JP2011211932A - Culture soil including psi treated generated soil - Google Patents

Culture soil including psi treated generated soil Download PDF

Info

Publication number
JP2011211932A
JP2011211932A JP2010081481A JP2010081481A JP2011211932A JP 2011211932 A JP2011211932 A JP 2011211932A JP 2010081481 A JP2010081481 A JP 2010081481A JP 2010081481 A JP2010081481 A JP 2010081481A JP 2011211932 A JP2011211932 A JP 2011211932A
Authority
JP
Japan
Prior art keywords
soil
generated
psi
silicic acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081481A
Other languages
Japanese (ja)
Inventor
Teppei Komiyama
鉄兵 小宮山
Toyoaki Ito
豊彰 伊藤
Eiji Fujisawa
英司 藤澤
Kinzo Isomura
欽三 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Federation of Agricultural Cooperative Associations
Original Assignee
National Federation of Agricultural Cooperative Associations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Federation of Agricultural Cooperative Associations filed Critical National Federation of Agricultural Cooperative Associations
Priority to JP2010081481A priority Critical patent/JP2011211932A/en
Publication of JP2011211932A publication Critical patent/JP2011211932A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new means for using PSI (polysilicate-iron) treated generated soil for agriculture.SOLUTION: Culture soil including generated soil generated by coagulating sedimentation treatment of water-to-be-treated by polysilicate-iron is provided. The culture soil is producible at a low cost using the PSI treated generated soil generated in large quantities by water treatment such as water purification treatment. The PSI treated generated soil is applicable also to paddy rice seedlings requiring to avoid pH increase, owing to including almost no alkalinity and low pH. The PSI treated generated soil has immediate effectivity equal to silica gel so as to be effectively usable as a silicic acid nutrient of a paddy rice seedling growing period and each kind of plants.

Description

本発明は、ポリシリカ鉄(PSI)による被処理水の沈殿凝集処理で生じた発生土を含有する培土、培土の製造方法、及び該発生土を利用した植物の栽培方法に関する。   The present invention relates to a cultivated soil containing a generated soil generated by precipitation aggregation treatment of water to be treated with polysilica iron (PSI), a method for producing the cultivated soil, and a method for cultivating a plant using the generated soil.

ケイ酸の施用が水稲の健全な生育に寄与することは古くから知られている。その要因として、葉の直立化による受光体勢の改善、気孔開度の低下による過剰蒸散の抑制、葉緑素(クロロフィル)含量の減少抑制による光合成効率の向上が挙げられる。また、稲のケイ酸含量の増加により、いもち病など稲の重要病害の発生が抑制されることが知られている(非特許文献6、13)。   It has long been known that the application of silicic acid contributes to the healthy growth of paddy rice. The factors include improvement in photoreceptor posture by uprighting of leaves, suppression of excessive transpiration due to decrease in stomatal opening, and improvement in photosynthetic efficiency by suppressing decrease in chlorophyll content. In addition, it is known that the occurrence of important diseases such as rice blast is suppressed by increasing the silicic acid content of rice (Non-Patent Documents 6 and 13).

以上のようなケイ酸の効果は育苗段階でも同様であり、イネ苗のケイ酸含量が高まることによる苗質の向上(非特許文献1、10、11)とそれによる移植後の初期生育の向上(非特許文献1)および育苗段階で発生する苗いもち病の発生抑制(非特許文献2、8)が報告されている。   The effect of silicic acid as described above is the same at the seedling raising stage. Improvement of seedling quality by increasing the silicic acid content of rice seedlings (Non-patent Documents 1, 10, and 11) and thereby improvement of initial growth after transplantation. (Non-Patent Document 1) and the suppression of the occurrence of seedling blast disease occurring in the seedling raising stage (Non-Patent Documents 2 and 8) have been reported.

また、ケイ酸の効果は、水稲のみならず園芸作物においても確認されている。田中ら(2004)はケイ酸を園芸培土に施用することにより、キュウリ苗のケイ酸含量が高まり、その結果キュウリに多発するうどんこ病の発病を抑制したことを報告した(非特許文献14)。イチゴ苗へのケイ酸施用効果も報告されている(非特許文献7、12)。   The effect of silicic acid has been confirmed not only in paddy rice but also in horticultural crops. Tanaka et al. (2004) reported that by applying silicic acid to horticultural soil, the silicic acid content of cucumber seedlings was increased, and as a result, the occurrence of powdery mildew that frequently occurs in cucumber was suppressed (Non-patent Document 14). . The silicic acid application effect to the strawberry seedling is also reported (nonpatent literature 7, 12).

イネ苗のケイ酸含量には育苗培土の可給態ケイ酸含量が影響する(非特許文献4、9)。すなわち、母材が火山灰土であるような土壌を培土として用いた場合はイネ苗のケイ酸含量は高まる傾向にある。しかし、可給態ケイ酸含量が低い土壌を培土として用いる場合はイネ苗のケイ酸含量は低い場合が多く、ケイ酸資材の施用効果が期待される。現在、様々なケイ酸資材が流通しているが、多くのケイ酸資材はアルカリ分を多量に含むため、育苗培土のpHを上昇させる。培土の適正pHは4.5〜5.5であり、これ以上にpHが上昇した場合はムレ苗や立枯病の発生が懸念される。培土のpHを上昇させないケイ酸資材としては、シリカゲルが代表的な資材であり、苗箱に施用可能な肥料として広く用いられている(非特許文献1、特許文献1)。しかし、シリカゲルは元来から高価であることに加えて、近年の肥料価格の高騰により、さらに高価な資材となっている。これに対して三枝ら(2003)は軽量壁材から多量に生成される廃材である多孔質ケイ酸カルシウム(pH10.1)を硫酸処理し、酸性化(pH5.2)した低コストで苗箱施用可能なケイ酸資材を開発した(非特許文献11)。このような低コストのケイ酸資材がさらに求められている。   The silicic acid content of rice seedlings is influenced by the available silicic acid content of the seedling culture soil (Non-Patent Documents 4 and 9). That is, when the soil whose base material is volcanic ash soil is used as cultivation soil, the silicic acid content of rice seedlings tends to increase. However, when using soil with low available silicic acid content as a soil, the silicic acid content of rice seedlings is often low, and application effects of silicic acid materials are expected. Currently, various silicate materials are in circulation, but since many silicate materials contain a large amount of alkali, they raise the pH of the seedling culture soil. Appropriate pH of the culture medium is 4.5 to 5.5, and if the pH rises more than this, there is concern about the occurrence of mussel seedlings and blight. As a silicic acid material that does not increase the pH of the culture medium, silica gel is a typical material and is widely used as a fertilizer that can be applied to a seedling box (Non-patent Document 1, Patent Document 1). However, in addition to being originally expensive, silica gel has become a more expensive material due to the recent increase in fertilizer prices. On the other hand, Saegusa et al. (2003) produced low-cost seedling boxes with sulfuric acid treatment and acidification (pH 5.2) of porous calcium silicate (pH 10.1), a waste material produced in large quantities from lightweight wall materials. An applicable silicic acid material was developed (Non-patent Document 11). There is a further need for such low cost silicic acid materials.

ポリシリカ鉄(Polysilicato-Iron、以下PSI)は、河川水や湖水等の上水道原水に含まれる微細な不純物を凝集沈殿処理により除去するための凝集剤として近年開発されたものであり、塩化第二鉄と高分子の重合ケイ酸を主成分とする(特許文献2、3)。従来、浄水場では、凝集剤として主にポリ塩化アルミニウムが用いられていたが、そのような凝集剤で原水を処理した場合に生じる浄水発生土は活用場面が少ないため埋立て処理割合が高く、浄水場の負担が大きくなっている。   Polysilicato-Iron (hereinafter referred to as PSI) was recently developed as a flocculant for removing fine impurities contained in river water, lake water, and other water supply by coagulation sedimentation. Ferric chloride And polymerized silicic acid as a main component (Patent Documents 2 and 3). In the past, polyaluminum chloride was mainly used as a flocculant in water purification plants, but the landfill treatment ratio is high because there are few utilization scenes of the purified water generated when raw water is treated with such a flocculant, The burden on the water treatment plant is increasing.

一方、PSI処理で生じる発生土に含まれるケイ酸は上述のように水稲の生育向上効果が期待される。堀川ら(2007)はPSI処理発生土を水田本田に施用したところ、水稲のケイ酸吸収量が増加し、収量が増加したことを報告した(非特許文献5)。この非特許文献5には、PSI処理発生土中の全Siの約半分が水溶性Siである旨の記載がある。しかしながら、非特許文献5では、30℃8週間培養という長期間水中に浸漬した条件で水中に溶出するSiを水溶性Siとしている。非特許文献5には、即効性のSi供給源としてのPSI処理発生土の有用性は全く開示されていない。   On the other hand, silicic acid contained in the soil generated by PSI treatment is expected to improve the growth of rice as described above. Horikawa et al. (2007) reported that when PSI-treated soil was applied to paddy Honda, the amount of silicic acid absorbed by paddy rice increased and the yield increased (Non-patent Document 5). This non-patent document 5 describes that about half of the total Si in the PSI treatment-generated soil is water-soluble Si. However, in Non-Patent Document 5, Si that is eluted in water under the condition of being immersed in water for a long period of time at 30 ° C. for 8 weeks is water-soluble Si. Non-Patent Document 5 does not disclose the usefulness of the PSI-treated soil as an immediate effect Si supply source.

特開2006-232666号公報JP 2006-232666 特開2001-70708号公報Japanese Patent Laid-Open No. 2001-70708 特開2005-34746号公報JP 2005-34746 A

藤井弘志・早坂剛・横山克至・安藤豊1999.シリカゲルの苗箱施用が水稲苗の活着および初期成育に及ぼす影響.土肥誌,70,785〜790.Hiroshi Fujii, Go Hayasaka, Katsutoshi Yokoyama, Yutaka Ando 1999. Effect of silica gel seedling box application on rice seedling survival and initial growth. Toi magazine, 70, 785-790. 早坂剛・藤井弘志・安藤豊・生井恒雄2000.イネ苗いもちのケイ酸資材シリカゲル育苗土混和による発病抑制.日植病報,66,18〜22.Tsuyoshi Hayasaka, Hiroshi Fujii, Yutaka Ando, Tsuneo Ikui 2000. Disease control by rice seedling silicate material silica gel nursery soil mixing. Nikkatsu disease report, 66, 18-22. 早坂剛・藤井弘志2004.イネ育苗期におけるいもち病抵抗性に対するイネ体ケイ酸含有率の影響.山形農事研報,37,45〜51.Go Hayasaka and Hiroshi Fujii 2004. Effect of rice silicic acid content on resistance to blast at rice seedling stage. Yamagata Agricultural Research Bulletin, 37, 45-51. 平内央紀・三枝正彦2006.水稲用育苗培土の可給態ケイ素量とケイ酸資材の施用効果.土肥誌,77,41〜46.Hironori Hirauchi and Masahiko Saegusa2006. The amount of available silicon and the application effect of silicic acid materials for rice seedling culture. Toi, 77, 41-46. 堀川拓未・伊藤豊彰・長谷川孝雄・増田靖・新井忠男・三枝正彦2007.ポリシリカ鉄凝集剤(PSI)浄水ケーキの特性と水稲生育およびメタン放出に及ぼす影響.土肥誌,78,261〜267.Takumi Horikawa, Toyoaki Ito, Takao Hasegawa, Satoshi Masuda, Tadao Arai, Masahiko Saegusa2007. Properties of polysilica iron flocculant (PSI) water purification cake and its effect on rice growth and methane emission. Toi magazine, 78, 261-267. 石田博・白石道夫1971.珪カルの施用といもち病の防除効果.農業および園芸,46,779〜783.Hiroshi Ishida and Michio Shiraishi 1971. Application of silica and control of blast. Agriculture and horticulture, 46, 779-783. 神頭武嗣・長田靖之・三好昭宏1997.水耕栽培におけるイチゴうどんこ病菌に対するケイ酸カリ施用効果.日本植物病理学会報,63,521.Takeshi Kamigami, Yasuyuki Nagata, Akihiro Miyoshi 1997. Effect of potassium silicate application on strawberry powdery mildew in hydroponics. Journal of the Japanese Society for Plant Pathology, 63, 521. 前川和正・渡辺和彦・相野公孝・岩本豊2001.各種ケイ酸資材施用による育苗期のイネいもち病の発病抑制.土肥誌,72,56〜62.Kazumasa Maekawa, Kazuhiko Watanabe, Kimitaka Aino, Yutaka Iwamoto 2001. Suppression of rice blast during the seedling stage by applying various silicate materials. Toi, 72, 56-62. 新妻成一・久保省三2002.可給態ケイ酸量の異なる水稲用育苗培土におけるシリカゲル肥料の施用効果について.土肥要旨集,48,213.Niitsu Seiichi and Kubo Shozo 2002. Effect of silica gel fertilizer application on seedling culture for paddy rice with different amount of available silicic acid. Summary of Toi, 48, 213. 三枝正彦・平内央紀・渋谷暁一・岡崎仁志・吉田一男2002.育苗培土のケイ酸供給能とシリカゲルの施用効果.土肥誌,73,291〜292.Masahiko Saegusa, Hiroki Hirauchi, Junichi Shibuya, Hitoshi Okazaki, Kazuo Yoshida 2002. The silicic acid supply capacity of the seedling culture and the application effect of silica gel. Toi magazine, 73, 291-292. 三枝正彦・平内央紀・渋谷暁一・岡崎仁志・吉田一男2003.酸性化多孔質ケイ酸カルシウム水和物の苗箱施用が水稲苗の生育・養分吸収に及ぼす影響.土肥誌,74,333〜337.Masahiko Saegusa, Hironori Hirauchi, Junichi Shibuya, Hitoshi Okazaki, Kazuo Yoshida 2003. Effects of acidified porous calcium silicate hydrate application on the growth and nutrient absorption of rice seedlings. Toi magazine, 74, 333-337. 高橋英一1987.ケイ酸植物と石灰植物,作物の個性をさぐる.P137〜150,農文協,東京.Eiichi Takahashi, 1987. Search for the individuality of silicic and lime plants and crops. P137-150, Nobunbunkyo, Tokyo. 竹内徹1997.イネの窒素およびケイ酸栄養といもち病抵抗力との関係.北日本病虫研報,48.23〜26.Toru Takeuchi 1997. Relationship between rice nitrogen and silicate nutrition and blast resistance. Northern Japan Insect Research Report, 48.23-26. 田中達也・冨士真・新妻成一・久保省三・森国博全2004.接木キュウリ苗へのケイ酸施用によるうどんこ病抑制効果.土肥要旨集,50,141.Tatsuya Tanaka, Makoto Fuji, Seiichi Niizuma, Shozo Kubo, Hiroshi Morikuni 2004. Suppression of powdery mildew by silicic acid application to grafted cucumber seedlings. Summary of Toi, 50, 141.

従って、本発明は、PSI処理発生土を農業利用する新規な手段を提供することにある。   Accordingly, the present invention is to provide a novel means for agriculturally utilizing the PSI-treated soil.

本願発明者らは、鋭意研究の結果、即効性のケイ酸栄養が必要とされる水稲育苗期においてもPSI処理発生土の施用が有効であること、従ってPSI処理発生土が即効性のSi供給源としても有用であり、各種植物のケイ酸栄養源として有効活用できることを見出し、本願発明を完成した。   As a result of diligent research, the inventors of the present application have found that application of the PSI-treated soil is effective even during the rice seedling raising stage where immediate-effect silicate nutrition is required. The present invention was completed by finding that it is also useful as a source and can be effectively utilized as a silicate nutrient source for various plants.

すなわち、本発明は、ポリシリカ鉄による被処理水の凝集沈殿処理で生じた発生土を含有する培土を提供する。また、本発明は、乾燥された、ポリシリカ鉄による被処理水の凝集沈殿処理で生じた発生土を粉砕し、培土中に混和させることを含む、培土の製造方法を提供する。さらに、本発明は、ポリシリカ鉄による被処理水の凝集沈殿処理で生じた発生土を植物に施用することを含む植物の栽培方法を提供する。   That is, this invention provides the culture soil containing the generated soil produced by the coagulation sedimentation process of the to-be-processed water by polysilica iron. Moreover, this invention provides the manufacturing method of culture soil including grind | pulverizing the generated soil produced by the coagulation sedimentation processing of the to-be-processed water by polysilica iron, and making it mix in culture medium. Furthermore, this invention provides the cultivation method of a plant including applying the generated soil produced by the coagulation sedimentation process of the to-be-processed water by polysilica iron to a plant.

本発明により、PSI処理発生土を植物のケイ酸栄養源として有効利用する手段が提供された。PSI処理発生土はアルカリ分をほとんど含まず、そのpHは低いため、pHの上昇を回避する必要がある水稲苗への施用も可能である。培土のpHを上昇させないケイ酸資材として、シリカゲルが広く用いられているが、シリカゲルは高価な資材である。一方、本発明の培土は、浄水処理等の水処理で大量に発生するPSI処理発生土を用いて低コストで製造できる。さらに、下記実施例に記載されるように、PSI処理発生土はケイ酸栄養源としてシリカゲルに匹敵する即効性を有する。本発明によれば、シリカゲルに匹敵する即効性を有し、培土や土壌のpHを上昇させないケイ酸栄養の供給手段を安価に提供することができるとともに、浄水場で大量に発生する浄水発生土の有効利用を促進することができ、農業及び環境保全に大いに貢献できる。   According to the present invention, a means for effectively utilizing the PSI-treated soil as a silicate nutrient source of a plant is provided. The PSI-treated soil contains almost no alkali and its pH is low, so it can be applied to rice seedlings that need to avoid an increase in pH. Silica gel is widely used as a silicic acid material that does not increase the pH of the culture medium, but silica gel is an expensive material. On the other hand, the soil of the present invention can be produced at low cost by using the PSI treated soil that is generated in large quantities by water treatment such as water purification treatment. Furthermore, as described in the examples below, the PSI treated soil has an immediate effect comparable to silica gel as a silicate nutrient source. ADVANTAGE OF THE INVENTION According to this invention, while having the immediate effect equivalent to a silica gel, it can provide the supply means of a silicic acid nutrient which does not raise the pH of culture soil and soil at low cost, and also the purified water generation soil which generate | occur | produces in large quantities at a water purification plant. Can be used effectively and contribute greatly to agriculture and environmental conservation.

各処理区の水稲苗の地上部(左)及び地下部(右)のケイ酸含量を示す図である。異なるアルファベット間で有意差あり(Tukey法,p<0.05)。It is a figure which shows the silicic acid content of the above-ground part (left) and underground part (right) of the rice seedling of each process area. Significant differences between different alphabets (Tukey method, p <0.05). 資材に由来するケイ酸の吸収量(資材施用区の計算吸収量−無資材区のケイ酸吸収量)を示す図である。It is a figure which shows the absorption amount of the silicic acid derived from materials (calculated absorption amount of material application area-silicic acid absorption amount of non-material area).

本発明では、浄水処理等の水処理において、ポリシリカ鉄(PSI)を用いた被処理水の凝集沈殿処理により生じる発生土(以下、「PSI処理発生土」又は「PSI発生土」という)を用いる。発生土とは、被処理水中に存在する土壌粒子等の微細な不純物(混入物)が凝集剤処理により凝集・沈殿したものを指す。発生土は、被処理水の種類によっては土壌粒子を含まない場合もあるが、そのような発生土でも使用可能であり、土壌粒子を多量に含有するものに限定されない。PSIは水道機工株式会社が開発した公知の凝集剤であり(特許文献2、3)、塩化第二鉄と高分子の重合ケイ酸を主成分とする。PSIは既に実用化され、浄水場への導入が進んでいるため、PSI処理発生土はPSIを使用している浄水場から容易に入手可能である。重合ケイ酸の含量に応じて複数種類のPSIが市販されているが、これらのうちのいずれを用いたものであってもよい。PSI自体は、浄水処理のみならず工業用水処理、下水処理、排水処理等の水処理においても、被処理水の凝集沈殿処理工程で使用できる。従って、本発明で用いるPSI処理発生土は、これらの各種水処理で生じた発生土を広く包含する。具体的には、これらに限定されないが、製紙工場や食品工場での排水処理で生じた発生土、浄水場での浄水処理で生じた発生土が挙げられ、中でも浄水処理における凝集沈殿処理工程で生じた発生土(浄水発生土)を好ましく用いることができる。   In the present invention, in water treatment such as water purification treatment, generated soil (hereinafter referred to as “PSI generated soil” or “PSI generated soil”) generated by coagulation sedimentation treatment of water to be treated using polysilica iron (PSI) is used. . The generated soil refers to a material in which fine impurities (contaminants) such as soil particles existing in the water to be treated are aggregated and precipitated by the coagulant treatment. The generated soil may not contain soil particles depending on the type of water to be treated, but such generated soil can also be used, and is not limited to those containing a large amount of soil particles. PSI is a well-known flocculant developed by Suido Kiko Co., Ltd. (Patent Documents 2 and 3), and is mainly composed of ferric chloride and polymerized silicic acid. Since PSI has already been put into practical use and is being introduced to water treatment plants, the soil where PSI treatment is generated can be easily obtained from water treatment plants that use PSI. Several types of PSI are commercially available depending on the content of polymerized silicic acid, but any of these may be used. PSI itself can be used in the process of agglomeration and precipitation of water to be treated not only for water purification but also for water treatment such as industrial water treatment, sewage treatment, and wastewater treatment. Accordingly, the PSI-treated soil used in the present invention broadly encompasses the soil generated by these various water treatments. Specific examples include, but are not limited to, the generated soil from wastewater treatment at paper mills and food factories, and the generated soil from water purification at water purification plants. The generated generated soil (purified water generated soil) can be preferably used.

PSI発生土は、乾燥したものを培土や土壌に混和するのに適当な程度の粒径になるように粉砕して用いる。発生土を塊状になるまで風乾後、粉砕器等で粉砕して用いればよい。浄水場から得られる浄水発生土は、脱水されたいわゆる浄水ケーキの形態である場合が多いため、PSI発生土を浄水ケーキ形態で入手した場合には改めて該発生土を乾燥する必要はなく、そのまま粉砕して用いることができる。粉砕後のPSI発生土は、そのまま培土や土壌に混合させてもよいし、あるいは、単独で又は他の培土成分(原土、肥料等)と混合して公知の手法により造粒してもよい。   PSI-generated soil is used after being pulverized to a particle size suitable for mixing dry soil with soil or soil. The generated soil may be air-dried until it becomes a lump, and then pulverized with a pulverizer or the like. Since the purified water generation soil obtained from the water purification plant is often in the form of a so-called water purification cake that has been dehydrated, when the PSI generation soil is obtained in the form of a purified water cake, it is not necessary to dry the generated soil again, as it is. It can be used after pulverization. The PSI generated soil after pulverization may be mixed with the soil or soil as it is, or may be granulated by a known method alone or mixed with other soil components (raw soil, fertilizer, etc.). .

PSI発生土には鉄とケイ酸が多く含まれており、本発明ではPSI発生土はケイ酸資材として用いられる。従って、本発明の培土を製造する際には、PSI発生土以外にケイ酸供給源を添加する必要はない。その他の成分は基本的に公知の培土と同様であってよく、特に限定されない。PSI発生土は、低pHでSiの溶解性が高まると考えられるため、低pH(例えば3.5〜6.5程度)の培土に含有させることでPSI発生土のSi溶解性を高めることができ、これが即効性に寄与しているものと考えられる。培土中のPSI発生土の含量は、特に限定されないが、通常、培土1kg当たり乾燥重量で1g〜999g程度、例えば25g〜250g程度である。   The PSI-generated soil contains a large amount of iron and silicic acid. In the present invention, the PSI-generated soil is used as a silicate material. Therefore, when producing the soil of the present invention, it is not necessary to add a silicic acid supply source other than the PSI-generating soil. Other components may be basically the same as those of known soil, and are not particularly limited. Since the PSI-generated soil is considered to increase the solubility of Si at low pH, it can be increased immediately by adding it to the soil with a low pH (for example, about 3.5 to 6.5). It is thought that it contributes to sex. The content of the PSI-generated soil in the culture is not particularly limited, but is usually about 1 to 999 g, for example, about 25 to 250 g in dry weight per 1 kg of the culture.

本発明の培土は、園芸用培土又は水稲育苗用培土として好ましく用いることができる。使用時には、本発明の培土をそのまま用いてもよいし、適宜他の培土や肥料と混合して用いてもよい。PSI発生土の量(乾燥重量)が培土1kg当たり1g〜999g程度、例えば25g〜250g程度となるように植物に施用すれば、植物に好ましいケイ酸栄養を供給することができる。園芸作物の圃場等、水田本圃以外の圃場に施用する場合、PSI発生土の量(乾燥重量)が圃場10a当たり0.01t〜10t程度、例えば0.1t〜2t程度となるようにすればよい。   The culture medium of the present invention can be preferably used as a horticultural culture medium or a paddy rice seedling culture medium. At the time of use, the soil of the present invention may be used as it is, or may be appropriately mixed with other soil and fertilizer. If it is applied to a plant such that the amount of PSI generated soil (dry weight) is about 1 g to 999 g, for example, about 25 g to 250 g, per 1 kg of the soil, preferable silicic acid nutrition can be supplied to the plant. When applied to fields other than paddy field, such as horticultural crop fields, the amount of PSI generated soil (dry weight) may be about 0.01 to 10 t, for example, about 0.1 to 2 t per field 10a.

PSI発生土は、非特許文献5に記載されるように、水稲の栽培後期(移植2ヶ月後)のケイ酸栄養の改善のために本田に施用することができるほか、本願発明者らが初めて見出した通り、即効性のケイ酸栄養を必要とし、pHの上昇を回避する必要がある育苗期にも用いることができる。水稲の育苗培土の適正pHは4.5〜5.5であり、これ以上に上昇するとムレ苗や立枯病が発生するおそれがある。PSI発生土自体のpHは5.2程度であり、下記実施例では、PSI発生土を用いた育苗後の培土のpHが適正値であることが確認されている。また、下記実施例に記載される通り、PSI発生土は、水稲苗に施用後わずか3週間でも水稲苗のケイ酸栄養を改善できており、シリカゲルに匹敵するほどの即効性が確認されている。   As described in Non-Patent Document 5, the PSI-generated soil can be applied to Honda to improve silicic acid nutrition in the late stage of rice cultivation (2 months after transplanting). As found, it can be used in the seedling period that requires immediate silicate nutrition and needs to avoid an increase in pH. The proper pH of paddy rice seedling culture is 4.5 to 5.5, and if it rises above this level, there is a risk that mussel seedlings or stand-by disease will occur. The pH of the PSI-generated soil itself is about 5.2. In the following examples, it has been confirmed that the pH of the soil after seedling using the PSI-generated soil is an appropriate value. In addition, as described in the examples below, the PSI-generated soil has improved the silicic acid nutrition of the rice seedlings even after just 3 weeks of application to the rice seedlings, and has been confirmed to have immediate effects comparable to silica gel. .

さらに、非特許文献7、12、14に記載されるように、キュウリ、イチゴ等の園芸作物でもケイ酸栄養の向上が生育向上や病害発生抑制に有効であることが知られている。従って、PSI発生土は各種園芸作物のケイ酸源としても有用であり、水稲苗のみならず各種園芸作物にも好ましくケイ酸栄養を供給することができる。   Furthermore, as described in Non-Patent Documents 7, 12, and 14, it is known that improvement of silicic acid nutrition is effective for improving growth and suppressing the occurrence of diseases even in horticultural crops such as cucumbers and strawberries. Therefore, the PSI-generated soil is useful as a silicate source for various horticultural crops, and can preferably supply silicate nutrients to not only paddy rice seedlings but also various horticultural crops.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

1.材料および方法
1)育苗試験
育苗培土には市販の粒状培土(肥料入り)を用いた。培土量は2800g/箱とした。PSI発生土は越生浄水場にて発生したものを風乾後に粉砕(<500μm)したものを育苗箱あたり100g施用した(PSI100区)。なお、使用されたPSIは鉄:ケイ酸モル比が4:1又は1:0.25のものであった。また、対象としてシリカゲル肥料を育苗箱あたり50g、100g施用した区(SG50区、SG100区)および無資材区を設けた。各資材の特性を表1に、処理区の概要を表2に示した。培土に各資材を混和後、全体の2/3を床土として、1/3を覆土として使用した。水稲の品種にはキヌヒカリ(Oryza sativa L. cv. Kinuhikari)を用い、2009年5月13日に箱当たり催芽籾で180g播種し、加温出芽(30℃、2日間)させ、全国農業協同組合連合会営農・技術センター内ガラス温室にて20日間育苗した。試験は2反復で行った。
1. Materials and methods 1) Seedling test A commercially available granular soil (with fertilizer) was used for the seedling culture. The amount of soil was 2800 g / box. PSI-generated soil was air-dried and then crushed (<500μm) and applied to 100g of seedling boxes (PSI 100 Ward). The PSI used had an iron: silicate molar ratio of 4: 1 or 1: 0.25. In addition, 50 g and 100 g of silica gel fertilizer were applied per seedling box as targets (SG 50 ward, SG 100 ward) and no material ward. Table 1 shows the characteristics of each material, and Table 2 gives an overview of the treatment areas. After mixing each material into the cultivation soil, 2/3 of the whole was used as floor soil and 1/3 was used as covering soil. Kinuhikari (Oryza sativa L. cv. Kinuhikari) is used as the rice cultivar, and 180g is sown on the buds per box on May 13, 2009, and then the warmed budding (30 ° C, 2 days) is carried out. Raised seedlings in a glass greenhouse in the federation's agricultural and technical center for 20 days. The test was performed in duplicate.

Figure 2011211932
Figure 2011211932

Figure 2011211932
Figure 2011211932

2)調査・分析方法
育苗後の苗(20個体)の草丈、葉齢、葉色(SPAD値)を測定した。また、約200個体を採取し、その地上部および地下部の乾物重を求めた。さらに、地上部および地下部の養分含量を求めた。NCアナライザー(Smigraph NC-900、住化分析センター)により窒素含有率を求めた。乾式灰化-塩酸抽出液をICP(730-ES、バリアン製)発光分析法により分析し、リン酸、塩基(カリウム、カルシウム、マグネシウム、ナトリウム)および微量要素(鉄、亜鉛、銅、マンガン)含有率を求めた。また、ケイ酸は乾式灰化、塩酸抽出洗浄、再灰化後、重量法により粗ケイ酸を定量した。
2) Investigation / analysis method Plant height, leaf age, and leaf color (SPAD value) of seedlings (20 individuals) after raising were measured. In addition, about 200 individuals were collected, and the dry weight of the above-ground part and the underground part was obtained. Furthermore, the nutrient content of the above-ground part and the underground part was calculated | required. The nitrogen content was determined with an NC analyzer (Smigraph NC-900, Sumika Chemical Analysis Center). Dry ashing-hydrochloric acid extract is analyzed by ICP (730-ES, Varian) emission spectrometry and contains phosphoric acid, base (potassium, calcium, magnesium, sodium) and trace elements (iron, zinc, copper, manganese) The rate was determined. Silicic acid was quantified by gravimetric method after dry ashing, hydrochloric acid extraction washing and reashing.

2.結果および考察
1)苗質調査
表3には苗質調査の結果を示した。資材を処理した区は無処理区と比較して、乾物重(地上部・地下部)、草丈および葉齢が高くなる傾向であった。PSI100区では無処理区と比較して葉色値(SPAD値)および葉齢が有意に高くなった。
2. Results and Discussion 1) Seedling quality survey Table 3 shows the results of the seedling quality survey. The plots treated with the material tended to have higher dry matter weight (aboveground / underground), plant height and leaf age than the untreated plots. The leaf color value (SPAD value) and leaf age were significantly higher in the PSI100 group than in the untreated group.

Figure 2011211932
Figure 2011211932

2)水稲苗の養分含量(ケイ酸以外)
水稲苗の地上部および地下部養分含量をそれぞれ、表4および表5に示した。地上部のリン酸含量はPSI100区で他区と比較して有意に低くなったが、これはPSIのリン酸吸着力が高いため、培土中のリン酸を吸着したためと考えられた。しかし、PSI100区のリン酸含量の低下は問題になるレベルではなかった。また、浄水発生土の農業利用においてはマンガン過剰が問題となることが多い。本試験におけるPSI100区の地上部マンガン含量は無資材区と同等であり、問題は見られなかった。地下部ではPSI100区で鉄含量が非常に高かったが、これは根が吸収した鉄に加えて根表面に付着した鉄がカウントされているためであろう。鉄は水田では根圏を酸化的に保つ役割もあることから、PSI施用による高含量の鉄も何らかの効果を奏していると考えられる。
2) Nutrient content of paddy rice seedlings (other than silicic acid)
Tables 4 and 5 show the nutrient contents of the above-ground and underground parts of rice seedlings, respectively. The phosphoric acid content of the above-ground part was significantly lower in the PSI100 district than in the other districts. However, the decrease in phosphate content in PSI 100 was not a problem level. In addition, excess manganese is often a problem in agricultural use of purified water generation soil. In this test, the above-ground manganese content of PSI100 was the same as that of no material, and no problem was found. In the subsurface area, the iron content was very high in PSI100, probably because the iron adhering to the root surface was counted in addition to the iron absorbed by the root. Since iron also has a role to keep the rhizosphere oxidatively in paddy fields, it is considered that high content of iron by PSI application also has some effect.

Figure 2011211932
Figure 2011211932

Figure 2011211932
Figure 2011211932

3)水稲苗のケイ酸含量
水稲苗の地上部および地下部のケイ酸含量を図1に示した。また、資材由来ケイ酸吸収量を図2に示した。無資材区では地上部ケイ酸含量は3.0%であったのに対し、PSI100区、SG50区およびSG100区ではそれぞれ、4.9、5.7および7.5%となった。PSI100区の培土へのケイ酸施用量(18.3gSiO2/箱)はSG50区(45gSiO2/箱)の半分以下であったのにも関わらず、PSI100区の資材由来の地上部ケイ酸吸収量はSG50区の約7割に達した(図2)。このことはPSI発生土のケイ酸供給能が高いことを示すものである。堀川ら(2007)の試験ではPSI(乾燥)の施用量は150〜2000gm-2であったが、これは土壌1kgあたりに換算すると0.12〜16gとなる。一方、本試験では土壌(培土)1kgあたり35.7gであり、本田に施用する場合よりも多量に施用した。PSIを本田に施用する場合は、過剰害の回避や施用作業の効率から2000gm-2(2t 10a-1)程度が限界と思われるが、育苗段階では少なくとも本試験で行った35.7gkg-1(100g 箱-1)程度の施用は可能であり、水稲苗に効率的にケイ酸を供給できるであろう。
3) Silica content of rice seedlings Fig. 1 shows the silicic acid contents of the above-ground and underground parts of rice seedlings. The amount of material-derived silicic acid absorbed is shown in FIG. The above-ground silicic acid content was 3.0% in the material-free zone, whereas it was 4.9, 5.7 and 7.5% in the PSI100, SG50 and SG100 zones, respectively. Although the silicic acid application rate (18.3gSiO 2 / box) to the soil of PSI100 zone was less than half of SG50 zone (45gSiO 2 / box), the above-ground silicic acid absorption amount derived from the material of PSI100 zone Reached about 70% of SG50 (Fig. 2). This indicates that the silicic acid supply capacity of the PSI-producing soil is high. In the test of Horikawa et al. (2007), the application rate of PSI (dry) was 150 to 2000 gm -2 , which is 0.12 to 16 g when converted to 1 kg of soil. On the other hand, in this test, it was 35.7 g per 1 kg of soil (cultured soil), which was applied in a larger amount than when applied to Honda. When PSI is applied to Honda, the limit of 2000 gm -2 (2t 10a -1 ) seems to be the limit because of avoidance of excessive harm and efficiency of application work, but at least 35.7 gkg -1 ( Application in the 100g box- 1 ) range is possible, and silicic acid can be efficiently supplied to rice seedlings.

早坂ら(2004)は水稲苗のケイ酸含量が5%以上となった場合、いもち病の発生が顕著に抑制されたことを報告した。本試験におけるPSI100区の地上部ケイ酸含量はほぼこの値に近かった。施用量を増やすことでより水稲苗のケイ酸含量を高めることは可能であろう。   Hayasaka et al. (2004) reported that the occurrence of blast was remarkably suppressed when the silicic acid content of paddy rice seedlings exceeded 5%. In this study, the above-ground silicic acid content of PSI100 was almost close to this value. It would be possible to increase the silicic acid content of rice seedlings by increasing the application rate.

4)育苗培土の理化学性
育苗後の培土の理化学性を表6に示した。pHは4.3〜4.6の範囲にあり、適正な値であった。可給態リン酸含量はPSI100区で低く、水稲苗のリン酸含量が低いことと一致したが、問題になるレベルではないと考えられた。
4) Physicochemical properties of seedling culture soil Table 6 shows the physicochemical properties of the seedling culture material after seedling. The pH was in the range of 4.3 to 4.6 and was an appropriate value. The available phosphate content was low in PSI 100, which was consistent with the low phosphate content of paddy rice seedlings.

Figure 2011211932
Figure 2011211932

Claims (9)

ポリシリカ鉄による被処理水の凝集沈殿処理で生じた発生土を含有する培土。   A soil containing the soil generated by the coagulation sedimentation treatment of water to be treated with polysilica iron. 前記発生土は浄水処理における凝集沈殿処理工程で生じた浄水発生土である請求項1記載の培土。   The cultivated soil according to claim 1, wherein the generated soil is purified water generated in a coagulation sedimentation process in purified water treatment. 園芸培土又は水稲育苗培土である請求項1又は2記載の培土。   The soil according to claim 1 or 2, which is a horticulture soil or a paddy rice seedling culture soil. 前記発生土の含量が1kg当たり乾燥重量で1g〜999gである請求項1ないし3のいずれか1項に記載の培土。   The soil according to any one of claims 1 to 3, wherein a content of the generated soil is 1 g to 999 g in dry weight per kg. 乾燥された、ポリシリカ鉄による被処理水の凝集沈殿処理で生じた発生土を粉砕し、培土中に混和させることを含む、培土の製造方法。   A method for producing a soil, comprising pulverizing a generated soil generated by a coagulation sedimentation treatment of water to be treated with polysilica iron, and mixing the soil in the soil. ポリシリカ鉄による被処理水の凝集沈殿処理で生じた発生土を植物に施用することを含む植物の栽培方法。   A method for cultivating a plant, comprising applying the generated soil produced by a coagulation sedimentation treatment of water to be treated with polysilica iron to the plant. 植物へのケイ酸の供給方法である請求項6記載の方法。   The method according to claim 6, which is a method for supplying silicic acid to a plant. 前記植物が園芸作物又は水稲苗である請求項6又は7記載の方法。   The method according to claim 6 or 7, wherein the plant is a horticultural crop or a rice seedling. 前記発生土を培土1kg当たり1g〜999g又は圃場10a当たり0.01t〜10t施用する請求項8記載の方法。   The method according to claim 8, wherein the generated soil is applied in an amount of 1 g to 999 g per 1 kg of cultivated soil or 0.01 t to 10 t per 10 a of the field.
JP2010081481A 2010-03-31 2010-03-31 Culture soil including psi treated generated soil Pending JP2011211932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081481A JP2011211932A (en) 2010-03-31 2010-03-31 Culture soil including psi treated generated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081481A JP2011211932A (en) 2010-03-31 2010-03-31 Culture soil including psi treated generated soil

Publications (1)

Publication Number Publication Date
JP2011211932A true JP2011211932A (en) 2011-10-27

Family

ID=44942380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081481A Pending JP2011211932A (en) 2010-03-31 2010-03-31 Culture soil including psi treated generated soil

Country Status (1)

Country Link
JP (1) JP2011211932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136340A1 (en) * 2012-03-15 2013-09-19 Venkat Reddy Chinthala A process of enhancing soil nutrition and its preservation
CN105130564A (en) * 2015-07-03 2015-12-09 江苏田娘农业科技有限公司 Paddy-rice seedling substrate and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327482A (en) * 1994-06-14 1995-12-19 Nippon Cement Co Ltd Filler for vegetation of void in alkaline cured body
JP2002186351A (en) * 2000-12-19 2002-07-02 Kumagai Gumi Co Ltd Plant growth base material
JP2005298244A (en) * 2004-04-08 2005-10-27 Yuichi Terasawa Method for composting mud
JP2006281065A (en) * 2005-03-31 2006-10-19 Masao Ukisho Sludge modifying agent
JP2008023417A (en) * 2006-07-18 2008-02-07 Sumitomo Heavy Industries Environment Co Ltd Water purifying apparatus and water purifying method
JP2008055299A (en) * 2006-08-30 2008-03-13 Toshiba Corp Flocculating sedimentation treating equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327482A (en) * 1994-06-14 1995-12-19 Nippon Cement Co Ltd Filler for vegetation of void in alkaline cured body
JP2002186351A (en) * 2000-12-19 2002-07-02 Kumagai Gumi Co Ltd Plant growth base material
JP2005298244A (en) * 2004-04-08 2005-10-27 Yuichi Terasawa Method for composting mud
JP2006281065A (en) * 2005-03-31 2006-10-19 Masao Ukisho Sludge modifying agent
JP2008023417A (en) * 2006-07-18 2008-02-07 Sumitomo Heavy Industries Environment Co Ltd Water purifying apparatus and water purifying method
JP2008055299A (en) * 2006-08-30 2008-03-13 Toshiba Corp Flocculating sedimentation treating equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136340A1 (en) * 2012-03-15 2013-09-19 Venkat Reddy Chinthala A process of enhancing soil nutrition and its preservation
CN105130564A (en) * 2015-07-03 2015-12-09 江苏田娘农业科技有限公司 Paddy-rice seedling substrate and preparation method thereof

Similar Documents

Publication Publication Date Title
Nur Aainaa et al. Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil
Tahir et al. Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress
Padisak et al. Phytoplankton in extreme environments: importance and consequences of habitat permanency
Munda et al. Combined application of rice husk biochar and fly ash improved the yield of lowland rice
Yang et al. Effect and mechanism of commonly used four nitrogen fertilizers and three organic fertilizers on Solanum nigrum L. hyperaccumulating Cd
Hannachi et al. Effects of cultivation on chemical and biochemical properties of dryland soils from southern Tunisia
Sharma et al. Sustainable management of sodic soils for crop production: opportunities and challenges
KR102001524B1 (en) The hydroponic methods for leafy vegetables production with a low nitrate content
Ben Salah et al. Purified monoammonium phosphate fertilizer promotes the yield and reduces heavy metals accumulation in tomato (Lycopersicon esculentum L.)
JP2011211932A (en) Culture soil including psi treated generated soil
Brautigan et al. Amelioration of alkaline phytotoxicity by lowering soil pH
Zhao et al. Response of soil organic carbon fractions to increasing rates of crop residue return in a wheat–maize cropping system in north-central China
Alharbi et al. Mitigating osmotic stress and enhancing developmental productivity processes in cotton through integrative use of vermicompost and cyanobacteria
Zakirullah Jan et al. The role of cyanobacteria in availability of major plant nutrients and soil organic matter to rice crop under saline soil condition.
Ullah et al. Genotypic variation of tomato to AMF inoculation in improving growth, nutrient uptake, yield, and photosynthetic activity
JP2000188946A (en) Welsh onion nursing medium and method for producing same
WO2020211178A1 (en) Silicon-rich soil improvement agent, preparation method therefor and use thereof
Sharma et al. Emerging trends in salinity research: an Indian perspective
Jeon et al. Effects of green manure and carbonized rice husk on soil properties and rice growth
Chu et al. Availability and toxicity of exogenous lanthanum in a haplic acrisols
Ahmed et al. Morphological responses of three contrasting soybean (Glycine max (L.) Merrill) genotypes under different levels of salinity stress in the coastal region of Bangladesh
KR102550898B1 (en) Organic soil conditioner comprising peat as effective component and uses thereof
Rao et al. Effect of Soil Amendments on Growth and Yield of Wheat (Triticum aestivum L.) in Sodic Soil
Sandeep et al. Soil microbiological and chemical changes in rice-wheat cropping system at Palampur (Himachal Pradesh) after twelve years of Lantana camara L. residue incorporation
JP3232039B2 (en) Plant growth medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130306

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812