gas equipment (Aqua-Acker)
As an aqua gas apparatus (aqua accker), Taiyo Mfg. Co., Ltd. (Shimizugawa, Hokuto City, Hokkaido), Aqua Gas Prototype No. 1 was used. This apparatus was used under the conditions of feed water amount (spm) 160, 180, and 200, and a set temperature in the cabinet of 120 ° C.
2) Superheated steam device As a superheated steam device, SDAHW manufactured by China Maintenance Co., Ltd. was used.
3) Warm air drying device As a warm air drying device, a reduced pressure equilibrium exothermic dryer (BCD-2000U) manufactured by Yahiro Sangyo Co., Ltd. (Moriyama-cho, Mikamo, Gifu Prefecture) was used.
4) Freeze-drying apparatus As a freeze-drying apparatus, ALPHA-1-4 manufactured by MRTIN CHRIST Gefriertrockungsangen (Germany) was used.

(2)使用原料
乾燥に供する原料植物茎葉として、エゴマの生葉(葉身)を使用した。エゴマの生葉(葉身)は、島根県農業技術センターの圃場において栽培したものを用いた。
(2) Raw material used Raw sesame leaves (leaf blades) were used as raw material plant stems and leaves for drying. The raw leaves (leaf blades) of egoma were cultivated in the field of Shimane Agricultural Technology Center.

(3)乾燥処理
エゴマの生葉(葉身)25gを、洗浄後、水分を取り除き、これを、それぞれ下記(a)、(b)、(c)及び(d)の四通りの乾燥工程に供して、水分含量が10%以下になるまで乾燥処理を行った。
(a)アクアガス乾燥
以下の条件で、アクアガス乾燥を行った。
1)120℃・160spmで乾燥(所要時間:10分)
2)120℃・180spmで乾燥(所要時間:10分)
3)120℃・200spmで乾燥(所要時間:20分)
(3) Drying treatment After washing 25 g of fresh sesame leaves (leaf blade), the water is removed, and this is subjected to the following four drying steps (a), (b), (c) and (d), respectively. Then, the drying process was performed until the water content became 10% or less.
(A) Aqua gas drying Aqua gas drying was performed under the following conditions.
1) Drying at 120 ° C and 160 spm (required time: 10 minutes)
2) Dry at 120 ° C. and 180 spm (required time: 10 minutes)
3) Dry at 120 ° C and 200 spm (required time: 20 minutes)

(b)過熱水蒸気乾燥
以下の条件で、過熱水蒸気乾燥を行った。
4)120℃で乾燥(所要時間:10分)
5)180℃で乾燥(所要時間:5分)
(B) Superheated steam drying Superheated steam drying was performed under the following conditions.
4) Dry at 120 ° C (required time: 10 minutes)
5) Dry at 180 ° C (required time: 5 minutes)

(c)アクアガス処理後、過熱水蒸気乾燥
以下の条件で、アクアガス処理後、過熱水蒸気乾燥を行った。
6)120℃・200spmでアクアガス処理(所要時間:2分)後、120℃で過熱水蒸気乾燥(所要時間:8分)
7)120℃・200spmでアクアガス処理(所要時間:2分)後、150℃で過熱水蒸気乾燥(所要時間:5分)
8)120℃・200spmでアクアガス処理(所要時間:2分)後、180℃で過熱水蒸気乾燥(所要時間:3分)
(C) Superheated steam drying after aqua gas treatment Superheated steam drying was performed after the aqua gas treatment under the following conditions.
6) Aqua gas treatment at 120 ° C and 200 spm (required time: 2 minutes), followed by superheated steam drying at 120 ° C (required time: 8 minutes)
7) Aqua gas treatment at 120 ° C and 200 spm (required time: 2 minutes), followed by superheated steam drying at 150 ° C (required time: 5 minutes)
8) Aqua gas treatment at 120 ° C and 200 spm (required time: 2 minutes), followed by superheated steam drying at 180 ° C (required time: 3 minutes)

9)120℃・300spmでアクアガス処理(所要時間:2分)後、120℃で過熱水蒸気乾燥(所要時間:8分)
10)120℃・300spmでアクアガス処理(所要時間:2分)後、150℃で過熱水蒸気乾燥(所要時間:5分)
11)120℃・300spmでアクアガス処理(所要時間:2分)後、180℃で過熱水蒸気乾燥(所要時間:3分)
9) Aqua gas treatment at 120 ° C and 300 spm (required time: 2 minutes), followed by superheated steam drying at 120 ° C (required time: 8 minutes)
10) Aqua gas treatment at 120 ° C and 300 spm (required time: 2 minutes), followed by superheated steam drying at 150 ° C (required time: 5 minutes)
11) After aqua gas treatment at 120 ° C and 300 spm (required time: 2 minutes), dry with superheated steam at 180 ° C (required time: 3 minutes)

(d)温風乾燥
以下の条件で、温風乾燥を行った。
12)生葉をそのまま50℃で乾燥(所要時間:10時間)
13)生葉を2分間の蒸熱処理(ブランチング)を行った後、50℃で温風乾燥(所要時間:10時間)
14)生葉を5分間の蒸熱処理(ブランチング)を行った後、50℃で温風乾燥(所要時間:10時間)
(D) Warm air drying Warm air drying was performed under the following conditions.
12) Dry fresh leaves as they are at 50 ° C (required time: 10 hours)
13) Steaming the fresh leaves for 2 minutes (branching), followed by hot air drying at 50 ° C (required time: 10 hours)
14) Steaming the fresh leaves for 5 minutes (branching), followed by hot air drying at 50 ° C (required time: 10 hours)

(4)対照実験1
以下により、対照実験(対照実験1)を行った。
上記エゴマの生葉(葉身)25gを、凍結乾燥に供した。凍結乾燥は、以下の条件で行った。すなわち、エゴマの生葉(葉身)を、−30℃で、一昼夜冷凍した後、0.05Torr前後の真空度で、72時間凍結乾燥した。生葉を凍結乾燥することにより、植物茎葉中のα−リノレン酸とロスマリン酸の含量は、ほとんど低下しなかった。このことから、当該凍結乾燥処理によって得られる乾燥物(対照品1)中のα−リノレン酸とロスマリン酸の含量を、原料含量相当量とした。
(4) Control experiment 1
A control experiment (control experiment 1) was performed as follows.
25 g of fresh leaves (leaf blade) of the above sesame were subjected to lyophilization. Freeze drying was performed under the following conditions. That is, fresh leaves (leaf blades) of sesame were frozen at −30 ° C. overnight, and then lyophilized for 72 hours at a vacuum of around 0.05 Torr. By freeze-drying fresh leaves, the contents of α-linolenic acid and rosmarinic acid in the plant foliage were hardly reduced. From this, the content of α-linolenic acid and rosmarinic acid in the dried product (control product 1) obtained by the freeze-drying treatment was defined as the raw material content equivalent amount.

2.水分含量、脂肪酸含量及びロスマリン酸含量の測定
得られた各乾燥物について、α−リノレン酸含量、ロスマリン酸含量及び水分含量を、以下の方法に従って、測定した。
2. Measurement of water content, fatty acid content and rosmarinic acid content For each of the obtained dried products, the α-linolenic acid content, rosmarinic acid content and water content were measured according to the following method.

(1)α−リノレン酸含量の測定方法
乾燥物0.5gに、クロロホルム:メタノール=2:1(v/v)液20mLを加え、ポリトロン式ホモジナイザーで1分間磨砕した後、2,000rpmで、10分間遠心した。得られた上清100μLを、共栓付き試験管に量り取り、100μg/mLのTCA(Tricosaenoic acid、内標)100μL、及びメタノール2mLを加えて、冷却した後、塩化アセチル200μLを加えて、100℃で、1時間加熱した。
(1) Method for measuring α-linolenic acid content To 0.5 g of the dried product, 20 mL of chloroform: methanol = 2: 1 (v / v) solution was added and ground with a polytron homogenizer for 1 minute, and then at 2,000 rpm. Centrifuge for 10 minutes. 100 μL of the obtained supernatant was weighed into a test tube with a stopper, and 100 μL of 100 μg / mL TCA (Tricosaneic acid, internal standard) and 2 mL of methanol were added. After cooling, 200 μL of acetyl chloride was added, Heated at 0 ° C. for 1 hour.

これを冷却した後、オクタン400μL及び10%(w/v)食塩水に溶解した0.5N水酸化ナトリウム溶液5mLを加え、10分間激しく振とうした。次いで、2,500rpmで、10分間遠心後、得られた上層(オクタン層)を、ガスクロマトグラフ(GC)用バイアル瓶に分注し、以下のGC分析に供して、α−リノレン酸含量を測定した。   After cooling, 400 mL of octane and 5 mL of 0.5N sodium hydroxide solution dissolved in 10% (w / v) saline were added and shaken vigorously for 10 minutes. Next, after centrifuging at 2500 rpm for 10 minutes, the obtained upper layer (octane layer) is dispensed into a gas chromatograph (GC) vial and subjected to the following GC analysis to measure the α-linolenic acid content. did.

GC分析は、以下の条件で行った。
カラム:DB−WAX(0.25mm×30m,J&W Scientific製)
カラム温度:100℃(1分保持) → 20℃/分で昇温 → 180℃ → 2℃/分で昇温 → 240℃ → 4℃/分で昇温 → 260℃(5分保持)
検出器:FID
検出器温度:260℃
試料気化室温度:260℃
試料注入量:1μL
The GC analysis was performed under the following conditions.
Column: DB-WAX (0.25 mm × 30 m, manufactured by J & W Scientific)
Column temperature: 100 ° C. (1 minute hold) → Temperature rise at 20 ° C./minute → 180 ° C. → Temperature rise at 2 ° C./minute → 240 ° C. → Temperature rise at 4 ° C./minute → 260 ° C. (5 minute hold)
Detector: FID
Detector temperature: 260 ° C
Sample vaporization chamber temperature: 260 ° C
Sample injection volume: 1 μL

(2)ロスマリン酸含量の測定方法
粉末状にした乾燥物0.4gに、80容量%メタノール水溶液を50mL加え、80℃で、還流抽出を1時間行った後、80容量%のメタノール水溶液により100mLに定容した。この抽出液を、0.45μmのフィルタでろ過した後、高速液体クロマトグラフ(HPLC)分析に供して、ロスマリン酸含量を測定した。
(2) Method for measuring rosmarinic acid content 50 mL of 80% by volume methanol aqueous solution was added to 0.4 g of powdered dried product, refluxed at 80 ° C. for 1 hour, and then 100 mL with 80% by volume methanol aqueous solution. The volume was constant. The extract was filtered through a 0.45 μm filter and then subjected to high performance liquid chromatograph (HPLC) analysis to measure the rosmarinic acid content.

HPLC分析は、以下の条件で行った。
カラム:Shim−pack XR−ODS(4.6×100mm,(株)島津製作所製)
カラム温度:40℃
溶離液:水/アセトニトリル=80/20〜20/80(0.2% ギ酸を含む)のグラジエント溶出
流速:1mL/分
検出器:UV280nm
試料注入量:10μL
The HPLC analysis was performed under the following conditions.
Column: Shim-pack XR-ODS (4.6 × 100 mm, manufactured by Shimadzu Corporation)
Column temperature: 40 ° C
Eluent: Water / acetonitrile = 80/20 to 20/80 (containing 0.2% formic acid) Gradient elution flow rate: 1 mL / min Detector: UV 280 nm
Sample injection volume: 10 μL

(3)水分含量の測定方法
予め恒量になった秤量皿に、乾燥物0.5gを採取して精秤した。これを、105℃の乾燥器で乾燥した後、デシケーターに移して放冷し、重量を測定した。恒量になるまで乾燥(2〜4時間)し、放冷、重量測定を繰り返し、元の試料と乾燥後の試料の重量の差から、元試料の水分含量を算出した。
(3) Measuring method of water content 0.5 g of dried product was collected and precisely weighed in a weighing pan that had been made constant. This was dried in a dryer at 105 ° C., then transferred to a desiccator, allowed to cool, and the weight was measured. It dried until it became constant weight (2-4 hours), allowed to cool, and repeated weight measurement, and the moisture content of the original sample was calculated from the difference in weight between the original sample and the dried sample.

その結果を表1に示す。表中、( )内の記載は、対照品1(凍結乾燥品)のα−リノレン酸含量(原料含量相当量)、及びロスマリン酸含量(原料含量相当量)を100とした場合の、(a)アクアガス乾燥物、(b)過熱水蒸気乾燥物、(c)アクアガス処理後、過熱水蒸気乾燥物、及び(d)温風乾燥物、中に含まれる対応成分の割合(相対比)を示す。   The results are shown in Table 1. In the table, the description in () is (a) when the α-linolenic acid content (raw material content equivalent amount) and rosmarinic acid content (raw material content equivalent amount) of the control product 1 (lyophilized product) are 100. The ratio (relative ratio) of the corresponding component contained in (a) Aqua gas dried product, (b) Superheated steam dried product, (c) Superheated steam dried product, and (d) Hot air dried product after Aqua gas treatment.

Figure 2011211965
Figure 2011211965

この結果から判るように、エゴマの生葉(原料)を温風乾燥すると、前処理としての蒸熱処理の有無にかかわらず、α−リノレン酸の収率が80%台にまで低下したが、アクアガス処理、過熱水蒸気処理、及びアクアガス処理後過熱水蒸気処理(併用)で乾燥することにより、エゴマの生葉(原料)に元来含まれるα−リノレン酸量をほぼ維持した状態で(高含量のままで)、乾燥物を調製することができた。また、アクアガス処理あるいは過熱水蒸気処理の条件別では、処理時間が短いほど、あるいは処理温度が低いほど、α−リノレン酸の収率は、高いままで維持させることができた。   As can be seen from this result, when the fresh leaves of sesame (raw material) were dried with warm air, the yield of α-linolenic acid was reduced to the 80% level regardless of the presence or absence of steaming as a pretreatment. In a state where the amount of α-linolenic acid originally contained in the raw leaves (raw material) of the sesame seed is substantially maintained (high content) by drying by superheated steam treatment (combination) after superheated steam treatment and aqua gas treatment A dried product could be prepared. Moreover, according to the conditions of the aqua gas treatment or the superheated steam treatment, the shorter the treatment time or the lower the treatment temperature, the higher the yield of α-linolenic acid could be maintained.

ロスマリン酸についても、同様に、エゴマの生葉(原料)を温風乾燥すると、前処理として蒸熱処理をしない場合は、その量は20%台にまで激減し、また、過熱水蒸気処理のみで乾燥すると、その量は50%台にまで激減した。しかし、アクアガス処理、あるいはアクアガス処理後過熱水蒸気処理(併用)して乾燥することにより、生葉(原料)のロスマリン酸を損失することなく、ロスマリン酸を高い割合(高収率)で含む乾燥物を調製することができた。   Similarly for rosmarinic acid, when the raw leaves (raw material) of sesame are dried with warm air, if steaming heat treatment is not performed as a pretreatment, the amount is drastically reduced to the level of 20%. The amount has drastically decreased to the 50% level. However, the dried product containing rosmarinic acid in a high proportion (high yield) without losing rosmarinic acid from raw leaves (raw material) by drying by aquagas treatment or by superheated steam treatment (combined use) after aquagas treatment. Could be prepared.

これらのことから、アクアガス処理による乾燥は、α−リノレン酸及びロスマリン酸を高い割合(高収率)で含む植物茎葉の乾燥物の調製方法として有効であることが判明した。アクアガスと過熱水蒸気併用処理は、品質保持の面では、アクアガス単独処理と同等以下であり、相乗効果は認められなかったが、実操業の面では、乾燥時間など、処理時間の短縮には効果が期待された。なお、本発明は、植物茎葉中に、α−リノレン酸及びロスマリン酸を高い割合で含む植物として、上記エゴマのほか、シソ、アマ、チア及びバジルについても、同様に適用可能であった。   From these things, it became clear that drying by aqua gas treatment was effective as a method for preparing a dried product of plant stems and leaves containing α-linolenic acid and rosmarinic acid in high proportions (high yield). The treatment with aqua gas and superheated steam is the same or lower than the treatment with aqua gas alone in terms of quality maintenance, and no synergistic effect was observed, but in terms of actual operation, it is effective in shortening the treatment time such as drying time. Expected. The present invention was also applicable to perilla, flax, thia and basil in addition to the above-mentioned egoma as a plant containing α-linolenic acid and rosmarinic acid in a high proportion in the plant stem and leaves.

実施例2
本実施例では、乾燥エゴマ葉の色調測定を行った。
表2に示す各種の方法で調製したエゴマ葉乾燥物について、コニカミノルタ社製CR−300を用いて、色調(L、a、b値)を測定した。その結果を表3に示す。なお、L値は明度を示し、a値は緑から赤方向の色調を示し、b値は青から黄方向の色調を示している。すなわち、a値が小さいほど(マイナスの数値が大きいほど)、緑色をよく残していることを意味している。
Example 2
In this example, the color tone of dried sesame leaves was measured.
About dried egoma leaves prepared by various methods shown in Table 2, color tone (L, a, b value) was measured using CR-300 manufactured by Konica Minolta. The results are shown in Table 3. The L value indicates lightness, the a value indicates a color tone from green to red, and the b value indicates a color tone from blue to yellow. That is, the smaller the a value (the larger the negative value), the better the green color is left.

Figure 2011211965
Figure 2011211965

Figure 2011211965
Figure 2011211965

この結果から判るように、エゴマの生葉(原料)をアクアガス乾燥することにより(120℃・200spm・20min処理を除く)、エゴマの生葉(原料)が元来持つ緑色の色調をほぼ維持した(a値が低い)状態で、乾燥物を得ることができた。一方、過熱水蒸気乾燥の単独処理では、温度が高くなるにつれて、褐変化(一部焦げが発生)する傾向が認められた。アクアガス処理後過熱水蒸気併用乾燥では、品質保持の面では、アクアガス単独処理と同等以下であり、相乗効果は認められなかったが、実操業の面では、乾燥時間など、処理時間の短縮には効果が期待された。   As can be seen from this result, the green color tone of the raw leaves (raw material) of the sesame seeds was substantially maintained by aquagas drying (excluding treatment at 120 ° C., 200 spm, 20 min) (a) A dried product could be obtained in a low value state. On the other hand, in the single treatment of superheated steam drying, a tendency of browning (partially burnt) was observed as the temperature increased. Drying with superheated steam after aqua gas treatment was equivalent to or less than that of aqua gas alone treatment in terms of quality maintenance, and no synergistic effect was observed, but in terms of actual operation, it was effective in shortening treatment time such as drying time. Was expected.

実施例3
本実施例では、乾燥エゴマ葉の微生物検査を行った。
実施例1に記載の各種の方法で調製したエゴマ葉乾燥物について、一般生菌数及び大腸菌群を、定法(一般生菌数:混釈平板培養法、大腸菌群:BGLB培地法)により評価した。すなわち、乾燥物1gを精秤し、99gの滅菌生理食塩水を加えて、ストマッカーにより1分混和したものを試料原液として、更に、これを生理食塩水で10倍毎に段階希釈した試料液を調製した。
Example 3
In this example, a microorganism test was performed on dried egoma leaves.
For the dried sesame leaves prepared by various methods described in Example 1, the general viable cell count and coliform group were evaluated by conventional methods (general viable cell count: pour plate culture method, coliform group: BGLB medium method). . That is, 1 g of a dried product is precisely weighed, 99 g of sterilized physiological saline is added, and the mixture is mixed for 1 minute with a stomacher as a sample stock solution. Prepared.

この試料液中の微生物を、一般生菌数は、標準寒天培地を用いた混釈培養法(35℃・48時間培養)で発生したコロニー数をカウントすることにより評価し、大腸菌群は、BGLB培地を用いた培養(35℃・48時間培養)で発酵管へのガス発生の有無を確認することにより評価した。その結果を表4に示す。   The microorganisms in this sample solution were evaluated by counting the number of colonies generated by the pour culture method (cultured at 35 ° C. for 48 hours) using a standard agar medium. Evaluation was performed by confirming the presence or absence of gas generation in the fermentation tube by culture using a medium (cultured at 35 ° C. for 48 hours). The results are shown in Table 4.

Figure 2011211965
Figure 2011211965

この結果から判るように、対照品1(凍結乾燥品)の乾燥物の生菌数が生葉(原料)の生菌数と同じであり、原料では10の5乗オーダーの一般生菌数が存在し、大腸菌群も陽性であった。これに対し、アクアガス乾燥、過熱水蒸気乾燥、アクアガス処理後過熱水蒸気併用乾燥、あるいは蒸熱処理後温風乾燥をすることにより、これらの微生物は検出されなくなった。ただし、前処理として、蒸熱処理を行わずに温風乾燥した場合には、一般生菌数が残存した。   As can be seen from this result, the viable count of the dried product of the control product 1 (freeze-dried product) is the same as the viable count of the raw leaf (raw material), and there is a general viable count of 10 5 in the raw material. The coliform group was also positive. On the other hand, these microorganisms could not be detected by aqua gas drying, superheated steam drying, drying with a combination of superheated steam after aqua gas treatment, or warm air drying after steaming. However, when pre-treatment was performed by warm air drying without steaming, the number of general viable bacteria remained.

これらのことから、アクアガス処理あるいは過熱水蒸気処理の相乗効果の有無は不詳ながら、アクアガス乾燥単独処理もしくはアクアガス処理後過熱水蒸気併用処理による乾燥は、生葉(原料)に存在する微生物を効果的に殺菌する手段として有効であることが判明した。   From these facts, it is not known whether there is a synergistic effect of aqua gas treatment or superheated steam treatment, but aqua gas drying alone treatment or drying with a combination of superheated steam after aqua gas treatment effectively sterilizes microorganisms present in fresh leaves (raw materials) It turned out to be effective as a means.

実施例4
本実施例では、乾燥エゴマ葉の可溶性総ポリフェノール含量とDPPH(1,1−diphenyl−2−picrylhydrazyl)ラジカル捕捉活性(抗酸化活性)の測定を行った。
実施例1に記載の各種の方法で調製したエゴマ葉乾燥物について、可溶性総ポリフェノール含量と、抗酸化活性の指標としてのDPPHラジカル捕捉活性を測定した。
Example 4
In this example, the soluble total polyphenol content of dried sesame leaves and the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity (antioxidant activity) were measured.
For the dried sesame leaves prepared by various methods described in Example 1, the soluble total polyphenol content and DPPH radical scavenging activity as an index of antioxidant activity were measured.

1)可溶性総ポリフェノール含量の測定
エゴマ葉乾燥物の可溶性総ポリフェノール含量は、Folin−Ciocalteu法で測定した。すなわち、エゴマ葉乾燥物を70容量%含水エタノールで一晩抽出した後、遠心分離し、得られた上清である、エゴマ葉乾燥物抽出液を段階希釈し、その80μLに、水で5倍希釈したフェノール試薬と10%炭酸ナトリウム水溶液を、それぞれ80μL加え、60分間放置した後、分光光度計で650nmの吸光度を測定した。この測定値から、エゴマ葉乾燥物1gあたりの可溶性総ポリフェノール量を、没食子酸相当量として算出した。
1) Measurement of soluble total polyphenol content The soluble total polyphenol content of the dried sesame leaves was measured by the Folin-Ciocalteu method. That is, the dried product of sesame leaves was extracted with 70 vol% ethanol in water, and then centrifuged. The resulting supernatant of the dried sesame leaves extract was serially diluted, and 80 μL thereof was diluted 5 times with water. 80 μL of each diluted phenol reagent and 10% aqueous sodium carbonate solution were added and allowed to stand for 60 minutes, and then the absorbance at 650 nm was measured with a spectrophotometer. From this measured value, the amount of soluble total polyphenol per 1 g of dried sesame leaves was calculated as an amount equivalent to gallic acid.

2)DPPHラジカル捕捉活性の測定
抗酸化活性は、安定なラジカルであるDPPHを用い、DPPHラジカルの捕捉活性を求めることにより評価した。DPPHラジカル捕捉活性は、DPPH溶液に、エゴマ葉乾燥物を70容量%含水エタノールで一晩抽出した後、遠心分離し、得られた上清である、エゴマ葉乾燥物抽出液を加えた前後での520nmの吸光度の変化(DPPHの紫色の退色度合)を測定することにより求め、エゴマ葉乾燥物1gあたりのトロロックス(Trolox)相当量として算出した。その結果を表5に示す。
2) Measurement of DPPH radical scavenging activity Antioxidant activity was evaluated by determining DPPH radical scavenging activity using DPPH which is a stable radical. The DPPH radical scavenging activity was measured before and after adding the dried sesame leaf extract to the DPPH solution, after extracting the dried sesame leaf with 70% by volume water-containing ethanol overnight and centrifuging. Was measured by measuring the change in absorbance at 520 nm (the degree of purple color fading of DPPH) and calculated as the equivalent of Trolox per gram of dried sesame leaves. The results are shown in Table 5.

Figure 2011211965
Figure 2011211965

この結果から判るように、エゴマの生葉を温風乾燥した場合[12)]は、可溶性総ポリフェノール残存量が対照品1(凍結乾燥品)の70%まで低下した。これに対して、アクアガス乾燥単独処理[1)〜3)]では、増加する傾向にあった。一方、アクアガス処理後過熱水蒸気併用乾燥[6)〜11)]では、増加傾向にはあるものの、品質保持の面では、アクアガス単独処理[1)〜2)]と同等以下であり、相乗効果は認められなかったが、実操業の面では、乾燥時間など、処理時間の短縮には効果が期待された。過熱水蒸気乾燥の単独処理[4)〜5)]では、アクアガス単独処理あるいはアクアガス処理後過熱水蒸気併用乾燥に比べて、可溶性総ポリフェノール含量は減少した。   As can be seen from this result, when the fresh leaves of sesame were dried with warm air [12]], the residual amount of soluble polyphenol decreased to 70% of control product 1 (freeze-dried product). On the other hand, the Aqua gas drying single treatment [1) to 3)] tended to increase. On the other hand, in the combined drying with superheated steam after the aqua gas treatment [6) to 11)], although there is an increasing trend, in terms of quality maintenance, it is less than or equal to the aqua gas alone treatment [1) to 2)], and the synergistic effect is Although not recognized, in terms of actual operation, it was expected to be effective in shortening the processing time such as drying time. In the single treatment [4) to 5)] of the superheated steam drying, the soluble total polyphenol content was decreased as compared with the aqua gas alone treatment or the drying with the superheated steam after the aqua gas treatment.

アクアガス乾燥単独処理は、従来の蒸熱処理後温風乾燥した場合と遜色ないレベルで、可溶性総ポリフェノールを維持していた。乾燥エゴマ葉中の可溶性総ポリフェノール含量とDPPHラジカル捕捉活性の値は、よく相関していることが確認された。これらのことから、アクアガス処理による乾燥は、生葉(原料)が元来持つ可溶性総ポリフェノールとDPPHラジカル捕捉活性を良好に維持する手段として有効であることが判明した。 Aqua gas drying alone treatment maintained soluble total polyphenols at a level comparable to conventional steam-heated hot air drying. It was confirmed that the soluble total polyphenol content in the dried sesame leaves and the DPPH radical scavenging activity value correlated well. From these facts, it was proved that drying by aqua gas treatment is effective as a means for favorably maintaining the soluble total polyphenol and DPPH radical scavenging activity inherent in the raw leaves (raw materials).

以上詳述したように、本発明は、アクアガスを用いた加熱・殺菌・乾燥植物とその調製方法に係るものであり、本発明により、植物や農産物を機能性を損なうことなしに、高い歩留まり、旬の高品質維持、簡便性の向上、長期間常温保存性及びその保存安定性などの優位性を付与した乾燥素材として供給することが可能な、乾燥植物や乾燥農産物とその加工処理方法を提供することができる。そして、本発明により、植物や農産物の高品質化加工及びその供給が可能となり、生産農家には、作物の高付加価値化と出荷調整が、産地加工業者には、産地振興が、そして、消費者には、食の安心と安全確保と食生活の健全化が実現する。様々な機能性を有する農産物の素材化が可能であり、アクアガス加熱装置で乾燥処理を行うことで、農産物の乾燥素材の品質の向上と、更に、システム化を図ることで、コスト低減が期待される。これらの農産物の乾燥素材は、国産農産物を原料にして長期保存できることから、多収穫時に処理して、通年供給することで、国産農産物の利用率の向上や自給率向上にも寄与できる。本発明は、アクアガス加熱による、抗酸化成分高含有による機能性を保持した、農産物の加熱、乾燥、殺菌技術と、その乾燥、殺菌植物製品を提供することを可能にするものとして有用である。   As described above in detail, the present invention relates to a heated, sterilized, and dried plant using aquagas and a method for preparing the same, and according to the present invention, without sacrificing functionality of plants and agricultural products, high yield, Providing dry plants and dry agricultural products and processing methods that can be supplied as dry materials with superior quality such as high quality maintenance in season, improved convenience, long-term storage stability and storage stability can do. The present invention makes it possible to improve the quality of plants and agricultural products and supply them, to produce farmers for high value-added crops and shipment adjustments, for producers of production areas, to promote production areas and to consume. For the elderly, food safety and security and a healthy diet are achieved. Agricultural products with various functionalities can be made into raw materials, and by performing drying treatment with an aqua gas heating device, the quality of agricultural dry materials is improved, and further systemization is expected to reduce costs. The Since these dried agricultural products can be stored for a long time using domestic agricultural products as raw materials, they can be processed at the time of many harvests and supplied throughout the year, which can contribute to an increase in the utilization rate and self-sufficiency rate of domestic agricultural products. INDUSTRIAL APPLICATION This invention is useful as what makes it possible to provide the heating, drying, and sterilization technique of agricultural products and the drying and sterilization plant product which maintained the functionality by the high content of antioxidant components by aquagas heating.

Claims (7)

収穫後の植物を、下記の加熱・殺菌処理方法を用いて低侵襲的に加熱処理することによって、植物の抗酸化成分の減耗抑制と変・退色の抑制及び一般生菌数の低減並びに水分の蒸発を図ることにより、抗酸化成分高含有の加熱・殺菌・乾燥植物を調製する方法であって、
次の工程;1)少なくとも100℃に加熱された熱水及び/又は水蒸気を、これと同温度以上に加熱された準密閉空間の加熱室内に連続的に噴射させ、微細水滴と湿熱水蒸気を発生させる工程、2)上記微細水滴と湿熱水蒸気で上記加熱室内の空気を置換させて、少なくとも湿度95%及び多くとも酸素濃度1%の組成を有し、90〜180℃の温度領域に保持されたガス成分で満たす工程、3)上記微細水滴と湿熱水蒸気からなる加熱媒体で、被加熱材料に、上記温度領域で、少なくとも10℃の温度差の連続振幅加熱を施して加熱・殺菌処理する工程、により、加熱処理することを特徴とする乾燥植物の調製方法。
Plants after harvesting are heat-treated in a minimally invasive manner using the heating and sterilization methods described below, thereby suppressing the depletion and discoloration / fading of plant antioxidant components, reducing the number of viable bacteria, and A method for preparing a heated, sterilized, and dried plant with a high antioxidant content by evaporating,
Next step: 1) Hot water and / or steam heated to at least 100 ° C. are continuously injected into the heating chamber of the semi-enclosed space heated to the same temperature or higher to generate fine water droplets and wet heat steam. 2) Substituting the air in the heating chamber with the fine water droplets and wet heat steam to have a composition of at least a humidity of 95% and an oxygen concentration of at most 1%, and kept in a temperature range of 90 to 180 ° C. A step of filling with a gas component, and 3) a step of subjecting the material to be heated to continuous amplitude heating with a temperature difference of at least 10 ° C. in the above temperature range and heating and sterilizing treatment with the heating medium composed of the fine water droplets and wet heat steam, A method for preparing a dried plant, characterized by heat treatment.
下記の発生及び加熱条件の加熱媒体
1)給水量:10spm〜200spm
2)庫内制御温度:100℃〜150℃
3)加熱時間:2分〜20分
で加熱することにより、被加熱植物の水分含量が多くとも10%に保持されて成る乾燥植物を調製する、請求項1記載の乾燥植物の調製方法。
Heating medium under the following generation and heating conditions 1) Water supply amount: 10 spm to 200 spm
2) Internal control temperature: 100 ° C to 150 ° C
3) Heating time: The method for preparing a dried plant according to claim 1, wherein a dried plant is prepared in which the moisture content of the heated plant is maintained at 10% at most by heating in 2 to 20 minutes.
植物が農産物である、請求項1又は2記載の加熱・殺菌・乾燥植物の調製方法。   The method for preparing a heat / sterilized / dried plant according to claim 1 or 2, wherein the plant is an agricultural product. 請求項1から3のいずれかに記載の低侵襲的加熱処理方法により調製された、被加熱植物の水分含量が多くとも10%に保持されて成る、抗酸化成分高含有乾燥植物。   A dried plant with a high content of antioxidant components, prepared by the minimally invasive heat treatment method according to any one of claims 1 to 3, wherein the water content of the plant to be heated is maintained at 10% at most. 下記の発生及び加熱条件の加熱媒体により、低侵襲的加熱処理方法により調製された、
1)給水量:10spm〜200spm
2)庫内制御温度:100℃〜150℃
3)加熱時間:2分〜20分
被加熱植物の多くとも水分含量が10%に保持されて成る、請求項4記載の乾燥植物。
Prepared by a minimally invasive heat treatment method with a heating medium having the following generation and heating conditions,
1) Amount of water supply: 10 spm to 200 spm
2) Internal control temperature: 100 ° C to 150 ° C
3) Heating time: 2 to 20 minutes The dried plant according to claim 4, wherein the moisture content of most of the heated plants is maintained at 10%.
植物が、農産物である、請求項4又は5記載の抗酸化成分高含有乾燥植物。   The dried plant with a high antioxidant component content according to claim 4 or 5, wherein the plant is an agricultural product. 上記低侵襲的加熱処理方法により、抗酸化成分の減耗の抑制と、変・退色及び一般生菌数が抑制又は低減されている、請求項4から6のいずれかに記載の抗酸化成分高含有乾燥植物。   Antioxidant component high content in any one of Claims 4-6 by which the suppression of the depletion of an antioxidant component, discoloration, discoloration, and the number of general viable bacteria is suppressed or reduced by the said minimally invasive heat processing method. Dry plant.
JP2010083490A 2010-03-31 2010-03-31 Heated, sterilized and dried plants prepared using aquagas and methods for their preparation Expired - Fee Related JP5967639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083490A JP5967639B2 (en) 2010-03-31 2010-03-31 Heated, sterilized and dried plants prepared using aquagas and methods for their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083490A JP5967639B2 (en) 2010-03-31 2010-03-31 Heated, sterilized and dried plants prepared using aquagas and methods for their preparation

Publications (2)

Publication Number Publication Date
JP2011211965A true JP2011211965A (en) 2011-10-27
JP5967639B2 JP5967639B2 (en) 2016-08-10

Family

ID=44942408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083490A Expired - Fee Related JP5967639B2 (en) 2010-03-31 2010-03-31 Heated, sterilized and dried plants prepared using aquagas and methods for their preparation

Country Status (1)

Country Link
JP (1) JP5967639B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006089A (en) * 2015-06-25 2017-01-12 ポッカサッポロフード&ビバレッジ株式会社 Sterilization method and sterilization apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009150A1 (en) * 2004-07-16 2006-01-26 Umeda Jimusho Ltd. Innovative pasteurization method, use thereof and apparatus
JP2007228870A (en) * 2006-02-28 2007-09-13 National Agriculture & Food Research Organization Food supply system using aquagas for agricultural product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009150A1 (en) * 2004-07-16 2006-01-26 Umeda Jimusho Ltd. Innovative pasteurization method, use thereof and apparatus
JP2007228870A (en) * 2006-02-28 2007-09-13 National Agriculture & Food Research Organization Food supply system using aquagas for agricultural product

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本食品工学会誌, vol. 6, no. 4, JPN6014014090, 2005, pages 229 - 236, ISSN: 0002784667 *
食品と開発, vol. 43, no. 9, JPN6014014091, 2008, pages 4 - 7, ISSN: 0002784668 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006089A (en) * 2015-06-25 2017-01-12 ポッカサッポロフード&ビバレッジ株式会社 Sterilization method and sterilization apparatus

Also Published As

Publication number Publication date
JP5967639B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP4997566B2 (en) Method for improving storage stability and method and apparatus for producing the same
Adulvitayakorn et al. The effects of conventional thermal, microwave heating, and thermosonication treatments on the quality of sugarcane juice
CN107318970A (en) A kind of coating-film fresh-keeping method of pomegranate
CN103960740A (en) Production method of roxburgh rose fruit powder
Cong et al. Effects of plasma-activated water on overall quality of fresh goji berries during storage
JP4900779B2 (en) Agricultural food supply system using aqua gas
CN103340432A (en) Method for processing normal-temperature storage type roasted goose
KR101291309B1 (en) Method manufacture rice makgulli use estern prickly pear
Preethi et al. Prospects of cashew apple-A compilation report
CN102388956B (en) Ultraviolet and nano zinc oxide combined sterilizing method for convenient vegetable dishes
CN105685931A (en) Method for regulating and controlling flavor of prepared food with freshwater fish blocks and retaining freshness of prepared food
Wen et al. Comparative evaluation of drying methods on kinetics, biocompounds and antioxidant activity of Bacillus subtilis-fermented dehulled adlay
CN108719860A (en) A kind of dry production technology of krill
Gu et al. Analysis of the blackening of green pepper (Piper nigrum Linnaeus) berries
Mo et al. Potential of Chinese Bayberry (Myrica rubra Sieb. et Zucc.) Fruit, Kernel, and Pomace as Promising Functional Ingredients for the Development of Food Products: A Comprehensive Review
KR101205680B1 (en) The manufacturing method of an antioxidizing composition for maintenance of freshness for food and it's composition
Fatima et al. Synergistic effect of microwave heating and thermosonication on the physicochemical and nutritional quality of muskmelon and sugarcane juice blend
JP5967639B2 (en) Heated, sterilized and dried plants prepared using aquagas and methods for their preparation
CN104172030A (en) Pickle production method for effectively inhibiting pickle albuginea disease during fermentation process
KR101764307B1 (en) Salt Comprising Extract of Lotus Preparation Method thereof
Luo et al. Effects of different drying methods on the physicochemical property and edible quality of fermented Pyracantha fortuneana fruit powder
Aguilera Berries as Foods: Processing, Products, and Health Implications
JP2020018252A (en) Continuous superheated steam processing device
CN109169894A (en) A kind of fumigant for grain drying processing
Preethi et al. Prospects of cashew apple-a compilation report, technical bulletin No. 2/2019

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150512

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160629

R150 Certificate of patent or registration of utility model

Ref document number: 5967639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees