JP2011210687A - Slow release relay circuit - Google Patents

Slow release relay circuit Download PDF

Info

Publication number
JP2011210687A
JP2011210687A JP2010079722A JP2010079722A JP2011210687A JP 2011210687 A JP2011210687 A JP 2011210687A JP 2010079722 A JP2010079722 A JP 2010079722A JP 2010079722 A JP2010079722 A JP 2010079722A JP 2011210687 A JP2011210687 A JP 2011210687A
Authority
JP
Japan
Prior art keywords
circuit
discharge
relay
coil
slow release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010079722A
Other languages
Japanese (ja)
Other versions
JP5489820B2 (en
Inventor
Yukio Moriyama
幸夫 森山
Isamu Suzuki
勇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2010079722A priority Critical patent/JP5489820B2/en
Publication of JP2011210687A publication Critical patent/JP2011210687A/en
Application granted granted Critical
Publication of JP5489820B2 publication Critical patent/JP5489820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Relay Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a fail-safe slow release relay circuit stable in a slow release time.SOLUTION: The slow release relay circuit includes: a switch circuit 30 which is series-connected to a coil R of a relay 50 and carries out conduction/cut-off switching of a coil feed circuit 55; a storage circuit 20 which is parallel-connected to the coil R and the switch circuit 30 and charged by feeding to the feed circuit 55 from outside, and in which discharge after break of external feeding is carried out via the coil R and the switch circuit 30; and a charge-discharge circuit which is parallel-connected to the coil R and the switch circuit 30 and charged by external feeding, and in which discharge after break of external feeding is carried out by bypassing the coil R and the switch circuit 30. The switch circuit 30 switches conduction/cut-off of the feed circuit 55 corresponding to a level of a charging voltage of the charge-discharge circuit 10. Capacity C2 of the storage circuit 20 is larger than capacity C1 of the charge-discharge circuit 10, and a relay operation retainable time after break of external power feeding is longer than a conductive state maintaining time of the feed circuit 55 after break of external power feeding.

Description

この発明は、鉄道の信号や踏切の制御などに用いられる緩放リレー回路に関し、詳しくは、直流電圧が印加されるとリレーが動作し、直流電圧の印加が絶たれたときには緩放時間の経過後にリレーが復旧する緩放リレー回路に関し、更に詳しくは緩放時間がコンデンサからの放電特性に基づいて決まる緩放リレー回路に関する。   The present invention relates to a slow release relay circuit used for control of railway signals, railroad crossings, and the like. More specifically, the relay operates when a DC voltage is applied, and the slow release time elapses when the application of the DC voltage is cut off. The present invention relates to a slow release relay circuit in which a relay is restored later, and more particularly to a slow release relay circuit in which a slow release time is determined based on a discharge characteristic from a capacitor.

緩放リレー回路は(例えば非特許文献1,図5参照)、CR回路によるコンデンサの放電時間を利用してリレーの緩放時間を決めるタイプの場合、例えば直流電圧24Vで駆動されるリレー50と、充放電抵抗R3と大容量コンデンサC3とを直列接続した充放電回路C3,R3とを、組み合わせた回路からなり、リレー50のコイルRと充放電回路C3,R3とが並列になる形で、リレー50のコイルRの給電路55に充放電回路C3,R3が接続されている。このような緩放リレー回路では、スイッチSWがオンして給電線対B24,C24から直流電圧24Vが印加されると、リレー50が動作してリレー接点が扛上するとともに、充放電抵抗R3を介して大容量コンデンサC3が充電される。   The slow release relay circuit (see, for example, Non-Patent Document 1 and FIG. 5) is a type that determines the slow release time of the relay using the discharge time of the capacitor by the CR circuit. The charging / discharging circuit C3, R3 in which the charging / discharging resistor R3 and the large-capacitance capacitor C3 are connected in series is a combined circuit, and the coil R of the relay 50 and the charging / discharging circuits C3, R3 are in parallel. Charging / discharging circuits C3 and R3 are connected to the power supply path 55 of the coil R of the relay 50. In such a slow release relay circuit, when the switch SW is turned on and the DC voltage 24V is applied from the pair of power supply lines B24 and C24, the relay 50 operates to raise the relay contact, and the charge / discharge resistance R3 is set. The large-capacitance capacitor C3 is charged through this.

そして、スイッチSWがオフして直流電圧24Vの印加が絶たれると、大容量コンデンサC3から充放電抵抗R3と給電路55とコイルRとを介して放電がなされ、その電流が大きいうちはリレー50の動作が保持されるが、放電電流が小さくなってコイルRの励磁に足りなくなると、リレー50が復旧してリレー接点が落下する。すなわち、大容量コンデンサC3の放電電圧がリレー50の復旧電圧を下回ったときにリレー50が復旧する。このスイッチSWがオフしてからリレー50が復旧するまでの時間が、緩放時間(又は緩放時素)であり、大容量コンデンサC3と充放電抵抗R3とリレー50のコイルRとによる放電特性と、リレー50の復旧電圧とに基づいて決まる。   When the switch SW is turned off and the application of the DC voltage 24V is stopped, the large-capacitance capacitor C3 is discharged through the charging / discharging resistor R3, the power supply path 55, and the coil R. However, when the discharge current becomes small and the excitation of the coil R becomes insufficient, the relay 50 is restored and the relay contact drops. That is, the relay 50 recovers when the discharge voltage of the large-capacitance capacitor C3 falls below the recovery voltage of the relay 50. The time from when the switch SW is turned off until the relay 50 is restored is the slow release time (or the slow release time), and the discharge characteristics by the large-capacitance capacitor C3, the charge / discharge resistor R3, and the coil R of the relay 50. And the recovery voltage of the relay 50.

日本鉄道電気技術協会編「踏切保安装置 詳説」第291〜293頁、2007年5月31日発行Published by Japan Railway Electrical Engineering Association, “Detailed information on railroad crossing safety equipment”, pages 291-293, May 31, 2007

このような緩放リレーを鉄道信号に用いる場合、緩放時間として数秒から数十秒といった長い時間が要求されるため、時素設定用のコンデンサC3には電解コンデンサなど大容量のものが必要であるが、そのような大容量コンデンサC3は一般に温度変化や経時変化に係る容量特性が優れない。しかも、大容量コンデンサC3の放電電圧によりリレー50の動作保持を行っているので、大容量コンデンサC3の放電経路にリレー50のコイルRが含まれているが、リレーによっては復旧電圧のバラツキが大きい。そして、そのようなリレーの復旧電圧とコンデンサの放電電圧カーブとの大小関係によりリレーの復旧動作時間が決まり、その復旧動作時間が緩放時間となるため、リレーの復旧電圧とコンデンサ容量の温度変動などの影響を受けて緩放時間が変動しやすい。   When such a slow release relay is used for a railway signal, a long time of several seconds to several tens of seconds is required as a slow release time. Therefore, the capacitor C3 for setting the time element needs to have a large capacity such as an electrolytic capacitor. However, such a large-capacitance capacitor C3 is generally not excellent in capacitance characteristics related to temperature changes and changes with time. In addition, since the operation of the relay 50 is held by the discharge voltage of the large-capacitance capacitor C3, the coil R of the relay 50 is included in the discharge path of the large-capacitance capacitor C3. . And, since the recovery operation time of the relay is determined by the magnitude relationship between the recovery voltage of the relay and the discharge voltage curve of the capacitor, and the recovery operation time becomes a slow release time, the temperature recovery of the relay recovery voltage and the capacitor capacity The release time tends to fluctuate under the influence of

緩放時間が変動するとしても、そして、その変動量が大きいとしても、変動範囲が要求仕様の上下限界内に収まっていれば、緩放リレーは使用することができる。
しかしながら、緩放時間の変動が大きいと、最大変動を見越して初期設定を行わなければならないため、部品選定や出荷前調整などの負担が重い。また、要求仕様の厳格化に応えることが難しく、要求仕様を超える高品質をアピールすることもできない。
そこで、緩放時間が安定するよう緩放リレー回路を改良することが課題となるが、鉄道設備に組み込まれる緩放リレー回路ではフェールセーフ性が欠かせないので、その条件も満たす態様で新たな緩放リレー回路を実現しなければならない。
Even if the slow release time fluctuates and the fluctuation amount is large, the slow release relay can be used as long as the fluctuation range is within the upper and lower limits of the required specifications.
However, if the variation in the slow release time is large, the initial setting must be performed in anticipation of the maximum variation, so that burdens such as part selection and adjustment before shipment are heavy. In addition, it is difficult to meet the stricter requirements, and it is not possible to appeal high quality exceeding the requirements.
Therefore, it is an issue to improve the slow release relay circuit so that the slow release time is stable, but fail safeness is indispensable in the slow release relay circuit incorporated in the railway equipment, so a new mode that satisfies that condition is also new. A slow release relay circuit must be realized.

本発明の緩放リレー回路は(解決手段1)、このような課題を解決するために創案されたものであり、リレーのコイルに直列接続されていて前記コイルの給電路の導通遮断切替を行う電路開閉回路と、前記コイル及び前記電路開閉回路に並列接続されていて前記給電路への外部からの給電によって充電され前記外部給電の断絶後の放電は前記コイル及び前記電路開閉回路を介して行う蓄電回路と、前記コイル及び前記電路開閉回路に並列接続されていて前記外部給電にて充電され前記外部給電の断絶後の放電は前記コイル及び前記電路開閉回路を迂回して行う充放電回路とを備えた緩放リレー回路であって、前記電路開閉回路が前記充放電回路の充電電圧の高低に応じて前記給電路の導通遮断を切り替えるものであり、前記蓄電回路の容量が前記充放電回路の容量より大きくて前記外部給電の断絶後の前記リレーの動作保持可能時間が前記外部給電の断絶後の前記給電路の導通状態維持時間より長くなっていることを特徴とする。   The slow-release relay circuit of the present invention (Solution 1) was devised to solve such a problem, and is connected in series to a coil of a relay to switch conduction of the coil feeding path. An electric circuit switching circuit, which is connected in parallel to the coil and the electric circuit switching circuit, is charged by external power feeding to the power feeding path, and discharge after the external power feeding is interrupted is performed via the coil and the electric circuit switching circuit. A storage circuit; and a charge / discharge circuit connected in parallel to the coil and the electric circuit switching circuit and charged by the external power supply, and discharging after the external power supply is interrupted bypasses the coil and the electric circuit switching circuit. A slow-release relay circuit provided, wherein the electric circuit switching circuit switches on and off of the power feeding path according to the level of the charging voltage of the charging / discharging circuit, and the capacity of the power storage circuit is Wherein the operating holding-time of the relay after disruption of the greater than the capacity of KiTakashi discharge circuit external power supply is longer than the conduction state holding time of the feeding path after disconnection of the external power supply.

また、本発明の緩放リレー回路は(解決手段2)、上記解決手段1の緩放リレー回路であって、前記蓄電回路も前記充放電回路も容量部が充電抵抗を介して充電されるものであり、それら両抵抗の間には前記蓄電回路から前記充放電回路への放電を阻止する逆流阻止部材が介挿接続されていることを特徴とする。   Further, the slow release relay circuit of the present invention is (Solution means 2), which is the slow release relay circuit of the above-mentioned solution means 1, wherein both the storage circuit and the charge / discharge circuit are charged through a charge resistor in the capacity portion. A backflow prevention member for preventing discharge from the power storage circuit to the charge / discharge circuit is interposed between the two resistors.

さらに、本発明の緩放リレー回路は(解決手段3)、上記解決手段1,2の緩放リレー回路であって、前記充放電回路の前記充電抵抗には前記充電抵抗を介する放電を阻止する逆流阻止部材が付設されていて、前記充放電回路が前記充電抵抗とは別の放電抵抗を介して放電するようになっていることを特徴とする。   Further, the slow release relay circuit of the present invention is (Solving means 3), which is the slow release relay circuit of the above solving means 1 and 2, wherein the charging resistance of the charging / discharging circuit is prevented from discharging via the charging resistance. A backflow prevention member is provided, and the charge / discharge circuit discharges through a discharge resistor different from the charge resistor.

このような本発明の緩放リレー回路にあっては(解決手段1)、リレーの動作状態切替が電路開閉回路に委ねられるとともに、時素制御すなわち緩放時間の長短決定が充放電回路に委ねられて、大容量の蓄電回路はリレーの動作保持に専用化される。そして、そのリレーの動作保持可能時間がリレーのコイルの給電路の導通状態維持時間すなわち緩放時間より長ければ足りるので、蓄電回路は放電精度の要件から解放される。また、リレーは復旧電圧の正確性の要件から解放される。さらに、充放電回路は、容量が小さくて足りるので、部材選択の範囲が広がり、大したコストを掛けなくても、特性の良い部材を用いて回路を構成することができる。これにより緩放時間が安定することとなる。   In such a slow release relay circuit of the present invention (Solution 1), switching of the relay operation state is left to the electric circuit switching circuit, and time control, that is, a long / short decision of the slow release time is left to the charge / discharge circuit. Therefore, the large-capacity storage circuit is dedicated to maintaining the operation of the relay. Since it is sufficient that the relay operation holdable time is longer than the conduction state maintaining time of the power supply path of the relay coil, that is, the slow release time, the power storage circuit is released from the requirement of discharge accuracy. Also, the relay is freed from the requirement of the recovery voltage accuracy. Furthermore, since the capacity of the charge / discharge circuit is small, the range of member selection is widened, and the circuit can be configured using members having good characteristics without much cost. As a result, the slow release time is stabilized.

しかも、外部給電の断絶後にリレーを動作保持する電流が蓄電回路からの放電だけなので、その放電が電路開閉回路によって強制阻止されない限り、蓄電回路の放電に基づくリレーの動作保持可能時間が経過した後には、リレーが必ず復旧する。そのため、回路のどこかが壊れて電路開閉回路が導通したまま遮断しなくなったという故障が発生した場合でも、リレーが必ず復旧するので、鉄道設備で必要なフェールセーフ性が確保される。
したがって、この発明によれば、緩放時間の安定したフェールセーフな緩放リレー回路を実現することができる。
Moreover, since the only current that maintains the operation of the relay after disconnection of the external power supply is the discharge from the storage circuit, unless the discharge is forcibly blocked by the circuit switching circuit, the relay operation holding time based on the discharge of the storage circuit has elapsed. The relay must be restored. For this reason, even when a failure occurs in which a part of the circuit is broken and the circuit switching circuit is not turned off while the circuit is on, the relay is always restored, so that the fail-safe property necessary for the railway facilities is ensured.
Therefore, according to the present invention, a fail-safe slow release relay circuit with a stable slow release time can be realized.

また、本発明の緩放リレー回路にあっては(解決手段2)、蓄電回路から充放電回路への不所望な影響が及ぶのを簡便に防止することができる。
さらに、本発明の緩放リレー回路にあっては(解決手段3)、充放電回路を簡便なアナログ受動回路で実現することができる。
Moreover, in the slow release relay circuit of the present invention (solution means 2), it is possible to easily prevent an undesired influence from the storage circuit to the charge / discharge circuit.
Furthermore, in the slow release relay circuit of the present invention (Solution means 3), the charge / discharge circuit can be realized by a simple analog passive circuit.

本発明の実施例1について、緩放リレー回路の回路図である。1 is a circuit diagram of a slow release relay circuit according to Embodiment 1 of the present invention. オン時の動作説明図である。It is operation | movement explanatory drawing at the time of ON. オフ時の動作説明図である。It is operation | movement explanatory drawing at the time of OFF. 本発明の実施例2について、緩放リレー回路の回路図である。It is a circuit diagram of a slow release relay circuit about Example 2 of the present invention. 従来の緩放リレー回路の回路図である。It is a circuit diagram of the conventional slow release relay circuit.

このような本発明の緩放リレー回路について、これを実施するための具体的な形態を、以下の実施例1〜2により説明する。
図1〜3に示した実施例1は、上述した解決手段1〜3(出願当初の請求項1〜3)を総て具現化したものであり、図4に示した実施例2は、その変形例である。
About the slow release relay circuit of such this invention, the specific form for implementing this is demonstrated by the following Examples 1-2.
The embodiment 1 shown in FIGS. 1 to 3 embodies all the above-described solving means 1 to 3 (claims 1 to 3 at the beginning of the application), and the embodiment 2 shown in FIG. It is a modification.

本発明の緩放リレー回路の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、その回路図である。   A specific configuration of the slow release relay circuit according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram thereof.

この緩放リレー回路は、充放電回路10と蓄電回路20と電路開閉回路30とリレー50とを具えたものである。
リレー50は、従来回路のものと同じで良く、コイルRの給電路55がスイッチSWを介して外部給電用の給電線対B24,C24に接続されている。
This slow release relay circuit includes a charge / discharge circuit 10, a power storage circuit 20, an electric circuit switching circuit 30, and a relay 50.
The relay 50 may be the same as that of the conventional circuit, and the feeding path 55 of the coil R is connected to the feeding line pair B24 and C24 for external feeding through the switch SW.

電路開閉回路30は、漏れ電流の少ない例えばMOS形FETであってゲート電圧低下時にドレイン電流の止まるpチャネルエンハンスメント形のトランジスタからなるスイッチング素子Q1が開閉部材に採用されており、スイッチング素子Q1のドレインが正側の給電線B24及びスイッチSW側に接続され、スイッチング素子Q1のソースが負側の給電線C24に接続され、スイッチング素子Q1のゲートが充放電回路10の放電電圧を受けるために後述の放電抵抗VR1の可動端子に接続された形で、スイッチング素子Q1が給電路55に介挿されている。これにより、電路開閉回路30は、リレー50のコイルRに直列接続されていてコイルRの給電路55の導通遮断切替を行うものとなっている。   In the circuit switching circuit 30, a switching element Q1 made of a p-channel enhancement type transistor, which is a MOS FET with a small leakage current and stops the drain current when the gate voltage drops, is adopted as the switching member, and the drain of the switching element Q1 Are connected to the positive power supply line B24 and the switch SW side, the source of the switching element Q1 is connected to the negative power supply line C24, and the gate of the switching element Q1 receives the discharge voltage of the charge / discharge circuit 10 to be described later. The switching element Q1 is inserted in the power supply path 55 in a form connected to the movable terminal of the discharge resistor VR1. As a result, the electric circuit switching circuit 30 is connected in series to the coil R of the relay 50, and performs conduction interruption switching of the power supply path 55 of the coil R.

蓄電回路20は、抵抗値が例えば390Ω程度の充放電抵抗R2と、容量が例えば6700μF程度の大容量アルミ電解コンデンサC2と、必須でなく適宜付加されるツェナーダイオードZ2とを具備したものであり、このような充放電抵抗R2及び大容量コンデンサC2は既述した従来の充放電抵抗R3及び大容量コンデンサC3に概ね匹敵している。そして、充放電抵抗R2の一端がスイッチSWとコイルRとの間で給電路55に接続され、充放電抵抗R2の他端と大容量コンデンサC2の一端とが接続され、大容量コンデンサC2の他端が給電線C24に接続されて、蓄電回路20がコイルR及び電路開閉回路30に並列接続されたものとなっている。また、ツェナーダイオードZ2は、カソードが大容量コンデンサC2の一端側に接続され、アノードが給電線C24に接続されて、大容量コンデンサC2の充電電圧を安定させるものとなっている。   The storage circuit 20 includes a charge / discharge resistor R2 having a resistance value of, for example, about 390Ω, a large-capacity aluminum electrolytic capacitor C2 having a capacity of, for example, about 6700 μF, and a Zener diode Z2 that is not essential and is appropriately added. Such charge / discharge resistor R2 and large-capacitance capacitor C2 are generally comparable to the conventional charge / discharge resistor R3 and large-capacitance capacitor C3 described above. One end of the charge / discharge resistor R2 is connected to the power supply path 55 between the switch SW and the coil R, and the other end of the charge / discharge resistor R2 is connected to one end of the large-capacitance capacitor C2. The end is connected to the power supply line C24, and the storage circuit 20 is connected in parallel to the coil R and the electric circuit switching circuit 30. In addition, the Zener diode Z2 has a cathode connected to one end side of the large-capacitance capacitor C2 and an anode connected to the power supply line C24 to stabilize the charging voltage of the large-capacitance capacitor C2.

充放電回路10は、抵抗値が例えば1KΩ程度の充電抵抗R1と、充電抵抗R1を介する放電を阻止する逆流阻止部材として充電抵抗R1に付設されたダイオードD1と、一対の固定端子と一個の可動端子とを有し両固定端子間の抵抗値が例えば500KΩ程度の放電抵抗VR1と、容量が例えば20μF程度の小容量であって温度変動や経年変化の小さいフィルムコンデンサC1と、必須でなく適宜付加されるツェナーダイオードZ1とを具備している。そして、充電抵抗R1の一端がスイッチSWとコイルR及び充放電抵抗R2との間で給電路55に接続され、充電抵抗R1の他端とダイオードD1のアノードとが接続され、ダイオードD1のカソードと小容量コンデンサC1の一端とが接続され、小容量コンデンサC1の他端が給電線C24に接続されて、充放電回路10がコイルR及び電路開閉回路30に並列接続されたものとなっている。   The charging / discharging circuit 10 includes a charging resistor R1 having a resistance value of, for example, about 1 KΩ, a diode D1 attached to the charging resistor R1 as a backflow prevention member for preventing discharge through the charging resistor R1, a pair of fixed terminals, and one movable terminal A discharge resistor VR1 having a terminal and a resistance value between the two fixed terminals of, for example, about 500 KΩ, a film capacitor C1 having a small capacity of, for example, about 20 μF, and having small temperature fluctuations and aging, and is appropriately added. Zener diode Z1 to be provided. One end of the charging resistor R1 is connected to the power supply path 55 between the switch SW, the coil R, and the charging / discharging resistor R2, and the other end of the charging resistor R1 and the anode of the diode D1 are connected to each other. One end of the small-capacitance capacitor C1 is connected, the other end of the small-capacitance capacitor C1 is connected to the power supply line C24, and the charge / discharge circuit 10 is connected in parallel to the coil R and the electric circuit switching circuit 30.

また、放電抵抗VR1の両固定端子の一方が小容量コンデンサC1の一端に接続され他方が小容量コンデンサC1の他端と共に給電線C24に接続されて、充放電回路10が充電抵抗R1とは別の放電抵抗VR1を介して放電するものとなっている。さらに、ツェナーダイオードZ1は、カソードが小容量コンデンサC1の一端側に接続され、アノードが小容量コンデンサC1の他端と共に給電線C24に接続されて、小容量コンデンサC1の充電電圧を安定させるものとなっている。また、放電抵抗VR1の可動端子が上述したようにスイッチング素子Q1のゲートに接続されているので、電路開閉回路30が充放電回路10の充電電圧の高低に応じて給電路55の導通遮断を切り替えるものとなっているうえ、放電抵抗VR1の可動端子の操作にて緩放時間を調整しうるものとなっている。   Also, one of the fixed terminals of the discharge resistor VR1 is connected to one end of the small capacitor C1, and the other is connected to the power supply line C24 together with the other end of the small capacitor C1, so that the charge / discharge circuit 10 is separate from the charge resistor R1. It discharges through the discharge resistor VR1. Further, the Zener diode Z1 has a cathode connected to one end of the small capacitor C1 and an anode connected to the power supply line C24 together with the other end of the small capacitor C1 to stabilize the charging voltage of the small capacitor C1. It has become. In addition, since the movable terminal of the discharge resistor VR1 is connected to the gate of the switching element Q1 as described above, the electric circuit switching circuit 30 switches the conduction of the power supply path 55 according to the level of the charging voltage of the charging / discharging circuit 10. In addition, the slow release time can be adjusted by operating the movable terminal of the discharge resistor VR1.

さらに、充放電回路10と蓄電回路20との関係については、蓄電回路20から充放電回路10への放電を阻止する逆流阻止部材としてダイオードD2が充放電抵抗R2と充電抵抗R1との間に介挿接続されており、具体的には、ダイオードD2のアノードが充電抵抗R1とスイッチングとの接続点に接続され、ダイオードD2のカソードが充放電抵抗R2とコイルRとの接続点に接続されている。また、上述したように大容量コンデンサC2の容量が小容量コンデンサC1の容量より大きいため、給電線対B24,C24を介する直流電圧24Vの外部給電の断絶後におけるリレー50の動作保持可能時間が直流電圧24Vの外部給電の断絶後における給電路55の導通状態維持時間よりも長くなっている。なお、どれだけ長いかは各容量値C1,C2と各抵抗値VR1,R2,Rとに基づいて放電時定数にも依存して決まるものである。   Further, regarding the relationship between the charging / discharging circuit 10 and the storage circuit 20, a diode D2 is interposed between the charging / discharging resistor R2 and the charging resistor R1 as a backflow blocking member that blocks discharge from the storage circuit 20 to the charging / discharging circuit 10. Specifically, the anode of the diode D2 is connected to the connection point between the charging resistor R1 and switching, and the cathode of the diode D2 is connected to the connection point between the charging / discharging resistor R2 and the coil R. . Further, as described above, since the capacity of the large-capacitance capacitor C2 is larger than the capacity of the small-capacitance capacitor C1, the operation holdable time of the relay 50 after disconnection of the external power supply of the DC voltage 24V through the pair of power supply lines B24 and C24 is DC. It is longer than the conduction state maintaining time of the power supply path 55 after the external power supply with a voltage of 24 V is interrupted. Note that the length is determined depending on the discharge time constant based on the capacitance values C1, C2 and the resistance values VR1, R2, R.

この実施例1の緩放リレー回路について、その使用態様及び動作を、図面を引用して説明する。図2はオン時の動作説明図であり、図3はオフ時の動作説明図である。   The use mode and operation of the slow release relay circuit of the first embodiment will be described with reference to the drawings. FIG. 2 is an explanatory diagram of the operation at the time of on, and FIG. 3 is an explanatory diagram of the operation at the time of off.

例えば警報リレーの接点などで構成されるスイッチSWがオン状態になって、そこが導通すると(図2参照)、直流電圧24Vが給電線対B24,C24から充放電回路10へ直に印加されるとともに、直流電圧24VがダイオードD2を介して蓄電回路20に印加され更にリレー50のコイルRとスイッチング素子Q1との直列回路にも印加される。   For example, when the switch SW composed of contact points of an alarm relay is turned on and becomes conductive (see FIG. 2), a DC voltage 24V is directly applied to the charge / discharge circuit 10 from the pair of power supply lines B24 and C24. At the same time, the DC voltage 24V is applied to the power storage circuit 20 via the diode D2, and is further applied to the series circuit of the coil R of the relay 50 and the switching element Q1.

そして、充放電回路10では、充電抵抗R1とダイオードD1とに電流Iaが流れ、この電流Iaが放電抵抗VR1と小容量コンデンサC1との接続点で電流Ib,Icに分流し、そのうち電流Ibが小容量コンデンサC1に流れ込んで小容量コンデンサC1が充電されるとともに、放電抵抗VR1に電流Icが流れ、このとき放電抵抗VR1に掛かる電圧が可動端子からスイッチング素子Q1のゲートに伝達される。こうして、オン時の充放電回路10では、充放電回路10の容量部である小容量コンデンサC1が充電抵抗R1を介して給電線B24から給電路55への外部給電によって充電される   In the charging / discharging circuit 10, a current Ia flows through the charging resistor R1 and the diode D1, and the current Ia is divided into currents Ib and Ic at the connection point between the discharging resistor VR1 and the small-capacitance capacitor C1, and the current Ib is The small capacitor C1 flows into the small capacitor C1 and is charged, and the current Ic flows through the discharge resistor VR1. At this time, the voltage applied to the discharge resistor VR1 is transmitted from the movable terminal to the gate of the switching element Q1. In this way, in the charging / discharging circuit 10 at the time of ON, the small-capacitance capacitor C1 which is a capacity part of the charging / discharging circuit 10 is charged by the external power supply from the power supply line B24 to the power supply path 55 via the charging resistor R1.

また、蓄電回路20では、充放電抵抗R2に電流Idが流れ、この電流Idが大容量コンデンサC2に流れ込んで大容量コンデンサC2が充電される。こうして、オン時の蓄電回路20では、蓄電回路20の容量部である大容量コンデンサC2が充放電抵抗R2を介して給電線B24から給電路55への外部給電によって充電される。
さらに、電路開閉回路30では、上述した充放電回路10の放電抵抗VR1の可動端子の電圧をゲートに受けているスイッチング素子Q1がオンして、給電路55が導通状態になる。そのため、リレー50のコイルRとスイッチング素子Q1のソースドレイン間とに電流Ieが流れ、この電流Ieによってリレー50が動作してリレー接点が扛上する。
In the storage circuit 20, a current Id flows through the charge / discharge resistor R2, and the current Id flows into the large-capacitance capacitor C2 to charge the large-capacity capacitor C2. In this way, in the on-state storage circuit 20, the large-capacitance capacitor C2 that is the capacity unit of the storage circuit 20 is charged by external power supply from the power supply line B24 to the power supply path 55 via the charge / discharge resistor R2.
Further, in the electric circuit switching circuit 30, the switching element Q1 receiving at the gate the voltage of the movable terminal of the discharge resistor VR1 of the charge / discharge circuit 10 described above is turned on, and the power supply path 55 becomes conductive. Therefore, a current Ie flows between the coil R of the relay 50 and the source and drain of the switching element Q1, and the relay 50 is operated by this current Ie to raise the relay contact.

それから、スイッチSWがオン状態からオフ状態に切り替わって、そこが遮断されると(図3参照)、給電線対B24,C24からの外部給電が絶たれ、その外部給電の断絶後は充放電回路10でも蓄電回路20でも放電が行われる。
そして、蓄電回路20では、大容量コンデンサC2から放電がなされるが、その放電電流Igは、充電電流Idとは逆向きで充放電抵抗R2を流れ、充放電抵抗R2を経由した後、ダイオードD2によって充放電回路10の方へ流れるのは阻止されるので、専らリレー50のコイルRとスイッチング素子Q1とを流れる。
Then, when the switch SW is switched from the ON state to the OFF state and is cut off (see FIG. 3), the external power supply from the power supply line pair B24, C24 is cut off, and the charge / discharge circuit is disconnected after the external power supply is cut off. 10 and the storage circuit 20 are also discharged.
In the storage circuit 20, the large-capacitance capacitor C2 is discharged, and the discharge current Ig flows through the charge / discharge resistor R2 in the opposite direction to the charge current Id, and after passing through the charge / discharge resistor R2, the diode D2 Is prevented from flowing toward the charge / discharge circuit 10, and therefore flows exclusively through the coil R of the relay 50 and the switching element Q <b> 1.

また、充放電回路10では、小容量コンデンサC1から放電がなされるが、その放電電流Ifは、ダイオードD1によって充電抵抗R1の方へ流れるのを阻止されるため、その先のコイルR及びスイッチング素子Q1を迂回して、専ら放電抵抗VR1を流れる。そして、この放電電流Ifによって暫くは放電抵抗VR1の印加電圧が維持される。
さらに、電路開閉回路30では、放電抵抗VR1に掛かる電圧がスイッチング素子Q1のオン電圧を上回っている間は、それをゲート電圧とするスイッチング素子Q1がオンし続け、放電抵抗VR1に掛かる電圧がスイッチング素子Q1のオン電圧を下回った時点でスイッチング素子Q1がオフして給電路55が遮断される。
Further, in the charging / discharging circuit 10, the small capacitor C1 is discharged, but the discharge current If is prevented from flowing toward the charging resistor R1 by the diode D1, so that the coil R and the switching element ahead of it are prevented. It bypasses Q1 and flows exclusively through the discharge resistor VR1. Then, the applied voltage of the discharge resistor VR1 is maintained for a while by the discharge current If.
Further, in the electric circuit switching circuit 30, while the voltage applied to the discharge resistor VR1 exceeds the ON voltage of the switching device Q1, the switching device Q1 having the gate voltage as the gate voltage continues to be turned on, and the voltage applied to the discharge resistor VR1 is switched. When the voltage is lower than the on-voltage of the element Q1, the switching element Q1 is turned off and the power supply path 55 is interrupted.

そして、上述したように給電線対B24,C24を介する直流電圧24Vの外部給電の断絶後におけるリレー50の動作保持可能時間が直流電圧24Vの外部給電の断絶後における給電路55の導通状態維持時間よりも長くなるよう、充放電回路10における放電電流Ifの時定数と蓄電回路20及びリレー50における放電電流Igの時定数が予めされているので、放電電流Igの減少によってリレー50が復旧する前に、放電電流Ifの減少によってスイッチング素子Q1がオフし、これによって給電路55が遮断されて放電電流Igが止められるので、リレー50が復旧してリレー接点が落下する。   As described above, the operation holdable time of the relay 50 after disconnection of the external power supply of the DC voltage 24V via the power supply line pair B24, C24 is maintained. Since the time constant of the discharge current If in the charge / discharge circuit 10 and the time constant of the discharge current Ig in the storage circuit 20 and the relay 50 are set in advance so as to be longer than the In addition, the switching element Q1 is turned off due to the decrease in the discharge current If, and thereby the power supply path 55 is cut off and the discharge current Ig is stopped. Therefore, the relay 50 is restored and the relay contact is dropped.

こうして、故障の無い正常状態では、小容量コンデンサC1と放電抵抗VR1とに基づくCR時定数によって緩放時間が決まるので、しかも小容量コンデンサC1にはフィルムコンデンサといった特性の良い容量素子が用いられているので、緩放時間が安定する。また、放電抵抗VR1にゲートが接続されているスイッチング素子Q1には漏れ電流の少ないFETが採用されているので、その影響は無視できるほど小さい。さらに、小容量コンデンサC1にはツェナーダイオードZ1が付設され、大容量コンデンサC2にはツェナーダイオードZ2が付設されているので、給電線対B24,C24を介して印加される直流電圧24Vの変動による影響も小さく抑制される。そのため更に緩放時間が安定する。尚、大容量コンデンサC2が放電途中の蓄電状態を維持するので以後は充電時間が短い。   Thus, in a normal state with no failure, the slow release time is determined by the CR time constant based on the small-capacitance capacitor C1 and the discharge resistor VR1, and a capacitive element having good characteristics such as a film capacitor is used for the small-capacitance capacitor C1. Since the release time is stable. Further, since the switching element Q1 whose gate is connected to the discharge resistor VR1 employs an FET with a small leakage current, its influence is negligibly small. Further, since the Zener diode Z1 is attached to the small-capacitance capacitor C1, and the Zener diode Z2 is attached to the large-capacitance capacitor C2, the influence due to the fluctuation of the DC voltage 24V applied through the pair of feeder lines B24 and C24. Is also suppressed small. Therefore, the slow release time is further stabilized. Since the large-capacitance capacitor C2 maintains the charged state during discharging, the charging time is short thereafter.

一方、故障時には、この緩放リレー回路が鉄道分野で用いられる場合、何らかの故障によってスイッチング素子Q1がオフしたままオンしなくなった状態では、電流Idが流れないため、リレー50が動作せず、リレー接点が扛上しないので、フェールセーフ性が確保されている。
これに対し、故障によってスイッチング素子Q1がオンしたままオフしなくなったときには、これが最悪状態であるが、その状態では、給電路55が導通し続ける。
On the other hand, when this slow release relay circuit is used in the railway field at the time of failure, the current Id does not flow in a state where the switching element Q1 is not turned on due to some failure, so the relay 50 does not operate and the relay Since the contact does not rise, fail-safety is ensured.
On the other hand, when the switching element Q1 is not turned off while being turned on due to a failure, this is the worst state, but in this state, the power supply path 55 continues to be conducted.

そうすると、電路開閉回路30もその制御用の充放電回路10もリレー50の動作に影響しなくなるため、この緩放リレー回路は、充放電抵抗R2と大容量コンデンサC2との直列接続回路をリレー50に組み合わせただけの回路と等価になる。この等価回路は、従来の緩放リレー回路とそっくりであり、従来品との相違は、大容量コンデンサC2からの放電電流Igによるリレー50の動作保持時間が、外部給電断絶後のリレー50の動作保持可能時間になるため、緩放時間が正常時より長くなるだけである。
そのため、この緩放リレー回路では、スイッチング素子Q1がオンしたままオフしなくなった故障状態でも、フェールセーフ性が確保されている。
Then, since neither the electric circuit switching circuit 30 nor the control charge / discharge circuit 10 affects the operation of the relay 50, this slow release relay circuit uses a series connection circuit of the charge / discharge resistor R2 and the large-capacitance capacitor C2 as a relay 50. Equivalent to a circuit that is simply combined with This equivalent circuit is similar to the conventional slow release relay circuit, and the difference from the conventional product is that the operation holding time of the relay 50 by the discharge current Ig from the large-capacitance capacitor C2 is the operation of the relay 50 after the external power supply is cut off. Since the holding time is reached, the slow release time is only longer than normal.
For this reason, in this slow release relay circuit, fail-safety is ensured even in a failure state in which the switching element Q1 is not turned off while being turned on.

このように、本発明の緩放リレー回路にあっては、正常時には相対的に精度の良い充放電回路10が第1緩放時素回路として機能し、故障時には動作の確実な蓄電回路20が第2緩放時素回路として機能するので、フェールセーフ性が十分に確保されている。   As described above, in the slow release relay circuit of the present invention, the charge / discharge circuit 10 with relatively high accuracy functions as the first slow release element circuit during normal operation, and the reliable storage circuit 20 operates in the event of a failure. Since it functions as a second slow release element circuit, fail-safe property is sufficiently ensured.

図4に回路図を示した本発明の緩放リレー回路が上述した実施例1のものと相違するのは、電路開閉回路30にコンパレータ34が追加されている点である。   The difference between the slow release relay circuit of the present invention whose circuit diagram is shown in FIG. 4 and that of the first embodiment is that a comparator 34 is added to the electric circuit switching circuit 30.

コンパレータ34がスイッチング素子Q1のゲートラインに介挿接続されており、充放電回路10の放電電圧と既定の基準電圧とがコンパレータ34によって比較されて、両電圧の大小に応じてスイッチング素子Q1がオンオフするようになっている。
一般にコンパレータ34を利用した回路の温度特性の方がスイッチング素子Q1のゲートON電圧の温度特性よりも優れているので、温度変化に対する緩放時間の変動が抑制されて、時素の精度が向上する。
しかも、コンパレータ34を使用した回路でもフェールセーフ性が維持されている。
The comparator 34 is inserted and connected to the gate line of the switching element Q1, the discharge voltage of the charge / discharge circuit 10 is compared with a predetermined reference voltage, and the switching element Q1 is turned on / off according to the magnitude of both voltages. It is supposed to be.
In general, the temperature characteristic of the circuit using the comparator 34 is superior to the temperature characteristic of the gate ON voltage of the switching element Q1, so that the fluctuation of the slow release time with respect to the temperature change is suppressed, and the accuracy of the timepiece is improved. .
In addition, the fail-safe property is maintained even in the circuit using the comparator 34.

[その他]
放電抵抗VR1は、上述した可変抵抗に限られる訳でなく、複数抵抗と切替回路とを組み合わせて抵抗値を切り替える回路でも良い。
[Others]
The discharge resistor VR1 is not limited to the variable resistor described above, and may be a circuit that switches a resistance value by combining a plurality of resistors and a switching circuit.

本発明の緩放リレー回路は、特殊信号発光機の制御や踏切遮断機の制御に多用されているが、フェールセーフ性の要求される他の鉄道設備であっても緩放時間の設定可能な範囲内の応用目的であればそれにも使用することができる。   The slow release relay circuit of the present invention is frequently used for the control of special signal light emitters and the control of railroad crossing breakers, but the slow release time can be set even for other railway facilities that require fail-safety. It can be used for any application purpose within the scope.

10…充放電回路(正常時の第1緩放時素回路)、
R1…充電抵抗、C1…小容量コンデンサ、VR1…放電抵抗、
20…蓄電回路(故障時の第2緩放時素回路)、
R2…充放電抵抗、C2…大容量コンデンサ、
30…電路開閉回路、34…コンパレータ、Q1…スイッチング素子、
50…リレー、55…給電路、R…コイル、
R3…充放電抵抗、C3…大容量コンデンサ
10 ... Charge / discharge circuit (first elementary circuit during normal release),
R1 ... Charging resistor, C1 ... Small capacitance capacitor, VR1 ... Discharge resistor,
20: Storage circuit (second slow release elementary circuit at the time of failure),
R2: Charge / discharge resistance, C2: Large capacity capacitor,
30 ... Electric circuit switching circuit, 34 ... Comparator, Q1 ... Switching element,
50 ... Relay, 55 ... Feeding path, R ... Coil,
R3 ... Charge / discharge resistance, C3 ... Large capacity capacitor

Claims (3)

リレーのコイルに直列接続されていて前記コイルの給電路の導通遮断切替を行う電路開閉回路と、前記コイル及び前記電路開閉回路に並列接続されていて前記給電路への外部からの給電によって充電され前記外部給電の断絶後の放電は前記コイル及び前記電路開閉回路を介して行う蓄電回路と、前記コイル及び前記電路開閉回路に並列接続されていて前記外部給電にて充電され前記外部給電の断絶後の放電は前記コイル及び前記電路開閉回路を迂回して行う充放電回路とを備えた緩放リレー回路であって、前記電路開閉回路が前記充放電回路の充電電圧の高低に応じて前記給電路の導通遮断を切り替えるものであり、前記蓄電回路の容量が前記充放電回路の容量より大きくて前記外部給電の断絶後の前記リレーの動作保持可能時間が前記外部給電の断絶後の前記給電路の導通状態維持時間より長くなっていることを特徴とする緩放リレー回路。   An electric circuit switching circuit that is connected in series to the coil of the relay and performs switching on and off of the power supply path of the coil, and is connected in parallel to the coil and the electric circuit switching circuit, and is charged by external power supply to the power supply path. The discharge after the interruption of the external power supply is a storage circuit that is connected via the coil and the electric circuit switching circuit, and is connected in parallel to the coil and the electric circuit switching circuit, and is charged by the external power supply, and after the external power supply is interrupted A slow-release relay circuit including a charge / discharge circuit that bypasses the coil and the electric circuit switching circuit, and the electric circuit switching circuit responds to a level of a charging voltage of the charge / discharge circuit. Switching the conduction interruption of the relay, and the capacity of the storage circuit is larger than the capacity of the charge / discharge circuit, and the operation holding time of the relay after the interruption of the external power feeding is the external Yuruho relay circuit, characterized in that is longer than the conduction state holding time of the feeding path after disruption of electricity. 前記蓄電回路も前記充放電回路も容量部が充電抵抗を介して充電されるものであり、それら両抵抗の間には前記蓄電回路から前記充放電回路への放電を阻止する逆流阻止部材が介挿接続されていることを特徴とする請求項1記載の緩放リレー回路。   In both the storage circuit and the charge / discharge circuit, the capacitor portion is charged through a charging resistor, and a reverse flow blocking member for blocking discharge from the storage circuit to the charging / discharging circuit is interposed between these resistors. The slow release relay circuit according to claim 1, wherein the slow release relay circuit is inserted and connected. 前記充放電回路の前記充電抵抗には前記充電抵抗を介する放電を阻止する逆流阻止部材が付設されていて、前記充放電回路が前記充電抵抗とは別の放電抵抗を介して放電するようになっていることを特徴とする請求項1又は請求項2に記載された緩放リレー回路。   The charging resistor of the charging / discharging circuit is provided with a backflow prevention member for preventing discharge through the charging resistor, and the charging / discharging circuit is discharged through a discharging resistor different from the charging resistor. The slow release relay circuit according to claim 1, wherein the release relay circuit is provided.
JP2010079722A 2010-03-30 2010-03-30 Slow release relay circuit Active JP5489820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079722A JP5489820B2 (en) 2010-03-30 2010-03-30 Slow release relay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079722A JP5489820B2 (en) 2010-03-30 2010-03-30 Slow release relay circuit

Publications (2)

Publication Number Publication Date
JP2011210687A true JP2011210687A (en) 2011-10-20
JP5489820B2 JP5489820B2 (en) 2014-05-14

Family

ID=44941506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079722A Active JP5489820B2 (en) 2010-03-30 2010-03-30 Slow release relay circuit

Country Status (1)

Country Link
JP (1) JP5489820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014619A1 (en) * 2019-07-24 2021-01-28 三菱電機株式会社 Slow-release relay circuit and train control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110148U (en) * 1974-02-20 1975-09-09
JPS5637249U (en) * 1979-08-23 1981-04-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110148U (en) * 1974-02-20 1975-09-09
JPS5637249U (en) * 1979-08-23 1981-04-09

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014619A1 (en) * 2019-07-24 2021-01-28 三菱電機株式会社 Slow-release relay circuit and train control device
JPWO2021014619A1 (en) * 2019-07-24 2021-12-02 三菱電機株式会社 Slow release relay circuit and train control device
JP7034387B2 (en) 2019-07-24 2022-03-11 三菱電機株式会社 Slow release relay circuit and train control

Also Published As

Publication number Publication date
JP5489820B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5851821B2 (en) Charge / discharge control circuit and battery device
JP6614388B1 (en) Secondary battery protection circuit, secondary battery protection device, battery pack, and control method of secondary battery protection circuit
US10910851B2 (en) Overcurrent, overcharge, and overdischarge detection and responsive switch control
JP5957479B2 (en) Control circuit and control method for battery branch of battery system
KR102439642B1 (en) Battery device
KR20070120910A (en) Overvoltage protection circuit and electronic device
JP6203020B2 (en) Battery pack having charge / discharge switch circuit
WO2015136797A1 (en) Latching-relay drive circuit
KR20110132974A (en) Battery state monitoring circuit and battery device
JP7036033B2 (en) Arc suppression device
CA2926913C (en) Load driver circuit and load short-circuit detection circuit
JP5588370B2 (en) Output circuit, temperature switch IC, and battery pack
US11043826B2 (en) Charge/discharge control circuit and battery device including the same
US20140167702A1 (en) Charging and discharging control circuit and battery device
WO2019179787A8 (en) Converter
JP5489820B2 (en) Slow release relay circuit
JP6370191B2 (en) Battery state monitoring circuit and battery device
JP6412757B2 (en) Power supply
JP2019030165A (en) Battery pack
CN113169563A (en) Vehicle-mounted standby power supply control device and vehicle-mounted standby power supply
JP2011229279A (en) Charging control device
JP5804322B2 (en) Battery disconnect circuit
CN210431377U (en) Solid-state switch with short-circuit protection self-resetting function
JP2009268244A (en) Rush current reduction circuit and power supply unit having the same
JP2017153179A (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250